xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/expm1_2u5.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Double-precision e^x - 1 function.
3  *
4  * Copyright (c) 2022-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "poly_scalar_f64.h"
9 #include "math_config.h"
10 #include "test_sig.h"
11 #include "test_defs.h"
12 
13 #define InvLn2 0x1.71547652b82fep0
14 #define Ln2hi 0x1.62e42fefa39efp-1
15 #define Ln2lo 0x1.abc9e3b39803fp-56
16 #define Shift 0x1.8p52
17 /* 0x1p-51, below which expm1(x) is within 2 ULP of x.  */
18 #define TinyBound 0x3cc0000000000000
19 /* Above which expm1(x) overflows.  */
20 #define BigBound 0x1.63108c75a1937p+9
21 /* Below which expm1(x) rounds to 1.  */
22 #define NegBound -0x1.740bf7c0d927dp+9
23 #define AbsMask 0x7fffffffffffffff
24 
25 /* Approximation for exp(x) - 1 using polynomial on a reduced interval.
26    The maximum error observed error is 2.17 ULP:
27    expm1(0x1.63f90a866748dp-2) got 0x1.a9af56603878ap-2
28 			      want 0x1.a9af566038788p-2.  */
29 double
30 expm1 (double x)
31 {
32   uint64_t ix = asuint64 (x);
33   uint64_t ax = ix & AbsMask;
34 
35   /* Tiny, +Infinity.  */
36   if (ax <= TinyBound || ix == 0x7ff0000000000000)
37     return x;
38 
39   /* +/-NaN.  */
40   if (ax > 0x7ff0000000000000)
41     return __math_invalid (x);
42 
43   /* Result is too large to be represented as a double.  */
44   if (x >= 0x1.63108c75a1937p+9)
45     return __math_oflow (0);
46 
47   /* Result rounds to -1 in double precision.  */
48   if (x <= NegBound)
49     return -1;
50 
51   /* Reduce argument to smaller range:
52      Let i = round(x / ln2)
53      and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
54      exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
55      where 2^i is exact because i is an integer.  */
56   double j = fma (InvLn2, x, Shift) - Shift;
57   int64_t i = j;
58   double f = fma (j, -Ln2hi, x);
59   f = fma (j, -Ln2lo, f);
60 
61   /* Approximate expm1(f) using polynomial.
62      Taylor expansion for expm1(x) has the form:
63 	 x + ax^2 + bx^3 + cx^4 ....
64      So we calculate the polynomial P(f) = a + bf + cf^2 + ...
65      and assemble the approximation expm1(f) ~= f + f^2 * P(f).  */
66   double f2 = f * f;
67   double f4 = f2 * f2;
68   double p = fma (f2, estrin_10_f64 (f, f2, f4, f4 * f4, __expm1_poly), f);
69 
70   /* Assemble the result, using a slight rearrangement to achieve acceptable
71      accuracy.
72      expm1(x) ~= 2^i * (p + 1) - 1
73      Let t = 2^(i - 1).  */
74   double t = ldexp (0.5, i);
75   /* expm1(x) ~= 2 * (p * t + (t - 1/2)).  */
76   return 2 * fma (p, t, t - 0.5);
77 }
78 
79 TEST_SIG (S, D, 1, expm1, -9.9, 9.9)
80 TEST_ULP (expm1, 1.68)
81 TEST_SYM_INTERVAL (expm1, 0, 0x1p-51, 1000)
82 TEST_INTERVAL (expm1, 0x1p-51, 0x1.63108c75a1937p+9, 100000)
83 TEST_INTERVAL (expm1, -0x1p-51, -0x1.740bf7c0d927dp+9, 100000)
84 TEST_INTERVAL (expm1, 0x1.63108c75a1937p+9, inf, 100)
85 TEST_INTERVAL (expm1, -0x1.740bf7c0d927dp+9, -inf, 100)
86