1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains routines that merge one tdata_t tree, called the child, 30 * into another, called the parent. Note that these names are used mainly for 31 * convenience and to represent the direction of the merge. They are not meant 32 * to imply any relationship between the tdata_t graphs prior to the merge. 33 * 34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and 35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply 36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we 37 * clean up loose ends. 38 * 39 * The algorithm is as follows: 40 * 41 * 1. Mapping iidesc_t nodes 42 * 43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph 44 * against the tdesc_t graph in the parent. For each node in the child subgraph 45 * that exists in the parent, a mapping between the two (between their type IDs) 46 * is established. For the child nodes that cannot be mapped onto existing 47 * parent nodes, a mapping is established between the child node ID and a 48 * newly-allocated ID that the node will use when it is re-created in the 49 * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be 50 * Added) hash, which tracks nodes that need to be created in the parent. 51 * 52 * If all of the nodes in the subgraph for an iidesc_t in the child can be 53 * mapped to existing nodes in the parent, then we can try to map the child 54 * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent 55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s), 56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This 57 * list tracks iidesc_t nodes that are to be created in the parent. 58 * 59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a 60 * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there 61 * may be a structure or union definition in the child with the same name as the 62 * forward declaration in the parent. If we find such a node, we record an 63 * association in the md_fdida (Forward => Definition ID Association) list 64 * between the parent ID of the forward declaration and the ID that the 65 * definition will use when re-created in the parent. 66 * 67 * 2. Creating new tdesc_t nodes (the md_tdtba hash) 68 * 69 * We have now attempted to map all tdesc_t nodes from the child into the 70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be 71 * created (or, as we so wittily call it, conjured) in the parent. We iterate 72 * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t 73 * node, conjuring requires two steps - the copying of the common tdesc_t data 74 * (name, type, etc) from the child node, and the creation of links from the 75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed 76 * to by node being conjured. Note that in some cases, the targets of these 77 * links will be on the md_tdtba hash themselves, and may not have been created 78 * yet. As such, we can't establish the links from these new nodes into the 79 * parent graph. We therefore conjure them with links to nodes in the *child* 80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t 81 * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be 82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr. 83 * 84 * 3. Creating new iidesc_t nodes (the md_iitba list) 85 * 86 * When we have completed step 2, all tdesc_t nodes have been created (or 87 * already existed) in the parent. Some of them may have incorrect links (the 88 * members of the md_tdtbr list), but they've all been created. As such, we can 89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph 90 * pointers correctly. We create each node, and attach the pointers to the 91 * appropriate parts of the parent tdesc_t graph. 92 * 93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list) 94 * 95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been 96 * created. Each entry in the md_tdtbr list is a pointer to where a link into 97 * the parent will be established. As saved in the md_tdtbr list, these 98 * pointers point into the child tdesc_t subgraph. We can thus get the target 99 * type ID from the child, look at the ID mapping to determine the desired link 100 * target, and redirect the link accordingly. 101 * 102 * 5. Parent => child forward declaration resolution 103 * 104 * If entries were made in the md_fdida list in step 1, we have forward 105 * declarations in the parent that need to be resolved to their definitions 106 * re-created in step 2 from the child. Using the md_fdida list, we can locate 107 * the definition for the forward declaration, and we can redirect all inbound 108 * edges to the forward declaration node to the actual definition. 109 * 110 * A pox on the house of anyone who changes the algorithm without updating 111 * this comment. 112 */ 113 114 #include <stdio.h> 115 #include <strings.h> 116 #include <assert.h> 117 #include <pthread.h> 118 119 #include "ctf_headers.h" 120 #include "ctftools.h" 121 #include "list.h" 122 #include "alist.h" 123 #include "memory.h" 124 #include "traverse.h" 125 126 typedef struct equiv_data equiv_data_t; 127 typedef struct merge_cb_data merge_cb_data_t; 128 129 /* 130 * There are two traversals in this file, for equivalency and for tdesc_t 131 * re-creation, that do not fit into the tdtraverse() framework. We have our 132 * own traversal mechanism and ops vector here for those two cases. 133 */ 134 typedef struct tdesc_ops { 135 const char *name; 136 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); 137 tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *); 138 } tdesc_ops_t; 139 extern tdesc_ops_t tdesc_ops[]; 140 141 /* 142 * The workhorse structure of tdata_t merging. Holds all lists of nodes to be 143 * processed during various phases of the merge algorithm. 144 */ 145 struct merge_cb_data { 146 tdata_t *md_parent; 147 tdata_t *md_tgt; 148 alist_t *md_ta; /* Type Association */ 149 alist_t *md_fdida; /* Forward -> Definition ID Association */ 150 list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */ 151 hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */ 152 list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */ 153 int md_flags; 154 }; /* merge_cb_data_t */ 155 156 /* 157 * When we first create a tdata_t from stabs data, we will have duplicate nodes. 158 * Normal merges, however, assume that the child tdata_t is already self-unique, 159 * and for speed reasons do not attempt to self-uniquify. If this flag is set, 160 * the merge algorithm will self-uniquify by avoiding the insertion of 161 * duplicates in the md_tdtdba list. 162 */ 163 #define MCD_F_SELFUNIQUIFY 0x1 164 165 /* 166 * When we merge the CTF data for the modules, we don't want it to contain any 167 * data that can be found in the reference module (usually genunix). If this 168 * flag is set, we're doing a merge between the fully merged tdata_t for this 169 * module and the tdata_t for the reference module, with the data unique to this 170 * module ending up in a third tdata_t. It is this third tdata_t that will end 171 * up in the .SUNW_ctf section for the module. 172 */ 173 #define MCD_F_REFMERGE 0x2 174 175 /* 176 * Mapping of child type IDs to parent type IDs 177 */ 178 179 static void 180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid) 181 { 182 debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid); 183 184 assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL)); 185 assert(srcid != 0 && tgtid != 0); 186 187 alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid); 188 } 189 190 static tid_t 191 get_mapping(alist_t *ta, int srcid) 192 { 193 void *ltgtid; 194 195 if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)<gtid)) 196 return ((uintptr_t)ltgtid); 197 else 198 return (0); 199 } 200 201 /* 202 * Determining equivalence of tdesc_t subgraphs 203 */ 204 205 struct equiv_data { 206 alist_t *ed_ta; 207 tdesc_t *ed_node; 208 tdesc_t *ed_tgt; 209 210 int ed_clear_mark; 211 int ed_cur_mark; 212 int ed_selfuniquify; 213 }; /* equiv_data_t */ 214 215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *); 216 217 /*ARGSUSED2*/ 218 static int 219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused) 220 { 221 intr_t *si = stdp->t_intr; 222 intr_t *ti = ttdp->t_intr; 223 224 if (si->intr_type != ti->intr_type || 225 si->intr_signed != ti->intr_signed || 226 si->intr_offset != ti->intr_offset || 227 si->intr_nbits != ti->intr_nbits) 228 return (0); 229 230 if (si->intr_type == INTR_INT && 231 si->intr_iformat != ti->intr_iformat) 232 return (0); 233 else if (si->intr_type == INTR_REAL && 234 si->intr_fformat != ti->intr_fformat) 235 return (0); 236 237 return (1); 238 } 239 240 static int 241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 242 { 243 return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed)); 244 } 245 246 static int 247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 248 { 249 fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef; 250 int i; 251 252 if (fn1->fn_nargs != fn2->fn_nargs || 253 fn1->fn_vargs != fn2->fn_vargs) 254 return (0); 255 256 if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed)) 257 return (0); 258 259 for (i = 0; i < (int) fn1->fn_nargs; i++) { 260 if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed)) 261 return (0); 262 } 263 264 return (1); 265 } 266 267 static int 268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 269 { 270 ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef; 271 272 if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) || 273 !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed)) 274 return (0); 275 276 if (ar1->ad_nelems != ar2->ad_nelems) 277 return (0); 278 279 return (1); 280 } 281 282 static int 283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) 284 { 285 mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members; 286 mlist_t *olm1 = NULL; 287 288 while (ml1 && ml2) { 289 if (ml1->ml_offset != ml2->ml_offset || 290 strcmp(ml1->ml_name, ml2->ml_name) != 0 || 291 ml1->ml_size != ml2->ml_size || 292 !equiv_node(ml1->ml_type, ml2->ml_type, ed)) 293 return (0); 294 295 olm1 = ml1; 296 ml1 = ml1->ml_next; 297 ml2 = ml2->ml_next; 298 } 299 300 if (ml1 || ml2) 301 return (0); 302 303 return (1); 304 } 305 306 /*ARGSUSED2*/ 307 static int 308 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused) 309 { 310 elist_t *el1 = stdp->t_emem; 311 elist_t *el2 = ttdp->t_emem; 312 313 while (el1 && el2) { 314 if (el1->el_number != el2->el_number || 315 strcmp(el1->el_name, el2->el_name) != 0) 316 return (0); 317 318 el1 = el1->el_next; 319 el2 = el2->el_next; 320 } 321 322 if (el1 || el2) 323 return (0); 324 325 return (1); 326 } 327 328 /*ARGSUSED*/ 329 static int 330 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused) 331 { 332 /* foul, evil, and very bad - this is a "shouldn't happen" */ 333 assert(1 == 0); 334 335 return (0); 336 } 337 338 static int 339 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp) 340 { 341 tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp); 342 343 return (defn->t_type == STRUCT || defn->t_type == UNION); 344 } 345 346 static int 347 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed) 348 { 349 int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); 350 int mapping; 351 352 if (ctdp->t_emark > ed->ed_clear_mark || 353 mtdp->t_emark > ed->ed_clear_mark) 354 return (ctdp->t_emark == mtdp->t_emark); 355 356 /* 357 * In normal (non-self-uniquify) mode, we don't want to do equivalency 358 * checking on a subgraph that has already been checked. If a mapping 359 * has already been established for a given child node, we can simply 360 * compare the mapping for the child node with the ID of the parent 361 * node. If we are in self-uniquify mode, then we're comparing two 362 * subgraphs within the child graph, and thus need to ignore any 363 * type mappings that have been created, as they are only valid into the 364 * parent. 365 */ 366 if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 && 367 mapping == mtdp->t_id && !ed->ed_selfuniquify) 368 return (1); 369 370 if (!streq(ctdp->t_name, mtdp->t_name)) 371 return (0); 372 373 if (ctdp->t_type != mtdp->t_type) { 374 if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD) 375 return (fwd_equiv(ctdp, mtdp)); 376 else 377 return (0); 378 } 379 380 ctdp->t_emark = ed->ed_cur_mark; 381 mtdp->t_emark = ed->ed_cur_mark; 382 ed->ed_cur_mark++; 383 384 if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL) 385 return (equiv(ctdp, mtdp, ed)); 386 387 return (1); 388 } 389 390 /* 391 * We perform an equivalency check on two subgraphs by traversing through them 392 * in lockstep. If a given node is equivalent in both the parent and the child, 393 * we mark it in both subgraphs, using the t_emark field, with a monotonically 394 * increasing number. If, in the course of the traversal, we reach a node that 395 * we have visited and numbered during this equivalency check, we have a cycle. 396 * If the previously-visited nodes don't have the same emark, then the edges 397 * that brought us to these nodes are not equivalent, and so the check ends. 398 * If the emarks are the same, the edges are equivalent. We then backtrack and 399 * continue the traversal. If we have exhausted all edges in the subgraph, and 400 * have not found any inequivalent nodes, then the subgraphs are equivalent. 401 */ 402 static int 403 equiv_cb(void *bucket, void *arg) 404 { 405 equiv_data_t *ed = arg; 406 tdesc_t *mtdp = bucket; 407 tdesc_t *ctdp = ed->ed_node; 408 409 ed->ed_clear_mark = ed->ed_cur_mark + 1; 410 ed->ed_cur_mark = ed->ed_clear_mark + 1; 411 412 if (equiv_node(ctdp, mtdp, ed)) { 413 debug(3, "equiv_node matched %d <%x> %d <%x>\n", 414 ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id); 415 ed->ed_tgt = mtdp; 416 /* matched. stop looking */ 417 return (-1); 418 } 419 420 return (0); 421 } 422 423 /*ARGSUSED1*/ 424 static int 425 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 426 { 427 merge_cb_data_t *mcd = private; 428 429 if (get_mapping(mcd->md_ta, ctdp->t_id) > 0) 430 return (0); 431 432 return (1); 433 } 434 435 /*ARGSUSED1*/ 436 static int 437 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 438 { 439 merge_cb_data_t *mcd = private; 440 equiv_data_t ed; 441 442 ed.ed_ta = mcd->md_ta; 443 ed.ed_clear_mark = mcd->md_parent->td_curemark; 444 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 445 ed.ed_node = ctdp; 446 ed.ed_selfuniquify = 0; 447 448 debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp)); 449 450 if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp, 451 equiv_cb, &ed) < 0) { 452 /* We found an equivalent node */ 453 if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) { 454 int id = mcd->md_tgt->td_nextid++; 455 456 debug(3, "Creating new defn type %d <%x>\n", id, id); 457 add_mapping(mcd->md_ta, ctdp->t_id, id); 458 alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt, 459 (void *)(ulong_t)id); 460 hash_add(mcd->md_tdtba, ctdp); 461 } else 462 add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id); 463 464 } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash, 465 equiv_cb, &ed) < 0) { 466 /* 467 * We didn't find an equivalent node by looking through the 468 * layout hash, but we somehow found it by performing an 469 * exhaustive search through the entire graph. This usually 470 * means that the "name" hash function is broken. 471 */ 472 aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id, 473 tdesc_name(ctdp), ed.ed_tgt->t_id); 474 } else { 475 int id = mcd->md_tgt->td_nextid++; 476 477 debug(3, "Creating new type %d <%x>\n", id, id); 478 add_mapping(mcd->md_ta, ctdp->t_id, id); 479 hash_add(mcd->md_tdtba, ctdp); 480 } 481 482 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 483 484 return (1); 485 } 486 487 /*ARGSUSED1*/ 488 static int 489 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private) 490 { 491 merge_cb_data_t *mcd = private; 492 equiv_data_t ed; 493 494 ed.ed_ta = mcd->md_ta; 495 ed.ed_clear_mark = mcd->md_parent->td_curemark; 496 ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; 497 ed.ed_node = ctdp; 498 ed.ed_selfuniquify = 1; 499 ed.ed_tgt = NULL; 500 501 if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) { 502 debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id, 503 ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id); 504 add_mapping(mcd->md_ta, ctdp->t_id, 505 get_mapping(mcd->md_ta, ed.ed_tgt->t_id)); 506 } else if (debug_level > 1 && hash_iter(mcd->md_tdtba, 507 equiv_cb, &ed) < 0) { 508 /* 509 * We didn't find an equivalent node using the quick way (going 510 * through the hash normally), but we did find it by iterating 511 * through the entire hash. This usually means that the hash 512 * function is broken. 513 */ 514 aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n", 515 ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id, 516 ed.ed_tgt->t_id); 517 } else { 518 int id = mcd->md_tgt->td_nextid++; 519 520 debug(3, "Creating new type %d <%x>\n", id, id); 521 add_mapping(mcd->md_ta, ctdp->t_id, id); 522 hash_add(mcd->md_tdtba, ctdp); 523 } 524 525 mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; 526 527 return (1); 528 } 529 530 static tdtrav_cb_f map_pre[] = { 531 NULL, 532 map_td_tree_pre, /* intrinsic */ 533 map_td_tree_pre, /* pointer */ 534 map_td_tree_pre, /* array */ 535 map_td_tree_pre, /* function */ 536 map_td_tree_pre, /* struct */ 537 map_td_tree_pre, /* union */ 538 map_td_tree_pre, /* enum */ 539 map_td_tree_pre, /* forward */ 540 map_td_tree_pre, /* typedef */ 541 tdtrav_assert, /* typedef_unres */ 542 map_td_tree_pre, /* volatile */ 543 map_td_tree_pre, /* const */ 544 map_td_tree_pre /* restrict */ 545 }; 546 547 static tdtrav_cb_f map_post[] = { 548 NULL, 549 map_td_tree_post, /* intrinsic */ 550 map_td_tree_post, /* pointer */ 551 map_td_tree_post, /* array */ 552 map_td_tree_post, /* function */ 553 map_td_tree_post, /* struct */ 554 map_td_tree_post, /* union */ 555 map_td_tree_post, /* enum */ 556 map_td_tree_post, /* forward */ 557 map_td_tree_post, /* typedef */ 558 tdtrav_assert, /* typedef_unres */ 559 map_td_tree_post, /* volatile */ 560 map_td_tree_post, /* const */ 561 map_td_tree_post /* restrict */ 562 }; 563 564 static tdtrav_cb_f map_self_post[] = { 565 NULL, 566 map_td_tree_self_post, /* intrinsic */ 567 map_td_tree_self_post, /* pointer */ 568 map_td_tree_self_post, /* array */ 569 map_td_tree_self_post, /* function */ 570 map_td_tree_self_post, /* struct */ 571 map_td_tree_self_post, /* union */ 572 map_td_tree_self_post, /* enum */ 573 map_td_tree_self_post, /* forward */ 574 map_td_tree_self_post, /* typedef */ 575 tdtrav_assert, /* typedef_unres */ 576 map_td_tree_self_post, /* volatile */ 577 map_td_tree_self_post, /* const */ 578 map_td_tree_self_post /* restrict */ 579 }; 580 581 /* 582 * Determining equivalence of iidesc_t nodes 583 */ 584 585 typedef struct iifind_data { 586 iidesc_t *iif_template; 587 alist_t *iif_ta; 588 int iif_newidx; 589 int iif_refmerge; 590 } iifind_data_t; 591 592 /* 593 * Check to see if this iidesc_t (node) - the current one on the list we're 594 * iterating through - matches the target one (iif->iif_template). Return -1 595 * if it matches, to stop the iteration. 596 */ 597 static int 598 iidesc_match(void *data, void *arg) 599 { 600 iidesc_t *node = data; 601 iifind_data_t *iif = arg; 602 int i; 603 604 if (node->ii_type != iif->iif_template->ii_type || 605 !streq(node->ii_name, iif->iif_template->ii_name) || 606 node->ii_dtype->t_id != iif->iif_newidx) 607 return (0); 608 609 if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) && 610 !streq(node->ii_owner, iif->iif_template->ii_owner)) 611 return (0); 612 613 if (node->ii_nargs != iif->iif_template->ii_nargs) 614 return (0); 615 616 for (i = 0; i < node->ii_nargs; i++) { 617 if (get_mapping(iif->iif_ta, 618 iif->iif_template->ii_args[i]->t_id) != 619 node->ii_args[i]->t_id) 620 return (0); 621 } 622 623 if (iif->iif_refmerge) { 624 switch (iif->iif_template->ii_type) { 625 case II_GFUN: 626 case II_SFUN: 627 case II_GVAR: 628 case II_SVAR: 629 debug(3, "suppressing duping of %d %s from %s\n", 630 iif->iif_template->ii_type, 631 iif->iif_template->ii_name, 632 (iif->iif_template->ii_owner ? 633 iif->iif_template->ii_owner : "NULL")); 634 return (0); 635 case II_NOT: 636 case II_PSYM: 637 case II_SOU: 638 case II_TYPE: 639 break; 640 } 641 } 642 643 return (-1); 644 } 645 646 static int 647 merge_type_cb(void *data, void *arg) 648 { 649 iidesc_t *sii = data; 650 merge_cb_data_t *mcd = arg; 651 iifind_data_t iif; 652 tdtrav_cb_f *post; 653 654 post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post); 655 656 /* Map the tdesc nodes */ 657 (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post, 658 mcd); 659 660 /* Map the iidesc nodes */ 661 iif.iif_template = sii; 662 iif.iif_ta = mcd->md_ta; 663 iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id); 664 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 665 666 if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match, 667 &iif) == 1) 668 /* successfully mapped */ 669 return (1); 670 671 debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"), 672 sii->ii_type); 673 674 list_add(mcd->md_iitba, sii); 675 676 return (0); 677 } 678 679 static int 680 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself, 681 merge_cb_data_t *mcd) 682 { 683 tdesc_t *tgt = NULL; 684 tdesc_t template; 685 int oldid = oldtgt->t_id; 686 687 if (oldid == selftid) { 688 *tgtp = newself; 689 return (1); 690 } 691 692 if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0) 693 aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid); 694 695 if (!hash_find(mcd->md_parent->td_idhash, (void *)&template, 696 (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) || 697 !hash_find(mcd->md_tgt->td_idhash, (void *)&template, 698 (void *)&tgt))) { 699 debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id, 700 template.t_id, oldid, oldid); 701 *tgtp = oldtgt; 702 list_add(mcd->md_tdtbr, tgtp); 703 return (0); 704 } 705 706 *tgtp = tgt; 707 return (1); 708 } 709 710 static tdesc_t * 711 conjure_template(tdesc_t *old, int newselfid) 712 { 713 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 714 715 new->t_name = old->t_name ? xstrdup(old->t_name) : NULL; 716 new->t_type = old->t_type; 717 new->t_size = old->t_size; 718 new->t_id = newselfid; 719 new->t_flags = old->t_flags; 720 721 return (new); 722 } 723 724 /*ARGSUSED2*/ 725 static tdesc_t * 726 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused) 727 { 728 tdesc_t *new = conjure_template(old, newselfid); 729 730 new->t_intr = xmalloc(sizeof (intr_t)); 731 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 732 733 return (new); 734 } 735 736 static tdesc_t * 737 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 738 { 739 tdesc_t *new = conjure_template(old, newselfid); 740 741 (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd); 742 743 return (new); 744 } 745 746 static tdesc_t * 747 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 748 { 749 tdesc_t *new = conjure_template(old, newselfid); 750 fndef_t *nfn = xmalloc(sizeof (fndef_t)); 751 fndef_t *ofn = old->t_fndef; 752 int i; 753 754 (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd); 755 756 nfn->fn_nargs = ofn->fn_nargs; 757 nfn->fn_vargs = ofn->fn_vargs; 758 759 if (nfn->fn_nargs > 0) 760 nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs); 761 762 for (i = 0; i < (int) ofn->fn_nargs; i++) { 763 (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id, 764 new, mcd); 765 } 766 767 new->t_fndef = nfn; 768 769 return (new); 770 } 771 772 static tdesc_t * 773 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 774 { 775 tdesc_t *new = conjure_template(old, newselfid); 776 ardef_t *nar = xmalloc(sizeof (ardef_t)); 777 ardef_t *oar = old->t_ardef; 778 779 (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new, 780 mcd); 781 (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new, 782 mcd); 783 784 nar->ad_nelems = oar->ad_nelems; 785 786 new->t_ardef = nar; 787 788 return (new); 789 } 790 791 static tdesc_t * 792 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 793 { 794 tdesc_t *new = conjure_template(old, newselfid); 795 mlist_t *omem, **nmemp; 796 797 for (omem = old->t_members, nmemp = &new->t_members; 798 omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) { 799 *nmemp = xmalloc(sizeof (mlist_t)); 800 (*nmemp)->ml_offset = omem->ml_offset; 801 (*nmemp)->ml_size = omem->ml_size; 802 (*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name"); 803 (void) remap_node(&((*nmemp)->ml_type), omem->ml_type, 804 old->t_id, new, mcd); 805 } 806 *nmemp = NULL; 807 808 return (new); 809 } 810 811 /*ARGSUSED2*/ 812 static tdesc_t * 813 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused) 814 { 815 tdesc_t *new = conjure_template(old, newselfid); 816 elist_t *oel, **nelp; 817 818 for (oel = old->t_emem, nelp = &new->t_emem; 819 oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) { 820 *nelp = xmalloc(sizeof (elist_t)); 821 (*nelp)->el_name = xstrdup(oel->el_name); 822 (*nelp)->el_number = oel->el_number; 823 } 824 *nelp = NULL; 825 826 return (new); 827 } 828 829 /*ARGSUSED2*/ 830 static tdesc_t * 831 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) 832 { 833 tdesc_t *new = conjure_template(old, newselfid); 834 835 list_add(&mcd->md_tgt->td_fwdlist, new); 836 837 return (new); 838 } 839 840 /*ARGSUSED*/ 841 static tdesc_t * 842 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused) 843 { 844 assert(1 == 0); 845 return (NULL); 846 } 847 848 static iidesc_t * 849 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd) 850 { 851 iidesc_t *new = iidesc_dup(old); 852 int i; 853 854 (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd); 855 for (i = 0; i < new->ii_nargs; i++) { 856 (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL, 857 mcd); 858 } 859 860 return (new); 861 } 862 863 static int 864 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private) 865 { 866 alist_t *map = private; 867 void *defn; 868 869 if (!alist_find(map, (void *)fwd, (void **)&defn)) 870 return (0); 871 872 debug(3, "Redirecting an edge to %s\n", tdesc_name(defn)); 873 874 *fwdp = defn; 875 876 return (1); 877 } 878 879 static tdtrav_cb_f fwd_redir_cbs[] = { 880 NULL, 881 NULL, /* intrinsic */ 882 NULL, /* pointer */ 883 NULL, /* array */ 884 NULL, /* function */ 885 NULL, /* struct */ 886 NULL, /* union */ 887 NULL, /* enum */ 888 fwd_redir, /* forward */ 889 NULL, /* typedef */ 890 tdtrav_assert, /* typedef_unres */ 891 NULL, /* volatile */ 892 NULL, /* const */ 893 NULL /* restrict */ 894 }; 895 896 typedef struct redir_mstr_data { 897 tdata_t *rmd_tgt; 898 alist_t *rmd_map; 899 } redir_mstr_data_t; 900 901 static int 902 redir_mstr_fwd_cb(void *name, void *value, void *arg) 903 { 904 tdesc_t *fwd = name; 905 int defnid = (uintptr_t)value; 906 redir_mstr_data_t *rmd = arg; 907 tdesc_t template; 908 tdesc_t *defn; 909 910 template.t_id = defnid; 911 912 if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template, 913 (void *)&defn)) { 914 aborterr("Couldn't unforward %d (%s)\n", defnid, 915 tdesc_name(defn)); 916 } 917 918 debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn)); 919 920 alist_add(rmd->rmd_map, (void *)fwd, (void *)defn); 921 922 return (1); 923 } 924 925 static void 926 redir_mstr_fwds(merge_cb_data_t *mcd) 927 { 928 redir_mstr_data_t rmd; 929 alist_t *map = alist_new(NULL, NULL); 930 931 rmd.rmd_tgt = mcd->md_tgt; 932 rmd.rmd_map = map; 933 934 if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) { 935 (void) iitraverse_hash(mcd->md_tgt->td_iihash, 936 &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map); 937 } 938 939 alist_free(map); 940 } 941 942 static int 943 add_iitba_cb(void *data, void *private) 944 { 945 merge_cb_data_t *mcd = private; 946 iidesc_t *tba = data; 947 iidesc_t *new; 948 iifind_data_t iif; 949 int newidx; 950 951 newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id); 952 assert(newidx != -1); 953 954 (void) list_remove(mcd->md_iitba, data, NULL, NULL); 955 956 iif.iif_template = tba; 957 iif.iif_ta = mcd->md_ta; 958 iif.iif_newidx = newidx; 959 iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); 960 961 if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match, 962 &iif) == 1) { 963 debug(3, "iidesc_t %s already exists\n", 964 (tba->ii_name ? tba->ii_name : "(anon)")); 965 return (1); 966 } 967 968 new = conjure_iidesc(tba, mcd); 969 hash_add(mcd->md_tgt->td_iihash, new); 970 971 return (1); 972 } 973 974 static int 975 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd) 976 { 977 tdesc_t *newtdp; 978 tdesc_t template; 979 980 template.t_id = newid; 981 assert(hash_find(mcd->md_parent->td_idhash, 982 (void *)&template, NULL) == 0); 983 984 debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n", 985 oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, 986 oldtdp->t_id, newid, newid); 987 988 if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid, 989 mcd)) == NULL) 990 /* couldn't map everything */ 991 return (0); 992 993 debug(3, "succeeded\n"); 994 995 hash_add(mcd->md_tgt->td_idhash, newtdp); 996 hash_add(mcd->md_tgt->td_layouthash, newtdp); 997 998 return (1); 999 } 1000 1001 static int 1002 add_tdtba_cb(void *data, void *arg) 1003 { 1004 tdesc_t *tdp = data; 1005 merge_cb_data_t *mcd = arg; 1006 int newid; 1007 int rc; 1008 1009 newid = get_mapping(mcd->md_ta, tdp->t_id); 1010 assert(newid != -1); 1011 1012 if ((rc = add_tdesc(tdp, newid, mcd))) 1013 hash_remove(mcd->md_tdtba, (void *)tdp); 1014 1015 return (rc); 1016 } 1017 1018 static int 1019 add_tdtbr_cb(void *data, void *arg) 1020 { 1021 tdesc_t **tdpp = data; 1022 merge_cb_data_t *mcd = arg; 1023 1024 debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id); 1025 1026 if (!remap_node(tdpp, *tdpp, -1, NULL, mcd)) 1027 return (0); 1028 1029 (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL); 1030 return (1); 1031 } 1032 1033 static void 1034 merge_types(hash_t *src, merge_cb_data_t *mcd) 1035 { 1036 list_t *iitba = NULL; 1037 list_t *tdtbr = NULL; 1038 int iirc, tdrc; 1039 1040 mcd->md_iitba = &iitba; 1041 mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash, 1042 tdesc_layoutcmp); 1043 mcd->md_tdtbr = &tdtbr; 1044 1045 (void) hash_iter(src, merge_type_cb, mcd); 1046 1047 tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd); 1048 debug(3, "add_tdtba_cb added %d items\n", tdrc); 1049 1050 iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd); 1051 debug(3, "add_iitba_cb added %d items\n", iirc); 1052 1053 assert(list_count(*mcd->md_iitba) == 0 && 1054 hash_count(mcd->md_tdtba) == 0); 1055 1056 tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd); 1057 debug(3, "add_tdtbr_cb added %d items\n", tdrc); 1058 1059 if (list_count(*mcd->md_tdtbr) != 0) 1060 aborterr("Couldn't remap all nodes\n"); 1061 1062 /* 1063 * We now have an alist of master forwards and the ids of the new master 1064 * definitions for those forwards in mcd->md_fdida. By this point, 1065 * we're guaranteed that all of the master definitions referenced in 1066 * fdida have been added to the master tree. We now traverse through 1067 * the master tree, redirecting all edges inbound to forwards that have 1068 * definitions to those definitions. 1069 */ 1070 if (mcd->md_parent == mcd->md_tgt) { 1071 redir_mstr_fwds(mcd); 1072 } 1073 } 1074 1075 void 1076 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify) 1077 { 1078 merge_cb_data_t mcd; 1079 1080 cur->td_ref++; 1081 mstr->td_ref++; 1082 if (tgt) 1083 tgt->td_ref++; 1084 1085 assert(cur->td_ref == 1 && mstr->td_ref == 1 && 1086 (tgt == NULL || tgt->td_ref == 1)); 1087 1088 mcd.md_parent = mstr; 1089 mcd.md_tgt = (tgt ? tgt : mstr); 1090 mcd.md_ta = alist_new(NULL, NULL); 1091 mcd.md_fdida = alist_new(NULL, NULL); 1092 mcd.md_flags = 0; 1093 1094 if (selfuniquify) 1095 mcd.md_flags |= MCD_F_SELFUNIQUIFY; 1096 if (tgt) 1097 mcd.md_flags |= MCD_F_REFMERGE; 1098 1099 mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen); 1100 mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark); 1101 1102 merge_types(cur->td_iihash, &mcd); 1103 1104 if (debug_level >= 3) { 1105 debug(3, "Type association stats\n"); 1106 alist_stats(mcd.md_ta, 0); 1107 debug(3, "Layout hash stats\n"); 1108 hash_stats(mcd.md_tgt->td_layouthash, 1); 1109 } 1110 1111 alist_free(mcd.md_fdida); 1112 alist_free(mcd.md_ta); 1113 1114 cur->td_ref--; 1115 mstr->td_ref--; 1116 if (tgt) 1117 tgt->td_ref--; 1118 } 1119 1120 tdesc_ops_t tdesc_ops[] = { 1121 { "ERROR! BAD tdesc TYPE", NULL, NULL }, 1122 { "intrinsic", equiv_intrinsic, conjure_intrinsic }, 1123 { "pointer", equiv_plain, conjure_plain }, 1124 { "array", equiv_array, conjure_array }, 1125 { "function", equiv_function, conjure_function }, 1126 { "struct", equiv_su, conjure_su }, 1127 { "union", equiv_su, conjure_su }, 1128 { "enum", equiv_enum, conjure_enum }, 1129 { "forward", NULL, conjure_forward }, 1130 { "typedef", equiv_plain, conjure_plain }, 1131 { "typedef_unres", equiv_assert, conjure_assert }, 1132 { "volatile", equiv_plain, conjure_plain }, 1133 { "const", equiv_plain, conjure_plain }, 1134 { "restrict", equiv_plain, conjure_plain } 1135 }; 1136