xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/advsimd/erfinvf_5u.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Single-precision inverse error function (AdvSIMD variant).
3  *
4  * Copyright (c) 2023-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 #include "v_math.h"
8 #include "test_sig.h"
9 #include "test_defs.h"
10 #include "v_poly_f32.h"
11 #include "v_logf_inline.h"
12 
13 const static struct data
14 {
15   /*  We use P_N and Q_N to refer to arrays of coefficients, where P_N is the
16       coeffs of the numerator in table N of Blair et al, and Q_N is the coeffs
17       of the denominator. Coefficients are stored in various interleaved
18       formats to allow for table-based (vector-to-vector) lookup.
19 
20       Plo is first two coefficients of P_10 and P_29 interleaved.
21       PQ is third coeff of P_10 and first of Q_29 interleaved.
22       Qhi is second and third coeffs of Q_29 interleaved.
23       P29_3 is a homogenous vector with fourth coeff of P_29.
24 
25       P_10 and Q_10 are also stored in homogenous vectors to allow better
26       memory access when no lanes are in a tail region.  */
27   float Plo[4], PQ[4], Qhi[4];
28   float32x4_t P29_3, tailshift;
29   float32x4_t P_50[6], Q_50[2];
30   float32x4_t P_10[3], Q_10[3];
31   uint8_t idxhi[16], idxlo[16];
32   struct v_logf_data logf_tbl;
33 } data = {
34   .idxlo = { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 },
35   .idxhi = { 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11 },
36   .P29_3 = V4 (0x1.b13626p-2),
37   .tailshift = V4 (-0.87890625),
38   .Plo = { -0x1.a31268p+3, -0x1.fc0252p-4, 0x1.ac9048p+4, 0x1.119d44p+0 },
39   .PQ = { -0x1.293ff6p+3, -0x1.f59ee2p+0, -0x1.8265eep+3, -0x1.69952p-4 },
40   .Qhi = { 0x1.ef5eaep+4, 0x1.c7b7d2p-1, -0x1.12665p+4, -0x1.167d7p+1 },
41   .P_50 = { V4 (0x1.3d8948p-3), V4 (0x1.61f9eap+0), V4 (0x1.61c6bcp-1),
42 	    V4 (-0x1.20c9f2p+0), V4 (0x1.5c704cp-1), V4 (-0x1.50c6bep-3) },
43   .Q_50 = { V4 (0x1.3d7dacp-3), V4 (0x1.629e5p+0) },
44   .P_10 = { V4 (-0x1.a31268p+3), V4 (0x1.ac9048p+4), V4 (-0x1.293ff6p+3) },
45   .Q_10 = { V4 (-0x1.8265eep+3), V4 (0x1.ef5eaep+4), V4 (-0x1.12665p+4) },
46   .logf_tbl = V_LOGF_CONSTANTS
47 };
48 
49 static inline float32x4_t
50 special (float32x4_t x, const struct data *d)
51 {
52   /* Note erfinvf(inf) should return NaN, and erfinvf(1) should return Inf.
53      By using log here, instead of log1p, we return finite values for both
54      these inputs, and values outside [-1, 1]. This is non-compliant, but is an
55      acceptable optimisation at Ofast. To get correct behaviour for all finite
56      values use the log1pf_inline helper on -abs(x) - note that erfinvf(inf)
57      will still be finite.  */
58   float32x4_t t = vdivq_f32 (
59       v_f32 (1), vsqrtq_f32 (vnegq_f32 (v_logf_inline (
60 		     vsubq_f32 (v_f32 (1), vabsq_f32 (x)), &d->logf_tbl))));
61   float32x4_t ts = vbslq_f32 (v_u32 (0x7fffffff), t, x);
62   float32x4_t q = vfmaq_f32 (d->Q_50[0], vaddq_f32 (t, d->Q_50[1]), t);
63   return vdivq_f32 (v_horner_5_f32 (t, d->P_50), vmulq_f32 (ts, q));
64 }
65 
66 static inline float32x4_t
67 notails (float32x4_t x, const struct data *d)
68 {
69   /* Shortcut when no input is in a tail region - no need to gather shift or
70      coefficients.  */
71   float32x4_t t = vfmaq_f32 (v_f32 (-0.5625), x, x);
72   float32x4_t q = vaddq_f32 (t, d->Q_10[2]);
73   q = vfmaq_f32 (d->Q_10[1], t, q);
74   q = vfmaq_f32 (d->Q_10[0], t, q);
75 
76   return vdivq_f32 (vmulq_f32 (x, v_horner_2_f32 (t, d->P_10)), q);
77 }
78 
79 static inline float32x4_t
80 lookup (float32x4_t tbl, uint8x16_t idx)
81 {
82   return vreinterpretq_f32_u8 (vqtbl1q_u8 (vreinterpretq_u8_f32 (tbl), idx));
83 }
84 
85 /* Vector implementation of Blair et al's rational approximation to inverse
86    error function in single-precision. Worst-case error is 4.98 ULP, in the
87    tail region:
88    _ZGVnN4v_erfinvf(0x1.f7dbeep-1) got 0x1.b4793p+0
89 				  want 0x1.b4793ap+0 .  */
90 float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (erfinv) (float32x4_t x)
91 {
92   const struct data *d = ptr_barrier (&data);
93 
94   /* Calculate inverse error using algorithm described in
95      J. M. Blair, C. A. Edwards, and J. H. Johnson,
96      "Rational Chebyshev approximations for the inverse of the error
97       function", Math. Comp. 30, pp. 827--830 (1976).
98      https://doi.org/10.1090/S0025-5718-1976-0421040-7.
99 
100     Algorithm has 3 intervals:
101      - 'Normal' region [-0.75, 0.75]
102      - Tail region [0.75, 0.9375] U [-0.9375, -0.75]
103      - Extreme tail [-1, -0.9375] U [0.9375, 1]
104      Normal and tail are both rational approximation of similar order on
105      shifted input - these are typically performed in parallel using gather
106      loads to obtain correct coefficients depending on interval.  */
107   uint32x4_t is_tail = vcageq_f32 (x, v_f32 (0.75));
108   uint32x4_t extreme_tail = vcageq_f32 (x, v_f32 (0.9375));
109 
110   if (unlikely (!v_any_u32 (is_tail)))
111     /* Shortcut for if all lanes are in [-0.75, 0.75] - can avoid having to
112        gather coefficients. If input is uniform in [-1, 1] then likelihood of
113        this is 0.75^4 ~= 0.31.  */
114     return notails (x, d);
115 
116   /* Select requisite shift depending on interval: polynomial is evaluated on
117      x * x - shift.
118      Normal shift = 0.5625
119      Tail shift   = 0.87890625.  */
120   float32x4_t t
121       = vfmaq_f32 (vbslq_f32 (is_tail, d->tailshift, v_f32 (-0.5625)), x, x);
122 
123   /* Calculate indexes for tbl: tbl is byte-wise, so:
124      [0, 1, 2, 3, 4, 5, 6, ....] copies the vector
125      Add 4 * i to a group of 4 lanes to copy 32-bit lane i. Each vector stores
126      two pairs of coeffs, so we need two idx vectors - one for each pair.  */
127   uint8x16_t off = vandq_u8 (vreinterpretq_u8_u32 (is_tail), vdupq_n_u8 (4));
128   uint8x16_t idx_lo = vaddq_u8 (vld1q_u8 (d->idxlo), off);
129   uint8x16_t idx_hi = vaddq_u8 (vld1q_u8 (d->idxhi), off);
130 
131   /* Load the tables.  */
132   float32x4_t plo = vld1q_f32 (d->Plo);
133   float32x4_t pq = vld1q_f32 (d->PQ);
134   float32x4_t qhi = vld1q_f32 (d->Qhi);
135 
136   /* Do the lookup (and calculate p3 by masking non-tail lanes).  */
137   float32x4_t p3 = vreinterpretq_f32_u32 (
138       vandq_u32 (is_tail, vreinterpretq_u32_f32 (d->P29_3)));
139   float32x4_t p0 = lookup (plo, idx_lo), p1 = lookup (plo, idx_hi),
140 	      p2 = lookup (pq, idx_lo), q0 = lookup (pq, idx_hi),
141 	      q1 = lookup (qhi, idx_lo), q2 = lookup (qhi, idx_hi);
142 
143   float32x4_t p = vfmaq_f32 (p2, p3, t);
144   p = vfmaq_f32 (p1, p, t);
145   p = vfmaq_f32 (p0, p, t);
146   p = vmulq_f32 (x, p);
147 
148   float32x4_t q = vfmaq_f32 (q1, vaddq_f32 (q2, t), t);
149   q = vfmaq_f32 (q0, q, t);
150 
151   if (unlikely (v_any_u32 (extreme_tail)))
152     /* At least one lane is in the extreme tail - if input is uniform in
153        [-1, 1] the likelihood of this is ~0.23.  */
154     return vbslq_f32 (extreme_tail, special (x, d), vdivq_f32 (p, q));
155 
156   return vdivq_f32 (p, q);
157 }
158 
159 HALF_WIDTH_ALIAS_F1 (erfinv)
160 
161 #if USE_MPFR
162 # warning Not generating tests for _ZGVnN4v_erfinvf, as MPFR has no suitable reference
163 #else
164 TEST_SIG (V, F, 1, erfinv, -0.99, 0.99)
165 TEST_DISABLE_FENV (V_NAME_F1 (erfinv))
166 TEST_ULP (V_NAME_F1 (erfinv), 4.49)
167 TEST_SYM_INTERVAL (V_NAME_F1 (erfinv), 0, 0x1.fffffep-1, 40000)
168 /* Test with control lane in each interval.  */
169 TEST_CONTROL_VALUE (V_NAME_F1 (erfinv), 0.5)
170 TEST_CONTROL_VALUE (V_NAME_F1 (erfinv), 0.8)
171 TEST_CONTROL_VALUE (V_NAME_F1 (erfinv), 0.95)
172 #endif
173