xref: /freebsd/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains routines that merge one tdata_t tree, called the child,
30  * into another, called the parent.  Note that these names are used mainly for
31  * convenience and to represent the direction of the merge.  They are not meant
32  * to imply any relationship between the tdata_t graphs prior to the merge.
33  *
34  * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35  * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36  * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37  * clean up loose ends.
38  *
39  * The algorithm is as follows:
40  *
41  * 1. Mapping iidesc_t nodes
42  *
43  * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44  * against the tdesc_t graph in the parent.  For each node in the child subgraph
45  * that exists in the parent, a mapping between the two (between their type IDs)
46  * is established.  For the child nodes that cannot be mapped onto existing
47  * parent nodes, a mapping is established between the child node ID and a
48  * newly-allocated ID that the node will use when it is re-created in the
49  * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50  * Added) hash, which tracks nodes that need to be created in the parent.
51  *
52  * If all of the nodes in the subgraph for an iidesc_t in the child can be
53  * mapped to existing nodes in the parent, then we can try to map the child
54  * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55  * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56  * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57  * list tracks iidesc_t nodes that are to be created in the parent.
58  *
59  * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60  * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61  * may be a structure or union definition in the child with the same name as the
62  * forward declaration in the parent.  If we find such a node, we record an
63  * association in the md_fdida (Forward => Definition ID Association) list
64  * between the parent ID of the forward declaration and the ID that the
65  * definition will use when re-created in the parent.
66  *
67  * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68  *
69  * We have now attempted to map all tdesc_t nodes from the child into the
70  * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71  * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72  * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73  * node, conjuring requires two steps - the copying of the common tdesc_t data
74  * (name, type, etc) from the child node, and the creation of links from the
75  * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76  * to by node being conjured.  Note that in some cases, the targets of these
77  * links will be on the md_tdtba hash themselves, and may not have been created
78  * yet.  As such, we can't establish the links from these new nodes into the
79  * parent graph.  We therefore conjure them with links to nodes in the *child*
80  * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81  * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82  * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83  *
84  * 3. Creating new iidesc_t nodes (the md_iitba list)
85  *
86  * When we have completed step 2, all tdesc_t nodes have been created (or
87  * already existed) in the parent.  Some of them may have incorrect links (the
88  * members of the md_tdtbr list), but they've all been created.  As such, we can
89  * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90  * pointers correctly.  We create each node, and attach the pointers to the
91  * appropriate parts of the parent tdesc_t graph.
92  *
93  * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94  *
95  * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96  * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97  * the parent will be established.  As saved in the md_tdtbr list, these
98  * pointers point into the child tdesc_t subgraph.  We can thus get the target
99  * type ID from the child, look at the ID mapping to determine the desired link
100  * target, and redirect the link accordingly.
101  *
102  * 5. Parent => child forward declaration resolution
103  *
104  * If entries were made in the md_fdida list in step 1, we have forward
105  * declarations in the parent that need to be resolved to their definitions
106  * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107  * the definition for the forward declaration, and we can redirect all inbound
108  * edges to the forward declaration node to the actual definition.
109  *
110  * A pox on the house of anyone who changes the algorithm without updating
111  * this comment.
112  */
113 
114 #include <stdio.h>
115 #include <strings.h>
116 #include <assert.h>
117 #include <pthread.h>
118 
119 #include "ctf_headers.h"
120 #include "ctftools.h"
121 #include "list.h"
122 #include "alist.h"
123 #include "memory.h"
124 #include "traverse.h"
125 
126 typedef struct equiv_data equiv_data_t;
127 typedef struct merge_cb_data merge_cb_data_t;
128 
129 /*
130  * There are two traversals in this file, for equivalency and for tdesc_t
131  * re-creation, that do not fit into the tdtraverse() framework.  We have our
132  * own traversal mechanism and ops vector here for those two cases.
133  */
134 typedef struct tdesc_ops {
135 	const char *name;
136 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137 	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138 } tdesc_ops_t;
139 extern tdesc_ops_t tdesc_ops[];
140 
141 /*
142  * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143  * processed during various phases of the merge algorithm.
144  */
145 struct merge_cb_data {
146 	tdata_t *md_parent;
147 	tdata_t *md_tgt;
148 	alist_t *md_ta;		/* Type Association */
149 	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150 	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151 	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152 	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153 	int md_flags;
154 }; /* merge_cb_data_t */
155 
156 /*
157  * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158  * Normal merges, however, assume that the child tdata_t is already self-unique,
159  * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160  * the merge algorithm will self-uniquify by avoiding the insertion of
161  * duplicates in the md_tdtdba list.
162  */
163 #define	MCD_F_SELFUNIQUIFY	0x1
164 
165 /*
166  * When we merge the CTF data for the modules, we don't want it to contain any
167  * data that can be found in the reference module (usually genunix).  If this
168  * flag is set, we're doing a merge between the fully merged tdata_t for this
169  * module and the tdata_t for the reference module, with the data unique to this
170  * module ending up in a third tdata_t.  It is this third tdata_t that will end
171  * up in the .SUNW_ctf section for the module.
172  */
173 #define	MCD_F_REFMERGE	0x2
174 
175 /*
176  * Mapping of child type IDs to parent type IDs
177  */
178 
179 static void
180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181 {
182 	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183 
184 	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185 	assert(srcid != 0 && tgtid != 0);
186 
187 	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188 }
189 
190 static tid_t
191 get_mapping(alist_t *ta, int srcid)
192 {
193 	void *ltgtid;
194 
195 	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196 		return ((uintptr_t)ltgtid);
197 	else
198 		return (0);
199 }
200 
201 /*
202  * Determining equivalence of tdesc_t subgraphs
203  */
204 
205 struct equiv_data {
206 	alist_t *ed_ta;
207 	tdesc_t *ed_node;
208 	tdesc_t *ed_tgt;
209 
210 	int ed_clear_mark;
211 	int ed_cur_mark;
212 	int ed_selfuniquify;
213 }; /* equiv_data_t */
214 
215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216 
217 /*ARGSUSED2*/
218 static int
219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220 {
221 	intr_t *si = stdp->t_intr;
222 	intr_t *ti = ttdp->t_intr;
223 
224 	if (si->intr_type != ti->intr_type ||
225 	    si->intr_signed != ti->intr_signed ||
226 	    si->intr_offset != ti->intr_offset ||
227 	    si->intr_nbits != ti->intr_nbits)
228 		return (0);
229 
230 	if (si->intr_type == INTR_INT &&
231 	    si->intr_iformat != ti->intr_iformat)
232 		return (0);
233 	else if (si->intr_type == INTR_REAL &&
234 	    si->intr_fformat != ti->intr_fformat)
235 		return (0);
236 
237 	return (1);
238 }
239 
240 static int
241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242 {
243 	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244 }
245 
246 static int
247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248 {
249 	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250 	int i;
251 
252 	if (fn1->fn_nargs != fn2->fn_nargs ||
253 	    fn1->fn_vargs != fn2->fn_vargs)
254 		return (0);
255 
256 	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257 		return (0);
258 
259 	for (i = 0; i < (int) fn1->fn_nargs; i++) {
260 		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261 			return (0);
262 	}
263 
264 	return (1);
265 }
266 
267 static int
268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269 {
270 	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271 
272 	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273 	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274 		return (0);
275 
276 	if (ar1->ad_nelems != ar2->ad_nelems)
277 		return (0);
278 
279 	return (1);
280 }
281 
282 static int
283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284 {
285 	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286 	mlist_t *olm1 = NULL;
287 
288 	while (ml1 && ml2) {
289 		if (ml1->ml_offset != ml2->ml_offset ||
290 		    strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
291 		    ml1->ml_size != ml2->ml_size ||
292 		    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
293 			return (0);
294 
295 		olm1 = ml1;
296 		ml1 = ml1->ml_next;
297 		ml2 = ml2->ml_next;
298 	}
299 
300 	if (ml1 || ml2)
301 		return (0);
302 
303 	return (1);
304 }
305 
306 /*ARGSUSED2*/
307 static int
308 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
309 {
310 	elist_t *el1 = stdp->t_emem;
311 	elist_t *el2 = ttdp->t_emem;
312 
313 	while (el1 && el2) {
314 		if (el1->el_number != el2->el_number ||
315 		    strcmp(el1->el_name, el2->el_name) != 0)
316 			return (0);
317 
318 		el1 = el1->el_next;
319 		el2 = el2->el_next;
320 	}
321 
322 	if (el1 || el2)
323 		return (0);
324 
325 	return (1);
326 }
327 
328 /*ARGSUSED*/
329 static int
330 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
331 {
332 	/* foul, evil, and very bad - this is a "shouldn't happen" */
333 	assert(1 == 0);
334 
335 	return (0);
336 }
337 
338 static int
339 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
340 {
341 	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
342 
343 	return (defn->t_type == STRUCT || defn->t_type == UNION);
344 }
345 
346 static int
347 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
348 {
349 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
350 	int mapping;
351 
352 	if (ctdp->t_emark > ed->ed_clear_mark &&
353 	    mtdp->t_emark > ed->ed_clear_mark)
354 		return (ctdp->t_emark == mtdp->t_emark);
355 
356 	/*
357 	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
358 	 * checking on a subgraph that has already been checked.  If a mapping
359 	 * has already been established for a given child node, we can simply
360 	 * compare the mapping for the child node with the ID of the parent
361 	 * node.  If we are in self-uniquify mode, then we're comparing two
362 	 * subgraphs within the child graph, and thus need to ignore any
363 	 * type mappings that have been created, as they are only valid into the
364 	 * parent.
365 	 */
366 	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
367 	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
368 		return (1);
369 
370 	if (!streq(ctdp->t_name, mtdp->t_name))
371 		return (0);
372 
373 	if (ctdp->t_type != mtdp->t_type) {
374 		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
375 			return (fwd_equiv(ctdp, mtdp));
376 		else
377 			return (0);
378 	}
379 
380 	ctdp->t_emark = ed->ed_cur_mark;
381 	mtdp->t_emark = ed->ed_cur_mark;
382 	ed->ed_cur_mark++;
383 
384 	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
385 		return (equiv(ctdp, mtdp, ed));
386 
387 	return (1);
388 }
389 
390 /*
391  * We perform an equivalency check on two subgraphs by traversing through them
392  * in lockstep.  If a given node is equivalent in both the parent and the child,
393  * we mark it in both subgraphs, using the t_emark field, with a monotonically
394  * increasing number.  If, in the course of the traversal, we reach a node that
395  * we have visited and numbered during this equivalency check, we have a cycle.
396  * If the previously-visited nodes don't have the same emark, then the edges
397  * that brought us to these nodes are not equivalent, and so the check ends.
398  * If the emarks are the same, the edges are equivalent.  We then backtrack and
399  * continue the traversal.  If we have exhausted all edges in the subgraph, and
400  * have not found any inequivalent nodes, then the subgraphs are equivalent.
401  */
402 static int
403 equiv_cb(void *bucket, void *arg)
404 {
405 	equiv_data_t *ed = arg;
406 	tdesc_t *mtdp = bucket;
407 	tdesc_t *ctdp = ed->ed_node;
408 
409 	ed->ed_clear_mark = ed->ed_cur_mark + 1;
410 	ed->ed_cur_mark = ed->ed_clear_mark + 1;
411 
412 	if (equiv_node(ctdp, mtdp, ed)) {
413 		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
414 		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
415 		ed->ed_tgt = mtdp;
416 		/* matched.  stop looking */
417 		return (-1);
418 	}
419 
420 	return (0);
421 }
422 
423 /*ARGSUSED1*/
424 static int
425 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
426 {
427 	merge_cb_data_t *mcd = private;
428 
429 	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
430 		return (0);
431 
432 	return (1);
433 }
434 
435 /*ARGSUSED1*/
436 static int
437 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
438 {
439 	merge_cb_data_t *mcd = private;
440 	equiv_data_t ed;
441 
442 	ed.ed_ta = mcd->md_ta;
443 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
444 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
445 	ed.ed_node = ctdp;
446 	ed.ed_selfuniquify = 0;
447 
448 	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
449 
450 	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
451 	    equiv_cb, &ed) < 0) {
452 		/* We found an equivalent node */
453 		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
454 			int id = mcd->md_tgt->td_nextid++;
455 
456 			debug(3, "Creating new defn type %d <%x>\n", id, id);
457 			add_mapping(mcd->md_ta, ctdp->t_id, id);
458 			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
459 			    (void *)(ulong_t)id);
460 			hash_add(mcd->md_tdtba, ctdp);
461 		} else
462 			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
463 
464 	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
465 	    equiv_cb, &ed) < 0) {
466 		/*
467 		 * We didn't find an equivalent node by looking through the
468 		 * layout hash, but we somehow found it by performing an
469 		 * exhaustive search through the entire graph.  This usually
470 		 * means that the "name" hash function is broken.
471 		 */
472 		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
473 		    tdesc_name(ctdp), ed.ed_tgt->t_id);
474 	} else {
475 		int id = mcd->md_tgt->td_nextid++;
476 
477 		debug(3, "Creating new type %d <%x>\n", id, id);
478 		add_mapping(mcd->md_ta, ctdp->t_id, id);
479 		hash_add(mcd->md_tdtba, ctdp);
480 	}
481 
482 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
483 
484 	return (1);
485 }
486 
487 /*ARGSUSED1*/
488 static int
489 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
490 {
491 	merge_cb_data_t *mcd = private;
492 	equiv_data_t ed;
493 
494 	ed.ed_ta = mcd->md_ta;
495 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
496 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
497 	ed.ed_node = ctdp;
498 	ed.ed_selfuniquify = 1;
499 	ed.ed_tgt = NULL;
500 
501 	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
502 		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
503 		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
504 		add_mapping(mcd->md_ta, ctdp->t_id,
505 		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
506 	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
507 	    equiv_cb, &ed) < 0) {
508 		/*
509 		 * We didn't find an equivalent node using the quick way (going
510 		 * through the hash normally), but we did find it by iterating
511 		 * through the entire hash.  This usually means that the hash
512 		 * function is broken.
513 		 */
514 		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
515 		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
516 		    ed.ed_tgt->t_id);
517 	} else {
518 		int id = mcd->md_tgt->td_nextid++;
519 
520 		debug(3, "Creating new type %d <%x>\n", id, id);
521 		add_mapping(mcd->md_ta, ctdp->t_id, id);
522 		hash_add(mcd->md_tdtba, ctdp);
523 	}
524 
525 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
526 
527 	return (1);
528 }
529 
530 static tdtrav_cb_f map_pre[] = {
531 	NULL,
532 	map_td_tree_pre,	/* intrinsic */
533 	map_td_tree_pre,	/* pointer */
534 	map_td_tree_pre,	/* array */
535 	map_td_tree_pre,	/* function */
536 	map_td_tree_pre,	/* struct */
537 	map_td_tree_pre,	/* union */
538 	map_td_tree_pre,	/* enum */
539 	map_td_tree_pre,	/* forward */
540 	map_td_tree_pre,	/* typedef */
541 	tdtrav_assert,		/* typedef_unres */
542 	map_td_tree_pre,	/* volatile */
543 	map_td_tree_pre,	/* const */
544 	map_td_tree_pre		/* restrict */
545 };
546 
547 static tdtrav_cb_f map_post[] = {
548 	NULL,
549 	map_td_tree_post,	/* intrinsic */
550 	map_td_tree_post,	/* pointer */
551 	map_td_tree_post,	/* array */
552 	map_td_tree_post,	/* function */
553 	map_td_tree_post,	/* struct */
554 	map_td_tree_post,	/* union */
555 	map_td_tree_post,	/* enum */
556 	map_td_tree_post,	/* forward */
557 	map_td_tree_post,	/* typedef */
558 	tdtrav_assert,		/* typedef_unres */
559 	map_td_tree_post,	/* volatile */
560 	map_td_tree_post,	/* const */
561 	map_td_tree_post	/* restrict */
562 };
563 
564 static tdtrav_cb_f map_self_post[] = {
565 	NULL,
566 	map_td_tree_self_post,	/* intrinsic */
567 	map_td_tree_self_post,	/* pointer */
568 	map_td_tree_self_post,	/* array */
569 	map_td_tree_self_post,	/* function */
570 	map_td_tree_self_post,	/* struct */
571 	map_td_tree_self_post,	/* union */
572 	map_td_tree_self_post,	/* enum */
573 	map_td_tree_self_post,	/* forward */
574 	map_td_tree_self_post,	/* typedef */
575 	tdtrav_assert,		/* typedef_unres */
576 	map_td_tree_self_post,	/* volatile */
577 	map_td_tree_self_post,	/* const */
578 	map_td_tree_self_post	/* restrict */
579 };
580 
581 /*
582  * Determining equivalence of iidesc_t nodes
583  */
584 
585 typedef struct iifind_data {
586 	iidesc_t *iif_template;
587 	alist_t *iif_ta;
588 	int iif_newidx;
589 	int iif_refmerge;
590 } iifind_data_t;
591 
592 /*
593  * Check to see if this iidesc_t (node) - the current one on the list we're
594  * iterating through - matches the target one (iif->iif_template).  Return -1
595  * if it matches, to stop the iteration.
596  */
597 static int
598 iidesc_match(void *data, void *arg)
599 {
600 	iidesc_t *node = data;
601 	iifind_data_t *iif = arg;
602 	int i;
603 
604 	if (node->ii_type != iif->iif_template->ii_type ||
605 	    !streq(node->ii_name, iif->iif_template->ii_name) ||
606 	    node->ii_dtype->t_id != iif->iif_newidx)
607 		return (0);
608 
609 	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
610 	    !streq(node->ii_owner, iif->iif_template->ii_owner))
611 		return (0);
612 
613 	if (node->ii_nargs != iif->iif_template->ii_nargs)
614 		return (0);
615 
616 	for (i = 0; i < node->ii_nargs; i++) {
617 		if (get_mapping(iif->iif_ta,
618 		    iif->iif_template->ii_args[i]->t_id) !=
619 		    node->ii_args[i]->t_id)
620 			return (0);
621 	}
622 
623 	if (iif->iif_refmerge) {
624 		switch (iif->iif_template->ii_type) {
625 		case II_GFUN:
626 		case II_SFUN:
627 		case II_GVAR:
628 		case II_SVAR:
629 			debug(3, "suppressing duping of %d %s from %s\n",
630 			    iif->iif_template->ii_type,
631 			    iif->iif_template->ii_name,
632 			    (iif->iif_template->ii_owner ?
633 			    iif->iif_template->ii_owner : "NULL"));
634 			return (0);
635 		case II_NOT:
636 		case II_PSYM:
637 		case II_SOU:
638 		case II_TYPE:
639 			break;
640 		}
641 	}
642 
643 	return (-1);
644 }
645 
646 static int
647 merge_type_cb(void *data, void *arg)
648 {
649 	iidesc_t *sii = data;
650 	merge_cb_data_t *mcd = arg;
651 	iifind_data_t iif;
652 	tdtrav_cb_f *post;
653 
654 	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
655 
656 	/* Map the tdesc nodes */
657 	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
658 	    mcd);
659 
660 	/* Map the iidesc nodes */
661 	iif.iif_template = sii;
662 	iif.iif_ta = mcd->md_ta;
663 	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
664 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
665 
666 	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
667 	    &iif) == 1)
668 		/* successfully mapped */
669 		return (1);
670 
671 	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
672 	    sii->ii_type);
673 
674 	list_add(mcd->md_iitba, sii);
675 
676 	return (0);
677 }
678 
679 static int
680 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
681     merge_cb_data_t *mcd)
682 {
683 	tdesc_t *tgt = NULL;
684 	tdesc_t template;
685 	int oldid = oldtgt->t_id;
686 
687 	if (oldid == selftid) {
688 		*tgtp = newself;
689 		return (1);
690 	}
691 
692 	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
693 		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
694 
695 	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
696 	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
697 	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
698 	    (void *)&tgt))) {
699 		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
700 		    template.t_id, oldid, oldid);
701 		*tgtp = oldtgt;
702 		list_add(mcd->md_tdtbr, tgtp);
703 		return (0);
704 	}
705 
706 	*tgtp = tgt;
707 	return (1);
708 }
709 
710 static tdesc_t *
711 conjure_template(tdesc_t *old, int newselfid)
712 {
713 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
714 
715 	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
716 	new->t_type = old->t_type;
717 	new->t_size = old->t_size;
718 	new->t_id = newselfid;
719 	new->t_flags = old->t_flags;
720 
721 	return (new);
722 }
723 
724 /*ARGSUSED2*/
725 static tdesc_t *
726 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
727 {
728 	tdesc_t *new = conjure_template(old, newselfid);
729 
730 	new->t_intr = xmalloc(sizeof (intr_t));
731 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
732 
733 	return (new);
734 }
735 
736 static tdesc_t *
737 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
738 {
739 	tdesc_t *new = conjure_template(old, newselfid);
740 
741 	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
742 
743 	return (new);
744 }
745 
746 static tdesc_t *
747 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
748 {
749 	tdesc_t *new = conjure_template(old, newselfid);
750 	fndef_t *nfn = xmalloc(sizeof (fndef_t));
751 	fndef_t *ofn = old->t_fndef;
752 	int i;
753 
754 	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
755 
756 	nfn->fn_nargs = ofn->fn_nargs;
757 	nfn->fn_vargs = ofn->fn_vargs;
758 
759 	if (nfn->fn_nargs > 0)
760 		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
761 
762 	for (i = 0; i < (int) ofn->fn_nargs; i++) {
763 		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
764 		    new, mcd);
765 	}
766 
767 	new->t_fndef = nfn;
768 
769 	return (new);
770 }
771 
772 static tdesc_t *
773 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
774 {
775 	tdesc_t *new = conjure_template(old, newselfid);
776 	ardef_t *nar = xmalloc(sizeof (ardef_t));
777 	ardef_t *oar = old->t_ardef;
778 
779 	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
780 	    mcd);
781 	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
782 	    mcd);
783 
784 	nar->ad_nelems = oar->ad_nelems;
785 
786 	new->t_ardef = nar;
787 
788 	return (new);
789 }
790 
791 static tdesc_t *
792 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
793 {
794 	tdesc_t *new = conjure_template(old, newselfid);
795 	mlist_t *omem, **nmemp;
796 
797 	for (omem = old->t_members, nmemp = &new->t_members;
798 	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
799 		*nmemp = xmalloc(sizeof (mlist_t));
800 		(*nmemp)->ml_offset = omem->ml_offset;
801 		(*nmemp)->ml_size = omem->ml_size;
802 		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
803 		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
804 		    old->t_id, new, mcd);
805 	}
806 	*nmemp = NULL;
807 
808 	return (new);
809 }
810 
811 /*ARGSUSED2*/
812 static tdesc_t *
813 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
814 {
815 	tdesc_t *new = conjure_template(old, newselfid);
816 	elist_t *oel, **nelp;
817 
818 	for (oel = old->t_emem, nelp = &new->t_emem;
819 	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
820 		*nelp = xmalloc(sizeof (elist_t));
821 		(*nelp)->el_name = xstrdup(oel->el_name);
822 		(*nelp)->el_number = oel->el_number;
823 	}
824 	*nelp = NULL;
825 
826 	return (new);
827 }
828 
829 /*ARGSUSED2*/
830 static tdesc_t *
831 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
832 {
833 	tdesc_t *new = conjure_template(old, newselfid);
834 
835 	list_add(&mcd->md_tgt->td_fwdlist, new);
836 
837 	return (new);
838 }
839 
840 /*ARGSUSED*/
841 static tdesc_t *
842 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
843 {
844 	assert(1 == 0);
845 	return (NULL);
846 }
847 
848 static iidesc_t *
849 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
850 {
851 	iidesc_t *new = iidesc_dup(old);
852 	int i;
853 
854 	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
855 	for (i = 0; i < new->ii_nargs; i++) {
856 		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
857 		    mcd);
858 	}
859 
860 	return (new);
861 }
862 
863 static int
864 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
865 {
866 	alist_t *map = private;
867 	void *defn;
868 
869 	if (!alist_find(map, (void *)fwd, (void **)&defn))
870 		return (0);
871 
872 	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
873 
874 	*fwdp = defn;
875 
876 	return (1);
877 }
878 
879 static tdtrav_cb_f fwd_redir_cbs[] = {
880 	NULL,
881 	NULL,			/* intrinsic */
882 	NULL,			/* pointer */
883 	NULL,			/* array */
884 	NULL,			/* function */
885 	NULL,			/* struct */
886 	NULL,			/* union */
887 	NULL,			/* enum */
888 	fwd_redir,		/* forward */
889 	NULL,			/* typedef */
890 	tdtrav_assert,		/* typedef_unres */
891 	NULL,			/* volatile */
892 	NULL,			/* const */
893 	NULL			/* restrict */
894 };
895 
896 typedef struct redir_mstr_data {
897 	tdata_t *rmd_tgt;
898 	alist_t *rmd_map;
899 } redir_mstr_data_t;
900 
901 static int
902 redir_mstr_fwd_cb(void *name, void *value, void *arg)
903 {
904 	tdesc_t *fwd = name;
905 	int defnid = (uintptr_t)value;
906 	redir_mstr_data_t *rmd = arg;
907 	tdesc_t template;
908 	tdesc_t *defn;
909 
910 	template.t_id = defnid;
911 
912 	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
913 	    (void *)&defn)) {
914 		aborterr("Couldn't unforward %d (%s)\n", defnid,
915 		    tdesc_name(defn));
916 	}
917 
918 	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
919 
920 	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
921 
922 	return (1);
923 }
924 
925 static void
926 redir_mstr_fwds(merge_cb_data_t *mcd)
927 {
928 	redir_mstr_data_t rmd;
929 	alist_t *map = alist_new(NULL, NULL);
930 
931 	rmd.rmd_tgt = mcd->md_tgt;
932 	rmd.rmd_map = map;
933 
934 	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
935 		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
936 		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
937 	}
938 
939 	alist_free(map);
940 }
941 
942 static int
943 add_iitba_cb(void *data, void *private)
944 {
945 	merge_cb_data_t *mcd = private;
946 	iidesc_t *tba = data;
947 	iidesc_t *new;
948 	iifind_data_t iif;
949 	int newidx;
950 
951 	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
952 	assert(newidx != -1);
953 
954 	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
955 
956 	iif.iif_template = tba;
957 	iif.iif_ta = mcd->md_ta;
958 	iif.iif_newidx = newidx;
959 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
960 
961 	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
962 	    &iif) == 1) {
963 		debug(3, "iidesc_t %s already exists\n",
964 		    (tba->ii_name ? tba->ii_name : "(anon)"));
965 		return (1);
966 	}
967 
968 	new = conjure_iidesc(tba, mcd);
969 	hash_add(mcd->md_tgt->td_iihash, new);
970 
971 	return (1);
972 }
973 
974 static int
975 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
976 {
977 	tdesc_t *newtdp;
978 	tdesc_t template;
979 
980 	template.t_id = newid;
981 	assert(hash_find(mcd->md_parent->td_idhash,
982 	    (void *)&template, NULL) == 0);
983 
984 	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
985 	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
986 	    oldtdp->t_id, newid, newid);
987 
988 	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
989 	    mcd)) == NULL)
990 		/* couldn't map everything */
991 		return (0);
992 
993 	debug(3, "succeeded\n");
994 
995 	hash_add(mcd->md_tgt->td_idhash, newtdp);
996 	hash_add(mcd->md_tgt->td_layouthash, newtdp);
997 
998 	return (1);
999 }
1000 
1001 static int
1002 add_tdtba_cb(void *data, void *arg)
1003 {
1004 	tdesc_t *tdp = data;
1005 	merge_cb_data_t *mcd = arg;
1006 	int newid;
1007 	int rc;
1008 
1009 	newid = get_mapping(mcd->md_ta, tdp->t_id);
1010 	assert(newid != -1);
1011 
1012 	if ((rc = add_tdesc(tdp, newid, mcd)))
1013 		hash_remove(mcd->md_tdtba, (void *)tdp);
1014 
1015 	return (rc);
1016 }
1017 
1018 static int
1019 add_tdtbr_cb(void *data, void *arg)
1020 {
1021 	tdesc_t **tdpp = data;
1022 	merge_cb_data_t *mcd = arg;
1023 
1024 	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1025 
1026 	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1027 		return (0);
1028 
1029 	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1030 	return (1);
1031 }
1032 
1033 static void
1034 merge_types(hash_t *src, merge_cb_data_t *mcd)
1035 {
1036 	list_t *iitba = NULL;
1037 	list_t *tdtbr = NULL;
1038 	int iirc, tdrc;
1039 
1040 	mcd->md_iitba = &iitba;
1041 	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1042 	    tdesc_layoutcmp);
1043 	mcd->md_tdtbr = &tdtbr;
1044 
1045 	(void) hash_iter(src, merge_type_cb, mcd);
1046 
1047 	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1048 	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1049 
1050 	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1051 	debug(3, "add_iitba_cb added %d items\n", iirc);
1052 
1053 	assert(list_count(*mcd->md_iitba) == 0 &&
1054 	    hash_count(mcd->md_tdtba) == 0);
1055 
1056 	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1057 	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1058 
1059 	if (list_count(*mcd->md_tdtbr) != 0)
1060 		aborterr("Couldn't remap all nodes\n");
1061 
1062 	/*
1063 	 * We now have an alist of master forwards and the ids of the new master
1064 	 * definitions for those forwards in mcd->md_fdida.  By this point,
1065 	 * we're guaranteed that all of the master definitions referenced in
1066 	 * fdida have been added to the master tree.  We now traverse through
1067 	 * the master tree, redirecting all edges inbound to forwards that have
1068 	 * definitions to those definitions.
1069 	 */
1070 	if (mcd->md_parent == mcd->md_tgt) {
1071 		redir_mstr_fwds(mcd);
1072 	}
1073 }
1074 
1075 void
1076 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1077 {
1078 	merge_cb_data_t mcd;
1079 
1080 	cur->td_ref++;
1081 	mstr->td_ref++;
1082 	if (tgt)
1083 		tgt->td_ref++;
1084 
1085 	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1086 	    (tgt == NULL || tgt->td_ref == 1));
1087 
1088 	mcd.md_parent = mstr;
1089 	mcd.md_tgt = (tgt ? tgt : mstr);
1090 	mcd.md_ta = alist_new(NULL, NULL);
1091 	mcd.md_fdida = alist_new(NULL, NULL);
1092 	mcd.md_flags = 0;
1093 
1094 	if (selfuniquify)
1095 		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1096 	if (tgt)
1097 		mcd.md_flags |= MCD_F_REFMERGE;
1098 
1099 	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1100 	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1101 
1102 	merge_types(cur->td_iihash, &mcd);
1103 
1104 	if (debug_level >= 3) {
1105 		debug(3, "Type association stats\n");
1106 		alist_stats(mcd.md_ta, 0);
1107 		debug(3, "Layout hash stats\n");
1108 		hash_stats(mcd.md_tgt->td_layouthash, 1);
1109 	}
1110 
1111 	alist_free(mcd.md_fdida);
1112 	alist_free(mcd.md_ta);
1113 
1114 	cur->td_ref--;
1115 	mstr->td_ref--;
1116 	if (tgt)
1117 		tgt->td_ref--;
1118 }
1119 
1120 tdesc_ops_t tdesc_ops[] = {
1121 	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1122 	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1123 	{ "pointer", 		equiv_plain,		conjure_plain },
1124 	{ "array", 		equiv_array,		conjure_array },
1125 	{ "function", 		equiv_function,		conjure_function },
1126 	{ "struct",		equiv_su,		conjure_su },
1127 	{ "union",		equiv_su,		conjure_su },
1128 	{ "enum",		equiv_enum,		conjure_enum },
1129 	{ "forward",		NULL,			conjure_forward },
1130 	{ "typedef",		equiv_plain,		conjure_plain },
1131 	{ "typedef_unres",	equiv_assert,		conjure_assert },
1132 	{ "volatile",		equiv_plain,		conjure_plain },
1133 	{ "const", 		equiv_plain,		conjure_plain },
1134 	{ "restrict",		equiv_plain,		conjure_plain }
1135 };
1136