xref: /freebsd/cddl/contrib/opensolaris/tools/ctf/cvt/dwarf.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DWARF to tdata conversion
30  *
31  * For the most part, conversion is straightforward, proceeding in two passes.
32  * On the first pass, we iterate through every die, creating new type nodes as
33  * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
34  * allowing type reference pointers to be filled in.  If the tdesc_t
35  * corresponding to a given die can be completely filled out (sizes and offsets
36  * calculated, and so forth) without using any referenced types, the tdesc_t is
37  * marked as resolved.  Consider an array type.  If the type corresponding to
38  * the array contents has not yet been processed, we will create a blank tdesc
39  * for the contents type (only the type ID will be filled in, relying upon the
40  * later portion of the first pass to encounter and complete the referenced
41  * type).  We will then attempt to determine the size of the array.  If the
42  * array has a byte size attribute, we will have completely characterized the
43  * array type, and will be able to mark it as resolved.  The lack of a byte
44  * size attribute, on the other hand, will prevent us from fully resolving the
45  * type, as the size will only be calculable with reference to the contents
46  * type, which has not, as yet, been encountered.  The array type will thus be
47  * left without the resolved flag, and the first pass will continue.
48  *
49  * When we begin the second pass, we will have created tdesc_t nodes for every
50  * type in the section.  We will traverse the tree, from the iidescs down,
51  * processing each unresolved node.  As the referenced nodes will have been
52  * populated, the array type used in our example above will be able to use the
53  * size of the referenced types (if available) to determine its own type.  The
54  * traversal will be repeated until all types have been resolved or we have
55  * failed to make progress.  When all tdescs have been resolved, the conversion
56  * is complete.
57  *
58  * There are, as always, a few special cases that are handled during the first
59  * and second passes:
60  *
61  *  1. Empty enums - GCC will occasionally emit an enum without any members.
62  *     Later on in the file, it will emit the same enum type, though this time
63  *     with the full complement of members.  All references to the memberless
64  *     enum need to be redirected to the full definition.  During the first
65  *     pass, each enum is entered in dm_enumhash, along with a pointer to its
66  *     corresponding tdesc_t.  If, during the second pass, we encounter a
67  *     memberless enum, we use the hash to locate the full definition.  All
68  *     tdescs referencing the empty enum are then redirected.
69  *
70  *  2. Forward declarations - If the compiler sees a forward declaration for
71  *     a structure, followed by the definition of that structure, it will emit
72  *     DWARF data for both the forward declaration and the definition.  We need
73  *     to resolve the forward declarations when possible, by redirecting
74  *     forward-referencing tdescs to the actual struct/union definitions.  This
75  *     redirection is done completely within the first pass.  We begin by
76  *     recording all forward declarations in dw_fwdhash.  When we define a
77  *     structure, we check to see if there have been any corresponding forward
78  *     declarations.  If so, we redirect the tdescs which referenced the forward
79  *     declarations to the structure or union definition.
80  *
81  * XXX see if a post traverser will allow the elimination of repeated pass 2
82  * traversals.
83  */
84 
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <strings.h>
89 #include <errno.h>
90 #include <libelf.h>
91 #include <libdwarf.h>
92 #include <libgen.h>
93 #include <dwarf.h>
94 
95 #include "ctf_headers.h"
96 #include "ctftools.h"
97 #include "memory.h"
98 #include "list.h"
99 #include "traverse.h"
100 
101 /* The version of DWARF which we support. */
102 #define	DWARF_VERSION	2
103 
104 /*
105  * We need to define a couple of our own intrinsics, to smooth out some of the
106  * differences between the GCC and DevPro DWARF emitters.  See the referenced
107  * routines and the special cases in the file comment for more details.
108  *
109  * Type IDs are 32 bits wide.  We're going to use the top of that field to
110  * indicate types that we've created ourselves.
111  */
112 #define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
113 #define	TID_VOID		0x40000001	/* see die_void() */
114 #define	TID_LONG		0x40000002	/* see die_array() */
115 
116 #define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
117 
118 /*
119  * To reduce the staggering amount of error-handling code that would otherwise
120  * be required, the attribute-retrieval routines handle most of their own
121  * errors.  If the following flag is supplied as the value of the `req'
122  * argument, they will also handle the absence of a requested attribute by
123  * terminating the program.
124  */
125 #define	DW_ATTR_REQ	1
126 
127 #define	TDESC_HASH_BUCKETS	511
128 
129 typedef struct dwarf {
130 	Dwarf_Debug dw_dw;		/* for libdwarf */
131 	Dwarf_Error dw_err;		/* for libdwarf */
132 	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
133 	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
134 	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
135 	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
136 	hash_t *dw_enumhash;		/* hash of memberless enums by name */
137 	tdesc_t *dw_void;		/* manufactured void type */
138 	tdesc_t *dw_long;		/* manufactured long type for arrays */
139 	size_t dw_ptrsz;		/* size of a pointer in this file */
140 	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
141 	uint_t dw_nunres;		/* count of unresolved types */
142 	char *dw_cuname;		/* name of compilation unit */
143 } dwarf_t;
144 
145 static void die_create_one(dwarf_t *, Dwarf_Die);
146 static void die_create(dwarf_t *, Dwarf_Die);
147 
148 static tid_t
149 mfgtid_next(dwarf_t *dw)
150 {
151 	return (++dw->dw_mfgtid_last);
152 }
153 
154 static void
155 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
156 {
157 	hash_add(dw->dw_tidhash, tdp);
158 }
159 
160 static tdesc_t *
161 tdesc_lookup(dwarf_t *dw, int tid)
162 {
163 	tdesc_t tmpl;
164 	void *tdp;
165 
166 	tmpl.t_id = tid;
167 
168 	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
169 		return (tdp);
170 	else
171 		return (NULL);
172 }
173 
174 /*
175  * Resolve a tdesc down to a node which should have a size.  Returns the size,
176  * zero if the size hasn't yet been determined.
177  */
178 static size_t
179 tdesc_size(tdesc_t *tdp)
180 {
181 	for (;;) {
182 		switch (tdp->t_type) {
183 		case INTRINSIC:
184 		case POINTER:
185 		case ARRAY:
186 		case FUNCTION:
187 		case STRUCT:
188 		case UNION:
189 		case ENUM:
190 			return (tdp->t_size);
191 
192 		case FORWARD:
193 			return (0);
194 
195 		case TYPEDEF:
196 		case VOLATILE:
197 		case CONST:
198 		case RESTRICT:
199 			tdp = tdp->t_tdesc;
200 			continue;
201 
202 		case 0: /* not yet defined */
203 			return (0);
204 
205 		default:
206 			terminate("tdp %u: tdesc_size on unknown type %d\n",
207 			    tdp->t_id, tdp->t_type);
208 		}
209 	}
210 }
211 
212 static size_t
213 tdesc_bitsize(tdesc_t *tdp)
214 {
215 	for (;;) {
216 		switch (tdp->t_type) {
217 		case INTRINSIC:
218 			return (tdp->t_intr->intr_nbits);
219 
220 		case ARRAY:
221 		case FUNCTION:
222 		case STRUCT:
223 		case UNION:
224 		case ENUM:
225 		case POINTER:
226 			return (tdp->t_size * NBBY);
227 
228 		case FORWARD:
229 			return (0);
230 
231 		case TYPEDEF:
232 		case VOLATILE:
233 		case RESTRICT:
234 		case CONST:
235 			tdp = tdp->t_tdesc;
236 			continue;
237 
238 		case 0: /* not yet defined */
239 			return (0);
240 
241 		default:
242 			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
243 			    tdp->t_id, tdp->t_type);
244 		}
245 	}
246 }
247 
248 static tdesc_t *
249 tdesc_basetype(tdesc_t *tdp)
250 {
251 	for (;;) {
252 		switch (tdp->t_type) {
253 		case TYPEDEF:
254 		case VOLATILE:
255 		case RESTRICT:
256 		case CONST:
257 			tdp = tdp->t_tdesc;
258 			break;
259 		case 0: /* not yet defined */
260 			return (NULL);
261 		default:
262 			return (tdp);
263 		}
264 	}
265 }
266 
267 static Dwarf_Off
268 die_off(dwarf_t *dw, Dwarf_Die die)
269 {
270 	Dwarf_Off off;
271 
272 	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
273 		return (off);
274 
275 	terminate("failed to get offset for die: %s\n",
276 	    dwarf_errmsg(&dw->dw_err));
277 	/*NOTREACHED*/
278 	return (0);
279 }
280 
281 static Dwarf_Die
282 die_sibling(dwarf_t *dw, Dwarf_Die die)
283 {
284 	Dwarf_Die sib;
285 	int rc;
286 
287 	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
288 	    DW_DLV_OK)
289 		return (sib);
290 	else if (rc == DW_DLV_NO_ENTRY)
291 		return (NULL);
292 
293 	terminate("die %llu: failed to find type sibling: %s\n",
294 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
295 	/*NOTREACHED*/
296 	return (NULL);
297 }
298 
299 static Dwarf_Die
300 die_child(dwarf_t *dw, Dwarf_Die die)
301 {
302 	Dwarf_Die child;
303 	int rc;
304 
305 	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
306 		return (child);
307 	else if (rc == DW_DLV_NO_ENTRY)
308 		return (NULL);
309 
310 	terminate("die %llu: failed to find type child: %s\n",
311 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
312 	/*NOTREACHED*/
313 	return (NULL);
314 }
315 
316 static Dwarf_Half
317 die_tag(dwarf_t *dw, Dwarf_Die die)
318 {
319 	Dwarf_Half tag;
320 
321 	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
322 		return (tag);
323 
324 	terminate("die %llu: failed to get tag for type: %s\n",
325 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
326 	/*NOTREACHED*/
327 	return (0);
328 }
329 
330 static Dwarf_Attribute
331 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
332 {
333 	Dwarf_Attribute attr;
334 	int rc;
335 
336 	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
337 		return (attr);
338 	} else if (rc == DW_DLV_NO_ENTRY) {
339 		if (req) {
340 			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
341 			    name);
342 		} else {
343 			return (NULL);
344 		}
345 	}
346 
347 	terminate("die %llu: failed to get attribute for type: %s\n",
348 	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
349 	/*NOTREACHED*/
350 	return (NULL);
351 }
352 
353 static int
354 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
355     int req)
356 {
357 	*valp = 0;
358 	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
359 		if (req)
360 			terminate("die %llu: failed to get signed: %s\n",
361 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
362 		return (0);
363 	}
364 
365 	return (1);
366 }
367 
368 static int
369 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
370     int req)
371 {
372 	*valp = 0;
373 	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
374 		if (req)
375 			terminate("die %llu: failed to get unsigned: %s\n",
376 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
377 		return (0);
378 	}
379 
380 	return (1);
381 }
382 
383 static int
384 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
385 {
386 	*valp = 0;
387 
388 	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
389 		if (req)
390 			terminate("die %llu: failed to get flag: %s\n",
391 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
392 		return (0);
393 	}
394 
395 	return (1);
396 }
397 
398 static int
399 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
400 {
401 	const char *str = NULL;
402 
403 	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DWARF_E_NONE ||
404 	    str == NULL) {
405 		if (req)
406 			terminate("die %llu: failed to get string: %s\n",
407 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
408 		else
409 			*strp = NULL;
410 		return (0);
411 	} else
412 		*strp = xstrdup(str);
413 
414 	return (1);
415 }
416 
417 static Dwarf_Off
418 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
419 {
420 	Dwarf_Off off;
421 
422 	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DWARF_E_NONE) {
423 		terminate("die %llu: failed to get ref: %s\n",
424 		    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
425 	}
426 
427 	return (off);
428 }
429 
430 static char *
431 die_name(dwarf_t *dw, Dwarf_Die die)
432 {
433 	char *str = NULL;
434 
435 	(void) die_string(dw, die, DW_AT_name, &str, 0);
436 
437 	return (str);
438 }
439 
440 static int
441 die_isdecl(dwarf_t *dw, Dwarf_Die die)
442 {
443 	Dwarf_Bool val;
444 
445 	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
446 }
447 
448 static int
449 die_isglobal(dwarf_t *dw, Dwarf_Die die)
450 {
451 	Dwarf_Signed vis;
452 	Dwarf_Bool ext;
453 
454 	/*
455 	 * Some compilers (gcc) use DW_AT_external to indicate function
456 	 * visibility.  Others (Sun) use DW_AT_visibility.
457 	 */
458 	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
459 		return (vis == DW_VIS_exported);
460 	else
461 		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
462 }
463 
464 static tdesc_t *
465 die_add(dwarf_t *dw, Dwarf_Off off)
466 {
467 	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
468 
469 	tdp->t_id = off;
470 
471 	tdesc_add(dw, tdp);
472 
473 	return (tdp);
474 }
475 
476 static tdesc_t *
477 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
478 {
479 	Dwarf_Off ref = die_attr_ref(dw, die, name);
480 	tdesc_t *tdp;
481 
482 	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
483 		return (tdp);
484 
485 	return (die_add(dw, ref));
486 }
487 
488 static int
489 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
490     Dwarf_Unsigned *valp, int req __unused)
491 {
492 	Dwarf_Locdesc *loc = NULL;
493 	Dwarf_Signed locnum = 0;
494 
495 	if (dwarf_locdesc(die, name, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
496 		return (0);
497 
498 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
499 		terminate("die %llu: cannot parse member offset\n",
500 		    die_off(dw, die));
501 	}
502 
503 	*valp = loc->ld_s->lr_number;
504 
505 	if (loc != NULL)
506 		if (dwarf_locdesc_free(loc, &dw->dw_err) != DW_DLV_OK)
507 			terminate("die %llu: cannot free location descriptor: %s\n",
508 			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
509 
510 	return (1);
511 }
512 
513 static tdesc_t *
514 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
515 {
516 	tdesc_t *tdp;
517 	intr_t *intr;
518 
519 	intr = xcalloc(sizeof (intr_t));
520 	intr->intr_type = INTR_INT;
521 	intr->intr_signed = 1;
522 	intr->intr_nbits = sz * NBBY;
523 
524 	tdp = xcalloc(sizeof (tdesc_t));
525 	tdp->t_name = xstrdup(name);
526 	tdp->t_size = sz;
527 	tdp->t_id = tid;
528 	tdp->t_type = INTRINSIC;
529 	tdp->t_intr = intr;
530 	tdp->t_flags = TDESC_F_RESOLVED;
531 
532 	tdesc_add(dw, tdp);
533 
534 	return (tdp);
535 }
536 
537 /*
538  * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
539  * type reference implies a reference to a void type.  A void *, for example
540  * will be represented by a pointer die without a DW_AT_type.  CTF requires
541  * that pointer nodes point to something, so we'll create a void for use as
542  * the target.  Note that the DWARF data may already create a void type.  Ours
543  * would then be a duplicate, but it'll be removed in the self-uniquification
544  * merge performed at the completion of DWARF->tdesc conversion.
545  */
546 static tdesc_t *
547 tdesc_intr_void(dwarf_t *dw)
548 {
549 	if (dw->dw_void == NULL)
550 		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
551 
552 	return (dw->dw_void);
553 }
554 
555 static tdesc_t *
556 tdesc_intr_long(dwarf_t *dw)
557 {
558 	if (dw->dw_long == NULL) {
559 		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
560 		    dw->dw_ptrsz);
561 	}
562 
563 	return (dw->dw_long);
564 }
565 
566 /*
567  * Used for creating bitfield types.  We create a copy of an existing intrinsic,
568  * adjusting the size of the copy to match what the caller requested.  The
569  * caller can then use the copy as the type for a bitfield structure member.
570  */
571 static tdesc_t *
572 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
573 {
574 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
575 
576 	if (!(old->t_flags & TDESC_F_RESOLVED)) {
577 		terminate("tdp %u: attempt to make a bit field from an "
578 		    "unresolved type\n", old->t_id);
579 	}
580 
581 	new->t_name = xstrdup(old->t_name);
582 	new->t_size = old->t_size;
583 	new->t_id = mfgtid_next(dw);
584 	new->t_type = INTRINSIC;
585 	new->t_flags = TDESC_F_RESOLVED;
586 
587 	new->t_intr = xcalloc(sizeof (intr_t));
588 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
589 	new->t_intr->intr_nbits = bitsz;
590 
591 	tdesc_add(dw, new);
592 
593 	return (new);
594 }
595 
596 static void
597 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
598     tdesc_t *dimtdp)
599 {
600 	Dwarf_Unsigned uval;
601 	Dwarf_Signed sval;
602 	tdesc_t *ctdp = NULL;
603 	Dwarf_Die dim2;
604 	ardef_t *ar;
605 
606 	if ((dim2 = die_sibling(dw, dim)) == NULL) {
607 		ctdp = arrtdp;
608 	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
609 		ctdp = xcalloc(sizeof (tdesc_t));
610 		ctdp->t_id = mfgtid_next(dw);
611 		debug(3, "die %llu: creating new type %u for sub-dimension\n",
612 		    die_off(dw, dim2), ctdp->t_id);
613 		tdesc_array_create(dw, dim2, arrtdp, ctdp);
614 	} else {
615 		terminate("die %llu: unexpected non-subrange node in array\n",
616 		    die_off(dw, dim2));
617 	}
618 
619 	dimtdp->t_type = ARRAY;
620 	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
621 
622 	/*
623 	 * Array bounds can be signed or unsigned, but there are several kinds
624 	 * of signless forms (data1, data2, etc) that take their sign from the
625 	 * routine that is trying to interpret them.  That is, data1 can be
626 	 * either signed or unsigned, depending on whether you use the signed or
627 	 * unsigned accessor function.  GCC will use the signless forms to store
628 	 * unsigned values which have their high bit set, so we need to try to
629 	 * read them first as unsigned to get positive values.  We could also
630 	 * try signed first, falling back to unsigned if we got a negative
631 	 * value.
632 	 */
633 	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
634 		ar->ad_nelems = uval + 1;
635 	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
636 		ar->ad_nelems = sval + 1;
637 	else
638 		ar->ad_nelems = 0;
639 
640 	/*
641 	 * Different compilers use different index types.  Force the type to be
642 	 * a common, known value (long).
643 	 */
644 	ar->ad_idxtype = tdesc_intr_long(dw);
645 	ar->ad_contents = ctdp;
646 
647 	if (ar->ad_contents->t_size != 0) {
648 		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
649 		dimtdp->t_flags |= TDESC_F_RESOLVED;
650 	}
651 }
652 
653 /*
654  * Create a tdesc from an array node.  Some arrays will come with byte size
655  * attributes, and thus can be resolved immediately.  Others don't, and will
656  * need to wait until the second pass for resolution.
657  */
658 static void
659 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
660 {
661 	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
662 	Dwarf_Unsigned uval;
663 	Dwarf_Die dim;
664 
665 	debug(3, "die %llu <%llx>: creating array\n", off, off);
666 
667 	if ((dim = die_child(dw, arr)) == NULL ||
668 	    die_tag(dw, dim) != DW_TAG_subrange_type)
669 		terminate("die %llu: failed to retrieve array bounds\n", off);
670 
671 	tdesc_array_create(dw, dim, arrtdp, tdp);
672 
673 	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
674 		tdesc_t *dimtdp;
675 		int flags;
676 
677 		tdp->t_size = uval;
678 
679 		/*
680 		 * Ensure that sub-dimensions have sizes too before marking
681 		 * as resolved.
682 		 */
683 		flags = TDESC_F_RESOLVED;
684 		for (dimtdp = tdp->t_ardef->ad_contents;
685 		    dimtdp->t_type == ARRAY;
686 		    dimtdp = dimtdp->t_ardef->ad_contents) {
687 			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
688 				flags = 0;
689 				break;
690 			}
691 		}
692 
693 		tdp->t_flags |= flags;
694 	}
695 
696 	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
697 	    tdp->t_ardef->ad_nelems, tdp->t_size);
698 }
699 
700 /*ARGSUSED1*/
701 static int
702 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
703 {
704 	dwarf_t *dw = private;
705 	size_t sz;
706 
707 	if (tdp->t_flags & TDESC_F_RESOLVED)
708 		return (1);
709 
710 	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
711 	    tdp->t_ardef->ad_contents->t_id);
712 
713 	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
714 		debug(3, "unable to resolve array %s (%d) contents %d\n",
715 		    tdesc_name(tdp), tdp->t_id,
716 		    tdp->t_ardef->ad_contents->t_id);
717 
718 		dw->dw_nunres++;
719 		return (1);
720 	}
721 
722 	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
723 	tdp->t_flags |= TDESC_F_RESOLVED;
724 
725 	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
726 
727 	return (1);
728 }
729 
730 /*ARGSUSED1*/
731 static int
732 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
733 {
734 	tdesc_t *cont = tdp->t_ardef->ad_contents;
735 
736 	if (tdp->t_flags & TDESC_F_RESOLVED)
737 		return (1);
738 
739 	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
740 	    tdp->t_id, tdesc_name(cont), cont->t_id);
741 
742 	return (1);
743 }
744 
745 /*
746  * Most enums (those with members) will be resolved during this first pass.
747  * Others - those without members (see the file comment) - won't be, and will
748  * need to wait until the second pass when they can be matched with their full
749  * definitions.
750  */
751 static void
752 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
753 {
754 	Dwarf_Die mem;
755 	Dwarf_Unsigned uval;
756 	Dwarf_Signed sval;
757 
758 	debug(3, "die %llu: creating enum\n", off);
759 
760 	tdp->t_type = ENUM;
761 
762 	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
763 	tdp->t_size = uval;
764 
765 	if ((mem = die_child(dw, die)) != NULL) {
766 		elist_t **elastp = &tdp->t_emem;
767 
768 		do {
769 			elist_t *el;
770 
771 			if (die_tag(dw, mem) != DW_TAG_enumerator) {
772 				/* Nested type declaration */
773 				die_create_one(dw, mem);
774 				continue;
775 			}
776 
777 			el = xcalloc(sizeof (elist_t));
778 			el->el_name = die_name(dw, mem);
779 
780 			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
781 				el->el_number = sval;
782 			} else if (die_unsigned(dw, mem, DW_AT_const_value,
783 			    &uval, 0)) {
784 				el->el_number = uval;
785 			} else {
786 				terminate("die %llu: enum %llu: member without "
787 				    "value\n", off, die_off(dw, mem));
788 			}
789 
790 			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
791 			    die_off(dw, mem), el->el_name, el->el_number);
792 
793 			*elastp = el;
794 			elastp = &el->el_next;
795 
796 		} while ((mem = die_sibling(dw, mem)) != NULL);
797 
798 		hash_add(dw->dw_enumhash, tdp);
799 
800 		tdp->t_flags |= TDESC_F_RESOLVED;
801 
802 		if (tdp->t_name != NULL) {
803 			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
804 			ii->ii_type = II_SOU;
805 			ii->ii_name = xstrdup(tdp->t_name);
806 			ii->ii_dtype = tdp;
807 
808 			iidesc_add(dw->dw_td->td_iihash, ii);
809 		}
810 	}
811 }
812 
813 static int
814 die_enum_match(void *arg1, void *arg2)
815 {
816 	tdesc_t *tdp = arg1, **fullp = arg2;
817 
818 	if (tdp->t_emem != NULL) {
819 		*fullp = tdp;
820 		return (-1); /* stop the iteration */
821 	}
822 
823 	return (0);
824 }
825 
826 /*ARGSUSED1*/
827 static int
828 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
829 {
830 	dwarf_t *dw = private;
831 	tdesc_t *full = NULL;
832 
833 	if (tdp->t_flags & TDESC_F_RESOLVED)
834 		return (1);
835 
836 	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
837 
838 	/*
839 	 * The answer to this one won't change from iteration to iteration,
840 	 * so don't even try.
841 	 */
842 	if (full == NULL) {
843 		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
844 		    tdesc_name(tdp));
845 	}
846 
847 	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
848 	    tdesc_name(tdp), full->t_id);
849 
850 	tdp->t_flags |= TDESC_F_RESOLVED;
851 
852 	return (1);
853 }
854 
855 static int
856 die_fwd_map(void *arg1, void *arg2)
857 {
858 	tdesc_t *fwd = arg1, *sou = arg2;
859 
860 	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
861 	    tdesc_name(fwd), sou->t_id);
862 	fwd->t_tdesc = sou;
863 
864 	return (0);
865 }
866 
867 /*
868  * Structures and unions will never be resolved during the first pass, as we
869  * won't be able to fully determine the member sizes.  The second pass, which
870  * have access to sizing information, will be able to complete the resolution.
871  */
872 static void
873 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
874     int type, const char *typename)
875 {
876 	Dwarf_Unsigned sz, bitsz, bitoff;
877 	Dwarf_Die mem;
878 	mlist_t *ml, **mlastp;
879 	iidesc_t *ii;
880 
881 	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
882 
883 	debug(3, "die %llu: creating %s %s\n", off,
884 	    (tdp->t_type == FORWARD ? "forward decl" : typename),
885 	    tdesc_name(tdp));
886 
887 	if (tdp->t_type == FORWARD) {
888 		hash_add(dw->dw_fwdhash, tdp);
889 		return;
890 	}
891 
892 	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
893 
894 	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
895 	tdp->t_size = sz;
896 
897 	/*
898 	 * GCC allows empty SOUs as an extension.
899 	 */
900 	if ((mem = die_child(dw, str)) == NULL) {
901 		goto out;
902 	}
903 
904 	mlastp = &tdp->t_members;
905 
906 	do {
907 		Dwarf_Off memoff = die_off(dw, mem);
908 		Dwarf_Half tag = die_tag(dw, mem);
909 		Dwarf_Unsigned mloff;
910 
911 		if (tag != DW_TAG_member) {
912 			/* Nested type declaration */
913 			die_create_one(dw, mem);
914 			continue;
915 		}
916 
917 		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
918 
919 		ml = xcalloc(sizeof (mlist_t));
920 
921 		/*
922 		 * This could be a GCC anon struct/union member, so we'll allow
923 		 * an empty name, even though nothing can really handle them
924 		 * properly.  Note that some versions of GCC miss out debug
925 		 * info for anon structs, though recent versions are fixed (gcc
926 		 * bug 11816).
927 		 */
928 		if ((ml->ml_name = die_name(dw, mem)) == NULL)
929 			ml->ml_name = NULL;
930 
931 		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
932 
933 		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
934 		    &mloff, 0)) {
935 			debug(3, "die %llu: got mloff %llx\n", off,
936 			    (u_longlong_t)mloff);
937 			ml->ml_offset = mloff * 8;
938 		}
939 
940 		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
941 			ml->ml_size = bitsz;
942 		else
943 			ml->ml_size = tdesc_bitsize(ml->ml_type);
944 
945 		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
946 #if BYTE_ORDER == _BIG_ENDIAN
947 			ml->ml_offset += bitoff;
948 #else
949 			ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff -
950 			    ml->ml_size;
951 #endif
952 		}
953 
954 		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
955 		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
956 
957 		*mlastp = ml;
958 		mlastp = &ml->ml_next;
959 	} while ((mem = die_sibling(dw, mem)) != NULL);
960 
961 	/*
962 	 * GCC will attempt to eliminate unused types, thus decreasing the
963 	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
964 	 * header, include said header in your source file, and neglect to
965 	 * actually use (directly or indirectly) the foo_t in the source file,
966 	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
967 	 * the theory.
968 	 *
969 	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
970 	 * and then neglect to emit the members.  Strangely, the loner struct
971 	 * tag will always be followed by a proper nested declaration of
972 	 * something else.  This is clearly a bug, but we're not going to have
973 	 * time to get it fixed before this goo goes back, so we'll have to work
974 	 * around it.  If we see a no-membered struct with a nested declaration
975 	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
976 	 * Being paranoid, we won't simply remove it from the hash.  Instead,
977 	 * we'll decline to create an iidesc for it, thus ensuring that this
978 	 * type won't make it into the output file.  To be safe, we'll also
979 	 * change the name.
980 	 */
981 	if (tdp->t_members == NULL) {
982 		const char *old = tdesc_name(tdp);
983 		size_t newsz = 7 + strlen(old) + 1;
984 		char *new = xmalloc(newsz);
985 		(void) snprintf(new, newsz, "orphan %s", old);
986 
987 		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
988 
989 		if (tdp->t_name != NULL)
990 			free(tdp->t_name);
991 		tdp->t_name = new;
992 		return;
993 	}
994 
995 out:
996 	if (tdp->t_name != NULL) {
997 		ii = xcalloc(sizeof (iidesc_t));
998 		ii->ii_type = II_SOU;
999 		ii->ii_name = xstrdup(tdp->t_name);
1000 		ii->ii_dtype = tdp;
1001 
1002 		iidesc_add(dw->dw_td->td_iihash, ii);
1003 	}
1004 }
1005 
1006 static void
1007 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1008 {
1009 	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1010 }
1011 
1012 static void
1013 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1014 {
1015 	die_sou_create(dw, die, off, tdp, UNION, "union");
1016 }
1017 
1018 /*ARGSUSED1*/
1019 static int
1020 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1021 {
1022 	dwarf_t *dw = private;
1023 	mlist_t *ml;
1024 	tdesc_t *mt;
1025 
1026 	if (tdp->t_flags & TDESC_F_RESOLVED)
1027 		return (1);
1028 
1029 	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1030 
1031 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1032 		if (ml->ml_size == 0) {
1033 			mt = tdesc_basetype(ml->ml_type);
1034 
1035 			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1036 				continue;
1037 
1038 			/*
1039 			 * For empty members, or GCC/C99 flexible array
1040 			 * members, a size of 0 is correct.
1041 			 */
1042 			if (mt->t_members == NULL)
1043 				continue;
1044 			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1045 				continue;
1046 
1047 			dw->dw_nunres++;
1048 			return (1);
1049 		}
1050 
1051 		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1052 			dw->dw_nunres++;
1053 			return (1);
1054 		}
1055 
1056 		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1057 		    mt->t_intr->intr_nbits != ml->ml_size) {
1058 			/*
1059 			 * This member is a bitfield, and needs to reference
1060 			 * an intrinsic type with the same width.  If the
1061 			 * currently-referenced type isn't of the same width,
1062 			 * we'll copy it, adjusting the width of the copy to
1063 			 * the size we'd like.
1064 			 */
1065 			debug(3, "tdp %u: creating bitfield for %d bits\n",
1066 			    tdp->t_id, ml->ml_size);
1067 
1068 			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1069 		}
1070 	}
1071 
1072 	tdp->t_flags |= TDESC_F_RESOLVED;
1073 
1074 	return (1);
1075 }
1076 
1077 /*ARGSUSED1*/
1078 static int
1079 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1080 {
1081 	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1082 	mlist_t *ml;
1083 
1084 	if (tdp->t_flags & TDESC_F_RESOLVED)
1085 		return (1);
1086 
1087 	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1088 		if (ml->ml_size == 0) {
1089 			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1090 			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1091 			    tdp->t_id,
1092 			    ml->ml_name, tdesc_name(ml->ml_type),
1093 			    ml->ml_type->t_id, ml->ml_type->t_id);
1094 		}
1095 	}
1096 
1097 	return (1);
1098 }
1099 
1100 static void
1101 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1102 {
1103 	Dwarf_Attribute attr;
1104 	Dwarf_Half tag;
1105 	Dwarf_Die arg;
1106 	fndef_t *fn;
1107 	int i;
1108 
1109 	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1110 
1111 	/*
1112 	 * We'll begin by processing any type definition nodes that may be
1113 	 * lurking underneath this one.
1114 	 */
1115 	for (arg = die_child(dw, die); arg != NULL;
1116 	    arg = die_sibling(dw, arg)) {
1117 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1118 		    tag != DW_TAG_unspecified_parameters) {
1119 			/* Nested type declaration */
1120 			die_create_one(dw, arg);
1121 		}
1122 	}
1123 
1124 	if (die_isdecl(dw, die)) {
1125 		/*
1126 		 * This is a prototype.  We don't add prototypes to the
1127 		 * tree, so we're going to drop the tdesc.  Unfortunately,
1128 		 * it has already been added to the tree.  Nobody will reference
1129 		 * it, though, and it will be leaked.
1130 		 */
1131 		return;
1132 	}
1133 
1134 	fn = xcalloc(sizeof (fndef_t));
1135 
1136 	tdp->t_type = FUNCTION;
1137 
1138 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1139 		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1140 	} else {
1141 		fn->fn_ret = tdesc_intr_void(dw);
1142 	}
1143 
1144 	/*
1145 	 * Count the arguments to the function, then read them in.
1146 	 */
1147 	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1148 	    arg = die_sibling(dw, arg)) {
1149 		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1150 			fn->fn_nargs++;
1151 		else if (tag == DW_TAG_unspecified_parameters &&
1152 		    fn->fn_nargs > 0)
1153 			fn->fn_vargs = 1;
1154 	}
1155 
1156 	if (fn->fn_nargs != 0) {
1157 		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1158 		    (fn->fn_nargs > 1 ? "s" : ""));
1159 
1160 		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1161 		for (i = 0, arg = die_child(dw, die);
1162 		    arg != NULL && i < (int) fn->fn_nargs;
1163 		    arg = die_sibling(dw, arg)) {
1164 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1165 				continue;
1166 
1167 			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1168 			    DW_AT_type);
1169 		}
1170 	}
1171 
1172 	tdp->t_fndef = fn;
1173 	tdp->t_flags |= TDESC_F_RESOLVED;
1174 }
1175 
1176 /*
1177  * GCC and DevPro use different names for the base types.  While the terms are
1178  * the same, they are arranged in a different order.  Some terms, such as int,
1179  * are implied in one, and explicitly named in the other.  Given a base type
1180  * as input, this routine will return a common name, along with an intr_t
1181  * that reflects said name.
1182  */
1183 static intr_t *
1184 die_base_name_parse(const char *name, char **newp)
1185 {
1186 	char buf[100];
1187 	char const *base;
1188 	char *c;
1189 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1190 	int sign = 1;
1191 	char fmt = '\0';
1192 	intr_t *intr;
1193 
1194 	if (strlen(name) > sizeof (buf) - 1)
1195 		terminate("base type name \"%s\" is too long\n", name);
1196 
1197 	strncpy(buf, name, sizeof (buf));
1198 
1199 	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1200 		if (strcmp(c, "signed") == 0)
1201 			sign = 1;
1202 		else if (strcmp(c, "unsigned") == 0)
1203 			sign = 0;
1204 		else if (strcmp(c, "long") == 0)
1205 			nlong++;
1206 		else if (strcmp(c, "char") == 0) {
1207 			nchar++;
1208 			fmt = 'c';
1209 		} else if (strcmp(c, "short") == 0)
1210 			nshort++;
1211 		else if (strcmp(c, "int") == 0)
1212 			nint++;
1213 		else {
1214 			/*
1215 			 * If we don't recognize any of the tokens, we'll tell
1216 			 * the caller to fall back to the dwarf-provided
1217 			 * encoding information.
1218 			 */
1219 			return (NULL);
1220 		}
1221 	}
1222 
1223 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1224 		return (NULL);
1225 
1226 	if (nchar > 0) {
1227 		if (nlong > 0 || nshort > 0 || nint > 0)
1228 			return (NULL);
1229 
1230 		base = "char";
1231 
1232 	} else if (nshort > 0) {
1233 		if (nlong > 0)
1234 			return (NULL);
1235 
1236 		base = "short";
1237 
1238 	} else if (nlong > 0) {
1239 		base = "long";
1240 
1241 	} else {
1242 		base = "int";
1243 	}
1244 
1245 	intr = xcalloc(sizeof (intr_t));
1246 	intr->intr_type = INTR_INT;
1247 	intr->intr_signed = sign;
1248 	intr->intr_iformat = fmt;
1249 
1250 	snprintf(buf, sizeof (buf), "%s%s%s",
1251 	    (sign ? "" : "unsigned "),
1252 	    (nlong > 1 ? "long " : ""),
1253 	    base);
1254 
1255 	*newp = xstrdup(buf);
1256 	return (intr);
1257 }
1258 
1259 typedef struct fp_size_map {
1260 	size_t fsm_typesz[2];	/* size of {32,64} type */
1261 	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1262 } fp_size_map_t;
1263 
1264 static const fp_size_map_t fp_encodings[] = {
1265 	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1266 	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1267 #ifdef __sparc
1268 	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1269 #else
1270 	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1271 #endif
1272 	{ { 0, 0 }, { 0, 0, 0 } }
1273 };
1274 
1275 static uint_t
1276 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1277 {
1278 	const fp_size_map_t *map = fp_encodings;
1279 	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1280 	uint_t mult = 1, col = 0;
1281 
1282 	if (enc == DW_ATE_complex_float) {
1283 		mult = 2;
1284 		col = 1;
1285 	} else if (enc == DW_ATE_imaginary_float
1286 #if defined(sun)
1287 	    || enc == DW_ATE_SUN_imaginary_float
1288 #endif
1289 	    )
1290 		col = 2;
1291 
1292 	while (map->fsm_typesz[szidx] != 0) {
1293 		if (map->fsm_typesz[szidx] * mult == sz)
1294 			return (map->fsm_enc[col]);
1295 		map++;
1296 	}
1297 
1298 	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1299 	/*NOTREACHED*/
1300 	return (0);
1301 }
1302 
1303 static intr_t *
1304 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1305 {
1306 	intr_t *intr = xcalloc(sizeof (intr_t));
1307 	Dwarf_Signed enc;
1308 
1309 	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1310 
1311 	switch (enc) {
1312 	case DW_ATE_unsigned:
1313 	case DW_ATE_address:
1314 		intr->intr_type = INTR_INT;
1315 		break;
1316 	case DW_ATE_unsigned_char:
1317 		intr->intr_type = INTR_INT;
1318 		intr->intr_iformat = 'c';
1319 		break;
1320 	case DW_ATE_signed:
1321 		intr->intr_type = INTR_INT;
1322 		intr->intr_signed = 1;
1323 		break;
1324 	case DW_ATE_signed_char:
1325 		intr->intr_type = INTR_INT;
1326 		intr->intr_signed = 1;
1327 		intr->intr_iformat = 'c';
1328 		break;
1329 	case DW_ATE_boolean:
1330 		intr->intr_type = INTR_INT;
1331 		intr->intr_signed = 1;
1332 		intr->intr_iformat = 'b';
1333 		break;
1334 	case DW_ATE_float:
1335 	case DW_ATE_complex_float:
1336 	case DW_ATE_imaginary_float:
1337 #if defined(sun)
1338 	case DW_ATE_SUN_imaginary_float:
1339 	case DW_ATE_SUN_interval_float:
1340 #endif
1341 		intr->intr_type = INTR_REAL;
1342 		intr->intr_signed = 1;
1343 		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1344 		break;
1345 	default:
1346 		terminate("die %llu: unknown base type encoding 0x%llx\n",
1347 		    off, enc);
1348 	}
1349 
1350 	return (intr);
1351 }
1352 
1353 static void
1354 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1355 {
1356 	Dwarf_Unsigned sz;
1357 	intr_t *intr;
1358 	char *new;
1359 
1360 	debug(3, "die %llu: creating base type\n", off);
1361 
1362 	/*
1363 	 * The compilers have their own clever (internally inconsistent) ideas
1364 	 * as to what base types should look like.  Some times gcc will, for
1365 	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1366 	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1367 	 * down the road, particularly with merging.  We do, however, use the
1368 	 * DWARF idea of type sizes, as this allows us to avoid caring about
1369 	 * the data model.
1370 	 */
1371 	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1372 
1373 	if (tdp->t_name == NULL)
1374 		terminate("die %llu: base type without name\n", off);
1375 
1376 	/* XXX make a name parser for float too */
1377 	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1378 		/* Found it.  We'll use the parsed version */
1379 		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1380 		    tdesc_name(tdp), new);
1381 
1382 		free(tdp->t_name);
1383 		tdp->t_name = new;
1384 	} else {
1385 		/*
1386 		 * We didn't recognize the type, so we'll create an intr_t
1387 		 * based on the DWARF data.
1388 		 */
1389 		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1390 		    tdesc_name(tdp));
1391 
1392 		intr = die_base_from_dwarf(dw, base, off, sz);
1393 	}
1394 
1395 	intr->intr_nbits = sz * 8;
1396 
1397 	tdp->t_type = INTRINSIC;
1398 	tdp->t_intr = intr;
1399 	tdp->t_size = sz;
1400 
1401 	tdp->t_flags |= TDESC_F_RESOLVED;
1402 }
1403 
1404 static void
1405 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1406     int type, const char *typename)
1407 {
1408 	Dwarf_Attribute attr;
1409 
1410 	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1411 
1412 	tdp->t_type = type;
1413 
1414 	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1415 		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1416 	} else {
1417 		tdp->t_tdesc = tdesc_intr_void(dw);
1418 	}
1419 
1420 	if (type == POINTER)
1421 		tdp->t_size = dw->dw_ptrsz;
1422 
1423 	tdp->t_flags |= TDESC_F_RESOLVED;
1424 
1425 	if (type == TYPEDEF) {
1426 		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1427 		ii->ii_type = II_TYPE;
1428 		ii->ii_name = xstrdup(tdp->t_name);
1429 		ii->ii_dtype = tdp;
1430 
1431 		iidesc_add(dw->dw_td->td_iihash, ii);
1432 	}
1433 }
1434 
1435 static void
1436 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1437 {
1438 	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1439 }
1440 
1441 static void
1442 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1443 {
1444 	die_through_create(dw, die, off, tdp, CONST, "const");
1445 }
1446 
1447 static void
1448 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1449 {
1450 	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1451 }
1452 
1453 static void
1454 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1455 {
1456 	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1457 }
1458 
1459 static void
1460 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1461 {
1462 	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1463 }
1464 
1465 /*ARGSUSED3*/
1466 static void
1467 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1468 {
1469 	Dwarf_Die arg;
1470 	Dwarf_Half tag;
1471 	iidesc_t *ii;
1472 	char *name;
1473 
1474 	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1475 
1476 	/*
1477 	 * We'll begin by processing any type definition nodes that may be
1478 	 * lurking underneath this one.
1479 	 */
1480 	for (arg = die_child(dw, die); arg != NULL;
1481 	    arg = die_sibling(dw, arg)) {
1482 		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1483 		    tag != DW_TAG_variable) {
1484 			/* Nested type declaration */
1485 			die_create_one(dw, arg);
1486 		}
1487 	}
1488 
1489 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1490 		/*
1491 		 * We process neither prototypes nor subprograms without
1492 		 * names.
1493 		 */
1494 		return;
1495 	}
1496 
1497 	ii = xcalloc(sizeof (iidesc_t));
1498 	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1499 	ii->ii_name = name;
1500 	if (ii->ii_type == II_SFUN)
1501 		ii->ii_owner = xstrdup(dw->dw_cuname);
1502 
1503 	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1504 	    (ii->ii_type == II_GFUN ? "global" : "static"));
1505 
1506 	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1507 		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1508 	else
1509 		ii->ii_dtype = tdesc_intr_void(dw);
1510 
1511 	for (arg = die_child(dw, die); arg != NULL;
1512 	    arg = die_sibling(dw, arg)) {
1513 		char *name1;
1514 
1515 		debug(3, "die %llu: looking at sub member at %llu\n",
1516 		    off, die_off(dw, die));
1517 
1518 		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1519 			continue;
1520 
1521 		if ((name1 = die_name(dw, arg)) == NULL) {
1522 			terminate("die %llu: func arg %d has no name\n",
1523 			    off, ii->ii_nargs + 1);
1524 		}
1525 
1526 		if (strcmp(name1, "...") == 0) {
1527 			free(name1);
1528 			ii->ii_vargs = 1;
1529 			continue;
1530 		}
1531 
1532 		ii->ii_nargs++;
1533 	}
1534 
1535 	if (ii->ii_nargs > 0) {
1536 		int i;
1537 
1538 		debug(3, "die %llu: function has %d argument%s\n", off,
1539 		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1540 
1541 		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1542 
1543 		for (arg = die_child(dw, die), i = 0;
1544 		    arg != NULL && i < ii->ii_nargs;
1545 		    arg = die_sibling(dw, arg)) {
1546 			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1547 				continue;
1548 
1549 			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1550 			    DW_AT_type);
1551 		}
1552 	}
1553 
1554 	iidesc_add(dw->dw_td->td_iihash, ii);
1555 }
1556 
1557 /*ARGSUSED3*/
1558 static void
1559 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1560 {
1561 	iidesc_t *ii;
1562 	char *name;
1563 
1564 	debug(3, "die %llu: creating object definition\n", off);
1565 
1566 	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1567 		return; /* skip prototypes and nameless objects */
1568 
1569 	ii = xcalloc(sizeof (iidesc_t));
1570 	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1571 	ii->ii_name = name;
1572 	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1573 	if (ii->ii_type == II_SVAR)
1574 		ii->ii_owner = xstrdup(dw->dw_cuname);
1575 
1576 	iidesc_add(dw->dw_td->td_iihash, ii);
1577 }
1578 
1579 /*ARGSUSED2*/
1580 static int
1581 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1582 {
1583 	if (fwd->t_flags & TDESC_F_RESOLVED)
1584 		return (1);
1585 
1586 	if (fwd->t_tdesc != NULL) {
1587 		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1588 		    tdesc_name(fwd));
1589 		*fwdp = fwd->t_tdesc;
1590 	}
1591 
1592 	fwd->t_flags |= TDESC_F_RESOLVED;
1593 
1594 	return (1);
1595 }
1596 
1597 /*ARGSUSED*/
1598 static void
1599 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1600 {
1601 	Dwarf_Die child = die_child(dw, die);
1602 
1603 	if (child != NULL)
1604 		die_create(dw, child);
1605 }
1606 
1607 /*
1608  * Used to map the die to a routine which can parse it, using the tag to do the
1609  * mapping.  While the processing of most tags entails the creation of a tdesc,
1610  * there are a few which don't - primarily those which result in the creation of
1611  * iidescs which refer to existing tdescs.
1612  */
1613 
1614 #define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1615 
1616 typedef struct die_creator {
1617 	Dwarf_Half dc_tag;
1618 	uint16_t dc_flags;
1619 	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1620 } die_creator_t;
1621 
1622 static const die_creator_t die_creators[] = {
1623 	{ DW_TAG_array_type,		0,		die_array_create },
1624 	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1625 	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1626 	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1627 	{ DW_TAG_structure_type,	0,		die_struct_create },
1628 	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1629 	{ DW_TAG_typedef,		0,		die_typedef_create },
1630 	{ DW_TAG_union_type,		0,		die_union_create },
1631 	{ DW_TAG_base_type,		0,		die_base_create },
1632 	{ DW_TAG_const_type,		0,		die_const_create },
1633 	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1634 	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1635 	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1636 	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1637 	{ 0, 0, NULL }
1638 };
1639 
1640 static const die_creator_t *
1641 die_tag2ctor(Dwarf_Half tag)
1642 {
1643 	const die_creator_t *dc;
1644 
1645 	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1646 		if (dc->dc_tag == tag)
1647 			return (dc);
1648 	}
1649 
1650 	return (NULL);
1651 }
1652 
1653 static void
1654 die_create_one(dwarf_t *dw, Dwarf_Die die)
1655 {
1656 	Dwarf_Off off = die_off(dw, die);
1657 	const die_creator_t *dc;
1658 	Dwarf_Half tag;
1659 	tdesc_t *tdp;
1660 
1661 	debug(3, "die %llu <%llx>: create_one\n", off, off);
1662 
1663 	if (off > dw->dw_maxoff) {
1664 		terminate("illegal die offset %llu (max %llu)\n", off,
1665 		    dw->dw_maxoff);
1666 	}
1667 
1668 	tag = die_tag(dw, die);
1669 
1670 	if ((dc = die_tag2ctor(tag)) == NULL) {
1671 		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1672 		return;
1673 	}
1674 
1675 	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1676 	    !(dc->dc_flags & DW_F_NOTDP)) {
1677 		tdp = xcalloc(sizeof (tdesc_t));
1678 		tdp->t_id = off;
1679 		tdesc_add(dw, tdp);
1680 	}
1681 
1682 	if (tdp != NULL)
1683 		tdp->t_name = die_name(dw, die);
1684 
1685 	dc->dc_create(dw, die, off, tdp);
1686 }
1687 
1688 static void
1689 die_create(dwarf_t *dw, Dwarf_Die die)
1690 {
1691 	do {
1692 		die_create_one(dw, die);
1693 	} while ((die = die_sibling(dw, die)) != NULL);
1694 }
1695 
1696 static tdtrav_cb_f die_resolvers[] = {
1697 	NULL,
1698 	NULL,			/* intrinsic */
1699 	NULL,			/* pointer */
1700 	die_array_resolve,	/* array */
1701 	NULL,			/* function */
1702 	die_sou_resolve,	/* struct */
1703 	die_sou_resolve,	/* union */
1704 	die_enum_resolve,	/* enum */
1705 	die_fwd_resolve,	/* forward */
1706 	NULL,			/* typedef */
1707 	NULL,			/* typedef unres */
1708 	NULL,			/* volatile */
1709 	NULL,			/* const */
1710 	NULL,			/* restrict */
1711 };
1712 
1713 static tdtrav_cb_f die_fail_reporters[] = {
1714 	NULL,
1715 	NULL,			/* intrinsic */
1716 	NULL,			/* pointer */
1717 	die_array_failed,	/* array */
1718 	NULL,			/* function */
1719 	die_sou_failed,		/* struct */
1720 	die_sou_failed,		/* union */
1721 	NULL,			/* enum */
1722 	NULL,			/* forward */
1723 	NULL,			/* typedef */
1724 	NULL,			/* typedef unres */
1725 	NULL,			/* volatile */
1726 	NULL,			/* const */
1727 	NULL,			/* restrict */
1728 };
1729 
1730 static void
1731 die_resolve(dwarf_t *dw)
1732 {
1733 	int last = -1;
1734 	int pass = 0;
1735 
1736 	do {
1737 		pass++;
1738 		dw->dw_nunres = 0;
1739 
1740 		(void) iitraverse_hash(dw->dw_td->td_iihash,
1741 		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1742 
1743 		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1744 
1745 		if ((int) dw->dw_nunres == last) {
1746 			fprintf(stderr, "%s: failed to resolve the following "
1747 			    "types:\n", progname);
1748 
1749 			(void) iitraverse_hash(dw->dw_td->td_iihash,
1750 			    &dw->dw_td->td_curvgen, NULL, NULL,
1751 			    die_fail_reporters, dw);
1752 
1753 			terminate("failed to resolve types\n");
1754 		}
1755 
1756 		last = dw->dw_nunres;
1757 
1758 	} while (dw->dw_nunres != 0);
1759 }
1760 
1761 /*ARGSUSED*/
1762 int
1763 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1764 {
1765 	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1766 	Dwarf_Half vers, addrsz;
1767 	Dwarf_Die cu = 0;
1768 	Dwarf_Die child = 0;
1769 	dwarf_t dw;
1770 	char *prod = NULL;
1771 	int rc;
1772 
1773 	bzero(&dw, sizeof (dwarf_t));
1774 	dw.dw_td = td;
1775 	dw.dw_ptrsz = elf_ptrsz(elf);
1776 	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1777 	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1778 	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1779 	    tdesc_namecmp);
1780 	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1781 	    tdesc_namecmp);
1782 
1783 	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, &dw.dw_dw,
1784 	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1785 		errno = ENOENT;
1786 		return (-1);
1787 	} else if (rc != DW_DLV_OK) {
1788 		if (dwarf_errno(&dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1789 			/*
1790 			 * There's no type data in the DWARF section, but
1791 			 * libdwarf is too clever to handle that properly.
1792 			 */
1793 			return (0);
1794 		}
1795 
1796 		terminate("failed to initialize DWARF: %s\n",
1797 		    dwarf_errmsg(&dw.dw_err));
1798 	}
1799 
1800 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1801 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1802 		terminate("rc = %d %s\n", rc, dwarf_errmsg(&dw.dw_err));
1803 
1804 	if ((cu = die_sibling(&dw, NULL)) == NULL)
1805 		terminate("file does not contain dwarf type data "
1806 		    "(try compiling with -g)\n");
1807 
1808 	dw.dw_maxoff = nxthdr - 1;
1809 
1810 	if (dw.dw_maxoff > TID_FILEMAX)
1811 		terminate("file contains too many types\n");
1812 
1813 	debug(1, "DWARF version: %d\n", vers);
1814 	if (vers != DWARF_VERSION) {
1815 		terminate("file contains incompatible version %d DWARF code "
1816 		    "(version 2 required)\n", vers);
1817 	}
1818 
1819 	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1820 		debug(1, "DWARF emitter: %s\n", prod);
1821 		free(prod);
1822 	}
1823 
1824 	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1825 		char *base = xstrdup(basename(dw.dw_cuname));
1826 		free(dw.dw_cuname);
1827 		dw.dw_cuname = base;
1828 
1829 		debug(1, "CU name: %s\n", dw.dw_cuname);
1830 	}
1831 
1832 	if ((child = die_child(&dw, cu)) != NULL)
1833 		die_create(&dw, child);
1834 
1835 	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1836 	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
1837 		terminate("multiple compilation units not supported\n");
1838 
1839 	(void) dwarf_finish(&dw.dw_dw, &dw.dw_err);
1840 
1841 	die_resolve(&dw);
1842 
1843 	cvt_fixups(td, dw.dw_ptrsz);
1844 
1845 	/* leak the dwarf_t */
1846 
1847 	return (0);
1848 }
1849