xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/sinhf_2u3.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Single-precision sinh(x) function.
3  *
4  * Copyright (c) 2022-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "mathlib.h"
9 #include "math_config.h"
10 #include "test_sig.h"
11 #include "test_defs.h"
12 
13 #define AbsMask 0x7fffffff
14 #define Half 0x3f000000
15 /* 0x1.62e43p+6, 2^7*ln2, minimum value for which expm1f overflows.  */
16 #define Expm1OFlowLimit 0x42b17218
17 /* 0x1.65a9fap+6, minimum positive value for which sinhf should overflow.  */
18 #define OFlowLimit 0x42b2d4fd
19 
20 /* Approximation for single-precision sinh(x) using expm1.
21    sinh(x) = (exp(x) - exp(-x)) / 2.
22    The maximum error is 2.26 ULP:
23    sinhf(0x1.e34a9ep-4) got 0x1.e469ep-4 want 0x1.e469e4p-4.  */
24 float
25 sinhf (float x)
26 {
27   uint32_t ix = asuint (x);
28   uint32_t iax = ix & AbsMask;
29   float ax = asfloat (iax);
30   uint32_t sign = ix & ~AbsMask;
31   float halfsign = asfloat (Half | sign);
32 
33   if (unlikely (iax >= Expm1OFlowLimit))
34     {
35       /* Special values and overflow.  */
36       if (iax >= 0x7fc00001 || iax == 0x7f800000)
37 	return x;
38       if (iax >= 0x7f800000)
39 	return __math_invalidf (x);
40       if (iax >= OFlowLimit)
41 	return __math_oflowf (sign);
42 
43       /* expm1f overflows a little before sinhf, (~88.7 vs ~89.4). We have to
44 	 fill this gap by using a different algorithm, in this case we use a
45 	 double-precision exp helper. For large x sinh(x) dominated by exp(x),
46 	 however we cannot compute exp without overflow either. We use the
47 	 identity:
48 	 exp(a) = (exp(a / 2)) ^ 2.
49 	 to compute sinh(x) ~= (exp(|x| / 2)) ^ 2 / 2    for x > 0
50 			    ~= (exp(|x| / 2)) ^ 2 / -2   for x < 0.
51 	 Greatest error in this region is 1.89 ULP:
52 	 sinhf(0x1.65898cp+6) got 0x1.f00aep+127  want 0x1.f00adcp+127.  */
53       float e = expf (ax / 2);
54       return (e * halfsign) * e;
55     }
56 
57   /* Use expm1f to retain acceptable precision for small numbers.
58      Let t = e^(|x|) - 1.  */
59   float t = expm1f (ax);
60   /* Then sinh(x) = (t + t / (t + 1)) / 2   for x > 0
61 		    (t + t / (t + 1)) / -2  for x < 0.  */
62   return (t + t / (t + 1)) * halfsign;
63 }
64 
65 TEST_SIG (S, F, 1, sinh, -10.0, 10.0)
66 TEST_ULP (sinhf, 1.76)
67 TEST_SYM_INTERVAL (sinhf, 0, 0x1.62e43p+6, 100000)
68 TEST_SYM_INTERVAL (sinhf, 0x1.62e43p+6, 0x1.65a9fap+6, 100)
69 TEST_SYM_INTERVAL (sinhf, 0x1.65a9fap+6, inf, 100)
70