xref: /freebsd/cddl/contrib/opensolaris/tools/ctf/cvt/dwarf.c (revision e3fa6e64ee1ed08584667538818259a36147041f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DWARF to tdata conversion
28  *
29  * For the most part, conversion is straightforward, proceeding in two passes.
30  * On the first pass, we iterate through every die, creating new type nodes as
31  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32  * allowing type reference pointers to be filled in.  If the tdesc_t
33  * corresponding to a given die can be completely filled out (sizes and offsets
34  * calculated, and so forth) without using any referenced types, the tdesc_t is
35  * marked as resolved.  Consider an array type.  If the type corresponding to
36  * the array contents has not yet been processed, we will create a blank tdesc
37  * for the contents type (only the type ID will be filled in, relying upon the
38  * later portion of the first pass to encounter and complete the referenced
39  * type).  We will then attempt to determine the size of the array.  If the
40  * array has a byte size attribute, we will have completely characterized the
41  * array type, and will be able to mark it as resolved.  The lack of a byte
42  * size attribute, on the other hand, will prevent us from fully resolving the
43  * type, as the size will only be calculable with reference to the contents
44  * type, which has not, as yet, been encountered.  The array type will thus be
45  * left without the resolved flag, and the first pass will continue.
46  *
47  * When we begin the second pass, we will have created tdesc_t nodes for every
48  * type in the section.  We will traverse the tree, from the iidescs down,
49  * processing each unresolved node.  As the referenced nodes will have been
50  * populated, the array type used in our example above will be able to use the
51  * size of the referenced types (if available) to determine its own type.  The
52  * traversal will be repeated until all types have been resolved or we have
53  * failed to make progress.  When all tdescs have been resolved, the conversion
54  * is complete.
55  *
56  * There are, as always, a few special cases that are handled during the first
57  * and second passes:
58  *
59  *  1. Empty enums - GCC will occasionally emit an enum without any members.
60  *     Later on in the file, it will emit the same enum type, though this time
61  *     with the full complement of members.  All references to the memberless
62  *     enum need to be redirected to the full definition.  During the first
63  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64  *     corresponding tdesc_t.  If, during the second pass, we encounter a
65  *     memberless enum, we use the hash to locate the full definition.  All
66  *     tdescs referencing the empty enum are then redirected.
67  *
68  *  2. Forward declarations - If the compiler sees a forward declaration for
69  *     a structure, followed by the definition of that structure, it will emit
70  *     DWARF data for both the forward declaration and the definition.  We need
71  *     to resolve the forward declarations when possible, by redirecting
72  *     forward-referencing tdescs to the actual struct/union definitions.  This
73  *     redirection is done completely within the first pass.  We begin by
74  *     recording all forward declarations in dw_fwdhash.  When we define a
75  *     structure, we check to see if there have been any corresponding forward
76  *     declarations.  If so, we redirect the tdescs which referenced the forward
77  *     declarations to the structure or union definition.
78  *
79  * XXX see if a post traverser will allow the elimination of repeated pass 2
80  * traversals.
81  */
82 
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <strings.h>
87 #include <errno.h>
88 #include <libelf.h>
89 #include <libdwarf.h>
90 #include <libgen.h>
91 #include <dwarf.h>
92 
93 #include "ctf_headers.h"
94 #include "ctftools.h"
95 #include "memory.h"
96 #include "list.h"
97 #include "traverse.h"
98 
99 /* The version of DWARF which we support. */
100 #define	DWARF_VERSION	2
101 
102 /*
103  * We need to define a couple of our own intrinsics, to smooth out some of the
104  * differences between the GCC and DevPro DWARF emitters.  See the referenced
105  * routines and the special cases in the file comment for more details.
106  *
107  * Type IDs are 32 bits wide.  We're going to use the top of that field to
108  * indicate types that we've created ourselves.
109  */
110 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
111 #define	TID_VOID		0x40000001	/* see die_void() */
112 #define	TID_LONG		0x40000002	/* see die_array() */
113 
114 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
115 
116 /*
117  * To reduce the staggering amount of error-handling code that would otherwise
118  * be required, the attribute-retrieval routines handle most of their own
119  * errors.  If the following flag is supplied as the value of the `req'
120  * argument, they will also handle the absence of a requested attribute by
121  * terminating the program.
122  */
123 #define	DW_ATTR_REQ	1
124 
125 #define	TDESC_HASH_BUCKETS	511
126 
127 typedef struct dwarf {
128 	Dwarf_Debug dw_dw;		/* for libdwarf */
129 	Dwarf_Error dw_err;		/* for libdwarf */
130 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
131 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
132 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
133 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
134 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
135 	tdesc_t *dw_void;		/* manufactured void type */
136 	tdesc_t *dw_long;		/* manufactured long type for arrays */
137 	size_t dw_ptrsz;		/* size of a pointer in this file */
138 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
139 	uint_t dw_nunres;		/* count of unresolved types */
140 	char *dw_cuname;		/* name of compilation unit */
141 } dwarf_t;
142 
143 static void die_create_one(dwarf_t *, Dwarf_Die);
144 static void die_create(dwarf_t *, Dwarf_Die);
145 
146 static tid_t
147 mfgtid_next(dwarf_t *dw)
148 {
149 	return (++dw->dw_mfgtid_last);
150 }
151 
152 static void
153 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
154 {
155 	hash_add(dw->dw_tidhash, tdp);
156 }
157 
158 static tdesc_t *
159 tdesc_lookup(dwarf_t *dw, int tid)
160 {
161 	tdesc_t tmpl;
162 	void *tdp;
163 
164 	tmpl.t_id = tid;
165 
166 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
167 		return (tdp);
168 	else
169 		return (NULL);
170 }
171 
172 /*
173  * Resolve a tdesc down to a node which should have a size.  Returns the size,
174  * zero if the size hasn't yet been determined.
175  */
176 static size_t
177 tdesc_size(tdesc_t *tdp)
178 {
179 	for (;;) {
180 		switch (tdp->t_type) {
181 		case INTRINSIC:
182 		case POINTER:
183 		case ARRAY:
184 		case FUNCTION:
185 		case STRUCT:
186 		case UNION:
187 		case ENUM:
188 			return (tdp->t_size);
189 
190 		case FORWARD:
191 			return (0);
192 
193 		case TYPEDEF:
194 		case VOLATILE:
195 		case CONST:
196 		case RESTRICT:
197 			tdp = tdp->t_tdesc;
198 			continue;
199 
200 		case 0: /* not yet defined */
201 			return (0);
202 
203 		default:
204 			terminate("tdp %u: tdesc_size on unknown type %d\n",
205 			    tdp->t_id, tdp->t_type);
206 		}
207 	}
208 }
209 
210 static size_t
211 tdesc_bitsize(tdesc_t *tdp)
212 {
213 	for (;;) {
214 		switch (tdp->t_type) {
215 		case INTRINSIC:
216 			return (tdp->t_intr->intr_nbits);
217 
218 		case ARRAY:
219 		case FUNCTION:
220 		case STRUCT:
221 		case UNION:
222 		case ENUM:
223 		case POINTER:
224 			return (tdp->t_size * NBBY);
225 
226 		case FORWARD:
227 			return (0);
228 
229 		case TYPEDEF:
230 		case VOLATILE:
231 		case RESTRICT:
232 		case CONST:
233 			tdp = tdp->t_tdesc;
234 			continue;
235 
236 		case 0: /* not yet defined */
237 			return (0);
238 
239 		default:
240 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
241 			    tdp->t_id, tdp->t_type);
242 		}
243 	}
244 }
245 
246 static tdesc_t *
247 tdesc_basetype(tdesc_t *tdp)
248 {
249 	for (;;) {
250 		switch (tdp->t_type) {
251 		case TYPEDEF:
252 		case VOLATILE:
253 		case RESTRICT:
254 		case CONST:
255 			tdp = tdp->t_tdesc;
256 			break;
257 		case 0: /* not yet defined */
258 			return (NULL);
259 		default:
260 			return (tdp);
261 		}
262 	}
263 }
264 
265 static Dwarf_Off
266 die_off(dwarf_t *dw, Dwarf_Die die)
267 {
268 	Dwarf_Off off;
269 
270 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
271 		return (off);
272 
273 	terminate("failed to get offset for die: %s\n",
274 	    dwarf_errmsg(dw->dw_err));
275 	/*NOTREACHED*/
276 	return (0);
277 }
278 
279 static Dwarf_Die
280 die_sibling(dwarf_t *dw, Dwarf_Die die)
281 {
282 	Dwarf_Die sib;
283 	int rc;
284 
285 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
286 	    DW_DLV_OK)
287 		return (sib);
288 	else if (rc == DW_DLV_NO_ENTRY)
289 		return (NULL);
290 
291 	terminate("die %llu: failed to find type sibling: %s\n",
292 	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
293 	/*NOTREACHED*/
294 	return (NULL);
295 }
296 
297 static Dwarf_Die
298 die_child(dwarf_t *dw, Dwarf_Die die)
299 {
300 	Dwarf_Die child;
301 	int rc;
302 
303 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
304 		return (child);
305 	else if (rc == DW_DLV_NO_ENTRY)
306 		return (NULL);
307 
308 	terminate("die %llu: failed to find type child: %s\n",
309 	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
310 	/*NOTREACHED*/
311 	return (NULL);
312 }
313 
314 static Dwarf_Half
315 die_tag(dwarf_t *dw, Dwarf_Die die)
316 {
317 	Dwarf_Half tag;
318 
319 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
320 		return (tag);
321 
322 	terminate("die %llu: failed to get tag for type: %s\n",
323 	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
324 	/*NOTREACHED*/
325 	return (0);
326 }
327 
328 static Dwarf_Attribute
329 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
330 {
331 	Dwarf_Attribute attr;
332 	int rc;
333 
334 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
335 		return (attr);
336 	} else if (rc == DW_DLV_NO_ENTRY) {
337 		if (req) {
338 			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
339 			    name);
340 		} else {
341 			return (NULL);
342 		}
343 	}
344 
345 	terminate("die %llu: failed to get attribute for type: %s\n",
346 	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
347 	/*NOTREACHED*/
348 	return (NULL);
349 }
350 
351 static int
352 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
353     int req)
354 {
355 	*valp = 0;
356 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
357 		if (req)
358 			terminate("die %llu: failed to get signed: %s\n",
359 			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
360 		return (0);
361 	}
362 
363 	return (1);
364 }
365 
366 static int
367 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
368     int req)
369 {
370 	*valp = 0;
371 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
372 		if (req)
373 			terminate("die %llu: failed to get unsigned: %s\n",
374 			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
375 		return (0);
376 	}
377 
378 	return (1);
379 }
380 
381 static int
382 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
383 {
384 	*valp = 0;
385 
386 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
387 		if (req)
388 			terminate("die %llu: failed to get flag: %s\n",
389 			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
390 		return (0);
391 	}
392 
393 	return (1);
394 }
395 
396 static int
397 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
398 {
399 	const char *str = NULL;
400 
401 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
402 	    str == NULL) {
403 		if (req)
404 			terminate("die %llu: failed to get string: %s\n",
405 			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
406 		else
407 			*strp = NULL;
408 		return (0);
409 	} else
410 		*strp = xstrdup(str);
411 
412 	return (1);
413 }
414 
415 static Dwarf_Off
416 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
417 {
418 	Dwarf_Off off;
419 
420 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
421 		terminate("die %llu: failed to get ref: %s\n",
422 		    die_off(dw, die), dwarf_errmsg(dw->dw_err));
423 	}
424 
425 	return (off);
426 }
427 
428 static char *
429 die_name(dwarf_t *dw, Dwarf_Die die)
430 {
431 	char *str = NULL;
432 
433 	(void) die_string(dw, die, DW_AT_name, &str, 0);
434 	if (str == NULL)
435 		str = xstrdup("");
436 
437 	return (str);
438 }
439 
440 static int
441 die_isdecl(dwarf_t *dw, Dwarf_Die die)
442 {
443 	Dwarf_Bool val;
444 
445 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
446 }
447 
448 static int
449 die_isglobal(dwarf_t *dw, Dwarf_Die die)
450 {
451 	Dwarf_Signed vis;
452 	Dwarf_Bool ext;
453 
454 	/*
455 	 * Some compilers (gcc) use DW_AT_external to indicate function
456 	 * visibility.  Others (Sun) use DW_AT_visibility.
457 	 */
458 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
459 		return (vis == DW_VIS_exported);
460 	else
461 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
462 }
463 
464 static tdesc_t *
465 die_add(dwarf_t *dw, Dwarf_Off off)
466 {
467 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
468 
469 	tdp->t_id = off;
470 
471 	tdesc_add(dw, tdp);
472 
473 	return (tdp);
474 }
475 
476 static tdesc_t *
477 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
478 {
479 	Dwarf_Off ref = die_attr_ref(dw, die, name);
480 	tdesc_t *tdp;
481 
482 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
483 		return (tdp);
484 
485 	return (die_add(dw, ref));
486 }
487 
488 static int
489 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
490     Dwarf_Unsigned *valp, int req __unused)
491 {
492 	Dwarf_Locdesc *loc = NULL;
493 	Dwarf_Signed locnum = 0;
494 	Dwarf_Attribute at;
495 	Dwarf_Half form;
496 
497 	if (name != DW_AT_data_member_location)
498 		terminate("die %llu: can only process attribute "
499 		    "DW_AT_data_member_location\n", die_off(dw, die));
500 
501 	if ((at = die_attr(dw, die, name, 0)) == NULL)
502 		return (0);
503 
504 	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
505 		return (0);
506 
507 	switch (form) {
508 	case DW_FORM_sec_offset:
509 	case DW_FORM_block:
510 	case DW_FORM_block1:
511 	case DW_FORM_block2:
512 	case DW_FORM_block4:
513 		/*
514 		 * GCC in base and Clang (3.3 or below) generates
515 		 * DW_AT_data_member_location attribute with DW_FORM_block*
516 		 * form. The attribute contains one DW_OP_plus_uconst
517 		 * operator. The member offset stores in the operand.
518 		 */
519 		if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
520 			return (0);
521 		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
522 			terminate("die %llu: cannot parse member offset with "
523 			    "operator other than DW_OP_plus_uconst\n",
524 			    die_off(dw, die));
525 		}
526 		*valp = loc->ld_s->lr_number;
527 		if (loc != NULL) {
528 			dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
529 			dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
530 		}
531 		break;
532 
533 	case DW_FORM_data1:
534 	case DW_FORM_data2:
535 	case DW_FORM_data4:
536 	case DW_FORM_data8:
537 	case DW_FORM_udata:
538 		/*
539 		 * Clang 3.4 generates DW_AT_data_member_location attribute
540 		 * with DW_FORM_data* form (constant class). The attribute
541 		 * stores a contant value which is the member offset.
542 		 *
543 		 * However, note that DW_FORM_data[48] in DWARF version 2 or 3
544 		 * could be used as a section offset (offset into .debug_loc in
545 		 * this case). Here we assume the attribute always stores a
546 		 * constant because we know Clang 3.4 does this and GCC in
547 		 * base won't emit DW_FORM_data[48] for this attribute. This
548 		 * code will remain correct if future vesrions of Clang and
549 		 * GCC conform to DWARF4 standard and only use the form
550 		 * DW_FORM_sec_offset for section offset.
551 		 */
552 		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
553 		    DW_DLV_OK)
554 			return (0);
555 		break;
556 
557 	default:
558 		terminate("die %llu: cannot parse member offset with form "
559 		    "%u\n", die_off(dw, die), form);
560 	}
561 
562 	return (1);
563 }
564 
565 static tdesc_t *
566 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
567 {
568 	tdesc_t *tdp;
569 	intr_t *intr;
570 
571 	intr = xcalloc(sizeof (intr_t));
572 	intr->intr_type = INTR_INT;
573 	intr->intr_signed = 1;
574 	intr->intr_nbits = sz * NBBY;
575 
576 	tdp = xcalloc(sizeof (tdesc_t));
577 	tdp->t_name = xstrdup(name);
578 	tdp->t_size = sz;
579 	tdp->t_id = tid;
580 	tdp->t_type = INTRINSIC;
581 	tdp->t_intr = intr;
582 	tdp->t_flags = TDESC_F_RESOLVED;
583 
584 	tdesc_add(dw, tdp);
585 
586 	return (tdp);
587 }
588 
589 /*
590  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
591  * type reference implies a reference to a void type.  A void *, for example
592  * will be represented by a pointer die without a DW_AT_type.  CTF requires
593  * that pointer nodes point to something, so we'll create a void for use as
594  * the target.  Note that the DWARF data may already create a void type.  Ours
595  * would then be a duplicate, but it'll be removed in the self-uniquification
596  * merge performed at the completion of DWARF->tdesc conversion.
597  */
598 static tdesc_t *
599 tdesc_intr_void(dwarf_t *dw)
600 {
601 	if (dw->dw_void == NULL)
602 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
603 
604 	return (dw->dw_void);
605 }
606 
607 static tdesc_t *
608 tdesc_intr_long(dwarf_t *dw)
609 {
610 	if (dw->dw_long == NULL) {
611 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
612 		    dw->dw_ptrsz);
613 	}
614 
615 	return (dw->dw_long);
616 }
617 
618 /*
619  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
620  * adjusting the size of the copy to match what the caller requested.  The
621  * caller can then use the copy as the type for a bitfield structure member.
622  */
623 static tdesc_t *
624 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
625 {
626 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
627 
628 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
629 		terminate("tdp %u: attempt to make a bit field from an "
630 		    "unresolved type\n", old->t_id);
631 	}
632 
633 	new->t_name = xstrdup(old->t_name);
634 	new->t_size = old->t_size;
635 	new->t_id = mfgtid_next(dw);
636 	new->t_type = INTRINSIC;
637 	new->t_flags = TDESC_F_RESOLVED;
638 
639 	new->t_intr = xcalloc(sizeof (intr_t));
640 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
641 	new->t_intr->intr_nbits = bitsz;
642 
643 	tdesc_add(dw, new);
644 
645 	return (new);
646 }
647 
648 static void
649 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
650     tdesc_t *dimtdp)
651 {
652 	Dwarf_Unsigned uval;
653 	Dwarf_Signed sval;
654 	tdesc_t *ctdp = NULL;
655 	Dwarf_Die dim2;
656 	ardef_t *ar;
657 
658 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
659 		ctdp = arrtdp;
660 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
661 		ctdp = xcalloc(sizeof (tdesc_t));
662 		ctdp->t_id = mfgtid_next(dw);
663 		debug(3, "die %llu: creating new type %u for sub-dimension\n",
664 		    die_off(dw, dim2), ctdp->t_id);
665 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
666 	} else {
667 		terminate("die %llu: unexpected non-subrange node in array\n",
668 		    die_off(dw, dim2));
669 	}
670 
671 	dimtdp->t_type = ARRAY;
672 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
673 
674 	/*
675 	 * Array bounds can be signed or unsigned, but there are several kinds
676 	 * of signless forms (data1, data2, etc) that take their sign from the
677 	 * routine that is trying to interpret them.  That is, data1 can be
678 	 * either signed or unsigned, depending on whether you use the signed or
679 	 * unsigned accessor function.  GCC will use the signless forms to store
680 	 * unsigned values which have their high bit set, so we need to try to
681 	 * read them first as unsigned to get positive values.  We could also
682 	 * try signed first, falling back to unsigned if we got a negative
683 	 * value.
684 	 */
685 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
686 		ar->ad_nelems = uval + 1;
687 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
688 		ar->ad_nelems = sval + 1;
689 	else
690 		ar->ad_nelems = 0;
691 
692 	/*
693 	 * Different compilers use different index types.  Force the type to be
694 	 * a common, known value (long).
695 	 */
696 	ar->ad_idxtype = tdesc_intr_long(dw);
697 	ar->ad_contents = ctdp;
698 
699 	if (ar->ad_contents->t_size != 0) {
700 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
701 		dimtdp->t_flags |= TDESC_F_RESOLVED;
702 	}
703 }
704 
705 /*
706  * Create a tdesc from an array node.  Some arrays will come with byte size
707  * attributes, and thus can be resolved immediately.  Others don't, and will
708  * need to wait until the second pass for resolution.
709  */
710 static void
711 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
712 {
713 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
714 	Dwarf_Unsigned uval;
715 	Dwarf_Die dim;
716 
717 	debug(3, "die %llu <%llx>: creating array\n", off, off);
718 
719 	if ((dim = die_child(dw, arr)) == NULL ||
720 	    die_tag(dw, dim) != DW_TAG_subrange_type)
721 		terminate("die %llu: failed to retrieve array bounds\n", off);
722 
723 	tdesc_array_create(dw, dim, arrtdp, tdp);
724 
725 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
726 		tdesc_t *dimtdp;
727 		int flags;
728 
729 		/* Check for bogus gcc DW_AT_byte_size attribute */
730 		if (uval == (unsigned)-1) {
731 			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
732 			    __func__);
733 			uval = 0;
734 		}
735 
736 		tdp->t_size = uval;
737 
738 		/*
739 		 * Ensure that sub-dimensions have sizes too before marking
740 		 * as resolved.
741 		 */
742 		flags = TDESC_F_RESOLVED;
743 		for (dimtdp = tdp->t_ardef->ad_contents;
744 		    dimtdp->t_type == ARRAY;
745 		    dimtdp = dimtdp->t_ardef->ad_contents) {
746 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
747 				flags = 0;
748 				break;
749 			}
750 		}
751 
752 		tdp->t_flags |= flags;
753 	}
754 
755 	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
756 	    tdp->t_ardef->ad_nelems, tdp->t_size);
757 }
758 
759 /*ARGSUSED1*/
760 static int
761 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
762 {
763 	dwarf_t *dw = private;
764 	size_t sz;
765 
766 	if (tdp->t_flags & TDESC_F_RESOLVED)
767 		return (1);
768 
769 	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
770 	    tdp->t_ardef->ad_contents->t_id);
771 
772 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
773 		debug(3, "unable to resolve array %s (%d) contents %d\n",
774 		    tdesc_name(tdp), tdp->t_id,
775 		    tdp->t_ardef->ad_contents->t_id);
776 
777 		dw->dw_nunres++;
778 		return (1);
779 	}
780 
781 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
782 	tdp->t_flags |= TDESC_F_RESOLVED;
783 
784 	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
785 
786 	return (1);
787 }
788 
789 /*ARGSUSED1*/
790 static int
791 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
792 {
793 	tdesc_t *cont = tdp->t_ardef->ad_contents;
794 
795 	if (tdp->t_flags & TDESC_F_RESOLVED)
796 		return (1);
797 
798 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
799 	    tdp->t_id, tdesc_name(cont), cont->t_id);
800 
801 	return (1);
802 }
803 
804 /*
805  * Most enums (those with members) will be resolved during this first pass.
806  * Others - those without members (see the file comment) - won't be, and will
807  * need to wait until the second pass when they can be matched with their full
808  * definitions.
809  */
810 static void
811 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
812 {
813 	Dwarf_Die mem;
814 	Dwarf_Unsigned uval;
815 	Dwarf_Signed sval;
816 
817 	debug(3, "die %llu: creating enum\n", off);
818 
819 	tdp->t_type = ENUM;
820 
821 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
822 	/* Check for bogus gcc DW_AT_byte_size attribute */
823 	if (uval == (unsigned)-1) {
824 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
825 		    __func__);
826 		uval = 0;
827 	}
828 	tdp->t_size = uval;
829 
830 	if ((mem = die_child(dw, die)) != NULL) {
831 		elist_t **elastp = &tdp->t_emem;
832 
833 		do {
834 			elist_t *el;
835 
836 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
837 				/* Nested type declaration */
838 				die_create_one(dw, mem);
839 				continue;
840 			}
841 
842 			el = xcalloc(sizeof (elist_t));
843 			el->el_name = die_name(dw, mem);
844 
845 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
846 				el->el_number = sval;
847 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
848 			    &uval, 0)) {
849 				el->el_number = uval;
850 			} else {
851 				terminate("die %llu: enum %llu: member without "
852 				    "value\n", off, die_off(dw, mem));
853 			}
854 
855 			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
856 			    die_off(dw, mem), el->el_name, el->el_number);
857 
858 			*elastp = el;
859 			elastp = &el->el_next;
860 
861 		} while ((mem = die_sibling(dw, mem)) != NULL);
862 
863 		hash_add(dw->dw_enumhash, tdp);
864 
865 		tdp->t_flags |= TDESC_F_RESOLVED;
866 
867 		if (tdp->t_name != NULL) {
868 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
869 			ii->ii_type = II_SOU;
870 			ii->ii_name = xstrdup(tdp->t_name);
871 			ii->ii_dtype = tdp;
872 
873 			iidesc_add(dw->dw_td->td_iihash, ii);
874 		}
875 	}
876 }
877 
878 static int
879 die_enum_match(void *arg1, void *arg2)
880 {
881 	tdesc_t *tdp = arg1, **fullp = arg2;
882 
883 	if (tdp->t_emem != NULL) {
884 		*fullp = tdp;
885 		return (-1); /* stop the iteration */
886 	}
887 
888 	return (0);
889 }
890 
891 /*ARGSUSED1*/
892 static int
893 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
894 {
895 	dwarf_t *dw = private;
896 	tdesc_t *full = NULL;
897 
898 	if (tdp->t_flags & TDESC_F_RESOLVED)
899 		return (1);
900 
901 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
902 
903 	/*
904 	 * The answer to this one won't change from iteration to iteration,
905 	 * so don't even try.
906 	 */
907 	if (full == NULL) {
908 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
909 		    tdesc_name(tdp));
910 	}
911 
912 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
913 	    tdesc_name(tdp), full->t_id);
914 
915 	tdp->t_flags |= TDESC_F_RESOLVED;
916 
917 	return (1);
918 }
919 
920 static int
921 die_fwd_map(void *arg1, void *arg2)
922 {
923 	tdesc_t *fwd = arg1, *sou = arg2;
924 
925 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
926 	    tdesc_name(fwd), sou->t_id);
927 	fwd->t_tdesc = sou;
928 
929 	return (0);
930 }
931 
932 /*
933  * Structures and unions will never be resolved during the first pass, as we
934  * won't be able to fully determine the member sizes.  The second pass, which
935  * have access to sizing information, will be able to complete the resolution.
936  */
937 static void
938 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
939     int type, const char *typename)
940 {
941 	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
942 	Dwarf_Die mem;
943 	mlist_t *ml, **mlastp;
944 	iidesc_t *ii;
945 
946 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
947 
948 	debug(3, "die %llu: creating %s %s\n", off,
949 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
950 	    tdesc_name(tdp));
951 
952 	if (tdp->t_type == FORWARD) {
953 		hash_add(dw->dw_fwdhash, tdp);
954 		return;
955 	}
956 
957 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
958 
959 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
960 	tdp->t_size = sz;
961 
962 	/*
963 	 * GCC allows empty SOUs as an extension.
964 	 */
965 	if ((mem = die_child(dw, str)) == NULL) {
966 		goto out;
967 	}
968 
969 	mlastp = &tdp->t_members;
970 
971 	do {
972 		Dwarf_Off memoff = die_off(dw, mem);
973 		Dwarf_Half tag = die_tag(dw, mem);
974 		Dwarf_Unsigned mloff;
975 
976 		if (tag != DW_TAG_member) {
977 			/* Nested type declaration */
978 			die_create_one(dw, mem);
979 			continue;
980 		}
981 
982 		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
983 
984 		ml = xcalloc(sizeof (mlist_t));
985 
986 		/*
987 		 * This could be a GCC anon struct/union member, so we'll allow
988 		 * an empty name, even though nothing can really handle them
989 		 * properly.  Note that some versions of GCC miss out debug
990 		 * info for anon structs, though recent versions are fixed (gcc
991 		 * bug 11816).
992 		 */
993 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
994 			ml->ml_name = NULL;
995 
996 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
997 		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
998 		    ml->ml_type, ml->ml_type->t_id);
999 
1000 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
1001 		    &mloff, 0)) {
1002 			debug(3, "die %llu: got mloff %llx\n", off,
1003 			    (u_longlong_t)mloff);
1004 			ml->ml_offset = mloff * 8;
1005 		}
1006 
1007 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1008 			ml->ml_size = bitsz;
1009 		else
1010 			ml->ml_size = tdesc_bitsize(ml->ml_type);
1011 
1012 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1013 #if BYTE_ORDER == _BIG_ENDIAN
1014 			ml->ml_offset += bitoff;
1015 #else
1016 			ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
1017 			    ml->ml_size;
1018 #endif
1019 		}
1020 
1021 		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1022 		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1023 
1024 		*mlastp = ml;
1025 		mlastp = &ml->ml_next;
1026 
1027 		/* Find the size of the largest member to work around a gcc
1028 		 * bug.  See GCC Bugzilla 35998.
1029 		 */
1030 		if (maxsz < ml->ml_size)
1031 			maxsz = ml->ml_size;
1032 
1033 	} while ((mem = die_sibling(dw, mem)) != NULL);
1034 
1035 	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
1036 	 * emit this.
1037 	 */
1038 	if (sz == (unsigned)-1) {
1039 		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1040 		     __func__);
1041 		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
1042 	}
1043 
1044 	/*
1045 	 * GCC will attempt to eliminate unused types, thus decreasing the
1046 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1047 	 * header, include said header in your source file, and neglect to
1048 	 * actually use (directly or indirectly) the foo_t in the source file,
1049 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1050 	 * the theory.
1051 	 *
1052 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1053 	 * and then neglect to emit the members.  Strangely, the loner struct
1054 	 * tag will always be followed by a proper nested declaration of
1055 	 * something else.  This is clearly a bug, but we're not going to have
1056 	 * time to get it fixed before this goo goes back, so we'll have to work
1057 	 * around it.  If we see a no-membered struct with a nested declaration
1058 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1059 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1060 	 * we'll decline to create an iidesc for it, thus ensuring that this
1061 	 * type won't make it into the output file.  To be safe, we'll also
1062 	 * change the name.
1063 	 */
1064 	if (tdp->t_members == NULL) {
1065 		const char *old = tdesc_name(tdp);
1066 		size_t newsz = 7 + strlen(old) + 1;
1067 		char *new = xmalloc(newsz);
1068 		(void) snprintf(new, newsz, "orphan %s", old);
1069 
1070 		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1071 
1072 		if (tdp->t_name != NULL)
1073 			free(tdp->t_name);
1074 		tdp->t_name = new;
1075 		return;
1076 	}
1077 
1078 out:
1079 	if (tdp->t_name != NULL) {
1080 		ii = xcalloc(sizeof (iidesc_t));
1081 		ii->ii_type = II_SOU;
1082 		ii->ii_name = xstrdup(tdp->t_name);
1083 		ii->ii_dtype = tdp;
1084 
1085 		iidesc_add(dw->dw_td->td_iihash, ii);
1086 	}
1087 }
1088 
1089 static void
1090 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1091 {
1092 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1093 }
1094 
1095 static void
1096 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1097 {
1098 	die_sou_create(dw, die, off, tdp, UNION, "union");
1099 }
1100 
1101 /*ARGSUSED1*/
1102 static int
1103 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1104 {
1105 	dwarf_t *dw = private;
1106 	mlist_t *ml;
1107 	tdesc_t *mt;
1108 
1109 	if (tdp->t_flags & TDESC_F_RESOLVED)
1110 		return (1);
1111 
1112 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1113 
1114 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1115 		if (ml->ml_size == 0) {
1116 			mt = tdesc_basetype(ml->ml_type);
1117 
1118 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1119 				continue;
1120 
1121 			/*
1122 			 * For empty members, or GCC/C99 flexible array
1123 			 * members, a size of 0 is correct.
1124 			 */
1125 			if (mt->t_members == NULL)
1126 				continue;
1127 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1128 				continue;
1129 
1130 			dw->dw_nunres++;
1131 			return (1);
1132 		}
1133 
1134 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1135 			dw->dw_nunres++;
1136 			return (1);
1137 		}
1138 
1139 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1140 		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1141 			/*
1142 			 * This member is a bitfield, and needs to reference
1143 			 * an intrinsic type with the same width.  If the
1144 			 * currently-referenced type isn't of the same width,
1145 			 * we'll copy it, adjusting the width of the copy to
1146 			 * the size we'd like.
1147 			 */
1148 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1149 			    tdp->t_id, ml->ml_size);
1150 
1151 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1152 		}
1153 	}
1154 
1155 	tdp->t_flags |= TDESC_F_RESOLVED;
1156 
1157 	return (1);
1158 }
1159 
1160 /*ARGSUSED1*/
1161 static int
1162 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1163 {
1164 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1165 	mlist_t *ml;
1166 
1167 	if (tdp->t_flags & TDESC_F_RESOLVED)
1168 		return (1);
1169 
1170 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1171 		if (ml->ml_size == 0) {
1172 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1173 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1174 			    tdp->t_id,
1175 			    ml->ml_name, tdesc_name(ml->ml_type),
1176 			    ml->ml_type->t_id, ml->ml_type->t_id);
1177 		}
1178 	}
1179 
1180 	return (1);
1181 }
1182 
1183 static void
1184 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1185 {
1186 	Dwarf_Attribute attr;
1187 	Dwarf_Half tag;
1188 	Dwarf_Die arg;
1189 	fndef_t *fn;
1190 	int i;
1191 
1192 	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1193 
1194 	/*
1195 	 * We'll begin by processing any type definition nodes that may be
1196 	 * lurking underneath this one.
1197 	 */
1198 	for (arg = die_child(dw, die); arg != NULL;
1199 	    arg = die_sibling(dw, arg)) {
1200 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1201 		    tag != DW_TAG_unspecified_parameters) {
1202 			/* Nested type declaration */
1203 			die_create_one(dw, arg);
1204 		}
1205 	}
1206 
1207 	if (die_isdecl(dw, die)) {
1208 		/*
1209 		 * This is a prototype.  We don't add prototypes to the
1210 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1211 		 * it has already been added to the tree.  Nobody will reference
1212 		 * it, though, and it will be leaked.
1213 		 */
1214 		return;
1215 	}
1216 
1217 	fn = xcalloc(sizeof (fndef_t));
1218 
1219 	tdp->t_type = FUNCTION;
1220 
1221 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1222 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1223 	} else {
1224 		fn->fn_ret = tdesc_intr_void(dw);
1225 	}
1226 
1227 	/*
1228 	 * Count the arguments to the function, then read them in.
1229 	 */
1230 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1231 	    arg = die_sibling(dw, arg)) {
1232 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1233 			fn->fn_nargs++;
1234 		else if (tag == DW_TAG_unspecified_parameters &&
1235 		    fn->fn_nargs > 0)
1236 			fn->fn_vargs = 1;
1237 	}
1238 
1239 	if (fn->fn_nargs != 0) {
1240 		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1241 		    (fn->fn_nargs > 1 ? "s" : ""));
1242 
1243 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1244 		for (i = 0, arg = die_child(dw, die);
1245 		    arg != NULL && i < (int) fn->fn_nargs;
1246 		    arg = die_sibling(dw, arg)) {
1247 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1248 				continue;
1249 
1250 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1251 			    DW_AT_type);
1252 		}
1253 	}
1254 
1255 	tdp->t_fndef = fn;
1256 	tdp->t_flags |= TDESC_F_RESOLVED;
1257 }
1258 
1259 /*
1260  * GCC and DevPro use different names for the base types.  While the terms are
1261  * the same, they are arranged in a different order.  Some terms, such as int,
1262  * are implied in one, and explicitly named in the other.  Given a base type
1263  * as input, this routine will return a common name, along with an intr_t
1264  * that reflects said name.
1265  */
1266 static intr_t *
1267 die_base_name_parse(const char *name, char **newp)
1268 {
1269 	char buf[100];
1270 	char const *base;
1271 	char *c;
1272 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1273 	int sign = 1;
1274 	char fmt = '\0';
1275 	intr_t *intr;
1276 
1277 	if (strlen(name) > sizeof (buf) - 1)
1278 		terminate("base type name \"%s\" is too long\n", name);
1279 
1280 	strncpy(buf, name, sizeof (buf));
1281 
1282 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1283 		if (strcmp(c, "signed") == 0)
1284 			sign = 1;
1285 		else if (strcmp(c, "unsigned") == 0)
1286 			sign = 0;
1287 		else if (strcmp(c, "long") == 0)
1288 			nlong++;
1289 		else if (strcmp(c, "char") == 0) {
1290 			nchar++;
1291 			fmt = 'c';
1292 		} else if (strcmp(c, "short") == 0)
1293 			nshort++;
1294 		else if (strcmp(c, "int") == 0)
1295 			nint++;
1296 		else {
1297 			/*
1298 			 * If we don't recognize any of the tokens, we'll tell
1299 			 * the caller to fall back to the dwarf-provided
1300 			 * encoding information.
1301 			 */
1302 			return (NULL);
1303 		}
1304 	}
1305 
1306 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1307 		return (NULL);
1308 
1309 	if (nchar > 0) {
1310 		if (nlong > 0 || nshort > 0 || nint > 0)
1311 			return (NULL);
1312 
1313 		base = "char";
1314 
1315 	} else if (nshort > 0) {
1316 		if (nlong > 0)
1317 			return (NULL);
1318 
1319 		base = "short";
1320 
1321 	} else if (nlong > 0) {
1322 		base = "long";
1323 
1324 	} else {
1325 		base = "int";
1326 	}
1327 
1328 	intr = xcalloc(sizeof (intr_t));
1329 	intr->intr_type = INTR_INT;
1330 	intr->intr_signed = sign;
1331 	intr->intr_iformat = fmt;
1332 
1333 	snprintf(buf, sizeof (buf), "%s%s%s",
1334 	    (sign ? "" : "unsigned "),
1335 	    (nlong > 1 ? "long " : ""),
1336 	    base);
1337 
1338 	*newp = xstrdup(buf);
1339 	return (intr);
1340 }
1341 
1342 typedef struct fp_size_map {
1343 	size_t fsm_typesz[2];	/* size of {32,64} type */
1344 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1345 } fp_size_map_t;
1346 
1347 static const fp_size_map_t fp_encodings[] = {
1348 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1349 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1350 #ifdef __sparc
1351 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1352 #else
1353 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1354 #endif
1355 	{ { 0, 0 }, { 0, 0, 0 } }
1356 };
1357 
1358 static uint_t
1359 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1360 {
1361 	const fp_size_map_t *map = fp_encodings;
1362 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1363 	uint_t mult = 1, col = 0;
1364 
1365 	if (enc == DW_ATE_complex_float) {
1366 		mult = 2;
1367 		col = 1;
1368 	} else if (enc == DW_ATE_imaginary_float
1369 #if defined(sun)
1370 	    || enc == DW_ATE_SUN_imaginary_float
1371 #endif
1372 	    )
1373 		col = 2;
1374 
1375 	while (map->fsm_typesz[szidx] != 0) {
1376 		if (map->fsm_typesz[szidx] * mult == sz)
1377 			return (map->fsm_enc[col]);
1378 		map++;
1379 	}
1380 
1381 	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1382 	/*NOTREACHED*/
1383 	return (0);
1384 }
1385 
1386 static intr_t *
1387 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1388 {
1389 	intr_t *intr = xcalloc(sizeof (intr_t));
1390 	Dwarf_Signed enc;
1391 
1392 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1393 
1394 	switch (enc) {
1395 	case DW_ATE_unsigned:
1396 	case DW_ATE_address:
1397 		intr->intr_type = INTR_INT;
1398 		break;
1399 	case DW_ATE_unsigned_char:
1400 		intr->intr_type = INTR_INT;
1401 		intr->intr_iformat = 'c';
1402 		break;
1403 	case DW_ATE_signed:
1404 		intr->intr_type = INTR_INT;
1405 		intr->intr_signed = 1;
1406 		break;
1407 	case DW_ATE_signed_char:
1408 		intr->intr_type = INTR_INT;
1409 		intr->intr_signed = 1;
1410 		intr->intr_iformat = 'c';
1411 		break;
1412 	case DW_ATE_boolean:
1413 		intr->intr_type = INTR_INT;
1414 		intr->intr_signed = 1;
1415 		intr->intr_iformat = 'b';
1416 		break;
1417 	case DW_ATE_float:
1418 	case DW_ATE_complex_float:
1419 	case DW_ATE_imaginary_float:
1420 #if defined(sun)
1421 	case DW_ATE_SUN_imaginary_float:
1422 	case DW_ATE_SUN_interval_float:
1423 #endif
1424 		intr->intr_type = INTR_REAL;
1425 		intr->intr_signed = 1;
1426 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1427 		break;
1428 	default:
1429 		terminate("die %llu: unknown base type encoding 0x%llx\n",
1430 		    off, enc);
1431 	}
1432 
1433 	return (intr);
1434 }
1435 
1436 static void
1437 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1438 {
1439 	Dwarf_Unsigned sz;
1440 	intr_t *intr;
1441 	char *new;
1442 
1443 	debug(3, "die %llu: creating base type\n", off);
1444 
1445 	/*
1446 	 * The compilers have their own clever (internally inconsistent) ideas
1447 	 * as to what base types should look like.  Some times gcc will, for
1448 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1449 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1450 	 * down the road, particularly with merging.  We do, however, use the
1451 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1452 	 * the data model.
1453 	 */
1454 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1455 
1456 	/* Check for bogus gcc DW_AT_byte_size attribute */
1457 	if (sz == (unsigned)-1) {
1458 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1459 		    __func__);
1460 		sz = 0;
1461 	}
1462 
1463 	if (tdp->t_name == NULL)
1464 		terminate("die %llu: base type without name\n", off);
1465 
1466 	/* XXX make a name parser for float too */
1467 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1468 		/* Found it.  We'll use the parsed version */
1469 		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1470 		    tdesc_name(tdp), new);
1471 
1472 		free(tdp->t_name);
1473 		tdp->t_name = new;
1474 	} else {
1475 		/*
1476 		 * We didn't recognize the type, so we'll create an intr_t
1477 		 * based on the DWARF data.
1478 		 */
1479 		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1480 		    tdesc_name(tdp));
1481 
1482 		intr = die_base_from_dwarf(dw, base, off, sz);
1483 	}
1484 
1485 	intr->intr_nbits = sz * 8;
1486 
1487 	tdp->t_type = INTRINSIC;
1488 	tdp->t_intr = intr;
1489 	tdp->t_size = sz;
1490 
1491 	tdp->t_flags |= TDESC_F_RESOLVED;
1492 }
1493 
1494 static void
1495 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1496     int type, const char *typename)
1497 {
1498 	Dwarf_Attribute attr;
1499 
1500 	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1501 
1502 	tdp->t_type = type;
1503 
1504 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1505 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1506 	} else {
1507 		tdp->t_tdesc = tdesc_intr_void(dw);
1508 	}
1509 
1510 	if (type == POINTER)
1511 		tdp->t_size = dw->dw_ptrsz;
1512 
1513 	tdp->t_flags |= TDESC_F_RESOLVED;
1514 
1515 	if (type == TYPEDEF) {
1516 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1517 		ii->ii_type = II_TYPE;
1518 		ii->ii_name = xstrdup(tdp->t_name);
1519 		ii->ii_dtype = tdp;
1520 
1521 		iidesc_add(dw->dw_td->td_iihash, ii);
1522 	}
1523 }
1524 
1525 static void
1526 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1527 {
1528 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1529 }
1530 
1531 static void
1532 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1533 {
1534 	die_through_create(dw, die, off, tdp, CONST, "const");
1535 }
1536 
1537 static void
1538 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1539 {
1540 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1541 }
1542 
1543 static void
1544 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1545 {
1546 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1547 }
1548 
1549 static void
1550 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1551 {
1552 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1553 }
1554 
1555 /*ARGSUSED3*/
1556 static void
1557 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1558 {
1559 	Dwarf_Die arg;
1560 	Dwarf_Half tag;
1561 	iidesc_t *ii;
1562 	char *name;
1563 
1564 	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1565 
1566 	/*
1567 	 * We'll begin by processing any type definition nodes that may be
1568 	 * lurking underneath this one.
1569 	 */
1570 	for (arg = die_child(dw, die); arg != NULL;
1571 	    arg = die_sibling(dw, arg)) {
1572 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1573 		    tag != DW_TAG_variable) {
1574 			/* Nested type declaration */
1575 			die_create_one(dw, arg);
1576 		}
1577 	}
1578 
1579 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1580 		/*
1581 		 * We process neither prototypes nor subprograms without
1582 		 * names.
1583 		 */
1584 		return;
1585 	}
1586 
1587 	ii = xcalloc(sizeof (iidesc_t));
1588 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1589 	ii->ii_name = name;
1590 	if (ii->ii_type == II_SFUN)
1591 		ii->ii_owner = xstrdup(dw->dw_cuname);
1592 
1593 	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1594 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1595 
1596 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1597 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1598 	else
1599 		ii->ii_dtype = tdesc_intr_void(dw);
1600 
1601 	for (arg = die_child(dw, die); arg != NULL;
1602 	    arg = die_sibling(dw, arg)) {
1603 		char *name1;
1604 
1605 		debug(3, "die %llu: looking at sub member at %llu\n",
1606 		    off, die_off(dw, die));
1607 
1608 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1609 			continue;
1610 
1611 		if ((name1 = die_name(dw, arg)) == NULL) {
1612 			terminate("die %llu: func arg %d has no name\n",
1613 			    off, ii->ii_nargs + 1);
1614 		}
1615 
1616 		if (strcmp(name1, "...") == 0) {
1617 			free(name1);
1618 			ii->ii_vargs = 1;
1619 			continue;
1620 		}
1621 
1622 		ii->ii_nargs++;
1623 	}
1624 
1625 	if (ii->ii_nargs > 0) {
1626 		int i;
1627 
1628 		debug(3, "die %llu: function has %d argument%s\n", off,
1629 		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1630 
1631 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1632 
1633 		for (arg = die_child(dw, die), i = 0;
1634 		    arg != NULL && i < ii->ii_nargs;
1635 		    arg = die_sibling(dw, arg)) {
1636 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1637 				continue;
1638 
1639 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1640 			    DW_AT_type);
1641 		}
1642 	}
1643 
1644 	iidesc_add(dw->dw_td->td_iihash, ii);
1645 }
1646 
1647 /*ARGSUSED3*/
1648 static void
1649 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1650 {
1651 	iidesc_t *ii;
1652 	char *name;
1653 
1654 	debug(3, "die %llu: creating object definition\n", off);
1655 
1656 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1657 		return; /* skip prototypes and nameless objects */
1658 
1659 	ii = xcalloc(sizeof (iidesc_t));
1660 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1661 	ii->ii_name = name;
1662 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1663 	if (ii->ii_type == II_SVAR)
1664 		ii->ii_owner = xstrdup(dw->dw_cuname);
1665 
1666 	iidesc_add(dw->dw_td->td_iihash, ii);
1667 }
1668 
1669 /*ARGSUSED2*/
1670 static int
1671 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1672 {
1673 	if (fwd->t_flags & TDESC_F_RESOLVED)
1674 		return (1);
1675 
1676 	if (fwd->t_tdesc != NULL) {
1677 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1678 		    tdesc_name(fwd));
1679 		*fwdp = fwd->t_tdesc;
1680 	}
1681 
1682 	fwd->t_flags |= TDESC_F_RESOLVED;
1683 
1684 	return (1);
1685 }
1686 
1687 /*ARGSUSED*/
1688 static void
1689 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1690 {
1691 	Dwarf_Die child = die_child(dw, die);
1692 
1693 	if (child != NULL)
1694 		die_create(dw, child);
1695 }
1696 
1697 /*
1698  * Used to map the die to a routine which can parse it, using the tag to do the
1699  * mapping.  While the processing of most tags entails the creation of a tdesc,
1700  * there are a few which don't - primarily those which result in the creation of
1701  * iidescs which refer to existing tdescs.
1702  */
1703 
1704 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1705 
1706 typedef struct die_creator {
1707 	Dwarf_Half dc_tag;
1708 	uint16_t dc_flags;
1709 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1710 } die_creator_t;
1711 
1712 static const die_creator_t die_creators[] = {
1713 	{ DW_TAG_array_type,		0,		die_array_create },
1714 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1715 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1716 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1717 	{ DW_TAG_structure_type,	0,		die_struct_create },
1718 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1719 	{ DW_TAG_typedef,		0,		die_typedef_create },
1720 	{ DW_TAG_union_type,		0,		die_union_create },
1721 	{ DW_TAG_base_type,		0,		die_base_create },
1722 	{ DW_TAG_const_type,		0,		die_const_create },
1723 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1724 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1725 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1726 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1727 	{ 0, 0, NULL }
1728 };
1729 
1730 static const die_creator_t *
1731 die_tag2ctor(Dwarf_Half tag)
1732 {
1733 	const die_creator_t *dc;
1734 
1735 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1736 		if (dc->dc_tag == tag)
1737 			return (dc);
1738 	}
1739 
1740 	return (NULL);
1741 }
1742 
1743 static void
1744 die_create_one(dwarf_t *dw, Dwarf_Die die)
1745 {
1746 	Dwarf_Off off = die_off(dw, die);
1747 	const die_creator_t *dc;
1748 	Dwarf_Half tag;
1749 	tdesc_t *tdp;
1750 
1751 	debug(3, "die %llu <%llx>: create_one\n", off, off);
1752 
1753 	if (off > dw->dw_maxoff) {
1754 		terminate("illegal die offset %llu (max %llu)\n", off,
1755 		    dw->dw_maxoff);
1756 	}
1757 
1758 	tag = die_tag(dw, die);
1759 
1760 	if ((dc = die_tag2ctor(tag)) == NULL) {
1761 		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1762 		return;
1763 	}
1764 
1765 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1766 	    !(dc->dc_flags & DW_F_NOTDP)) {
1767 		tdp = xcalloc(sizeof (tdesc_t));
1768 		tdp->t_id = off;
1769 		tdesc_add(dw, tdp);
1770 	}
1771 
1772 	if (tdp != NULL)
1773 		tdp->t_name = die_name(dw, die);
1774 
1775 	dc->dc_create(dw, die, off, tdp);
1776 }
1777 
1778 static void
1779 die_create(dwarf_t *dw, Dwarf_Die die)
1780 {
1781 	do {
1782 		die_create_one(dw, die);
1783 	} while ((die = die_sibling(dw, die)) != NULL);
1784 }
1785 
1786 static tdtrav_cb_f die_resolvers[] = {
1787 	NULL,
1788 	NULL,			/* intrinsic */
1789 	NULL,			/* pointer */
1790 	die_array_resolve,	/* array */
1791 	NULL,			/* function */
1792 	die_sou_resolve,	/* struct */
1793 	die_sou_resolve,	/* union */
1794 	die_enum_resolve,	/* enum */
1795 	die_fwd_resolve,	/* forward */
1796 	NULL,			/* typedef */
1797 	NULL,			/* typedef unres */
1798 	NULL,			/* volatile */
1799 	NULL,			/* const */
1800 	NULL,			/* restrict */
1801 };
1802 
1803 static tdtrav_cb_f die_fail_reporters[] = {
1804 	NULL,
1805 	NULL,			/* intrinsic */
1806 	NULL,			/* pointer */
1807 	die_array_failed,	/* array */
1808 	NULL,			/* function */
1809 	die_sou_failed,		/* struct */
1810 	die_sou_failed,		/* union */
1811 	NULL,			/* enum */
1812 	NULL,			/* forward */
1813 	NULL,			/* typedef */
1814 	NULL,			/* typedef unres */
1815 	NULL,			/* volatile */
1816 	NULL,			/* const */
1817 	NULL,			/* restrict */
1818 };
1819 
1820 static void
1821 die_resolve(dwarf_t *dw)
1822 {
1823 	int last = -1;
1824 	int pass = 0;
1825 
1826 	do {
1827 		pass++;
1828 		dw->dw_nunres = 0;
1829 
1830 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1831 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1832 
1833 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1834 
1835 		if ((int) dw->dw_nunres == last) {
1836 			fprintf(stderr, "%s: failed to resolve the following "
1837 			    "types:\n", progname);
1838 
1839 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1840 			    &dw->dw_td->td_curvgen, NULL, NULL,
1841 			    die_fail_reporters, dw);
1842 
1843 			terminate("failed to resolve types\n");
1844 		}
1845 
1846 		last = dw->dw_nunres;
1847 
1848 	} while (dw->dw_nunres != 0);
1849 }
1850 
1851 /*
1852  * Any object containing a function or object symbol at any scope should also
1853  * contain DWARF data.
1854  */
1855 static boolean_t
1856 should_have_dwarf(Elf *elf)
1857 {
1858 	Elf_Scn *scn = NULL;
1859 	Elf_Data *data = NULL;
1860 	GElf_Shdr shdr;
1861 	GElf_Sym sym;
1862 	uint32_t symdx = 0;
1863 	size_t nsyms = 0;
1864 	boolean_t found = B_FALSE;
1865 
1866 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1867 		gelf_getshdr(scn, &shdr);
1868 
1869 		if (shdr.sh_type == SHT_SYMTAB) {
1870 			found = B_TRUE;
1871 			break;
1872 		}
1873 	}
1874 
1875 	if (!found)
1876 		terminate("cannot convert stripped objects\n");
1877 
1878 	data = elf_getdata(scn, NULL);
1879 	nsyms = shdr.sh_size / shdr.sh_entsize;
1880 
1881 	for (symdx = 0; symdx < nsyms; symdx++) {
1882 		gelf_getsym(data, symdx, &sym);
1883 
1884 		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1885 		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1886 		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1887 			char *name;
1888 
1889 			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1890 
1891 			/* Studio emits these local symbols regardless */
1892 			if ((strcmp(name, "Bbss.bss") != 0) &&
1893 			    (strcmp(name, "Ttbss.bss") != 0) &&
1894 			    (strcmp(name, "Ddata.data") != 0) &&
1895 			    (strcmp(name, "Ttdata.data") != 0) &&
1896 			    (strcmp(name, "Drodata.rodata") != 0))
1897 				return (B_TRUE);
1898 		}
1899 	}
1900 
1901 	return (B_FALSE);
1902 }
1903 
1904 /*ARGSUSED*/
1905 int
1906 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1907 {
1908 	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1909 	Dwarf_Half vers, addrsz, offsz;
1910 	Dwarf_Die cu = 0;
1911 	Dwarf_Die child = 0;
1912 	dwarf_t dw;
1913 	char *prod = NULL;
1914 	int rc;
1915 
1916 	bzero(&dw, sizeof (dwarf_t));
1917 	dw.dw_td = td;
1918 	dw.dw_ptrsz = elf_ptrsz(elf);
1919 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1920 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1921 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1922 	    tdesc_namecmp);
1923 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1924 	    tdesc_namecmp);
1925 
1926 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1927 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1928 		if (should_have_dwarf(elf)) {
1929 			errno = ENOENT;
1930 			return (-1);
1931 		} else {
1932 			return (0);
1933 		}
1934 	} else if (rc != DW_DLV_OK) {
1935 		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1936 			/*
1937 			 * There's no type data in the DWARF section, but
1938 			 * libdwarf is too clever to handle that properly.
1939 			 */
1940 			return (0);
1941 		}
1942 
1943 		terminate("failed to initialize DWARF: %s\n",
1944 		    dwarf_errmsg(dw.dw_err));
1945 	}
1946 
1947 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
1948 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1949 		terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
1950 
1951 	if ((cu = die_sibling(&dw, NULL)) == NULL ||
1952 	    (((child = die_child(&dw, cu)) == NULL) &&
1953 	    should_have_dwarf(elf))) {
1954 		terminate("file does not contain dwarf type data "
1955 		    "(try compiling with -g)\n");
1956 	} else if (child == NULL) {
1957 		return (0);
1958 	}
1959 
1960 	dw.dw_maxoff = nxthdr - 1;
1961 
1962 	if (dw.dw_maxoff > TID_FILEMAX)
1963 		terminate("file contains too many types\n");
1964 
1965 	debug(1, "DWARF version: %d\n", vers);
1966 	if (vers != DWARF_VERSION) {
1967 		terminate("file contains incompatible version %d DWARF code "
1968 		    "(version 2 required)\n", vers);
1969 	}
1970 
1971 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1972 		debug(1, "DWARF emitter: %s\n", prod);
1973 		free(prod);
1974 	}
1975 
1976 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1977 		char *base = xstrdup(basename(dw.dw_cuname));
1978 		free(dw.dw_cuname);
1979 		dw.dw_cuname = base;
1980 
1981 		debug(1, "CU name: %s\n", dw.dw_cuname);
1982 	}
1983 
1984 	if ((child = die_child(&dw, cu)) != NULL)
1985 		die_create(&dw, child);
1986 
1987 	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
1988 	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
1989 		terminate("multiple compilation units not supported\n");
1990 
1991 	(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
1992 
1993 	die_resolve(&dw);
1994 
1995 	cvt_fixups(td, dw.dw_ptrsz);
1996 
1997 	/* leak the dwarf_t */
1998 
1999 	return (0);
2000 }
2001