xref: /freebsd/cddl/contrib/opensolaris/tools/ctf/cvt/dwarf.c (revision d4ae33f0721c1b170fe37d97e395228ffcfb3f80)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DWARF to tdata conversion
28  *
29  * For the most part, conversion is straightforward, proceeding in two passes.
30  * On the first pass, we iterate through every die, creating new type nodes as
31  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32  * allowing type reference pointers to be filled in.  If the tdesc_t
33  * corresponding to a given die can be completely filled out (sizes and offsets
34  * calculated, and so forth) without using any referenced types, the tdesc_t is
35  * marked as resolved.  Consider an array type.  If the type corresponding to
36  * the array contents has not yet been processed, we will create a blank tdesc
37  * for the contents type (only the type ID will be filled in, relying upon the
38  * later portion of the first pass to encounter and complete the referenced
39  * type).  We will then attempt to determine the size of the array.  If the
40  * array has a byte size attribute, we will have completely characterized the
41  * array type, and will be able to mark it as resolved.  The lack of a byte
42  * size attribute, on the other hand, will prevent us from fully resolving the
43  * type, as the size will only be calculable with reference to the contents
44  * type, which has not, as yet, been encountered.  The array type will thus be
45  * left without the resolved flag, and the first pass will continue.
46  *
47  * When we begin the second pass, we will have created tdesc_t nodes for every
48  * type in the section.  We will traverse the tree, from the iidescs down,
49  * processing each unresolved node.  As the referenced nodes will have been
50  * populated, the array type used in our example above will be able to use the
51  * size of the referenced types (if available) to determine its own type.  The
52  * traversal will be repeated until all types have been resolved or we have
53  * failed to make progress.  When all tdescs have been resolved, the conversion
54  * is complete.
55  *
56  * There are, as always, a few special cases that are handled during the first
57  * and second passes:
58  *
59  *  1. Empty enums - GCC will occasionally emit an enum without any members.
60  *     Later on in the file, it will emit the same enum type, though this time
61  *     with the full complement of members.  All references to the memberless
62  *     enum need to be redirected to the full definition.  During the first
63  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64  *     corresponding tdesc_t.  If, during the second pass, we encounter a
65  *     memberless enum, we use the hash to locate the full definition.  All
66  *     tdescs referencing the empty enum are then redirected.
67  *
68  *  2. Forward declarations - If the compiler sees a forward declaration for
69  *     a structure, followed by the definition of that structure, it will emit
70  *     DWARF data for both the forward declaration and the definition.  We need
71  *     to resolve the forward declarations when possible, by redirecting
72  *     forward-referencing tdescs to the actual struct/union definitions.  This
73  *     redirection is done completely within the first pass.  We begin by
74  *     recording all forward declarations in dw_fwdhash.  When we define a
75  *     structure, we check to see if there have been any corresponding forward
76  *     declarations.  If so, we redirect the tdescs which referenced the forward
77  *     declarations to the structure or union definition.
78  *
79  * XXX see if a post traverser will allow the elimination of repeated pass 2
80  * traversals.
81  */
82 
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <strings.h>
87 #include <errno.h>
88 #include <libelf.h>
89 #include <libdwarf.h>
90 #include <libgen.h>
91 #include <dwarf.h>
92 
93 #include "ctf_headers.h"
94 #include "ctftools.h"
95 #include "memory.h"
96 #include "list.h"
97 #include "traverse.h"
98 
99 /* The version of DWARF which we support. */
100 #define	DWARF_VERSION	2
101 
102 /*
103  * We need to define a couple of our own intrinsics, to smooth out some of the
104  * differences between the GCC and DevPro DWARF emitters.  See the referenced
105  * routines and the special cases in the file comment for more details.
106  *
107  * Type IDs are 32 bits wide.  We're going to use the top of that field to
108  * indicate types that we've created ourselves.
109  */
110 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
111 #define	TID_VOID		0x40000001	/* see die_void() */
112 #define	TID_LONG		0x40000002	/* see die_array() */
113 
114 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
115 
116 /*
117  * To reduce the staggering amount of error-handling code that would otherwise
118  * be required, the attribute-retrieval routines handle most of their own
119  * errors.  If the following flag is supplied as the value of the `req'
120  * argument, they will also handle the absence of a requested attribute by
121  * terminating the program.
122  */
123 #define	DW_ATTR_REQ	1
124 
125 #define	TDESC_HASH_BUCKETS	511
126 
127 typedef struct dwarf {
128 	Dwarf_Debug dw_dw;		/* for libdwarf */
129 	Dwarf_Error dw_err;		/* for libdwarf */
130 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
131 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
132 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
133 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
134 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
135 	tdesc_t *dw_void;		/* manufactured void type */
136 	tdesc_t *dw_long;		/* manufactured long type for arrays */
137 	size_t dw_ptrsz;		/* size of a pointer in this file */
138 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
139 	uint_t dw_nunres;		/* count of unresolved types */
140 	char *dw_cuname;		/* name of compilation unit */
141 } dwarf_t;
142 
143 static void die_create_one(dwarf_t *, Dwarf_Die);
144 static void die_create(dwarf_t *, Dwarf_Die);
145 
146 static tid_t
147 mfgtid_next(dwarf_t *dw)
148 {
149 	return (++dw->dw_mfgtid_last);
150 }
151 
152 static void
153 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
154 {
155 	hash_add(dw->dw_tidhash, tdp);
156 }
157 
158 static tdesc_t *
159 tdesc_lookup(dwarf_t *dw, int tid)
160 {
161 	tdesc_t tmpl;
162 	void *tdp;
163 
164 	tmpl.t_id = tid;
165 
166 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
167 		return (tdp);
168 	else
169 		return (NULL);
170 }
171 
172 /*
173  * Resolve a tdesc down to a node which should have a size.  Returns the size,
174  * zero if the size hasn't yet been determined.
175  */
176 static size_t
177 tdesc_size(tdesc_t *tdp)
178 {
179 	for (;;) {
180 		switch (tdp->t_type) {
181 		case INTRINSIC:
182 		case POINTER:
183 		case ARRAY:
184 		case FUNCTION:
185 		case STRUCT:
186 		case UNION:
187 		case ENUM:
188 			return (tdp->t_size);
189 
190 		case FORWARD:
191 			return (0);
192 
193 		case TYPEDEF:
194 		case VOLATILE:
195 		case CONST:
196 		case RESTRICT:
197 			tdp = tdp->t_tdesc;
198 			continue;
199 
200 		case 0: /* not yet defined */
201 			return (0);
202 
203 		default:
204 			terminate("tdp %u: tdesc_size on unknown type %d\n",
205 			    tdp->t_id, tdp->t_type);
206 		}
207 	}
208 }
209 
210 static size_t
211 tdesc_bitsize(tdesc_t *tdp)
212 {
213 	for (;;) {
214 		switch (tdp->t_type) {
215 		case INTRINSIC:
216 			return (tdp->t_intr->intr_nbits);
217 
218 		case ARRAY:
219 		case FUNCTION:
220 		case STRUCT:
221 		case UNION:
222 		case ENUM:
223 		case POINTER:
224 			return (tdp->t_size * NBBY);
225 
226 		case FORWARD:
227 			return (0);
228 
229 		case TYPEDEF:
230 		case VOLATILE:
231 		case RESTRICT:
232 		case CONST:
233 			tdp = tdp->t_tdesc;
234 			continue;
235 
236 		case 0: /* not yet defined */
237 			return (0);
238 
239 		default:
240 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
241 			    tdp->t_id, tdp->t_type);
242 		}
243 	}
244 }
245 
246 static tdesc_t *
247 tdesc_basetype(tdesc_t *tdp)
248 {
249 	for (;;) {
250 		switch (tdp->t_type) {
251 		case TYPEDEF:
252 		case VOLATILE:
253 		case RESTRICT:
254 		case CONST:
255 			tdp = tdp->t_tdesc;
256 			break;
257 		case 0: /* not yet defined */
258 			return (NULL);
259 		default:
260 			return (tdp);
261 		}
262 	}
263 }
264 
265 static Dwarf_Off
266 die_off(dwarf_t *dw, Dwarf_Die die)
267 {
268 	Dwarf_Off off;
269 
270 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
271 		return (off);
272 
273 	terminate("failed to get offset for die: %s\n",
274 	    dwarf_errmsg(&dw->dw_err));
275 	/*NOTREACHED*/
276 	return (0);
277 }
278 
279 static Dwarf_Die
280 die_sibling(dwarf_t *dw, Dwarf_Die die)
281 {
282 	Dwarf_Die sib;
283 	int rc;
284 
285 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
286 	    DW_DLV_OK)
287 		return (sib);
288 	else if (rc == DW_DLV_NO_ENTRY)
289 		return (NULL);
290 
291 	terminate("die %llu: failed to find type sibling: %s\n",
292 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
293 	/*NOTREACHED*/
294 	return (NULL);
295 }
296 
297 static Dwarf_Die
298 die_child(dwarf_t *dw, Dwarf_Die die)
299 {
300 	Dwarf_Die child;
301 	int rc;
302 
303 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
304 		return (child);
305 	else if (rc == DW_DLV_NO_ENTRY)
306 		return (NULL);
307 
308 	terminate("die %llu: failed to find type child: %s\n",
309 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
310 	/*NOTREACHED*/
311 	return (NULL);
312 }
313 
314 static Dwarf_Half
315 die_tag(dwarf_t *dw, Dwarf_Die die)
316 {
317 	Dwarf_Half tag;
318 
319 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
320 		return (tag);
321 
322 	terminate("die %llu: failed to get tag for type: %s\n",
323 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
324 	/*NOTREACHED*/
325 	return (0);
326 }
327 
328 static Dwarf_Attribute
329 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
330 {
331 	Dwarf_Attribute attr;
332 	int rc;
333 
334 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
335 		return (attr);
336 	} else if (rc == DW_DLV_NO_ENTRY) {
337 		if (req) {
338 			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
339 			    name);
340 		} else {
341 			return (NULL);
342 		}
343 	}
344 
345 	terminate("die %llu: failed to get attribute for type: %s\n",
346 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
347 	/*NOTREACHED*/
348 	return (NULL);
349 }
350 
351 static int
352 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
353     int req)
354 {
355 	*valp = 0;
356 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
357 		if (req)
358 			terminate("die %llu: failed to get signed: %s\n",
359 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
360 		return (0);
361 	}
362 
363 	return (1);
364 }
365 
366 static int
367 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
368     int req)
369 {
370 	*valp = 0;
371 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
372 		if (req)
373 			terminate("die %llu: failed to get unsigned: %s\n",
374 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
375 		return (0);
376 	}
377 
378 	return (1);
379 }
380 
381 static int
382 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
383 {
384 	*valp = 0;
385 
386 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
387 		if (req)
388 			terminate("die %llu: failed to get flag: %s\n",
389 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
390 		return (0);
391 	}
392 
393 	return (1);
394 }
395 
396 static int
397 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
398 {
399 	const char *str = NULL;
400 
401 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DWARF_E_NONE ||
402 	    str == NULL) {
403 		if (req)
404 			terminate("die %llu: failed to get string: %s\n",
405 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
406 		else
407 			*strp = NULL;
408 		return (0);
409 	} else
410 		*strp = xstrdup(str);
411 
412 	return (1);
413 }
414 
415 static Dwarf_Off
416 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
417 {
418 	Dwarf_Off off;
419 
420 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DWARF_E_NONE) {
421 		terminate("die %llu: failed to get ref: %s\n",
422 		    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
423 	}
424 
425 	return (off);
426 }
427 
428 static char *
429 die_name(dwarf_t *dw, Dwarf_Die die)
430 {
431 	char *str = NULL;
432 
433 	(void) die_string(dw, die, DW_AT_name, &str, 0);
434 
435 	return (str);
436 }
437 
438 static int
439 die_isdecl(dwarf_t *dw, Dwarf_Die die)
440 {
441 	Dwarf_Bool val;
442 
443 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
444 }
445 
446 static int
447 die_isglobal(dwarf_t *dw, Dwarf_Die die)
448 {
449 	Dwarf_Signed vis;
450 	Dwarf_Bool ext;
451 
452 	/*
453 	 * Some compilers (gcc) use DW_AT_external to indicate function
454 	 * visibility.  Others (Sun) use DW_AT_visibility.
455 	 */
456 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
457 		return (vis == DW_VIS_exported);
458 	else
459 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
460 }
461 
462 static tdesc_t *
463 die_add(dwarf_t *dw, Dwarf_Off off)
464 {
465 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
466 
467 	tdp->t_id = off;
468 
469 	tdesc_add(dw, tdp);
470 
471 	return (tdp);
472 }
473 
474 static tdesc_t *
475 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
476 {
477 	Dwarf_Off ref = die_attr_ref(dw, die, name);
478 	tdesc_t *tdp;
479 
480 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
481 		return (tdp);
482 
483 	return (die_add(dw, ref));
484 }
485 
486 static int
487 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
488     Dwarf_Unsigned *valp, int req __unused)
489 {
490 	Dwarf_Locdesc *loc = NULL;
491 	Dwarf_Signed locnum = 0;
492 
493 	if (dwarf_locdesc(die, name, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
494 		return (0);
495 
496 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
497 		terminate("die %llu: cannot parse member offset\n",
498 		    die_off(dw, die));
499 	}
500 
501 	*valp = loc->ld_s->lr_number;
502 
503 	if (loc != NULL)
504 		if (dwarf_locdesc_free(loc, &dw->dw_err) != DW_DLV_OK)
505 			terminate("die %llu: cannot free location descriptor: %s\n",
506 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
507 
508 	return (1);
509 }
510 
511 static tdesc_t *
512 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
513 {
514 	tdesc_t *tdp;
515 	intr_t *intr;
516 
517 	intr = xcalloc(sizeof (intr_t));
518 	intr->intr_type = INTR_INT;
519 	intr->intr_signed = 1;
520 	intr->intr_nbits = sz * NBBY;
521 
522 	tdp = xcalloc(sizeof (tdesc_t));
523 	tdp->t_name = xstrdup(name);
524 	tdp->t_size = sz;
525 	tdp->t_id = tid;
526 	tdp->t_type = INTRINSIC;
527 	tdp->t_intr = intr;
528 	tdp->t_flags = TDESC_F_RESOLVED;
529 
530 	tdesc_add(dw, tdp);
531 
532 	return (tdp);
533 }
534 
535 /*
536  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
537  * type reference implies a reference to a void type.  A void *, for example
538  * will be represented by a pointer die without a DW_AT_type.  CTF requires
539  * that pointer nodes point to something, so we'll create a void for use as
540  * the target.  Note that the DWARF data may already create a void type.  Ours
541  * would then be a duplicate, but it'll be removed in the self-uniquification
542  * merge performed at the completion of DWARF->tdesc conversion.
543  */
544 static tdesc_t *
545 tdesc_intr_void(dwarf_t *dw)
546 {
547 	if (dw->dw_void == NULL)
548 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
549 
550 	return (dw->dw_void);
551 }
552 
553 static tdesc_t *
554 tdesc_intr_long(dwarf_t *dw)
555 {
556 	if (dw->dw_long == NULL) {
557 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
558 		    dw->dw_ptrsz);
559 	}
560 
561 	return (dw->dw_long);
562 }
563 
564 /*
565  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
566  * adjusting the size of the copy to match what the caller requested.  The
567  * caller can then use the copy as the type for a bitfield structure member.
568  */
569 static tdesc_t *
570 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
571 {
572 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
573 
574 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
575 		terminate("tdp %u: attempt to make a bit field from an "
576 		    "unresolved type\n", old->t_id);
577 	}
578 
579 	new->t_name = xstrdup(old->t_name);
580 	new->t_size = old->t_size;
581 	new->t_id = mfgtid_next(dw);
582 	new->t_type = INTRINSIC;
583 	new->t_flags = TDESC_F_RESOLVED;
584 
585 	new->t_intr = xcalloc(sizeof (intr_t));
586 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
587 	new->t_intr->intr_nbits = bitsz;
588 
589 	tdesc_add(dw, new);
590 
591 	return (new);
592 }
593 
594 static void
595 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
596     tdesc_t *dimtdp)
597 {
598 	Dwarf_Unsigned uval;
599 	Dwarf_Signed sval;
600 	tdesc_t *ctdp = NULL;
601 	Dwarf_Die dim2;
602 	ardef_t *ar;
603 
604 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
605 		ctdp = arrtdp;
606 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
607 		ctdp = xcalloc(sizeof (tdesc_t));
608 		ctdp->t_id = mfgtid_next(dw);
609 		debug(3, "die %llu: creating new type %u for sub-dimension\n",
610 		    die_off(dw, dim2), ctdp->t_id);
611 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
612 	} else {
613 		terminate("die %llu: unexpected non-subrange node in array\n",
614 		    die_off(dw, dim2));
615 	}
616 
617 	dimtdp->t_type = ARRAY;
618 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
619 
620 	/*
621 	 * Array bounds can be signed or unsigned, but there are several kinds
622 	 * of signless forms (data1, data2, etc) that take their sign from the
623 	 * routine that is trying to interpret them.  That is, data1 can be
624 	 * either signed or unsigned, depending on whether you use the signed or
625 	 * unsigned accessor function.  GCC will use the signless forms to store
626 	 * unsigned values which have their high bit set, so we need to try to
627 	 * read them first as unsigned to get positive values.  We could also
628 	 * try signed first, falling back to unsigned if we got a negative
629 	 * value.
630 	 */
631 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
632 		ar->ad_nelems = uval + 1;
633 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
634 		ar->ad_nelems = sval + 1;
635 	else
636 		ar->ad_nelems = 0;
637 
638 	/*
639 	 * Different compilers use different index types.  Force the type to be
640 	 * a common, known value (long).
641 	 */
642 	ar->ad_idxtype = tdesc_intr_long(dw);
643 	ar->ad_contents = ctdp;
644 
645 	if (ar->ad_contents->t_size != 0) {
646 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
647 		dimtdp->t_flags |= TDESC_F_RESOLVED;
648 	}
649 }
650 
651 /*
652  * Create a tdesc from an array node.  Some arrays will come with byte size
653  * attributes, and thus can be resolved immediately.  Others don't, and will
654  * need to wait until the second pass for resolution.
655  */
656 static void
657 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
658 {
659 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
660 	Dwarf_Unsigned uval;
661 	Dwarf_Die dim;
662 
663 	debug(3, "die %llu <%llx>: creating array\n", off, off);
664 
665 	if ((dim = die_child(dw, arr)) == NULL ||
666 	    die_tag(dw, dim) != DW_TAG_subrange_type)
667 		terminate("die %llu: failed to retrieve array bounds\n", off);
668 
669 	tdesc_array_create(dw, dim, arrtdp, tdp);
670 
671 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
672 		tdesc_t *dimtdp;
673 		int flags;
674 
675 		/* Check for bogus gcc DW_AT_byte_size attribute */
676 		if (uval == (unsigned)-1) {
677 			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
678 			    __func__);
679 			uval = 0;
680 		}
681 
682 		tdp->t_size = uval;
683 
684 		/*
685 		 * Ensure that sub-dimensions have sizes too before marking
686 		 * as resolved.
687 		 */
688 		flags = TDESC_F_RESOLVED;
689 		for (dimtdp = tdp->t_ardef->ad_contents;
690 		    dimtdp->t_type == ARRAY;
691 		    dimtdp = dimtdp->t_ardef->ad_contents) {
692 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
693 				flags = 0;
694 				break;
695 			}
696 		}
697 
698 		tdp->t_flags |= flags;
699 	}
700 
701 	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
702 	    tdp->t_ardef->ad_nelems, tdp->t_size);
703 }
704 
705 /*ARGSUSED1*/
706 static int
707 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
708 {
709 	dwarf_t *dw = private;
710 	size_t sz;
711 
712 	if (tdp->t_flags & TDESC_F_RESOLVED)
713 		return (1);
714 
715 	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
716 	    tdp->t_ardef->ad_contents->t_id);
717 
718 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
719 		debug(3, "unable to resolve array %s (%d) contents %d\n",
720 		    tdesc_name(tdp), tdp->t_id,
721 		    tdp->t_ardef->ad_contents->t_id);
722 
723 		dw->dw_nunres++;
724 		return (1);
725 	}
726 
727 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
728 	tdp->t_flags |= TDESC_F_RESOLVED;
729 
730 	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
731 
732 	return (1);
733 }
734 
735 /*ARGSUSED1*/
736 static int
737 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
738 {
739 	tdesc_t *cont = tdp->t_ardef->ad_contents;
740 
741 	if (tdp->t_flags & TDESC_F_RESOLVED)
742 		return (1);
743 
744 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
745 	    tdp->t_id, tdesc_name(cont), cont->t_id);
746 
747 	return (1);
748 }
749 
750 /*
751  * Most enums (those with members) will be resolved during this first pass.
752  * Others - those without members (see the file comment) - won't be, and will
753  * need to wait until the second pass when they can be matched with their full
754  * definitions.
755  */
756 static void
757 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
758 {
759 	Dwarf_Die mem;
760 	Dwarf_Unsigned uval;
761 	Dwarf_Signed sval;
762 
763 	debug(3, "die %llu: creating enum\n", off);
764 
765 	tdp->t_type = ENUM;
766 
767 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
768 	/* Check for bogus gcc DW_AT_byte_size attribute */
769 	if (uval == (unsigned)-1) {
770 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
771 		    __func__);
772 		uval = 0;
773 	}
774 	tdp->t_size = uval;
775 
776 	if ((mem = die_child(dw, die)) != NULL) {
777 		elist_t **elastp = &tdp->t_emem;
778 
779 		do {
780 			elist_t *el;
781 
782 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
783 				/* Nested type declaration */
784 				die_create_one(dw, mem);
785 				continue;
786 			}
787 
788 			el = xcalloc(sizeof (elist_t));
789 			el->el_name = die_name(dw, mem);
790 
791 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
792 				el->el_number = sval;
793 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
794 			    &uval, 0)) {
795 				el->el_number = uval;
796 			} else {
797 				terminate("die %llu: enum %llu: member without "
798 				    "value\n", off, die_off(dw, mem));
799 			}
800 
801 			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
802 			    die_off(dw, mem), el->el_name, el->el_number);
803 
804 			*elastp = el;
805 			elastp = &el->el_next;
806 
807 		} while ((mem = die_sibling(dw, mem)) != NULL);
808 
809 		hash_add(dw->dw_enumhash, tdp);
810 
811 		tdp->t_flags |= TDESC_F_RESOLVED;
812 
813 		if (tdp->t_name != NULL) {
814 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
815 			ii->ii_type = II_SOU;
816 			ii->ii_name = xstrdup(tdp->t_name);
817 			ii->ii_dtype = tdp;
818 
819 			iidesc_add(dw->dw_td->td_iihash, ii);
820 		}
821 	}
822 }
823 
824 static int
825 die_enum_match(void *arg1, void *arg2)
826 {
827 	tdesc_t *tdp = arg1, **fullp = arg2;
828 
829 	if (tdp->t_emem != NULL) {
830 		*fullp = tdp;
831 		return (-1); /* stop the iteration */
832 	}
833 
834 	return (0);
835 }
836 
837 /*ARGSUSED1*/
838 static int
839 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
840 {
841 	dwarf_t *dw = private;
842 	tdesc_t *full = NULL;
843 
844 	if (tdp->t_flags & TDESC_F_RESOLVED)
845 		return (1);
846 
847 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
848 
849 	/*
850 	 * The answer to this one won't change from iteration to iteration,
851 	 * so don't even try.
852 	 */
853 	if (full == NULL) {
854 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
855 		    tdesc_name(tdp));
856 	}
857 
858 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
859 	    tdesc_name(tdp), full->t_id);
860 
861 	tdp->t_flags |= TDESC_F_RESOLVED;
862 
863 	return (1);
864 }
865 
866 static int
867 die_fwd_map(void *arg1, void *arg2)
868 {
869 	tdesc_t *fwd = arg1, *sou = arg2;
870 
871 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
872 	    tdesc_name(fwd), sou->t_id);
873 	fwd->t_tdesc = sou;
874 
875 	return (0);
876 }
877 
878 /*
879  * Structures and unions will never be resolved during the first pass, as we
880  * won't be able to fully determine the member sizes.  The second pass, which
881  * have access to sizing information, will be able to complete the resolution.
882  */
883 static void
884 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
885     int type, const char *typename)
886 {
887 	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
888 	Dwarf_Die mem;
889 	mlist_t *ml, **mlastp;
890 	iidesc_t *ii;
891 
892 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
893 
894 	debug(3, "die %llu: creating %s %s\n", off,
895 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
896 	    tdesc_name(tdp));
897 
898 	if (tdp->t_type == FORWARD) {
899 		hash_add(dw->dw_fwdhash, tdp);
900 		return;
901 	}
902 
903 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
904 
905 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
906 	tdp->t_size = sz;
907 
908 	/*
909 	 * GCC allows empty SOUs as an extension.
910 	 */
911 	if ((mem = die_child(dw, str)) == NULL) {
912 		goto out;
913 	}
914 
915 	mlastp = &tdp->t_members;
916 
917 	do {
918 		Dwarf_Off memoff = die_off(dw, mem);
919 		Dwarf_Half tag = die_tag(dw, mem);
920 		Dwarf_Unsigned mloff;
921 
922 		if (tag != DW_TAG_member) {
923 			/* Nested type declaration */
924 			die_create_one(dw, mem);
925 			continue;
926 		}
927 
928 		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
929 
930 		ml = xcalloc(sizeof (mlist_t));
931 
932 		/*
933 		 * This could be a GCC anon struct/union member, so we'll allow
934 		 * an empty name, even though nothing can really handle them
935 		 * properly.  Note that some versions of GCC miss out debug
936 		 * info for anon structs, though recent versions are fixed (gcc
937 		 * bug 11816).
938 		 */
939 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
940 			ml->ml_name = NULL;
941 
942 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
943 		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
944 		    ml->ml_type, ml->ml_type->t_id);
945 
946 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
947 		    &mloff, 0)) {
948 			debug(3, "die %llu: got mloff %llx\n", off,
949 			    (u_longlong_t)mloff);
950 			ml->ml_offset = mloff * 8;
951 		}
952 
953 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
954 			ml->ml_size = bitsz;
955 		else
956 			ml->ml_size = tdesc_bitsize(ml->ml_type);
957 
958 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
959 #if BYTE_ORDER == _BIG_ENDIAN
960 			ml->ml_offset += bitoff;
961 #else
962 			ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
963 			    ml->ml_size;
964 #endif
965 		}
966 
967 		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
968 		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
969 
970 		*mlastp = ml;
971 		mlastp = &ml->ml_next;
972 
973 		/* Find the size of the largest member to work around a gcc
974 		 * bug.  See GCC Bugzilla 35998.
975 		 */
976 		if (maxsz < ml->ml_size)
977 			maxsz = ml->ml_size;
978 
979 	} while ((mem = die_sibling(dw, mem)) != NULL);
980 
981 	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
982 	 * emit this.
983 	 */
984 	if (sz == (unsigned)-1) {
985 		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
986 		     __func__);
987 		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
988 	}
989 
990 	/*
991 	 * GCC will attempt to eliminate unused types, thus decreasing the
992 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
993 	 * header, include said header in your source file, and neglect to
994 	 * actually use (directly or indirectly) the foo_t in the source file,
995 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
996 	 * the theory.
997 	 *
998 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
999 	 * and then neglect to emit the members.  Strangely, the loner struct
1000 	 * tag will always be followed by a proper nested declaration of
1001 	 * something else.  This is clearly a bug, but we're not going to have
1002 	 * time to get it fixed before this goo goes back, so we'll have to work
1003 	 * around it.  If we see a no-membered struct with a nested declaration
1004 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1005 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1006 	 * we'll decline to create an iidesc for it, thus ensuring that this
1007 	 * type won't make it into the output file.  To be safe, we'll also
1008 	 * change the name.
1009 	 */
1010 	if (tdp->t_members == NULL) {
1011 		const char *old = tdesc_name(tdp);
1012 		size_t newsz = 7 + strlen(old) + 1;
1013 		char *new = xmalloc(newsz);
1014 		(void) snprintf(new, newsz, "orphan %s", old);
1015 
1016 		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1017 
1018 		if (tdp->t_name != NULL)
1019 			free(tdp->t_name);
1020 		tdp->t_name = new;
1021 		return;
1022 	}
1023 
1024 out:
1025 	if (tdp->t_name != NULL) {
1026 		ii = xcalloc(sizeof (iidesc_t));
1027 		ii->ii_type = II_SOU;
1028 		ii->ii_name = xstrdup(tdp->t_name);
1029 		ii->ii_dtype = tdp;
1030 
1031 		iidesc_add(dw->dw_td->td_iihash, ii);
1032 	}
1033 }
1034 
1035 static void
1036 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1037 {
1038 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1039 }
1040 
1041 static void
1042 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1043 {
1044 	die_sou_create(dw, die, off, tdp, UNION, "union");
1045 }
1046 
1047 /*ARGSUSED1*/
1048 static int
1049 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1050 {
1051 	dwarf_t *dw = private;
1052 	mlist_t *ml;
1053 	tdesc_t *mt;
1054 
1055 	if (tdp->t_flags & TDESC_F_RESOLVED)
1056 		return (1);
1057 
1058 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1059 
1060 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1061 		if (ml->ml_size == 0) {
1062 			mt = tdesc_basetype(ml->ml_type);
1063 
1064 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1065 				continue;
1066 
1067 			/*
1068 			 * For empty members, or GCC/C99 flexible array
1069 			 * members, a size of 0 is correct.
1070 			 */
1071 			if (mt->t_members == NULL)
1072 				continue;
1073 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1074 				continue;
1075 
1076 			dw->dw_nunres++;
1077 			return (1);
1078 		}
1079 
1080 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1081 			dw->dw_nunres++;
1082 			return (1);
1083 		}
1084 
1085 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1086 		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1087 			/*
1088 			 * This member is a bitfield, and needs to reference
1089 			 * an intrinsic type with the same width.  If the
1090 			 * currently-referenced type isn't of the same width,
1091 			 * we'll copy it, adjusting the width of the copy to
1092 			 * the size we'd like.
1093 			 */
1094 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1095 			    tdp->t_id, ml->ml_size);
1096 
1097 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1098 		}
1099 	}
1100 
1101 	tdp->t_flags |= TDESC_F_RESOLVED;
1102 
1103 	return (1);
1104 }
1105 
1106 /*ARGSUSED1*/
1107 static int
1108 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1109 {
1110 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1111 	mlist_t *ml;
1112 
1113 	if (tdp->t_flags & TDESC_F_RESOLVED)
1114 		return (1);
1115 
1116 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1117 		if (ml->ml_size == 0) {
1118 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1119 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1120 			    tdp->t_id,
1121 			    ml->ml_name, tdesc_name(ml->ml_type),
1122 			    ml->ml_type->t_id, ml->ml_type->t_id);
1123 		}
1124 	}
1125 
1126 	return (1);
1127 }
1128 
1129 static void
1130 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1131 {
1132 	Dwarf_Attribute attr;
1133 	Dwarf_Half tag;
1134 	Dwarf_Die arg;
1135 	fndef_t *fn;
1136 	int i;
1137 
1138 	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1139 
1140 	/*
1141 	 * We'll begin by processing any type definition nodes that may be
1142 	 * lurking underneath this one.
1143 	 */
1144 	for (arg = die_child(dw, die); arg != NULL;
1145 	    arg = die_sibling(dw, arg)) {
1146 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1147 		    tag != DW_TAG_unspecified_parameters) {
1148 			/* Nested type declaration */
1149 			die_create_one(dw, arg);
1150 		}
1151 	}
1152 
1153 	if (die_isdecl(dw, die)) {
1154 		/*
1155 		 * This is a prototype.  We don't add prototypes to the
1156 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1157 		 * it has already been added to the tree.  Nobody will reference
1158 		 * it, though, and it will be leaked.
1159 		 */
1160 		return;
1161 	}
1162 
1163 	fn = xcalloc(sizeof (fndef_t));
1164 
1165 	tdp->t_type = FUNCTION;
1166 
1167 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1168 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1169 	} else {
1170 		fn->fn_ret = tdesc_intr_void(dw);
1171 	}
1172 
1173 	/*
1174 	 * Count the arguments to the function, then read them in.
1175 	 */
1176 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1177 	    arg = die_sibling(dw, arg)) {
1178 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1179 			fn->fn_nargs++;
1180 		else if (tag == DW_TAG_unspecified_parameters &&
1181 		    fn->fn_nargs > 0)
1182 			fn->fn_vargs = 1;
1183 	}
1184 
1185 	if (fn->fn_nargs != 0) {
1186 		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1187 		    (fn->fn_nargs > 1 ? "s" : ""));
1188 
1189 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1190 		for (i = 0, arg = die_child(dw, die);
1191 		    arg != NULL && i < (int) fn->fn_nargs;
1192 		    arg = die_sibling(dw, arg)) {
1193 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1194 				continue;
1195 
1196 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1197 			    DW_AT_type);
1198 		}
1199 	}
1200 
1201 	tdp->t_fndef = fn;
1202 	tdp->t_flags |= TDESC_F_RESOLVED;
1203 }
1204 
1205 /*
1206  * GCC and DevPro use different names for the base types.  While the terms are
1207  * the same, they are arranged in a different order.  Some terms, such as int,
1208  * are implied in one, and explicitly named in the other.  Given a base type
1209  * as input, this routine will return a common name, along with an intr_t
1210  * that reflects said name.
1211  */
1212 static intr_t *
1213 die_base_name_parse(const char *name, char **newp)
1214 {
1215 	char buf[100];
1216 	char const *base;
1217 	char *c;
1218 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1219 	int sign = 1;
1220 	char fmt = '\0';
1221 	intr_t *intr;
1222 
1223 	if (strlen(name) > sizeof (buf) - 1)
1224 		terminate("base type name \"%s\" is too long\n", name);
1225 
1226 	strncpy(buf, name, sizeof (buf));
1227 
1228 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1229 		if (strcmp(c, "signed") == 0)
1230 			sign = 1;
1231 		else if (strcmp(c, "unsigned") == 0)
1232 			sign = 0;
1233 		else if (strcmp(c, "long") == 0)
1234 			nlong++;
1235 		else if (strcmp(c, "char") == 0) {
1236 			nchar++;
1237 			fmt = 'c';
1238 		} else if (strcmp(c, "short") == 0)
1239 			nshort++;
1240 		else if (strcmp(c, "int") == 0)
1241 			nint++;
1242 		else {
1243 			/*
1244 			 * If we don't recognize any of the tokens, we'll tell
1245 			 * the caller to fall back to the dwarf-provided
1246 			 * encoding information.
1247 			 */
1248 			return (NULL);
1249 		}
1250 	}
1251 
1252 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1253 		return (NULL);
1254 
1255 	if (nchar > 0) {
1256 		if (nlong > 0 || nshort > 0 || nint > 0)
1257 			return (NULL);
1258 
1259 		base = "char";
1260 
1261 	} else if (nshort > 0) {
1262 		if (nlong > 0)
1263 			return (NULL);
1264 
1265 		base = "short";
1266 
1267 	} else if (nlong > 0) {
1268 		base = "long";
1269 
1270 	} else {
1271 		base = "int";
1272 	}
1273 
1274 	intr = xcalloc(sizeof (intr_t));
1275 	intr->intr_type = INTR_INT;
1276 	intr->intr_signed = sign;
1277 	intr->intr_iformat = fmt;
1278 
1279 	snprintf(buf, sizeof (buf), "%s%s%s",
1280 	    (sign ? "" : "unsigned "),
1281 	    (nlong > 1 ? "long " : ""),
1282 	    base);
1283 
1284 	*newp = xstrdup(buf);
1285 	return (intr);
1286 }
1287 
1288 typedef struct fp_size_map {
1289 	size_t fsm_typesz[2];	/* size of {32,64} type */
1290 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1291 } fp_size_map_t;
1292 
1293 static const fp_size_map_t fp_encodings[] = {
1294 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1295 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1296 #ifdef __sparc
1297 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1298 #else
1299 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1300 #endif
1301 	{ { 0, 0 }, { 0, 0, 0 } }
1302 };
1303 
1304 static uint_t
1305 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1306 {
1307 	const fp_size_map_t *map = fp_encodings;
1308 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1309 	uint_t mult = 1, col = 0;
1310 
1311 	if (enc == DW_ATE_complex_float) {
1312 		mult = 2;
1313 		col = 1;
1314 	} else if (enc == DW_ATE_imaginary_float
1315 #if defined(sun)
1316 	    || enc == DW_ATE_SUN_imaginary_float
1317 #endif
1318 	    )
1319 		col = 2;
1320 
1321 	while (map->fsm_typesz[szidx] != 0) {
1322 		if (map->fsm_typesz[szidx] * mult == sz)
1323 			return (map->fsm_enc[col]);
1324 		map++;
1325 	}
1326 
1327 	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1328 	/*NOTREACHED*/
1329 	return (0);
1330 }
1331 
1332 static intr_t *
1333 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1334 {
1335 	intr_t *intr = xcalloc(sizeof (intr_t));
1336 	Dwarf_Signed enc;
1337 
1338 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1339 
1340 	switch (enc) {
1341 	case DW_ATE_unsigned:
1342 	case DW_ATE_address:
1343 		intr->intr_type = INTR_INT;
1344 		break;
1345 	case DW_ATE_unsigned_char:
1346 		intr->intr_type = INTR_INT;
1347 		intr->intr_iformat = 'c';
1348 		break;
1349 	case DW_ATE_signed:
1350 		intr->intr_type = INTR_INT;
1351 		intr->intr_signed = 1;
1352 		break;
1353 	case DW_ATE_signed_char:
1354 		intr->intr_type = INTR_INT;
1355 		intr->intr_signed = 1;
1356 		intr->intr_iformat = 'c';
1357 		break;
1358 	case DW_ATE_boolean:
1359 		intr->intr_type = INTR_INT;
1360 		intr->intr_signed = 1;
1361 		intr->intr_iformat = 'b';
1362 		break;
1363 	case DW_ATE_float:
1364 	case DW_ATE_complex_float:
1365 	case DW_ATE_imaginary_float:
1366 #if defined(sun)
1367 	case DW_ATE_SUN_imaginary_float:
1368 	case DW_ATE_SUN_interval_float:
1369 #endif
1370 		intr->intr_type = INTR_REAL;
1371 		intr->intr_signed = 1;
1372 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1373 		break;
1374 	default:
1375 		terminate("die %llu: unknown base type encoding 0x%llx\n",
1376 		    off, enc);
1377 	}
1378 
1379 	return (intr);
1380 }
1381 
1382 static void
1383 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1384 {
1385 	Dwarf_Unsigned sz;
1386 	intr_t *intr;
1387 	char *new;
1388 
1389 	debug(3, "die %llu: creating base type\n", off);
1390 
1391 	/*
1392 	 * The compilers have their own clever (internally inconsistent) ideas
1393 	 * as to what base types should look like.  Some times gcc will, for
1394 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1395 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1396 	 * down the road, particularly with merging.  We do, however, use the
1397 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1398 	 * the data model.
1399 	 */
1400 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1401 
1402 	/* Check for bogus gcc DW_AT_byte_size attribute */
1403 	if (sz == (unsigned)-1) {
1404 		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1405 		    __func__);
1406 		sz = 0;
1407 	}
1408 
1409 	if (tdp->t_name == NULL)
1410 		terminate("die %llu: base type without name\n", off);
1411 
1412 	/* XXX make a name parser for float too */
1413 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1414 		/* Found it.  We'll use the parsed version */
1415 		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1416 		    tdesc_name(tdp), new);
1417 
1418 		free(tdp->t_name);
1419 		tdp->t_name = new;
1420 	} else {
1421 		/*
1422 		 * We didn't recognize the type, so we'll create an intr_t
1423 		 * based on the DWARF data.
1424 		 */
1425 		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1426 		    tdesc_name(tdp));
1427 
1428 		intr = die_base_from_dwarf(dw, base, off, sz);
1429 	}
1430 
1431 	intr->intr_nbits = sz * 8;
1432 
1433 	tdp->t_type = INTRINSIC;
1434 	tdp->t_intr = intr;
1435 	tdp->t_size = sz;
1436 
1437 	tdp->t_flags |= TDESC_F_RESOLVED;
1438 }
1439 
1440 static void
1441 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1442     int type, const char *typename)
1443 {
1444 	Dwarf_Attribute attr;
1445 
1446 	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1447 
1448 	tdp->t_type = type;
1449 
1450 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1451 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1452 	} else {
1453 		tdp->t_tdesc = tdesc_intr_void(dw);
1454 	}
1455 
1456 	if (type == POINTER)
1457 		tdp->t_size = dw->dw_ptrsz;
1458 
1459 	tdp->t_flags |= TDESC_F_RESOLVED;
1460 
1461 	if (type == TYPEDEF) {
1462 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1463 		ii->ii_type = II_TYPE;
1464 		ii->ii_name = xstrdup(tdp->t_name);
1465 		ii->ii_dtype = tdp;
1466 
1467 		iidesc_add(dw->dw_td->td_iihash, ii);
1468 	}
1469 }
1470 
1471 static void
1472 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1473 {
1474 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1475 }
1476 
1477 static void
1478 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1479 {
1480 	die_through_create(dw, die, off, tdp, CONST, "const");
1481 }
1482 
1483 static void
1484 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1485 {
1486 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1487 }
1488 
1489 static void
1490 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1491 {
1492 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1493 }
1494 
1495 static void
1496 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1497 {
1498 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1499 }
1500 
1501 /*ARGSUSED3*/
1502 static void
1503 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1504 {
1505 	Dwarf_Die arg;
1506 	Dwarf_Half tag;
1507 	iidesc_t *ii;
1508 	char *name;
1509 
1510 	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1511 
1512 	/*
1513 	 * We'll begin by processing any type definition nodes that may be
1514 	 * lurking underneath this one.
1515 	 */
1516 	for (arg = die_child(dw, die); arg != NULL;
1517 	    arg = die_sibling(dw, arg)) {
1518 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1519 		    tag != DW_TAG_variable) {
1520 			/* Nested type declaration */
1521 			die_create_one(dw, arg);
1522 		}
1523 	}
1524 
1525 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1526 		/*
1527 		 * We process neither prototypes nor subprograms without
1528 		 * names.
1529 		 */
1530 		return;
1531 	}
1532 
1533 	ii = xcalloc(sizeof (iidesc_t));
1534 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1535 	ii->ii_name = name;
1536 	if (ii->ii_type == II_SFUN)
1537 		ii->ii_owner = xstrdup(dw->dw_cuname);
1538 
1539 	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1540 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1541 
1542 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1543 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1544 	else
1545 		ii->ii_dtype = tdesc_intr_void(dw);
1546 
1547 	for (arg = die_child(dw, die); arg != NULL;
1548 	    arg = die_sibling(dw, arg)) {
1549 		char *name1;
1550 
1551 		debug(3, "die %llu: looking at sub member at %llu\n",
1552 		    off, die_off(dw, die));
1553 
1554 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1555 			continue;
1556 
1557 		if ((name1 = die_name(dw, arg)) == NULL) {
1558 			terminate("die %llu: func arg %d has no name\n",
1559 			    off, ii->ii_nargs + 1);
1560 		}
1561 
1562 		if (strcmp(name1, "...") == 0) {
1563 			free(name1);
1564 			ii->ii_vargs = 1;
1565 			continue;
1566 		}
1567 
1568 		ii->ii_nargs++;
1569 	}
1570 
1571 	if (ii->ii_nargs > 0) {
1572 		int i;
1573 
1574 		debug(3, "die %llu: function has %d argument%s\n", off,
1575 		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1576 
1577 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1578 
1579 		for (arg = die_child(dw, die), i = 0;
1580 		    arg != NULL && i < ii->ii_nargs;
1581 		    arg = die_sibling(dw, arg)) {
1582 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1583 				continue;
1584 
1585 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1586 			    DW_AT_type);
1587 		}
1588 	}
1589 
1590 	iidesc_add(dw->dw_td->td_iihash, ii);
1591 }
1592 
1593 /*ARGSUSED3*/
1594 static void
1595 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1596 {
1597 	iidesc_t *ii;
1598 	char *name;
1599 
1600 	debug(3, "die %llu: creating object definition\n", off);
1601 
1602 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1603 		return; /* skip prototypes and nameless objects */
1604 
1605 	ii = xcalloc(sizeof (iidesc_t));
1606 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1607 	ii->ii_name = name;
1608 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1609 	if (ii->ii_type == II_SVAR)
1610 		ii->ii_owner = xstrdup(dw->dw_cuname);
1611 
1612 	iidesc_add(dw->dw_td->td_iihash, ii);
1613 }
1614 
1615 /*ARGSUSED2*/
1616 static int
1617 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1618 {
1619 	if (fwd->t_flags & TDESC_F_RESOLVED)
1620 		return (1);
1621 
1622 	if (fwd->t_tdesc != NULL) {
1623 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1624 		    tdesc_name(fwd));
1625 		*fwdp = fwd->t_tdesc;
1626 	}
1627 
1628 	fwd->t_flags |= TDESC_F_RESOLVED;
1629 
1630 	return (1);
1631 }
1632 
1633 /*ARGSUSED*/
1634 static void
1635 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1636 {
1637 	Dwarf_Die child = die_child(dw, die);
1638 
1639 	if (child != NULL)
1640 		die_create(dw, child);
1641 }
1642 
1643 /*
1644  * Used to map the die to a routine which can parse it, using the tag to do the
1645  * mapping.  While the processing of most tags entails the creation of a tdesc,
1646  * there are a few which don't - primarily those which result in the creation of
1647  * iidescs which refer to existing tdescs.
1648  */
1649 
1650 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1651 
1652 typedef struct die_creator {
1653 	Dwarf_Half dc_tag;
1654 	uint16_t dc_flags;
1655 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1656 } die_creator_t;
1657 
1658 static const die_creator_t die_creators[] = {
1659 	{ DW_TAG_array_type,		0,		die_array_create },
1660 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1661 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1662 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1663 	{ DW_TAG_structure_type,	0,		die_struct_create },
1664 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1665 	{ DW_TAG_typedef,		0,		die_typedef_create },
1666 	{ DW_TAG_union_type,		0,		die_union_create },
1667 	{ DW_TAG_base_type,		0,		die_base_create },
1668 	{ DW_TAG_const_type,		0,		die_const_create },
1669 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1670 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1671 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1672 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1673 	{ 0, 0, NULL }
1674 };
1675 
1676 static const die_creator_t *
1677 die_tag2ctor(Dwarf_Half tag)
1678 {
1679 	const die_creator_t *dc;
1680 
1681 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1682 		if (dc->dc_tag == tag)
1683 			return (dc);
1684 	}
1685 
1686 	return (NULL);
1687 }
1688 
1689 static void
1690 die_create_one(dwarf_t *dw, Dwarf_Die die)
1691 {
1692 	Dwarf_Off off = die_off(dw, die);
1693 	const die_creator_t *dc;
1694 	Dwarf_Half tag;
1695 	tdesc_t *tdp;
1696 
1697 	debug(3, "die %llu <%llx>: create_one\n", off, off);
1698 
1699 	if (off > dw->dw_maxoff) {
1700 		terminate("illegal die offset %llu (max %llu)\n", off,
1701 		    dw->dw_maxoff);
1702 	}
1703 
1704 	tag = die_tag(dw, die);
1705 
1706 	if ((dc = die_tag2ctor(tag)) == NULL) {
1707 		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1708 		return;
1709 	}
1710 
1711 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1712 	    !(dc->dc_flags & DW_F_NOTDP)) {
1713 		tdp = xcalloc(sizeof (tdesc_t));
1714 		tdp->t_id = off;
1715 		tdesc_add(dw, tdp);
1716 	}
1717 
1718 	if (tdp != NULL)
1719 		tdp->t_name = die_name(dw, die);
1720 
1721 	dc->dc_create(dw, die, off, tdp);
1722 }
1723 
1724 static void
1725 die_create(dwarf_t *dw, Dwarf_Die die)
1726 {
1727 	do {
1728 		die_create_one(dw, die);
1729 	} while ((die = die_sibling(dw, die)) != NULL);
1730 }
1731 
1732 static tdtrav_cb_f die_resolvers[] = {
1733 	NULL,
1734 	NULL,			/* intrinsic */
1735 	NULL,			/* pointer */
1736 	die_array_resolve,	/* array */
1737 	NULL,			/* function */
1738 	die_sou_resolve,	/* struct */
1739 	die_sou_resolve,	/* union */
1740 	die_enum_resolve,	/* enum */
1741 	die_fwd_resolve,	/* forward */
1742 	NULL,			/* typedef */
1743 	NULL,			/* typedef unres */
1744 	NULL,			/* volatile */
1745 	NULL,			/* const */
1746 	NULL,			/* restrict */
1747 };
1748 
1749 static tdtrav_cb_f die_fail_reporters[] = {
1750 	NULL,
1751 	NULL,			/* intrinsic */
1752 	NULL,			/* pointer */
1753 	die_array_failed,	/* array */
1754 	NULL,			/* function */
1755 	die_sou_failed,		/* struct */
1756 	die_sou_failed,		/* union */
1757 	NULL,			/* enum */
1758 	NULL,			/* forward */
1759 	NULL,			/* typedef */
1760 	NULL,			/* typedef unres */
1761 	NULL,			/* volatile */
1762 	NULL,			/* const */
1763 	NULL,			/* restrict */
1764 };
1765 
1766 static void
1767 die_resolve(dwarf_t *dw)
1768 {
1769 	int last = -1;
1770 	int pass = 0;
1771 
1772 	do {
1773 		pass++;
1774 		dw->dw_nunres = 0;
1775 
1776 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1777 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1778 
1779 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1780 
1781 		if ((int) dw->dw_nunres == last) {
1782 			fprintf(stderr, "%s: failed to resolve the following "
1783 			    "types:\n", progname);
1784 
1785 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1786 			    &dw->dw_td->td_curvgen, NULL, NULL,
1787 			    die_fail_reporters, dw);
1788 
1789 			terminate("failed to resolve types\n");
1790 		}
1791 
1792 		last = dw->dw_nunres;
1793 
1794 	} while (dw->dw_nunres != 0);
1795 }
1796 
1797 /*
1798  * Any object containing a function or object symbol at any scope should also
1799  * contain DWARF data.
1800  */
1801 static boolean_t
1802 should_have_dwarf(Elf *elf)
1803 {
1804 	Elf_Scn *scn = NULL;
1805 	Elf_Data *data = NULL;
1806 	GElf_Shdr shdr;
1807 	GElf_Sym sym;
1808 	uint32_t symdx = 0;
1809 	size_t nsyms = 0;
1810 	boolean_t found = B_FALSE;
1811 
1812 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1813 		gelf_getshdr(scn, &shdr);
1814 
1815 		if (shdr.sh_type == SHT_SYMTAB) {
1816 			found = B_TRUE;
1817 			break;
1818 		}
1819 	}
1820 
1821 	if (!found)
1822 		terminate("cannot convert stripped objects\n");
1823 
1824 	data = elf_getdata(scn, NULL);
1825 	nsyms = shdr.sh_size / shdr.sh_entsize;
1826 
1827 	for (symdx = 0; symdx < nsyms; symdx++) {
1828 		gelf_getsym(data, symdx, &sym);
1829 
1830 		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1831 		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1832 		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1833 			char *name;
1834 
1835 			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1836 
1837 			/* Studio emits these local symbols regardless */
1838 			if ((strcmp(name, "Bbss.bss") != 0) &&
1839 			    (strcmp(name, "Ttbss.bss") != 0) &&
1840 			    (strcmp(name, "Ddata.data") != 0) &&
1841 			    (strcmp(name, "Ttdata.data") != 0) &&
1842 			    (strcmp(name, "Drodata.rodata") != 0))
1843 				return (B_TRUE);
1844 		}
1845 	}
1846 
1847 	return (B_FALSE);
1848 }
1849 
1850 /*ARGSUSED*/
1851 int
1852 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1853 {
1854 	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1855 	Dwarf_Half vers, addrsz;
1856 	Dwarf_Die cu = 0;
1857 	Dwarf_Die child = 0;
1858 	dwarf_t dw;
1859 	char *prod = NULL;
1860 	int rc;
1861 
1862 	bzero(&dw, sizeof (dwarf_t));
1863 	dw.dw_td = td;
1864 	dw.dw_ptrsz = elf_ptrsz(elf);
1865 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1866 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1867 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1868 	    tdesc_namecmp);
1869 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1870 	    tdesc_namecmp);
1871 
1872 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, &dw.dw_dw,
1873 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1874 		if (should_have_dwarf(elf)) {
1875 			errno = ENOENT;
1876 			return (-1);
1877 		} else {
1878 			return (0);
1879 		}
1880 	} else if (rc != DW_DLV_OK) {
1881 		if (dwarf_errno(&dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1882 			/*
1883 			 * There's no type data in the DWARF section, but
1884 			 * libdwarf is too clever to handle that properly.
1885 			 */
1886 			return (0);
1887 		}
1888 
1889 		terminate("failed to initialize DWARF: %s\n",
1890 		    dwarf_errmsg(&dw.dw_err));
1891 	}
1892 
1893 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1894 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1895 		terminate("rc = %d %s\n", rc, dwarf_errmsg(&dw.dw_err));
1896 
1897 	if ((cu = die_sibling(&dw, NULL)) == NULL ||
1898 	    (((child = die_child(&dw, cu)) == NULL) &&
1899 	    should_have_dwarf(elf))) {
1900 		terminate("file does not contain dwarf type data "
1901 		    "(try compiling with -g)\n");
1902 	} else if (child == NULL) {
1903 		return (0);
1904 	}
1905 
1906 	dw.dw_maxoff = nxthdr - 1;
1907 
1908 	if (dw.dw_maxoff > TID_FILEMAX)
1909 		terminate("file contains too many types\n");
1910 
1911 	debug(1, "DWARF version: %d\n", vers);
1912 	if (vers != DWARF_VERSION) {
1913 		terminate("file contains incompatible version %d DWARF code "
1914 		    "(version 2 required)\n", vers);
1915 	}
1916 
1917 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1918 		debug(1, "DWARF emitter: %s\n", prod);
1919 		free(prod);
1920 	}
1921 
1922 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1923 		char *base = xstrdup(basename(dw.dw_cuname));
1924 		free(dw.dw_cuname);
1925 		dw.dw_cuname = base;
1926 
1927 		debug(1, "CU name: %s\n", dw.dw_cuname);
1928 	}
1929 
1930 	if ((child = die_child(&dw, cu)) != NULL)
1931 		die_create(&dw, child);
1932 
1933 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1934 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
1935 		terminate("multiple compilation units not supported\n");
1936 
1937 	(void) dwarf_finish(&dw.dw_dw, &dw.dw_err);
1938 
1939 	die_resolve(&dw);
1940 
1941 	cvt_fixups(td, dw.dw_ptrsz);
1942 
1943 	/* leak the dwarf_t */
1944 
1945 	return (0);
1946 }
1947