1 /* 2 * Double-precision e^x - 1 function. 3 * 4 * Copyright (c) 2022-2024, Arm Limited. 5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 6 */ 7 8 #include "poly_scalar_f64.h" 9 #include "math_config.h" 10 #include "test_sig.h" 11 #include "test_defs.h" 12 13 #define InvLn2 0x1.71547652b82fep0 14 #define Ln2hi 0x1.62e42fefa39efp-1 15 #define Ln2lo 0x1.abc9e3b39803fp-56 16 #define Shift 0x1.8p52 17 /* 0x1p-51, below which expm1(x) is within 2 ULP of x. */ 18 #define TinyBound 0x3cc0000000000000 19 /* Above which expm1(x) overflows. */ 20 #define BigBound 0x1.63108c75a1937p+9 21 /* Below which expm1(x) rounds to 1. */ 22 #define NegBound -0x1.740bf7c0d927dp+9 23 #define AbsMask 0x7fffffffffffffff 24 25 /* Approximation for exp(x) - 1 using polynomial on a reduced interval. 26 The maximum error observed error is 2.17 ULP: 27 expm1(0x1.63f90a866748dp-2) got 0x1.a9af56603878ap-2 28 want 0x1.a9af566038788p-2. */ 29 double 30 expm1 (double x) 31 { 32 uint64_t ix = asuint64 (x); 33 uint64_t ax = ix & AbsMask; 34 35 /* Tiny, +Infinity. */ 36 if (ax <= TinyBound || ix == 0x7ff0000000000000) 37 return x; 38 39 /* +/-NaN. */ 40 if (ax > 0x7ff0000000000000) 41 return __math_invalid (x); 42 43 /* Result is too large to be represented as a double. */ 44 if (x >= 0x1.63108c75a1937p+9) 45 return __math_oflow (0); 46 47 /* Result rounds to -1 in double precision. */ 48 if (x <= NegBound) 49 return -1; 50 51 /* Reduce argument to smaller range: 52 Let i = round(x / ln2) 53 and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. 54 exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 55 where 2^i is exact because i is an integer. */ 56 double j = fma (InvLn2, x, Shift) - Shift; 57 int64_t i = j; 58 double f = fma (j, -Ln2hi, x); 59 f = fma (j, -Ln2lo, f); 60 61 /* Approximate expm1(f) using polynomial. 62 Taylor expansion for expm1(x) has the form: 63 x + ax^2 + bx^3 + cx^4 .... 64 So we calculate the polynomial P(f) = a + bf + cf^2 + ... 65 and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ 66 double f2 = f * f; 67 double f4 = f2 * f2; 68 double p = fma (f2, estrin_10_f64 (f, f2, f4, f4 * f4, __expm1_poly), f); 69 70 /* Assemble the result, using a slight rearrangement to achieve acceptable 71 accuracy. 72 expm1(x) ~= 2^i * (p + 1) - 1 73 Let t = 2^(i - 1). */ 74 double t = ldexp (0.5, i); 75 /* expm1(x) ~= 2 * (p * t + (t - 1/2)). */ 76 return 2 * fma (p, t, t - 0.5); 77 } 78 79 TEST_SIG (S, D, 1, expm1, -9.9, 9.9) 80 TEST_ULP (expm1, 1.68) 81 TEST_SYM_INTERVAL (expm1, 0, 0x1p-51, 1000) 82 TEST_INTERVAL (expm1, 0x1p-51, 0x1.63108c75a1937p+9, 100000) 83 TEST_INTERVAL (expm1, -0x1p-51, -0x1.740bf7c0d927dp+9, 100000) 84 TEST_INTERVAL (expm1, 0x1.63108c75a1937p+9, inf, 100) 85 TEST_INTERVAL (expm1, -0x1.740bf7c0d927dp+9, -inf, 100) 86