1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #include <stdio.h> 84 #include <stdlib.h> 85 #include <string.h> 86 #include <strings.h> 87 #include <errno.h> 88 #include <libelf.h> 89 #include <libdwarf.h> 90 #include <libgen.h> 91 #include <dwarf.h> 92 93 #include "ctf_headers.h" 94 #include "ctftools.h" 95 #include "memory.h" 96 #include "list.h" 97 #include "traverse.h" 98 99 /* 100 * We need to define a couple of our own intrinsics, to smooth out some of the 101 * differences between the GCC and DevPro DWARF emitters. See the referenced 102 * routines and the special cases in the file comment for more details. 103 * 104 * Type IDs are 32 bits wide. We're going to use the top of that field to 105 * indicate types that we've created ourselves. 106 */ 107 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 108 #define TID_VOID 0x40000001 /* see die_void() */ 109 #define TID_LONG 0x40000002 /* see die_array() */ 110 111 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 112 113 /* 114 * To reduce the staggering amount of error-handling code that would otherwise 115 * be required, the attribute-retrieval routines handle most of their own 116 * errors. If the following flag is supplied as the value of the `req' 117 * argument, they will also handle the absence of a requested attribute by 118 * terminating the program. 119 */ 120 #define DW_ATTR_REQ 1 121 122 #define TDESC_HASH_BUCKETS 511 123 124 typedef struct dwarf { 125 Dwarf_Debug dw_dw; /* for libdwarf */ 126 Dwarf_Error dw_err; /* for libdwarf */ 127 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 128 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 129 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 130 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 131 hash_t *dw_enumhash; /* hash of memberless enums by name */ 132 tdesc_t *dw_void; /* manufactured void type */ 133 tdesc_t *dw_long; /* manufactured long type for arrays */ 134 size_t dw_ptrsz; /* size of a pointer in this file */ 135 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 136 uint_t dw_nunres; /* count of unresolved types */ 137 char *dw_cuname; /* name of compilation unit */ 138 } dwarf_t; 139 140 static void die_create_one(dwarf_t *, Dwarf_Die); 141 static void die_create(dwarf_t *, Dwarf_Die); 142 143 static tid_t 144 mfgtid_next(dwarf_t *dw) 145 { 146 return (++dw->dw_mfgtid_last); 147 } 148 149 static void 150 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 151 { 152 hash_add(dw->dw_tidhash, tdp); 153 } 154 155 static tdesc_t * 156 tdesc_lookup(dwarf_t *dw, int tid) 157 { 158 tdesc_t tmpl; 159 void *tdp; 160 161 tmpl.t_id = tid; 162 163 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 164 return (tdp); 165 else 166 return (NULL); 167 } 168 169 /* 170 * Resolve a tdesc down to a node which should have a size. Returns the size, 171 * zero if the size hasn't yet been determined. 172 */ 173 static size_t 174 tdesc_size(tdesc_t *tdp) 175 { 176 for (;;) { 177 switch (tdp->t_type) { 178 case INTRINSIC: 179 case POINTER: 180 case ARRAY: 181 case FUNCTION: 182 case STRUCT: 183 case UNION: 184 case ENUM: 185 return (tdp->t_size); 186 187 case FORWARD: 188 return (0); 189 190 case TYPEDEF: 191 case VOLATILE: 192 case CONST: 193 case RESTRICT: 194 tdp = tdp->t_tdesc; 195 continue; 196 197 case 0: /* not yet defined */ 198 return (0); 199 200 default: 201 terminate("tdp %u: tdesc_size on unknown type %d\n", 202 tdp->t_id, tdp->t_type); 203 } 204 } 205 } 206 207 static size_t 208 tdesc_bitsize(tdesc_t *tdp) 209 { 210 for (;;) { 211 switch (tdp->t_type) { 212 case INTRINSIC: 213 return (tdp->t_intr->intr_nbits); 214 215 case ARRAY: 216 case FUNCTION: 217 case STRUCT: 218 case UNION: 219 case ENUM: 220 case POINTER: 221 return (tdp->t_size * NBBY); 222 223 case FORWARD: 224 return (0); 225 226 case TYPEDEF: 227 case VOLATILE: 228 case RESTRICT: 229 case CONST: 230 tdp = tdp->t_tdesc; 231 continue; 232 233 case 0: /* not yet defined */ 234 return (0); 235 236 default: 237 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 238 tdp->t_id, tdp->t_type); 239 } 240 } 241 } 242 243 static tdesc_t * 244 tdesc_basetype(tdesc_t *tdp) 245 { 246 for (;;) { 247 switch (tdp->t_type) { 248 case TYPEDEF: 249 case VOLATILE: 250 case RESTRICT: 251 case CONST: 252 tdp = tdp->t_tdesc; 253 break; 254 case 0: /* not yet defined */ 255 return (NULL); 256 default: 257 return (tdp); 258 } 259 } 260 } 261 262 static Dwarf_Off 263 die_off(dwarf_t *dw, Dwarf_Die die) 264 { 265 Dwarf_Off off; 266 267 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 268 return (off); 269 270 terminate("failed to get offset for die: %s\n", 271 dwarf_errmsg(dw->dw_err)); 272 /*NOTREACHED*/ 273 return (0); 274 } 275 276 static Dwarf_Die 277 die_sibling(dwarf_t *dw, Dwarf_Die die) 278 { 279 Dwarf_Die sib; 280 int rc; 281 282 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 283 DW_DLV_OK) 284 return (sib); 285 else if (rc == DW_DLV_NO_ENTRY) 286 return (NULL); 287 288 terminate("die %llu: failed to find type sibling: %s\n", 289 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 290 /*NOTREACHED*/ 291 return (NULL); 292 } 293 294 static Dwarf_Die 295 die_child(dwarf_t *dw, Dwarf_Die die) 296 { 297 Dwarf_Die child; 298 int rc; 299 300 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 301 return (child); 302 else if (rc == DW_DLV_NO_ENTRY) 303 return (NULL); 304 305 terminate("die %llu: failed to find type child: %s\n", 306 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 307 /*NOTREACHED*/ 308 return (NULL); 309 } 310 311 static Dwarf_Half 312 die_tag(dwarf_t *dw, Dwarf_Die die) 313 { 314 Dwarf_Half tag; 315 316 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 317 return (tag); 318 319 terminate("die %llu: failed to get tag for type: %s\n", 320 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 321 /*NOTREACHED*/ 322 return (0); 323 } 324 325 static Dwarf_Attribute 326 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 327 { 328 Dwarf_Attribute attr; 329 int rc; 330 331 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 332 return (attr); 333 } else if (rc == DW_DLV_NO_ENTRY) { 334 if (req) { 335 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 336 name); 337 } else { 338 return (NULL); 339 } 340 } 341 342 terminate("die %llu: failed to get attribute for type: %s\n", 343 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 344 /*NOTREACHED*/ 345 return (NULL); 346 } 347 348 static int 349 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 350 int req) 351 { 352 *valp = 0; 353 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 354 if (req) 355 terminate("die %llu: failed to get signed: %s\n", 356 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 357 return (0); 358 } 359 360 return (1); 361 } 362 363 static int 364 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 365 int req) 366 { 367 *valp = 0; 368 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 369 if (req) 370 terminate("die %llu: failed to get unsigned: %s\n", 371 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 372 return (0); 373 } 374 375 return (1); 376 } 377 378 static int 379 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 380 { 381 *valp = 0; 382 383 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 384 if (req) 385 terminate("die %llu: failed to get flag: %s\n", 386 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 387 return (0); 388 } 389 390 return (1); 391 } 392 393 static int 394 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 395 { 396 const char *str = NULL; 397 398 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 399 str == NULL) { 400 if (req) 401 terminate("die %llu: failed to get string: %s\n", 402 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 403 else 404 *strp = NULL; 405 return (0); 406 } else 407 *strp = xstrdup(str); 408 409 return (1); 410 } 411 412 static Dwarf_Off 413 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 414 { 415 Dwarf_Off off; 416 417 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 418 terminate("die %llu: failed to get ref: %s\n", 419 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 420 } 421 422 return (off); 423 } 424 425 static char * 426 die_name(dwarf_t *dw, Dwarf_Die die) 427 { 428 char *str = NULL; 429 430 (void) die_string(dw, die, DW_AT_name, &str, 0); 431 if (str == NULL) 432 str = xstrdup(""); 433 434 return (str); 435 } 436 437 static int 438 die_isdecl(dwarf_t *dw, Dwarf_Die die) 439 { 440 Dwarf_Bool val; 441 442 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 443 } 444 445 static int 446 die_isglobal(dwarf_t *dw, Dwarf_Die die) 447 { 448 Dwarf_Signed vis; 449 Dwarf_Bool ext; 450 451 /* 452 * Some compilers (gcc) use DW_AT_external to indicate function 453 * visibility. Others (Sun) use DW_AT_visibility. 454 */ 455 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 456 return (vis == DW_VIS_exported); 457 else 458 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 459 } 460 461 static tdesc_t * 462 die_add(dwarf_t *dw, Dwarf_Off off) 463 { 464 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 465 466 tdp->t_id = off; 467 468 tdesc_add(dw, tdp); 469 470 return (tdp); 471 } 472 473 static tdesc_t * 474 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 475 { 476 Dwarf_Off ref = die_attr_ref(dw, die, name); 477 tdesc_t *tdp; 478 479 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 480 return (tdp); 481 482 return (die_add(dw, ref)); 483 } 484 485 static int 486 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 487 Dwarf_Unsigned *valp, int req __unused) 488 { 489 Dwarf_Locdesc *loc = NULL; 490 Dwarf_Signed locnum = 0; 491 Dwarf_Attribute at; 492 Dwarf_Half form; 493 494 if (name != DW_AT_data_member_location) 495 terminate("die %llu: can only process attribute " 496 "DW_AT_data_member_location\n", die_off(dw, die)); 497 498 if ((at = die_attr(dw, die, name, 0)) == NULL) 499 return (0); 500 501 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 502 return (0); 503 504 switch (form) { 505 case DW_FORM_sec_offset: 506 case DW_FORM_block: 507 case DW_FORM_block1: 508 case DW_FORM_block2: 509 case DW_FORM_block4: 510 /* 511 * GCC in base and Clang (3.3 or below) generates 512 * DW_AT_data_member_location attribute with DW_FORM_block* 513 * form. The attribute contains one DW_OP_plus_uconst 514 * operator. The member offset stores in the operand. 515 */ 516 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 517 return (0); 518 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 519 terminate("die %llu: cannot parse member offset with " 520 "operator other than DW_OP_plus_uconst\n", 521 die_off(dw, die)); 522 } 523 *valp = loc->ld_s->lr_number; 524 if (loc != NULL) { 525 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 526 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 527 } 528 break; 529 530 case DW_FORM_data1: 531 case DW_FORM_data2: 532 case DW_FORM_data4: 533 case DW_FORM_data8: 534 case DW_FORM_udata: 535 /* 536 * Clang 3.4 generates DW_AT_data_member_location attribute 537 * with DW_FORM_data* form (constant class). The attribute 538 * stores a contant value which is the member offset. 539 * 540 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 541 * could be used as a section offset (offset into .debug_loc in 542 * this case). Here we assume the attribute always stores a 543 * constant because we know Clang 3.4 does this and GCC in 544 * base won't emit DW_FORM_data[48] for this attribute. This 545 * code will remain correct if future vesrions of Clang and 546 * GCC conform to DWARF4 standard and only use the form 547 * DW_FORM_sec_offset for section offset. 548 */ 549 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 550 DW_DLV_OK) 551 return (0); 552 break; 553 554 default: 555 terminate("die %llu: cannot parse member offset with form " 556 "%u\n", die_off(dw, die), form); 557 } 558 559 return (1); 560 } 561 562 static tdesc_t * 563 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 564 { 565 tdesc_t *tdp; 566 intr_t *intr; 567 568 intr = xcalloc(sizeof (intr_t)); 569 intr->intr_type = INTR_INT; 570 intr->intr_signed = 1; 571 intr->intr_nbits = sz * NBBY; 572 573 tdp = xcalloc(sizeof (tdesc_t)); 574 tdp->t_name = xstrdup(name); 575 tdp->t_size = sz; 576 tdp->t_id = tid; 577 tdp->t_type = INTRINSIC; 578 tdp->t_intr = intr; 579 tdp->t_flags = TDESC_F_RESOLVED; 580 581 tdesc_add(dw, tdp); 582 583 return (tdp); 584 } 585 586 /* 587 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 588 * type reference implies a reference to a void type. A void *, for example 589 * will be represented by a pointer die without a DW_AT_type. CTF requires 590 * that pointer nodes point to something, so we'll create a void for use as 591 * the target. Note that the DWARF data may already create a void type. Ours 592 * would then be a duplicate, but it'll be removed in the self-uniquification 593 * merge performed at the completion of DWARF->tdesc conversion. 594 */ 595 static tdesc_t * 596 tdesc_intr_void(dwarf_t *dw) 597 { 598 if (dw->dw_void == NULL) 599 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 600 601 return (dw->dw_void); 602 } 603 604 static tdesc_t * 605 tdesc_intr_long(dwarf_t *dw) 606 { 607 if (dw->dw_long == NULL) { 608 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 609 dw->dw_ptrsz); 610 } 611 612 return (dw->dw_long); 613 } 614 615 /* 616 * Used for creating bitfield types. We create a copy of an existing intrinsic, 617 * adjusting the size of the copy to match what the caller requested. The 618 * caller can then use the copy as the type for a bitfield structure member. 619 */ 620 static tdesc_t * 621 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 622 { 623 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 624 625 if (!(old->t_flags & TDESC_F_RESOLVED)) { 626 terminate("tdp %u: attempt to make a bit field from an " 627 "unresolved type\n", old->t_id); 628 } 629 630 new->t_name = xstrdup(old->t_name); 631 new->t_size = old->t_size; 632 new->t_id = mfgtid_next(dw); 633 new->t_type = INTRINSIC; 634 new->t_flags = TDESC_F_RESOLVED; 635 636 new->t_intr = xcalloc(sizeof (intr_t)); 637 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 638 new->t_intr->intr_nbits = bitsz; 639 640 tdesc_add(dw, new); 641 642 return (new); 643 } 644 645 static void 646 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 647 tdesc_t *dimtdp) 648 { 649 Dwarf_Unsigned uval; 650 Dwarf_Signed sval; 651 tdesc_t *ctdp = NULL; 652 Dwarf_Die dim2; 653 ardef_t *ar; 654 655 if ((dim2 = die_sibling(dw, dim)) == NULL) { 656 ctdp = arrtdp; 657 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 658 ctdp = xcalloc(sizeof (tdesc_t)); 659 ctdp->t_id = mfgtid_next(dw); 660 debug(3, "die %llu: creating new type %u for sub-dimension\n", 661 die_off(dw, dim2), ctdp->t_id); 662 tdesc_array_create(dw, dim2, arrtdp, ctdp); 663 } else { 664 terminate("die %llu: unexpected non-subrange node in array\n", 665 die_off(dw, dim2)); 666 } 667 668 dimtdp->t_type = ARRAY; 669 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 670 671 /* 672 * Array bounds can be signed or unsigned, but there are several kinds 673 * of signless forms (data1, data2, etc) that take their sign from the 674 * routine that is trying to interpret them. That is, data1 can be 675 * either signed or unsigned, depending on whether you use the signed or 676 * unsigned accessor function. GCC will use the signless forms to store 677 * unsigned values which have their high bit set, so we need to try to 678 * read them first as unsigned to get positive values. We could also 679 * try signed first, falling back to unsigned if we got a negative 680 * value. 681 */ 682 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 683 ar->ad_nelems = uval + 1; 684 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 685 ar->ad_nelems = sval + 1; 686 else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0)) 687 ar->ad_nelems = uval; 688 else if (die_signed(dw, dim, DW_AT_count, &sval, 0)) 689 ar->ad_nelems = sval; 690 else 691 ar->ad_nelems = 0; 692 693 /* 694 * Different compilers use different index types. Force the type to be 695 * a common, known value (long). 696 */ 697 ar->ad_idxtype = tdesc_intr_long(dw); 698 ar->ad_contents = ctdp; 699 700 if (ar->ad_contents->t_size != 0) { 701 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 702 dimtdp->t_flags |= TDESC_F_RESOLVED; 703 } 704 } 705 706 /* 707 * Create a tdesc from an array node. Some arrays will come with byte size 708 * attributes, and thus can be resolved immediately. Others don't, and will 709 * need to wait until the second pass for resolution. 710 */ 711 static void 712 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 713 { 714 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 715 Dwarf_Unsigned uval; 716 Dwarf_Die dim; 717 718 debug(3, "die %llu <%llx>: creating array\n", off, off); 719 720 if ((dim = die_child(dw, arr)) == NULL || 721 die_tag(dw, dim) != DW_TAG_subrange_type) 722 terminate("die %llu: failed to retrieve array bounds\n", off); 723 724 tdesc_array_create(dw, dim, arrtdp, tdp); 725 726 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 727 tdesc_t *dimtdp; 728 int flags; 729 730 /* Check for bogus gcc DW_AT_byte_size attribute */ 731 if (uval == (unsigned)-1) { 732 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 733 __func__); 734 uval = 0; 735 } 736 737 tdp->t_size = uval; 738 739 /* 740 * Ensure that sub-dimensions have sizes too before marking 741 * as resolved. 742 */ 743 flags = TDESC_F_RESOLVED; 744 for (dimtdp = tdp->t_ardef->ad_contents; 745 dimtdp->t_type == ARRAY; 746 dimtdp = dimtdp->t_ardef->ad_contents) { 747 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 748 flags = 0; 749 break; 750 } 751 } 752 753 tdp->t_flags |= flags; 754 } 755 756 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 757 tdp->t_ardef->ad_nelems, tdp->t_size); 758 } 759 760 /*ARGSUSED1*/ 761 static int 762 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 763 { 764 dwarf_t *dw = private; 765 size_t sz; 766 767 if (tdp->t_flags & TDESC_F_RESOLVED) 768 return (1); 769 770 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 771 tdp->t_ardef->ad_contents->t_id); 772 773 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 && 774 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) { 775 debug(3, "unable to resolve array %s (%d) contents %d\n", 776 tdesc_name(tdp), tdp->t_id, 777 tdp->t_ardef->ad_contents->t_id); 778 779 dw->dw_nunres++; 780 return (1); 781 } 782 783 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 784 tdp->t_flags |= TDESC_F_RESOLVED; 785 786 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 787 788 return (1); 789 } 790 791 /*ARGSUSED1*/ 792 static int 793 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 794 { 795 tdesc_t *cont = tdp->t_ardef->ad_contents; 796 797 if (tdp->t_flags & TDESC_F_RESOLVED) 798 return (1); 799 800 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 801 tdp->t_id, tdesc_name(cont), cont->t_id); 802 803 return (1); 804 } 805 806 /* 807 * Most enums (those with members) will be resolved during this first pass. 808 * Others - those without members (see the file comment) - won't be, and will 809 * need to wait until the second pass when they can be matched with their full 810 * definitions. 811 */ 812 static void 813 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 814 { 815 Dwarf_Die mem; 816 Dwarf_Unsigned uval; 817 Dwarf_Signed sval; 818 819 debug(3, "die %llu: creating enum\n", off); 820 821 tdp->t_type = ENUM; 822 823 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 824 /* Check for bogus gcc DW_AT_byte_size attribute */ 825 if (uval == (unsigned)-1) { 826 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 827 __func__); 828 uval = 0; 829 } 830 tdp->t_size = uval; 831 832 if ((mem = die_child(dw, die)) != NULL) { 833 elist_t **elastp = &tdp->t_emem; 834 835 do { 836 elist_t *el; 837 838 if (die_tag(dw, mem) != DW_TAG_enumerator) { 839 /* Nested type declaration */ 840 die_create_one(dw, mem); 841 continue; 842 } 843 844 el = xcalloc(sizeof (elist_t)); 845 el->el_name = die_name(dw, mem); 846 847 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 848 el->el_number = sval; 849 } else if (die_unsigned(dw, mem, DW_AT_const_value, 850 &uval, 0)) { 851 el->el_number = uval; 852 } else { 853 terminate("die %llu: enum %llu: member without " 854 "value\n", off, die_off(dw, mem)); 855 } 856 857 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 858 die_off(dw, mem), el->el_name, el->el_number); 859 860 *elastp = el; 861 elastp = &el->el_next; 862 863 } while ((mem = die_sibling(dw, mem)) != NULL); 864 865 hash_add(dw->dw_enumhash, tdp); 866 867 tdp->t_flags |= TDESC_F_RESOLVED; 868 869 if (tdp->t_name != NULL) { 870 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 871 ii->ii_type = II_SOU; 872 ii->ii_name = xstrdup(tdp->t_name); 873 ii->ii_dtype = tdp; 874 875 iidesc_add(dw->dw_td->td_iihash, ii); 876 } 877 } 878 } 879 880 static int 881 die_enum_match(void *arg1, void *arg2) 882 { 883 tdesc_t *tdp = arg1, **fullp = arg2; 884 885 if (tdp->t_emem != NULL) { 886 *fullp = tdp; 887 return (-1); /* stop the iteration */ 888 } 889 890 return (0); 891 } 892 893 /*ARGSUSED1*/ 894 static int 895 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 896 { 897 dwarf_t *dw = private; 898 tdesc_t *full = NULL; 899 900 if (tdp->t_flags & TDESC_F_RESOLVED) 901 return (1); 902 903 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 904 905 /* 906 * The answer to this one won't change from iteration to iteration, 907 * so don't even try. 908 */ 909 if (full == NULL) { 910 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 911 tdesc_name(tdp)); 912 } 913 914 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 915 tdesc_name(tdp), full->t_id); 916 917 tdp->t_flags |= TDESC_F_RESOLVED; 918 919 return (1); 920 } 921 922 static int 923 die_fwd_map(void *arg1, void *arg2) 924 { 925 tdesc_t *fwd = arg1, *sou = arg2; 926 927 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 928 tdesc_name(fwd), sou->t_id); 929 fwd->t_tdesc = sou; 930 931 return (0); 932 } 933 934 /* 935 * Structures and unions will never be resolved during the first pass, as we 936 * won't be able to fully determine the member sizes. The second pass, which 937 * have access to sizing information, will be able to complete the resolution. 938 */ 939 static void 940 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 941 int type, const char *typename) 942 { 943 Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0; 944 #if BYTE_ORDER == _LITTLE_ENDIAN 945 Dwarf_Unsigned bysz; 946 #endif 947 Dwarf_Die mem; 948 mlist_t *ml, **mlastp; 949 iidesc_t *ii; 950 951 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 952 953 debug(3, "die %llu: creating %s %s\n", off, 954 (tdp->t_type == FORWARD ? "forward decl" : typename), 955 tdesc_name(tdp)); 956 957 if (tdp->t_type == FORWARD) { 958 hash_add(dw->dw_fwdhash, tdp); 959 return; 960 } 961 962 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 963 964 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 965 tdp->t_size = sz; 966 967 /* 968 * GCC allows empty SOUs as an extension. 969 */ 970 if ((mem = die_child(dw, str)) == NULL) { 971 goto out; 972 } 973 974 mlastp = &tdp->t_members; 975 976 do { 977 Dwarf_Off memoff = die_off(dw, mem); 978 Dwarf_Half tag = die_tag(dw, mem); 979 Dwarf_Unsigned mloff; 980 981 if (tag != DW_TAG_member) { 982 /* Nested type declaration */ 983 die_create_one(dw, mem); 984 continue; 985 } 986 987 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 988 989 ml = xcalloc(sizeof (mlist_t)); 990 991 /* 992 * This could be a GCC anon struct/union member, so we'll allow 993 * an empty name, even though nothing can really handle them 994 * properly. Note that some versions of GCC miss out debug 995 * info for anon structs, though recent versions are fixed (gcc 996 * bug 11816). 997 */ 998 if ((ml->ml_name = die_name(dw, mem)) == NULL) 999 ml->ml_name = NULL; 1000 1001 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 1002 debug(3, "die_sou_create(): ml_type = %p t_id = %d\n", 1003 ml->ml_type, ml->ml_type->t_id); 1004 1005 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1006 &mloff, 0)) { 1007 debug(3, "die %llu: got mloff %llx\n", off, 1008 (u_longlong_t)mloff); 1009 ml->ml_offset = mloff * 8; 1010 } 1011 1012 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1013 ml->ml_size = bitsz; 1014 else 1015 ml->ml_size = tdesc_bitsize(ml->ml_type); 1016 1017 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1018 #if BYTE_ORDER == _BIG_ENDIAN 1019 ml->ml_offset += bitoff; 1020 #else 1021 /* 1022 * Note that Clang 3.4 will sometimes generate 1023 * member DIE before generating the DIE for the 1024 * member's type. The code can not handle this 1025 * properly so that tdesc_bitsize(ml->ml_type) will 1026 * return 0 because ml->ml_type is unknown. As a 1027 * result, a wrong member offset will be calculated. 1028 * To workaround this, we can instead try to 1029 * retrieve the value of DW_AT_byte_size attribute 1030 * which stores the byte size of the space occupied 1031 * by the type. If this attribute exists, its value 1032 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1033 */ 1034 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1035 bysz > 0) 1036 ml->ml_offset += bysz * NBBY - bitoff - 1037 ml->ml_size; 1038 else 1039 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1040 bitoff - ml->ml_size; 1041 #endif 1042 } 1043 1044 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1045 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1046 1047 *mlastp = ml; 1048 mlastp = &ml->ml_next; 1049 1050 /* Find the size of the largest member to work around a gcc 1051 * bug. See GCC Bugzilla 35998. 1052 */ 1053 if (maxsz < ml->ml_size) 1054 maxsz = ml->ml_size; 1055 1056 } while ((mem = die_sibling(dw, mem)) != NULL); 1057 1058 /* See if we got a bogus DW_AT_byte_size. GCC will sometimes 1059 * emit this. 1060 */ 1061 if (sz == (unsigned)-1) { 1062 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1063 __func__); 1064 tdp->t_size = maxsz / 8; /* maxsz is in bits, t_size is bytes */ 1065 } 1066 1067 /* 1068 * GCC will attempt to eliminate unused types, thus decreasing the 1069 * size of the emitted dwarf. That is, if you declare a foo_t in your 1070 * header, include said header in your source file, and neglect to 1071 * actually use (directly or indirectly) the foo_t in the source file, 1072 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1073 * the theory. 1074 * 1075 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1076 * and then neglect to emit the members. Strangely, the loner struct 1077 * tag will always be followed by a proper nested declaration of 1078 * something else. This is clearly a bug, but we're not going to have 1079 * time to get it fixed before this goo goes back, so we'll have to work 1080 * around it. If we see a no-membered struct with a nested declaration 1081 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1082 * Being paranoid, we won't simply remove it from the hash. Instead, 1083 * we'll decline to create an iidesc for it, thus ensuring that this 1084 * type won't make it into the output file. To be safe, we'll also 1085 * change the name. 1086 */ 1087 if (tdp->t_members == NULL) { 1088 const char *old = tdesc_name(tdp); 1089 size_t newsz = 7 + strlen(old) + 1; 1090 char *new = xmalloc(newsz); 1091 (void) snprintf(new, newsz, "orphan %s", old); 1092 1093 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1094 1095 if (tdp->t_name != NULL) 1096 free(tdp->t_name); 1097 tdp->t_name = new; 1098 return; 1099 } 1100 1101 out: 1102 if (tdp->t_name != NULL) { 1103 ii = xcalloc(sizeof (iidesc_t)); 1104 ii->ii_type = II_SOU; 1105 ii->ii_name = xstrdup(tdp->t_name); 1106 ii->ii_dtype = tdp; 1107 1108 iidesc_add(dw->dw_td->td_iihash, ii); 1109 } 1110 } 1111 1112 static void 1113 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1114 { 1115 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1116 } 1117 1118 static void 1119 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1120 { 1121 die_sou_create(dw, die, off, tdp, UNION, "union"); 1122 } 1123 1124 /*ARGSUSED1*/ 1125 static int 1126 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1127 { 1128 dwarf_t *dw = private; 1129 mlist_t *ml; 1130 tdesc_t *mt; 1131 1132 if (tdp->t_flags & TDESC_F_RESOLVED) 1133 return (1); 1134 1135 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1136 1137 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1138 if (ml->ml_size == 0) { 1139 mt = tdesc_basetype(ml->ml_type); 1140 1141 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1142 continue; 1143 1144 /* 1145 * For empty members, or GCC/C99 flexible array 1146 * members, a size of 0 is correct. Structs and unions 1147 * consisting of flexible array members will also have 1148 * size 0. 1149 */ 1150 if (mt->t_members == NULL) 1151 continue; 1152 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1153 continue; 1154 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1155 (mt->t_type == STRUCT || mt->t_type == UNION)) 1156 continue; 1157 1158 dw->dw_nunres++; 1159 return (1); 1160 } 1161 1162 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1163 dw->dw_nunres++; 1164 return (1); 1165 } 1166 1167 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1168 mt->t_intr->intr_nbits != (int)ml->ml_size) { 1169 /* 1170 * This member is a bitfield, and needs to reference 1171 * an intrinsic type with the same width. If the 1172 * currently-referenced type isn't of the same width, 1173 * we'll copy it, adjusting the width of the copy to 1174 * the size we'd like. 1175 */ 1176 debug(3, "tdp %u: creating bitfield for %d bits\n", 1177 tdp->t_id, ml->ml_size); 1178 1179 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1180 } 1181 } 1182 1183 tdp->t_flags |= TDESC_F_RESOLVED; 1184 1185 return (1); 1186 } 1187 1188 /*ARGSUSED1*/ 1189 static int 1190 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1191 { 1192 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1193 mlist_t *ml; 1194 1195 if (tdp->t_flags & TDESC_F_RESOLVED) 1196 return (1); 1197 1198 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1199 if (ml->ml_size == 0) { 1200 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1201 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1202 tdp->t_id, 1203 ml->ml_name, tdesc_name(ml->ml_type), 1204 ml->ml_type->t_id, ml->ml_type->t_id); 1205 } 1206 } 1207 1208 return (1); 1209 } 1210 1211 static void 1212 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1213 { 1214 Dwarf_Attribute attr; 1215 Dwarf_Half tag; 1216 Dwarf_Die arg; 1217 fndef_t *fn; 1218 int i; 1219 1220 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1221 1222 /* 1223 * We'll begin by processing any type definition nodes that may be 1224 * lurking underneath this one. 1225 */ 1226 for (arg = die_child(dw, die); arg != NULL; 1227 arg = die_sibling(dw, arg)) { 1228 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1229 tag != DW_TAG_unspecified_parameters) { 1230 /* Nested type declaration */ 1231 die_create_one(dw, arg); 1232 } 1233 } 1234 1235 if (die_isdecl(dw, die)) { 1236 /* 1237 * This is a prototype. We don't add prototypes to the 1238 * tree, so we're going to drop the tdesc. Unfortunately, 1239 * it has already been added to the tree. Nobody will reference 1240 * it, though, and it will be leaked. 1241 */ 1242 return; 1243 } 1244 1245 fn = xcalloc(sizeof (fndef_t)); 1246 1247 tdp->t_type = FUNCTION; 1248 1249 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1250 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1251 } else { 1252 fn->fn_ret = tdesc_intr_void(dw); 1253 } 1254 1255 /* 1256 * Count the arguments to the function, then read them in. 1257 */ 1258 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1259 arg = die_sibling(dw, arg)) { 1260 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1261 fn->fn_nargs++; 1262 else if (tag == DW_TAG_unspecified_parameters && 1263 fn->fn_nargs > 0) 1264 fn->fn_vargs = 1; 1265 } 1266 1267 if (fn->fn_nargs != 0) { 1268 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1269 (fn->fn_nargs > 1 ? "s" : "")); 1270 1271 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1272 for (i = 0, arg = die_child(dw, die); 1273 arg != NULL && i < (int) fn->fn_nargs; 1274 arg = die_sibling(dw, arg)) { 1275 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1276 continue; 1277 1278 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1279 DW_AT_type); 1280 } 1281 } 1282 1283 tdp->t_fndef = fn; 1284 tdp->t_flags |= TDESC_F_RESOLVED; 1285 } 1286 1287 /* 1288 * GCC and DevPro use different names for the base types. While the terms are 1289 * the same, they are arranged in a different order. Some terms, such as int, 1290 * are implied in one, and explicitly named in the other. Given a base type 1291 * as input, this routine will return a common name, along with an intr_t 1292 * that reflects said name. 1293 */ 1294 static intr_t * 1295 die_base_name_parse(const char *name, char **newp) 1296 { 1297 char buf[100]; 1298 char const *base; 1299 char *c; 1300 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1301 int sign = 1; 1302 char fmt = '\0'; 1303 intr_t *intr; 1304 1305 if (strlen(name) > sizeof (buf) - 1) 1306 terminate("base type name \"%s\" is too long\n", name); 1307 1308 strncpy(buf, name, sizeof (buf)); 1309 1310 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1311 if (strcmp(c, "signed") == 0) 1312 sign = 1; 1313 else if (strcmp(c, "unsigned") == 0) 1314 sign = 0; 1315 else if (strcmp(c, "long") == 0) 1316 nlong++; 1317 else if (strcmp(c, "char") == 0) { 1318 nchar++; 1319 fmt = 'c'; 1320 } else if (strcmp(c, "short") == 0) 1321 nshort++; 1322 else if (strcmp(c, "int") == 0) 1323 nint++; 1324 else { 1325 /* 1326 * If we don't recognize any of the tokens, we'll tell 1327 * the caller to fall back to the dwarf-provided 1328 * encoding information. 1329 */ 1330 return (NULL); 1331 } 1332 } 1333 1334 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1335 return (NULL); 1336 1337 if (nchar > 0) { 1338 if (nlong > 0 || nshort > 0 || nint > 0) 1339 return (NULL); 1340 1341 base = "char"; 1342 1343 } else if (nshort > 0) { 1344 if (nlong > 0) 1345 return (NULL); 1346 1347 base = "short"; 1348 1349 } else if (nlong > 0) { 1350 base = "long"; 1351 1352 } else { 1353 base = "int"; 1354 } 1355 1356 intr = xcalloc(sizeof (intr_t)); 1357 intr->intr_type = INTR_INT; 1358 intr->intr_signed = sign; 1359 intr->intr_iformat = fmt; 1360 1361 snprintf(buf, sizeof (buf), "%s%s%s", 1362 (sign ? "" : "unsigned "), 1363 (nlong > 1 ? "long " : ""), 1364 base); 1365 1366 *newp = xstrdup(buf); 1367 return (intr); 1368 } 1369 1370 typedef struct fp_size_map { 1371 size_t fsm_typesz[2]; /* size of {32,64} type */ 1372 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1373 } fp_size_map_t; 1374 1375 static const fp_size_map_t fp_encodings[] = { 1376 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1377 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1378 #ifdef __sparc 1379 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1380 #else 1381 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1382 #endif 1383 { { 0, 0 }, { 0, 0, 0 } } 1384 }; 1385 1386 static uint_t 1387 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1388 { 1389 const fp_size_map_t *map = fp_encodings; 1390 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1391 uint_t mult = 1, col = 0; 1392 1393 if (enc == DW_ATE_complex_float) { 1394 mult = 2; 1395 col = 1; 1396 } else if (enc == DW_ATE_imaginary_float 1397 #ifdef illumos 1398 || enc == DW_ATE_SUN_imaginary_float 1399 #endif 1400 ) 1401 col = 2; 1402 1403 while (map->fsm_typesz[szidx] != 0) { 1404 if (map->fsm_typesz[szidx] * mult == sz) 1405 return (map->fsm_enc[col]); 1406 map++; 1407 } 1408 1409 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1410 /*NOTREACHED*/ 1411 return (0); 1412 } 1413 1414 static intr_t * 1415 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1416 { 1417 intr_t *intr = xcalloc(sizeof (intr_t)); 1418 Dwarf_Signed enc; 1419 1420 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1421 1422 switch (enc) { 1423 case DW_ATE_unsigned: 1424 case DW_ATE_address: 1425 intr->intr_type = INTR_INT; 1426 break; 1427 case DW_ATE_unsigned_char: 1428 intr->intr_type = INTR_INT; 1429 intr->intr_iformat = 'c'; 1430 break; 1431 case DW_ATE_signed: 1432 intr->intr_type = INTR_INT; 1433 intr->intr_signed = 1; 1434 break; 1435 case DW_ATE_signed_char: 1436 intr->intr_type = INTR_INT; 1437 intr->intr_signed = 1; 1438 intr->intr_iformat = 'c'; 1439 break; 1440 case DW_ATE_boolean: 1441 intr->intr_type = INTR_INT; 1442 intr->intr_signed = 1; 1443 intr->intr_iformat = 'b'; 1444 break; 1445 case DW_ATE_float: 1446 case DW_ATE_complex_float: 1447 case DW_ATE_imaginary_float: 1448 #ifdef illumos 1449 case DW_ATE_SUN_imaginary_float: 1450 case DW_ATE_SUN_interval_float: 1451 #endif 1452 intr->intr_type = INTR_REAL; 1453 intr->intr_signed = 1; 1454 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1455 break; 1456 default: 1457 terminate("die %llu: unknown base type encoding 0x%llx\n", 1458 off, enc); 1459 } 1460 1461 return (intr); 1462 } 1463 1464 static void 1465 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1466 { 1467 Dwarf_Unsigned sz; 1468 intr_t *intr; 1469 char *new; 1470 1471 debug(3, "die %llu: creating base type\n", off); 1472 1473 /* 1474 * The compilers have their own clever (internally inconsistent) ideas 1475 * as to what base types should look like. Some times gcc will, for 1476 * example, use DW_ATE_signed_char for char. Other times, however, it 1477 * will use DW_ATE_signed. Needless to say, this causes some problems 1478 * down the road, particularly with merging. We do, however, use the 1479 * DWARF idea of type sizes, as this allows us to avoid caring about 1480 * the data model. 1481 */ 1482 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1483 1484 /* Check for bogus gcc DW_AT_byte_size attribute */ 1485 if (sz == (unsigned)-1) { 1486 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1487 __func__); 1488 sz = 0; 1489 } 1490 1491 if (tdp->t_name == NULL) 1492 terminate("die %llu: base type without name\n", off); 1493 1494 /* XXX make a name parser for float too */ 1495 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1496 /* Found it. We'll use the parsed version */ 1497 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1498 tdesc_name(tdp), new); 1499 1500 free(tdp->t_name); 1501 tdp->t_name = new; 1502 } else { 1503 /* 1504 * We didn't recognize the type, so we'll create an intr_t 1505 * based on the DWARF data. 1506 */ 1507 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1508 tdesc_name(tdp)); 1509 1510 intr = die_base_from_dwarf(dw, base, off, sz); 1511 } 1512 1513 intr->intr_nbits = sz * 8; 1514 1515 tdp->t_type = INTRINSIC; 1516 tdp->t_intr = intr; 1517 tdp->t_size = sz; 1518 1519 tdp->t_flags |= TDESC_F_RESOLVED; 1520 } 1521 1522 static void 1523 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1524 int type, const char *typename) 1525 { 1526 Dwarf_Attribute attr; 1527 1528 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1529 1530 tdp->t_type = type; 1531 1532 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1533 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1534 } else { 1535 tdp->t_tdesc = tdesc_intr_void(dw); 1536 } 1537 1538 if (type == POINTER) 1539 tdp->t_size = dw->dw_ptrsz; 1540 1541 tdp->t_flags |= TDESC_F_RESOLVED; 1542 1543 if (type == TYPEDEF) { 1544 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1545 ii->ii_type = II_TYPE; 1546 ii->ii_name = xstrdup(tdp->t_name); 1547 ii->ii_dtype = tdp; 1548 1549 iidesc_add(dw->dw_td->td_iihash, ii); 1550 } 1551 } 1552 1553 static void 1554 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1555 { 1556 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1557 } 1558 1559 static void 1560 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1561 { 1562 die_through_create(dw, die, off, tdp, CONST, "const"); 1563 } 1564 1565 static void 1566 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1567 { 1568 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1569 } 1570 1571 static void 1572 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1573 { 1574 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1575 } 1576 1577 static void 1578 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1579 { 1580 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1581 } 1582 1583 /*ARGSUSED3*/ 1584 static void 1585 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1586 { 1587 Dwarf_Die arg; 1588 Dwarf_Half tag; 1589 iidesc_t *ii; 1590 char *name; 1591 1592 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1593 1594 /* 1595 * We'll begin by processing any type definition nodes that may be 1596 * lurking underneath this one. 1597 */ 1598 for (arg = die_child(dw, die); arg != NULL; 1599 arg = die_sibling(dw, arg)) { 1600 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1601 tag != DW_TAG_variable) { 1602 /* Nested type declaration */ 1603 die_create_one(dw, arg); 1604 } 1605 } 1606 1607 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1608 /* 1609 * We process neither prototypes nor subprograms without 1610 * names. 1611 */ 1612 return; 1613 } 1614 1615 ii = xcalloc(sizeof (iidesc_t)); 1616 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1617 ii->ii_name = name; 1618 if (ii->ii_type == II_SFUN) 1619 ii->ii_owner = xstrdup(dw->dw_cuname); 1620 1621 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1622 (ii->ii_type == II_GFUN ? "global" : "static")); 1623 1624 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1625 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1626 else 1627 ii->ii_dtype = tdesc_intr_void(dw); 1628 1629 for (arg = die_child(dw, die); arg != NULL; 1630 arg = die_sibling(dw, arg)) { 1631 char *name1; 1632 1633 debug(3, "die %llu: looking at sub member at %llu\n", 1634 off, die_off(dw, die)); 1635 1636 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1637 continue; 1638 1639 if ((name1 = die_name(dw, arg)) == NULL) { 1640 terminate("die %llu: func arg %d has no name\n", 1641 off, ii->ii_nargs + 1); 1642 } 1643 1644 if (strcmp(name1, "...") == 0) { 1645 free(name1); 1646 ii->ii_vargs = 1; 1647 continue; 1648 } 1649 1650 ii->ii_nargs++; 1651 } 1652 1653 if (ii->ii_nargs > 0) { 1654 int i; 1655 1656 debug(3, "die %llu: function has %d argument%s\n", off, 1657 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1658 1659 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1660 1661 for (arg = die_child(dw, die), i = 0; 1662 arg != NULL && i < ii->ii_nargs; 1663 arg = die_sibling(dw, arg)) { 1664 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1665 continue; 1666 1667 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1668 DW_AT_type); 1669 } 1670 } 1671 1672 iidesc_add(dw->dw_td->td_iihash, ii); 1673 } 1674 1675 /*ARGSUSED3*/ 1676 static void 1677 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1678 { 1679 iidesc_t *ii; 1680 char *name; 1681 1682 debug(3, "die %llu: creating object definition\n", off); 1683 1684 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1685 return; /* skip prototypes and nameless objects */ 1686 1687 ii = xcalloc(sizeof (iidesc_t)); 1688 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1689 ii->ii_name = name; 1690 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1691 if (ii->ii_type == II_SVAR) 1692 ii->ii_owner = xstrdup(dw->dw_cuname); 1693 1694 iidesc_add(dw->dw_td->td_iihash, ii); 1695 } 1696 1697 /*ARGSUSED2*/ 1698 static int 1699 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1700 { 1701 if (fwd->t_flags & TDESC_F_RESOLVED) 1702 return (1); 1703 1704 if (fwd->t_tdesc != NULL) { 1705 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1706 tdesc_name(fwd)); 1707 *fwdp = fwd->t_tdesc; 1708 } 1709 1710 fwd->t_flags |= TDESC_F_RESOLVED; 1711 1712 return (1); 1713 } 1714 1715 /*ARGSUSED*/ 1716 static void 1717 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1718 { 1719 Dwarf_Die child = die_child(dw, die); 1720 1721 if (child != NULL) 1722 die_create(dw, child); 1723 } 1724 1725 /* 1726 * Used to map the die to a routine which can parse it, using the tag to do the 1727 * mapping. While the processing of most tags entails the creation of a tdesc, 1728 * there are a few which don't - primarily those which result in the creation of 1729 * iidescs which refer to existing tdescs. 1730 */ 1731 1732 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1733 1734 typedef struct die_creator { 1735 Dwarf_Half dc_tag; 1736 uint16_t dc_flags; 1737 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1738 } die_creator_t; 1739 1740 static const die_creator_t die_creators[] = { 1741 { DW_TAG_array_type, 0, die_array_create }, 1742 { DW_TAG_enumeration_type, 0, die_enum_create }, 1743 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1744 { DW_TAG_pointer_type, 0, die_pointer_create }, 1745 { DW_TAG_structure_type, 0, die_struct_create }, 1746 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1747 { DW_TAG_typedef, 0, die_typedef_create }, 1748 { DW_TAG_union_type, 0, die_union_create }, 1749 { DW_TAG_base_type, 0, die_base_create }, 1750 { DW_TAG_const_type, 0, die_const_create }, 1751 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1752 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1753 { DW_TAG_volatile_type, 0, die_volatile_create }, 1754 { DW_TAG_restrict_type, 0, die_restrict_create }, 1755 { 0, 0, NULL } 1756 }; 1757 1758 static const die_creator_t * 1759 die_tag2ctor(Dwarf_Half tag) 1760 { 1761 const die_creator_t *dc; 1762 1763 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1764 if (dc->dc_tag == tag) 1765 return (dc); 1766 } 1767 1768 return (NULL); 1769 } 1770 1771 static void 1772 die_create_one(dwarf_t *dw, Dwarf_Die die) 1773 { 1774 Dwarf_Off off = die_off(dw, die); 1775 const die_creator_t *dc; 1776 Dwarf_Half tag; 1777 tdesc_t *tdp; 1778 1779 debug(3, "die %llu <%llx>: create_one\n", off, off); 1780 1781 if (off > dw->dw_maxoff) { 1782 terminate("illegal die offset %llu (max %llu)\n", off, 1783 dw->dw_maxoff); 1784 } 1785 1786 tag = die_tag(dw, die); 1787 1788 if ((dc = die_tag2ctor(tag)) == NULL) { 1789 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1790 return; 1791 } 1792 1793 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1794 !(dc->dc_flags & DW_F_NOTDP)) { 1795 tdp = xcalloc(sizeof (tdesc_t)); 1796 tdp->t_id = off; 1797 tdesc_add(dw, tdp); 1798 } 1799 1800 if (tdp != NULL) 1801 tdp->t_name = die_name(dw, die); 1802 1803 dc->dc_create(dw, die, off, tdp); 1804 } 1805 1806 static void 1807 die_create(dwarf_t *dw, Dwarf_Die die) 1808 { 1809 do { 1810 die_create_one(dw, die); 1811 } while ((die = die_sibling(dw, die)) != NULL); 1812 } 1813 1814 static tdtrav_cb_f die_resolvers[] = { 1815 NULL, 1816 NULL, /* intrinsic */ 1817 NULL, /* pointer */ 1818 die_array_resolve, /* array */ 1819 NULL, /* function */ 1820 die_sou_resolve, /* struct */ 1821 die_sou_resolve, /* union */ 1822 die_enum_resolve, /* enum */ 1823 die_fwd_resolve, /* forward */ 1824 NULL, /* typedef */ 1825 NULL, /* typedef unres */ 1826 NULL, /* volatile */ 1827 NULL, /* const */ 1828 NULL, /* restrict */ 1829 }; 1830 1831 static tdtrav_cb_f die_fail_reporters[] = { 1832 NULL, 1833 NULL, /* intrinsic */ 1834 NULL, /* pointer */ 1835 die_array_failed, /* array */ 1836 NULL, /* function */ 1837 die_sou_failed, /* struct */ 1838 die_sou_failed, /* union */ 1839 NULL, /* enum */ 1840 NULL, /* forward */ 1841 NULL, /* typedef */ 1842 NULL, /* typedef unres */ 1843 NULL, /* volatile */ 1844 NULL, /* const */ 1845 NULL, /* restrict */ 1846 }; 1847 1848 static void 1849 die_resolve(dwarf_t *dw) 1850 { 1851 int last = -1; 1852 int pass = 0; 1853 1854 do { 1855 pass++; 1856 dw->dw_nunres = 0; 1857 1858 (void) iitraverse_hash(dw->dw_td->td_iihash, 1859 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1860 1861 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1862 1863 if ((int) dw->dw_nunres == last) { 1864 fprintf(stderr, "%s: failed to resolve the following " 1865 "types:\n", progname); 1866 1867 (void) iitraverse_hash(dw->dw_td->td_iihash, 1868 &dw->dw_td->td_curvgen, NULL, NULL, 1869 die_fail_reporters, dw); 1870 1871 terminate("failed to resolve types\n"); 1872 } 1873 1874 last = dw->dw_nunres; 1875 1876 } while (dw->dw_nunres != 0); 1877 } 1878 1879 /* 1880 * Any object containing a function or object symbol at any scope should also 1881 * contain DWARF data. 1882 */ 1883 static boolean_t 1884 should_have_dwarf(Elf *elf) 1885 { 1886 Elf_Scn *scn = NULL; 1887 Elf_Data *data = NULL; 1888 GElf_Shdr shdr; 1889 GElf_Sym sym; 1890 uint32_t symdx = 0; 1891 size_t nsyms = 0; 1892 boolean_t found = B_FALSE; 1893 1894 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1895 gelf_getshdr(scn, &shdr); 1896 1897 if (shdr.sh_type == SHT_SYMTAB) { 1898 found = B_TRUE; 1899 break; 1900 } 1901 } 1902 1903 if (!found) 1904 terminate("cannot convert stripped objects\n"); 1905 1906 data = elf_getdata(scn, NULL); 1907 nsyms = shdr.sh_size / shdr.sh_entsize; 1908 1909 for (symdx = 0; symdx < nsyms; symdx++) { 1910 gelf_getsym(data, symdx, &sym); 1911 1912 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1913 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1914 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1915 char *name; 1916 1917 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1918 1919 /* Studio emits these local symbols regardless */ 1920 if ((strcmp(name, "Bbss.bss") != 0) && 1921 (strcmp(name, "Ttbss.bss") != 0) && 1922 (strcmp(name, "Ddata.data") != 0) && 1923 (strcmp(name, "Ttdata.data") != 0) && 1924 (strcmp(name, "Drodata.rodata") != 0)) 1925 return (B_TRUE); 1926 } 1927 } 1928 1929 return (B_FALSE); 1930 } 1931 1932 /*ARGSUSED*/ 1933 int 1934 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1935 { 1936 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1937 Dwarf_Half vers, addrsz, offsz; 1938 Dwarf_Die cu = 0; 1939 Dwarf_Die child = 0; 1940 dwarf_t dw; 1941 char *prod = NULL; 1942 int rc; 1943 1944 bzero(&dw, sizeof (dwarf_t)); 1945 dw.dw_td = td; 1946 dw.dw_ptrsz = elf_ptrsz(elf); 1947 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1948 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1949 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1950 tdesc_namecmp); 1951 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1952 tdesc_namecmp); 1953 1954 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1955 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1956 if (should_have_dwarf(elf)) { 1957 errno = ENOENT; 1958 return (-1); 1959 } else { 1960 return (0); 1961 } 1962 } else if (rc != DW_DLV_OK) { 1963 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1964 /* 1965 * There's no type data in the DWARF section, but 1966 * libdwarf is too clever to handle that properly. 1967 */ 1968 return (0); 1969 } 1970 1971 terminate("failed to initialize DWARF: %s\n", 1972 dwarf_errmsg(dw.dw_err)); 1973 } 1974 1975 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1976 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1977 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1978 1979 if ((cu = die_sibling(&dw, NULL)) == NULL || 1980 (((child = die_child(&dw, cu)) == NULL) && 1981 should_have_dwarf(elf))) { 1982 terminate("file does not contain dwarf type data " 1983 "(try compiling with -g)\n"); 1984 } else if (child == NULL) { 1985 return (0); 1986 } 1987 1988 dw.dw_maxoff = nxthdr - 1; 1989 1990 if (dw.dw_maxoff > TID_FILEMAX) 1991 terminate("file contains too many types\n"); 1992 1993 debug(1, "DWARF version: %d\n", vers); 1994 if (vers < 2 || vers > 4) { 1995 terminate("file contains incompatible version %d DWARF code " 1996 "(version 2, 3 or 4 required)\n", vers); 1997 } 1998 1999 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 2000 debug(1, "DWARF emitter: %s\n", prod); 2001 free(prod); 2002 } 2003 2004 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2005 char *base = xstrdup(basename(dw.dw_cuname)); 2006 free(dw.dw_cuname); 2007 dw.dw_cuname = base; 2008 2009 debug(1, "CU name: %s\n", dw.dw_cuname); 2010 } 2011 2012 if ((child = die_child(&dw, cu)) != NULL) 2013 die_create(&dw, child); 2014 2015 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2016 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2017 terminate("multiple compilation units not supported\n"); 2018 2019 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2020 2021 die_resolve(&dw); 2022 2023 cvt_fixups(td, dw.dw_ptrsz); 2024 2025 /* leak the dwarf_t */ 2026 2027 return (0); 2028 } 2029