xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/log1pf_2u1.c (revision f3087bef11543b42e0d69b708f367097a4118d24)
1*f3087befSAndrew Turner /*
2*f3087befSAndrew Turner  * Single-precision log(1+x) function.
3*f3087befSAndrew Turner  *
4*f3087befSAndrew Turner  * Copyright (c) 2022-2024, Arm Limited.
5*f3087befSAndrew Turner  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*f3087befSAndrew Turner  */
7*f3087befSAndrew Turner 
8*f3087befSAndrew Turner #include "poly_scalar_f32.h"
9*f3087befSAndrew Turner #include "math_config.h"
10*f3087befSAndrew Turner #include "test_sig.h"
11*f3087befSAndrew Turner #include "test_defs.h"
12*f3087befSAndrew Turner 
13*f3087befSAndrew Turner #define Ln2 (0x1.62e43p-1f)
14*f3087befSAndrew Turner #define SignMask (0x80000000)
15*f3087befSAndrew Turner 
16*f3087befSAndrew Turner /* Biased exponent of the largest float m for which m^8 underflows.  */
17*f3087befSAndrew Turner #define M8UFLOW_BOUND_BEXP 112
18*f3087befSAndrew Turner /* Biased exponent of the largest float for which we just return x.  */
19*f3087befSAndrew Turner #define TINY_BOUND_BEXP 103
20*f3087befSAndrew Turner 
21*f3087befSAndrew Turner #define C(i) __log1pf_data.coeffs[i]
22*f3087befSAndrew Turner 
23*f3087befSAndrew Turner static inline float
eval_poly(float m,uint32_t e)24*f3087befSAndrew Turner eval_poly (float m, uint32_t e)
25*f3087befSAndrew Turner {
26*f3087befSAndrew Turner #ifdef LOG1PF_2U5
27*f3087befSAndrew Turner 
28*f3087befSAndrew Turner   /* 2.5 ulp variant. Approximate log(1+m) on [-0.25, 0.5] using
29*f3087befSAndrew Turner      slightly modified Estrin scheme (no x^0 term, and x term is just x).  */
30*f3087befSAndrew Turner   float p_12 = fmaf (m, C (1), C (0));
31*f3087befSAndrew Turner   float p_34 = fmaf (m, C (3), C (2));
32*f3087befSAndrew Turner   float p_56 = fmaf (m, C (5), C (4));
33*f3087befSAndrew Turner   float p_78 = fmaf (m, C (7), C (6));
34*f3087befSAndrew Turner 
35*f3087befSAndrew Turner   float m2 = m * m;
36*f3087befSAndrew Turner   float p_02 = fmaf (m2, p_12, m);
37*f3087befSAndrew Turner   float p_36 = fmaf (m2, p_56, p_34);
38*f3087befSAndrew Turner   float p_79 = fmaf (m2, C (8), p_78);
39*f3087befSAndrew Turner 
40*f3087befSAndrew Turner   float m4 = m2 * m2;
41*f3087befSAndrew Turner   float p_06 = fmaf (m4, p_36, p_02);
42*f3087befSAndrew Turner 
43*f3087befSAndrew Turner   if (unlikely (e < M8UFLOW_BOUND_BEXP))
44*f3087befSAndrew Turner     return p_06;
45*f3087befSAndrew Turner 
46*f3087befSAndrew Turner   float m8 = m4 * m4;
47*f3087befSAndrew Turner   return fmaf (m8, p_79, p_06);
48*f3087befSAndrew Turner 
49*f3087befSAndrew Turner #elif defined(LOG1PF_1U3)
50*f3087befSAndrew Turner 
51*f3087befSAndrew Turner   /* 1.3 ulp variant. Approximate log(1+m) on [-0.25, 0.5] using Horner
52*f3087befSAndrew Turner      scheme. Our polynomial approximation for log1p has the form
53*f3087befSAndrew Turner      x + C1 * x^2 + C2 * x^3 + C3 * x^4 + ...
54*f3087befSAndrew Turner      Hence approximation has the form m + m^2 * P(m)
55*f3087befSAndrew Turner        where P(x) = C1 + C2 * x + C3 * x^2 + ... .  */
56*f3087befSAndrew Turner   return fmaf (m, m * horner_8_f32 (m, __log1pf_data.coeffs), m);
57*f3087befSAndrew Turner 
58*f3087befSAndrew Turner #else
59*f3087befSAndrew Turner #error No log1pf approximation exists with the requested precision. Options are 13 or 25.
60*f3087befSAndrew Turner #endif
61*f3087befSAndrew Turner }
62*f3087befSAndrew Turner 
63*f3087befSAndrew Turner static inline uint32_t
biased_exponent(uint32_t ix)64*f3087befSAndrew Turner biased_exponent (uint32_t ix)
65*f3087befSAndrew Turner {
66*f3087befSAndrew Turner   return (ix & 0x7f800000) >> 23;
67*f3087befSAndrew Turner }
68*f3087befSAndrew Turner 
69*f3087befSAndrew Turner /* log1pf approximation using polynomial on reduced interval. Worst-case error
70*f3087befSAndrew Turner    when using Estrin is roughly 2.02 ULP:
71*f3087befSAndrew Turner    log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3.  */
72*f3087befSAndrew Turner float
log1pf(float x)73*f3087befSAndrew Turner log1pf (float x)
74*f3087befSAndrew Turner {
75*f3087befSAndrew Turner   uint32_t ix = asuint (x);
76*f3087befSAndrew Turner   uint32_t ia = ix & ~SignMask;
77*f3087befSAndrew Turner   uint32_t ia12 = ia >> 20;
78*f3087befSAndrew Turner   uint32_t e = biased_exponent (ix);
79*f3087befSAndrew Turner 
80*f3087befSAndrew Turner   /* Handle special cases first.  */
81*f3087befSAndrew Turner   if (unlikely (ia12 >= 0x7f8 || ix >= 0xbf800000 || ix == 0x80000000
82*f3087befSAndrew Turner 		|| e <= TINY_BOUND_BEXP))
83*f3087befSAndrew Turner     {
84*f3087befSAndrew Turner       if (ix == 0xff800000)
85*f3087befSAndrew Turner 	{
86*f3087befSAndrew Turner 	  /* x == -Inf => log1pf(x) =  NaN.  */
87*f3087befSAndrew Turner 	  return NAN;
88*f3087befSAndrew Turner 	}
89*f3087befSAndrew Turner       if ((ix == 0x7f800000 || e <= TINY_BOUND_BEXP) && ia12 <= 0x7f8)
90*f3087befSAndrew Turner 	{
91*f3087befSAndrew Turner 	  /* |x| < TinyBound => log1p(x)  =  x.
92*f3087befSAndrew Turner 	      x ==       Inf => log1pf(x) = Inf.  */
93*f3087befSAndrew Turner 	  return x;
94*f3087befSAndrew Turner 	}
95*f3087befSAndrew Turner       if (ix == 0xbf800000)
96*f3087befSAndrew Turner 	{
97*f3087befSAndrew Turner 	  /* x == -1.0 => log1pf(x) = -Inf.  */
98*f3087befSAndrew Turner 	  return __math_divzerof (-1);
99*f3087befSAndrew Turner 	}
100*f3087befSAndrew Turner       if (ia12 >= 0x7f8)
101*f3087befSAndrew Turner 	{
102*f3087befSAndrew Turner 	  /* x == +/-NaN => log1pf(x) = NaN.  */
103*f3087befSAndrew Turner 	  return __math_invalidf (asfloat (ia));
104*f3087befSAndrew Turner 	}
105*f3087befSAndrew Turner       /* x <    -1.0 => log1pf(x) = NaN.  */
106*f3087befSAndrew Turner       return __math_invalidf (x);
107*f3087befSAndrew Turner     }
108*f3087befSAndrew Turner 
109*f3087befSAndrew Turner   /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
110*f3087befSAndrew Turner 			   is in [-0.25, 0.5]):
111*f3087befSAndrew Turner      log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
112*f3087befSAndrew Turner 
113*f3087befSAndrew Turner      We approximate log1p(m) with a polynomial, then scale by
114*f3087befSAndrew Turner      k*log(2). Instead of doing this directly, we use an intermediate
115*f3087befSAndrew Turner      scale factor s = 4*k*log(2) to ensure the scale is representable
116*f3087befSAndrew Turner      as a normalised fp32 number.  */
117*f3087befSAndrew Turner 
118*f3087befSAndrew Turner   if (ix <= 0x3f000000 || ia <= 0x3e800000)
119*f3087befSAndrew Turner     {
120*f3087befSAndrew Turner       /* If x is in [-0.25, 0.5] then we can shortcut all the logic
121*f3087befSAndrew Turner 	 below, as k = 0 and m = x.  All we need is to return the
122*f3087befSAndrew Turner 	 polynomial.  */
123*f3087befSAndrew Turner       return eval_poly (x, e);
124*f3087befSAndrew Turner     }
125*f3087befSAndrew Turner 
126*f3087befSAndrew Turner   float m = x + 1.0f;
127*f3087befSAndrew Turner 
128*f3087befSAndrew Turner   /* k is used scale the input. 0x3f400000 is chosen as we are trying to
129*f3087befSAndrew Turner      reduce x to the range [-0.25, 0.5]. Inside this range, k is 0.
130*f3087befSAndrew Turner      Outside this range, if k is reinterpreted as (NOT CONVERTED TO) float:
131*f3087befSAndrew Turner 	 let k = sign * 2^p      where sign = -1 if x < 0
132*f3087befSAndrew Turner 					       1 otherwise
133*f3087befSAndrew Turner 	 and p is a negative integer whose magnitude increases with the
134*f3087befSAndrew Turner 	 magnitude of x.  */
135*f3087befSAndrew Turner   int k = (asuint (m) - 0x3f400000) & 0xff800000;
136*f3087befSAndrew Turner 
137*f3087befSAndrew Turner   /* By using integer arithmetic, we obtain the necessary scaling by
138*f3087befSAndrew Turner      subtracting the unbiased exponent of k from the exponent of x.  */
139*f3087befSAndrew Turner   float m_scale = asfloat (asuint (x) - k);
140*f3087befSAndrew Turner 
141*f3087befSAndrew Turner   /* Scale up to ensure that the scale factor is representable as normalised
142*f3087befSAndrew Turner      fp32 number (s in [2**-126,2**26]), and scale m down accordingly.  */
143*f3087befSAndrew Turner   float s = asfloat (asuint (4.0f) - k);
144*f3087befSAndrew Turner   m_scale = m_scale + fmaf (0.25f, s, -1.0f);
145*f3087befSAndrew Turner 
146*f3087befSAndrew Turner   float p = eval_poly (m_scale, biased_exponent (asuint (m_scale)));
147*f3087befSAndrew Turner 
148*f3087befSAndrew Turner   /* The scale factor to be applied back at the end - by multiplying float(k)
149*f3087befSAndrew Turner      by 2^-23 we get the unbiased exponent of k.  */
150*f3087befSAndrew Turner   float scale_back = (float) k * 0x1.0p-23f;
151*f3087befSAndrew Turner 
152*f3087befSAndrew Turner   /* Apply the scaling back.  */
153*f3087befSAndrew Turner   return fmaf (scale_back, Ln2, p);
154*f3087befSAndrew Turner }
155*f3087befSAndrew Turner 
156*f3087befSAndrew Turner TEST_SIG (S, F, 1, log1p, -0.9, 10.0)
157*f3087befSAndrew Turner TEST_ULP (log1pf, 1.52)
158*f3087befSAndrew Turner TEST_SYM_INTERVAL (log1pf, 0.0, 0x1p-23, 50000)
159*f3087befSAndrew Turner TEST_SYM_INTERVAL (log1pf, 0x1p-23, 0.001, 50000)
160*f3087befSAndrew Turner TEST_SYM_INTERVAL (log1pf, 0.001, 1.0, 50000)
161*f3087befSAndrew Turner TEST_SYM_INTERVAL (log1pf, 1.0, inf, 5000)
162