1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #include <stdio.h> 84 #include <stdlib.h> 85 #include <string.h> 86 #include <strings.h> 87 #include <errno.h> 88 #include <libelf.h> 89 #include <libdwarf.h> 90 #include <libgen.h> 91 #include <dwarf.h> 92 93 #include "ctf_headers.h" 94 #include "ctftools.h" 95 #include "memory.h" 96 #include "list.h" 97 #include "traverse.h" 98 99 /* 100 * We need to define a couple of our own intrinsics, to smooth out some of the 101 * differences between the GCC and DevPro DWARF emitters. See the referenced 102 * routines and the special cases in the file comment for more details. 103 * 104 * Type IDs are 32 bits wide. We're going to use the top of that field to 105 * indicate types that we've created ourselves. 106 */ 107 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 108 #define TID_VOID 0x40000001 /* see die_void() */ 109 #define TID_LONG 0x40000002 /* see die_array() */ 110 111 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 112 113 /* 114 * To reduce the staggering amount of error-handling code that would otherwise 115 * be required, the attribute-retrieval routines handle most of their own 116 * errors. If the following flag is supplied as the value of the `req' 117 * argument, they will also handle the absence of a requested attribute by 118 * terminating the program. 119 */ 120 #define DW_ATTR_REQ 1 121 122 #define TDESC_HASH_BUCKETS 511 123 124 typedef struct dwarf { 125 Dwarf_Debug dw_dw; /* for libdwarf */ 126 Dwarf_Error dw_err; /* for libdwarf */ 127 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 128 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 129 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 130 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 131 hash_t *dw_enumhash; /* hash of memberless enums by name */ 132 tdesc_t *dw_void; /* manufactured void type */ 133 tdesc_t *dw_long; /* manufactured long type for arrays */ 134 size_t dw_ptrsz; /* size of a pointer in this file */ 135 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 136 uint_t dw_nunres; /* count of unresolved types */ 137 char *dw_cuname; /* name of compilation unit */ 138 } dwarf_t; 139 140 static void die_create_one(dwarf_t *, Dwarf_Die); 141 static void die_create(dwarf_t *, Dwarf_Die); 142 143 static tid_t 144 mfgtid_next(dwarf_t *dw) 145 { 146 return (++dw->dw_mfgtid_last); 147 } 148 149 static void 150 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 151 { 152 hash_add(dw->dw_tidhash, tdp); 153 } 154 155 static tdesc_t * 156 tdesc_lookup(dwarf_t *dw, int tid) 157 { 158 tdesc_t tmpl; 159 void *tdp; 160 161 tmpl.t_id = tid; 162 163 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 164 return (tdp); 165 else 166 return (NULL); 167 } 168 169 /* 170 * Resolve a tdesc down to a node which should have a size. Returns the size, 171 * zero if the size hasn't yet been determined. 172 */ 173 static size_t 174 tdesc_size(tdesc_t *tdp) 175 { 176 for (;;) { 177 switch (tdp->t_type) { 178 case INTRINSIC: 179 case POINTER: 180 case ARRAY: 181 case FUNCTION: 182 case STRUCT: 183 case UNION: 184 case ENUM: 185 return (tdp->t_size); 186 187 case FORWARD: 188 return (0); 189 190 case TYPEDEF: 191 case VOLATILE: 192 case CONST: 193 case RESTRICT: 194 tdp = tdp->t_tdesc; 195 continue; 196 197 case 0: /* not yet defined */ 198 return (0); 199 200 default: 201 terminate("tdp %u: tdesc_size on unknown type %d\n", 202 tdp->t_id, tdp->t_type); 203 } 204 } 205 } 206 207 static size_t 208 tdesc_bitsize(tdesc_t *tdp) 209 { 210 for (;;) { 211 switch (tdp->t_type) { 212 case INTRINSIC: 213 return (tdp->t_intr->intr_nbits); 214 215 case ARRAY: 216 case FUNCTION: 217 case STRUCT: 218 case UNION: 219 case ENUM: 220 case POINTER: 221 return (tdp->t_size * NBBY); 222 223 case FORWARD: 224 return (0); 225 226 case TYPEDEF: 227 case VOLATILE: 228 case RESTRICT: 229 case CONST: 230 tdp = tdp->t_tdesc; 231 continue; 232 233 case 0: /* not yet defined */ 234 return (0); 235 236 default: 237 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 238 tdp->t_id, tdp->t_type); 239 } 240 } 241 } 242 243 static tdesc_t * 244 tdesc_basetype(tdesc_t *tdp) 245 { 246 for (;;) { 247 switch (tdp->t_type) { 248 case TYPEDEF: 249 case VOLATILE: 250 case RESTRICT: 251 case CONST: 252 tdp = tdp->t_tdesc; 253 break; 254 case 0: /* not yet defined */ 255 return (NULL); 256 default: 257 return (tdp); 258 } 259 } 260 } 261 262 static Dwarf_Off 263 die_off(dwarf_t *dw, Dwarf_Die die) 264 { 265 Dwarf_Off off; 266 267 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 268 return (off); 269 270 terminate("failed to get offset for die: %s\n", 271 dwarf_errmsg(dw->dw_err)); 272 /*NOTREACHED*/ 273 return (0); 274 } 275 276 static Dwarf_Die 277 die_sibling(dwarf_t *dw, Dwarf_Die die) 278 { 279 Dwarf_Die sib; 280 int rc; 281 282 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 283 DW_DLV_OK) 284 return (sib); 285 else if (rc == DW_DLV_NO_ENTRY) 286 return (NULL); 287 288 terminate("die %llu: failed to find type sibling: %s\n", 289 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 290 /*NOTREACHED*/ 291 return (NULL); 292 } 293 294 static Dwarf_Die 295 die_child(dwarf_t *dw, Dwarf_Die die) 296 { 297 Dwarf_Die child; 298 int rc; 299 300 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 301 return (child); 302 else if (rc == DW_DLV_NO_ENTRY) 303 return (NULL); 304 305 terminate("die %llu: failed to find type child: %s\n", 306 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 307 /*NOTREACHED*/ 308 return (NULL); 309 } 310 311 static Dwarf_Half 312 die_tag(dwarf_t *dw, Dwarf_Die die) 313 { 314 Dwarf_Half tag; 315 316 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 317 return (tag); 318 319 terminate("die %llu: failed to get tag for type: %s\n", 320 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 321 /*NOTREACHED*/ 322 return (0); 323 } 324 325 static Dwarf_Attribute 326 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 327 { 328 Dwarf_Attribute attr; 329 int rc; 330 331 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 332 return (attr); 333 } else if (rc == DW_DLV_NO_ENTRY) { 334 if (req) { 335 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 336 name); 337 } else { 338 return (NULL); 339 } 340 } 341 342 terminate("die %llu: failed to get attribute for type: %s\n", 343 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 344 /*NOTREACHED*/ 345 return (NULL); 346 } 347 348 static int 349 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 350 int req) 351 { 352 *valp = 0; 353 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 354 if (req) 355 terminate("die %llu: failed to get signed: %s\n", 356 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 357 return (0); 358 } 359 360 return (1); 361 } 362 363 static int 364 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 365 int req) 366 { 367 *valp = 0; 368 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 369 if (req) 370 terminate("die %llu: failed to get unsigned: %s\n", 371 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 372 return (0); 373 } 374 375 return (1); 376 } 377 378 static int 379 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 380 { 381 *valp = 0; 382 383 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 384 if (req) 385 terminate("die %llu: failed to get flag: %s\n", 386 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 387 return (0); 388 } 389 390 return (1); 391 } 392 393 static int 394 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 395 { 396 const char *str = NULL; 397 398 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 399 str == NULL) { 400 if (req) 401 terminate("die %llu: failed to get string: %s\n", 402 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 403 else 404 *strp = NULL; 405 return (0); 406 } else 407 *strp = xstrdup(str); 408 409 return (1); 410 } 411 412 static Dwarf_Off 413 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 414 { 415 Dwarf_Off off; 416 417 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 418 terminate("die %llu: failed to get ref: %s\n", 419 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 420 } 421 422 return (off); 423 } 424 425 static char * 426 die_name(dwarf_t *dw, Dwarf_Die die) 427 { 428 char *str = NULL; 429 430 (void) die_string(dw, die, DW_AT_name, &str, 0); 431 if (str == NULL) 432 str = xstrdup(""); 433 434 return (str); 435 } 436 437 static int 438 die_isdecl(dwarf_t *dw, Dwarf_Die die) 439 { 440 Dwarf_Bool val; 441 442 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 443 } 444 445 static int 446 die_isglobal(dwarf_t *dw, Dwarf_Die die) 447 { 448 Dwarf_Signed vis; 449 Dwarf_Bool ext; 450 451 /* 452 * Some compilers (gcc) use DW_AT_external to indicate function 453 * visibility. Others (Sun) use DW_AT_visibility. 454 */ 455 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 456 return (vis == DW_VIS_exported); 457 else 458 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 459 } 460 461 static tdesc_t * 462 die_add(dwarf_t *dw, Dwarf_Off off) 463 { 464 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 465 466 tdp->t_id = off; 467 468 tdesc_add(dw, tdp); 469 470 return (tdp); 471 } 472 473 static tdesc_t * 474 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 475 { 476 Dwarf_Off ref = die_attr_ref(dw, die, name); 477 tdesc_t *tdp; 478 479 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 480 return (tdp); 481 482 return (die_add(dw, ref)); 483 } 484 485 static int 486 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 487 Dwarf_Unsigned *valp, int req __unused) 488 { 489 Dwarf_Locdesc *loc = NULL; 490 Dwarf_Signed locnum = 0; 491 Dwarf_Attribute at; 492 Dwarf_Half form; 493 494 if (name != DW_AT_data_member_location) 495 terminate("die %llu: can only process attribute " 496 "DW_AT_data_member_location\n", die_off(dw, die)); 497 498 if ((at = die_attr(dw, die, name, 0)) == NULL) 499 return (0); 500 501 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 502 return (0); 503 504 switch (form) { 505 case DW_FORM_sec_offset: 506 case DW_FORM_block: 507 case DW_FORM_block1: 508 case DW_FORM_block2: 509 case DW_FORM_block4: 510 /* 511 * GCC in base and Clang (3.3 or below) generates 512 * DW_AT_data_member_location attribute with DW_FORM_block* 513 * form. The attribute contains one DW_OP_plus_uconst 514 * operator. The member offset stores in the operand. 515 */ 516 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 517 return (0); 518 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 519 terminate("die %llu: cannot parse member offset with " 520 "operator other than DW_OP_plus_uconst\n", 521 die_off(dw, die)); 522 } 523 *valp = loc->ld_s->lr_number; 524 if (loc != NULL) { 525 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 526 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 527 } 528 break; 529 530 case DW_FORM_data1: 531 case DW_FORM_data2: 532 case DW_FORM_data4: 533 case DW_FORM_data8: 534 case DW_FORM_udata: 535 /* 536 * Clang 3.4 generates DW_AT_data_member_location attribute 537 * with DW_FORM_data* form (constant class). The attribute 538 * stores a contant value which is the member offset. 539 * 540 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 541 * could be used as a section offset (offset into .debug_loc in 542 * this case). Here we assume the attribute always stores a 543 * constant because we know Clang 3.4 does this and GCC in 544 * base won't emit DW_FORM_data[48] for this attribute. This 545 * code will remain correct if future vesrions of Clang and 546 * GCC conform to DWARF4 standard and only use the form 547 * DW_FORM_sec_offset for section offset. 548 */ 549 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 550 DW_DLV_OK) 551 return (0); 552 break; 553 554 default: 555 terminate("die %llu: cannot parse member offset with form " 556 "%u\n", die_off(dw, die), form); 557 } 558 559 return (1); 560 } 561 562 static tdesc_t * 563 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 564 { 565 tdesc_t *tdp; 566 intr_t *intr; 567 568 intr = xcalloc(sizeof (intr_t)); 569 intr->intr_type = INTR_INT; 570 intr->intr_signed = 1; 571 intr->intr_nbits = sz * NBBY; 572 573 tdp = xcalloc(sizeof (tdesc_t)); 574 tdp->t_name = xstrdup(name); 575 tdp->t_size = sz; 576 tdp->t_id = tid; 577 tdp->t_type = INTRINSIC; 578 tdp->t_intr = intr; 579 tdp->t_flags = TDESC_F_RESOLVED; 580 581 tdesc_add(dw, tdp); 582 583 return (tdp); 584 } 585 586 /* 587 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 588 * type reference implies a reference to a void type. A void *, for example 589 * will be represented by a pointer die without a DW_AT_type. CTF requires 590 * that pointer nodes point to something, so we'll create a void for use as 591 * the target. Note that the DWARF data may already create a void type. Ours 592 * would then be a duplicate, but it'll be removed in the self-uniquification 593 * merge performed at the completion of DWARF->tdesc conversion. 594 */ 595 static tdesc_t * 596 tdesc_intr_void(dwarf_t *dw) 597 { 598 if (dw->dw_void == NULL) 599 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 600 601 return (dw->dw_void); 602 } 603 604 static tdesc_t * 605 tdesc_intr_long(dwarf_t *dw) 606 { 607 if (dw->dw_long == NULL) { 608 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 609 dw->dw_ptrsz); 610 } 611 612 return (dw->dw_long); 613 } 614 615 /* 616 * Used for creating bitfield types. We create a copy of an existing intrinsic, 617 * adjusting the size of the copy to match what the caller requested. The 618 * caller can then use the copy as the type for a bitfield structure member. 619 */ 620 static tdesc_t * 621 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 622 { 623 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 624 625 if (!(old->t_flags & TDESC_F_RESOLVED)) { 626 terminate("tdp %u: attempt to make a bit field from an " 627 "unresolved type\n", old->t_id); 628 } 629 630 new->t_name = xstrdup(old->t_name); 631 new->t_size = old->t_size; 632 new->t_id = mfgtid_next(dw); 633 new->t_type = INTRINSIC; 634 new->t_flags = TDESC_F_RESOLVED; 635 636 new->t_intr = xcalloc(sizeof (intr_t)); 637 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 638 new->t_intr->intr_nbits = bitsz; 639 640 tdesc_add(dw, new); 641 642 return (new); 643 } 644 645 static void 646 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 647 tdesc_t *dimtdp) 648 { 649 Dwarf_Unsigned uval; 650 Dwarf_Signed sval; 651 tdesc_t *ctdp = NULL; 652 Dwarf_Die dim2; 653 ardef_t *ar; 654 655 if ((dim2 = die_sibling(dw, dim)) == NULL) { 656 ctdp = arrtdp; 657 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 658 ctdp = xcalloc(sizeof (tdesc_t)); 659 ctdp->t_id = mfgtid_next(dw); 660 debug(3, "die %llu: creating new type %u for sub-dimension\n", 661 die_off(dw, dim2), ctdp->t_id); 662 tdesc_array_create(dw, dim2, arrtdp, ctdp); 663 } else { 664 terminate("die %llu: unexpected non-subrange node in array\n", 665 die_off(dw, dim2)); 666 } 667 668 dimtdp->t_type = ARRAY; 669 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 670 671 /* 672 * Array bounds can be signed or unsigned, but there are several kinds 673 * of signless forms (data1, data2, etc) that take their sign from the 674 * routine that is trying to interpret them. That is, data1 can be 675 * either signed or unsigned, depending on whether you use the signed or 676 * unsigned accessor function. GCC will use the signless forms to store 677 * unsigned values which have their high bit set, so we need to try to 678 * read them first as unsigned to get positive values. We could also 679 * try signed first, falling back to unsigned if we got a negative 680 * value. 681 */ 682 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 683 ar->ad_nelems = uval + 1; 684 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 685 ar->ad_nelems = sval + 1; 686 else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0)) 687 ar->ad_nelems = uval; 688 else if (die_signed(dw, dim, DW_AT_count, &sval, 0)) 689 ar->ad_nelems = sval; 690 else 691 ar->ad_nelems = 0; 692 693 /* 694 * Different compilers use different index types. Force the type to be 695 * a common, known value (long). 696 */ 697 ar->ad_idxtype = tdesc_intr_long(dw); 698 ar->ad_contents = ctdp; 699 700 if (ar->ad_contents->t_size != 0) { 701 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 702 dimtdp->t_flags |= TDESC_F_RESOLVED; 703 } 704 } 705 706 /* 707 * Create a tdesc from an array node. Some arrays will come with byte size 708 * attributes, and thus can be resolved immediately. Others don't, and will 709 * need to wait until the second pass for resolution. 710 */ 711 static void 712 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 713 { 714 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 715 Dwarf_Unsigned uval; 716 Dwarf_Die dim; 717 718 debug(3, "die %llu <%llx>: creating array\n", off, off); 719 720 if ((dim = die_child(dw, arr)) == NULL || 721 die_tag(dw, dim) != DW_TAG_subrange_type) 722 terminate("die %llu: failed to retrieve array bounds\n", off); 723 724 tdesc_array_create(dw, dim, arrtdp, tdp); 725 726 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 727 tdesc_t *dimtdp; 728 int flags; 729 730 /* Check for bogus gcc DW_AT_byte_size attribute */ 731 if (uval == (unsigned)-1) { 732 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 733 __func__); 734 uval = 0; 735 } 736 737 tdp->t_size = uval; 738 739 /* 740 * Ensure that sub-dimensions have sizes too before marking 741 * as resolved. 742 */ 743 flags = TDESC_F_RESOLVED; 744 for (dimtdp = tdp->t_ardef->ad_contents; 745 dimtdp->t_type == ARRAY; 746 dimtdp = dimtdp->t_ardef->ad_contents) { 747 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 748 flags = 0; 749 break; 750 } 751 } 752 753 tdp->t_flags |= flags; 754 } 755 756 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 757 tdp->t_ardef->ad_nelems, tdp->t_size); 758 } 759 760 /*ARGSUSED1*/ 761 static int 762 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 763 { 764 dwarf_t *dw = private; 765 size_t sz; 766 767 if (tdp->t_flags & TDESC_F_RESOLVED) 768 return (1); 769 770 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 771 tdp->t_ardef->ad_contents->t_id); 772 773 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 && 774 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) { 775 debug(3, "unable to resolve array %s (%d) contents %d\n", 776 tdesc_name(tdp), tdp->t_id, 777 tdp->t_ardef->ad_contents->t_id); 778 779 dw->dw_nunres++; 780 return (1); 781 } 782 783 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 784 tdp->t_flags |= TDESC_F_RESOLVED; 785 786 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 787 788 return (1); 789 } 790 791 /*ARGSUSED1*/ 792 static int 793 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 794 { 795 tdesc_t *cont = tdp->t_ardef->ad_contents; 796 797 if (tdp->t_flags & TDESC_F_RESOLVED) 798 return (1); 799 800 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 801 tdp->t_id, tdesc_name(cont), cont->t_id); 802 803 return (1); 804 } 805 806 /* 807 * Most enums (those with members) will be resolved during this first pass. 808 * Others - those without members (see the file comment) - won't be, and will 809 * need to wait until the second pass when they can be matched with their full 810 * definitions. 811 */ 812 static void 813 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 814 { 815 Dwarf_Die mem; 816 Dwarf_Unsigned uval; 817 Dwarf_Signed sval; 818 819 if (die_isdecl(dw, die)) { 820 tdp->t_type = FORWARD; 821 return; 822 } 823 824 debug(3, "die %llu: creating enum\n", off); 825 826 tdp->t_type = ENUM; 827 828 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 829 /* Check for bogus gcc DW_AT_byte_size attribute */ 830 if (uval == (unsigned)-1) { 831 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 832 __func__); 833 uval = 0; 834 } 835 tdp->t_size = uval; 836 837 if ((mem = die_child(dw, die)) != NULL) { 838 elist_t **elastp = &tdp->t_emem; 839 840 do { 841 elist_t *el; 842 843 if (die_tag(dw, mem) != DW_TAG_enumerator) { 844 /* Nested type declaration */ 845 die_create_one(dw, mem); 846 continue; 847 } 848 849 el = xcalloc(sizeof (elist_t)); 850 el->el_name = die_name(dw, mem); 851 852 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 853 el->el_number = sval; 854 } else if (die_unsigned(dw, mem, DW_AT_const_value, 855 &uval, 0)) { 856 el->el_number = uval; 857 } else { 858 terminate("die %llu: enum %llu: member without " 859 "value\n", off, die_off(dw, mem)); 860 } 861 862 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 863 die_off(dw, mem), el->el_name, el->el_number); 864 865 *elastp = el; 866 elastp = &el->el_next; 867 868 } while ((mem = die_sibling(dw, mem)) != NULL); 869 870 hash_add(dw->dw_enumhash, tdp); 871 872 tdp->t_flags |= TDESC_F_RESOLVED; 873 874 if (tdp->t_name != NULL) { 875 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 876 ii->ii_type = II_SOU; 877 ii->ii_name = xstrdup(tdp->t_name); 878 ii->ii_dtype = tdp; 879 880 iidesc_add(dw->dw_td->td_iihash, ii); 881 } 882 } 883 } 884 885 static int 886 die_enum_match(void *arg1, void *arg2) 887 { 888 tdesc_t *tdp = arg1, **fullp = arg2; 889 890 if (tdp->t_emem != NULL) { 891 *fullp = tdp; 892 return (-1); /* stop the iteration */ 893 } 894 895 return (0); 896 } 897 898 /*ARGSUSED1*/ 899 static int 900 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 901 { 902 dwarf_t *dw = private; 903 tdesc_t *full = NULL; 904 905 if (tdp->t_flags & TDESC_F_RESOLVED) 906 return (1); 907 908 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 909 910 /* 911 * The answer to this one won't change from iteration to iteration, 912 * so don't even try. 913 */ 914 if (full == NULL) { 915 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 916 tdesc_name(tdp)); 917 } 918 919 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 920 tdesc_name(tdp), full->t_id); 921 922 tdp->t_flags |= TDESC_F_RESOLVED; 923 924 return (1); 925 } 926 927 static int 928 die_fwd_map(void *arg1, void *arg2) 929 { 930 tdesc_t *fwd = arg1, *sou = arg2; 931 932 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 933 tdesc_name(fwd), sou->t_id); 934 fwd->t_tdesc = sou; 935 936 return (0); 937 } 938 939 /* 940 * Structures and unions will never be resolved during the first pass, as we 941 * won't be able to fully determine the member sizes. The second pass, which 942 * have access to sizing information, will be able to complete the resolution. 943 */ 944 static void 945 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 946 int type, const char *typename) 947 { 948 Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0; 949 #if BYTE_ORDER == _LITTLE_ENDIAN 950 Dwarf_Unsigned bysz; 951 #endif 952 Dwarf_Die mem; 953 mlist_t *ml, **mlastp; 954 iidesc_t *ii; 955 956 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 957 958 debug(3, "die %llu: creating %s %s\n", off, 959 (tdp->t_type == FORWARD ? "forward decl" : typename), 960 tdesc_name(tdp)); 961 962 if (tdp->t_type == FORWARD) { 963 hash_add(dw->dw_fwdhash, tdp); 964 return; 965 } 966 967 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 968 969 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 970 tdp->t_size = sz; 971 972 /* 973 * GCC allows empty SOUs as an extension. 974 */ 975 if ((mem = die_child(dw, str)) == NULL) { 976 goto out; 977 } 978 979 mlastp = &tdp->t_members; 980 981 do { 982 Dwarf_Off memoff = die_off(dw, mem); 983 Dwarf_Half tag = die_tag(dw, mem); 984 Dwarf_Unsigned mloff; 985 986 if (tag != DW_TAG_member) { 987 /* Nested type declaration */ 988 die_create_one(dw, mem); 989 continue; 990 } 991 992 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 993 994 ml = xcalloc(sizeof (mlist_t)); 995 996 /* 997 * This could be a GCC anon struct/union member, so we'll allow 998 * an empty name, even though nothing can really handle them 999 * properly. Note that some versions of GCC miss out debug 1000 * info for anon structs, though recent versions are fixed (gcc 1001 * bug 11816). 1002 */ 1003 if ((ml->ml_name = die_name(dw, mem)) == NULL) 1004 ml->ml_name = NULL; 1005 1006 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 1007 debug(3, "die_sou_create(): ml_type = %p t_id = %d\n", 1008 ml->ml_type, ml->ml_type->t_id); 1009 1010 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1011 &mloff, 0)) { 1012 debug(3, "die %llu: got mloff %llx\n", off, 1013 (u_longlong_t)mloff); 1014 ml->ml_offset = mloff * 8; 1015 } 1016 1017 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1018 ml->ml_size = bitsz; 1019 else 1020 ml->ml_size = tdesc_bitsize(ml->ml_type); 1021 1022 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1023 #if BYTE_ORDER == _BIG_ENDIAN 1024 ml->ml_offset += bitoff; 1025 #else 1026 /* 1027 * Note that Clang 3.4 will sometimes generate 1028 * member DIE before generating the DIE for the 1029 * member's type. The code can not handle this 1030 * properly so that tdesc_bitsize(ml->ml_type) will 1031 * return 0 because ml->ml_type is unknown. As a 1032 * result, a wrong member offset will be calculated. 1033 * To workaround this, we can instead try to 1034 * retrieve the value of DW_AT_byte_size attribute 1035 * which stores the byte size of the space occupied 1036 * by the type. If this attribute exists, its value 1037 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1038 */ 1039 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1040 bysz > 0) 1041 ml->ml_offset += bysz * NBBY - bitoff - 1042 ml->ml_size; 1043 else 1044 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1045 bitoff - ml->ml_size; 1046 #endif 1047 } 1048 1049 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1050 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1051 1052 *mlastp = ml; 1053 mlastp = &ml->ml_next; 1054 1055 /* Find the size of the largest member to work around a gcc 1056 * bug. See GCC Bugzilla 35998. 1057 */ 1058 if (maxsz < ml->ml_size) 1059 maxsz = ml->ml_size; 1060 1061 } while ((mem = die_sibling(dw, mem)) != NULL); 1062 1063 /* See if we got a bogus DW_AT_byte_size. GCC will sometimes 1064 * emit this. 1065 */ 1066 if (sz == (unsigned)-1) { 1067 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1068 __func__); 1069 tdp->t_size = maxsz / 8; /* maxsz is in bits, t_size is bytes */ 1070 } 1071 1072 /* 1073 * GCC will attempt to eliminate unused types, thus decreasing the 1074 * size of the emitted dwarf. That is, if you declare a foo_t in your 1075 * header, include said header in your source file, and neglect to 1076 * actually use (directly or indirectly) the foo_t in the source file, 1077 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1078 * the theory. 1079 * 1080 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1081 * and then neglect to emit the members. Strangely, the loner struct 1082 * tag will always be followed by a proper nested declaration of 1083 * something else. This is clearly a bug, but we're not going to have 1084 * time to get it fixed before this goo goes back, so we'll have to work 1085 * around it. If we see a no-membered struct with a nested declaration 1086 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1087 * Being paranoid, we won't simply remove it from the hash. Instead, 1088 * we'll decline to create an iidesc for it, thus ensuring that this 1089 * type won't make it into the output file. To be safe, we'll also 1090 * change the name. 1091 */ 1092 if (tdp->t_members == NULL) { 1093 const char *old = tdesc_name(tdp); 1094 size_t newsz = 7 + strlen(old) + 1; 1095 char *new = xmalloc(newsz); 1096 (void) snprintf(new, newsz, "orphan %s", old); 1097 1098 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1099 1100 if (tdp->t_name != NULL) 1101 free(tdp->t_name); 1102 tdp->t_name = new; 1103 return; 1104 } 1105 1106 out: 1107 if (tdp->t_name != NULL) { 1108 ii = xcalloc(sizeof (iidesc_t)); 1109 ii->ii_type = II_SOU; 1110 ii->ii_name = xstrdup(tdp->t_name); 1111 ii->ii_dtype = tdp; 1112 1113 iidesc_add(dw->dw_td->td_iihash, ii); 1114 } 1115 } 1116 1117 static void 1118 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1119 { 1120 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1121 } 1122 1123 static void 1124 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1125 { 1126 die_sou_create(dw, die, off, tdp, UNION, "union"); 1127 } 1128 1129 /*ARGSUSED1*/ 1130 static int 1131 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1132 { 1133 dwarf_t *dw = private; 1134 mlist_t *ml; 1135 tdesc_t *mt; 1136 1137 if (tdp->t_flags & TDESC_F_RESOLVED) 1138 return (1); 1139 1140 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1141 1142 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1143 if (ml->ml_size == 0) { 1144 mt = tdesc_basetype(ml->ml_type); 1145 1146 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1147 continue; 1148 1149 /* 1150 * For empty members, or GCC/C99 flexible array 1151 * members, a size of 0 is correct. Structs and unions 1152 * consisting of flexible array members will also have 1153 * size 0. 1154 */ 1155 if (mt->t_members == NULL) 1156 continue; 1157 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1158 continue; 1159 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1160 (mt->t_type == STRUCT || mt->t_type == UNION)) 1161 continue; 1162 1163 dw->dw_nunres++; 1164 return (1); 1165 } 1166 1167 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1168 dw->dw_nunres++; 1169 return (1); 1170 } 1171 1172 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1173 mt->t_intr->intr_nbits != (int)ml->ml_size) { 1174 /* 1175 * This member is a bitfield, and needs to reference 1176 * an intrinsic type with the same width. If the 1177 * currently-referenced type isn't of the same width, 1178 * we'll copy it, adjusting the width of the copy to 1179 * the size we'd like. 1180 */ 1181 debug(3, "tdp %u: creating bitfield for %d bits\n", 1182 tdp->t_id, ml->ml_size); 1183 1184 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1185 } 1186 } 1187 1188 tdp->t_flags |= TDESC_F_RESOLVED; 1189 1190 return (1); 1191 } 1192 1193 /*ARGSUSED1*/ 1194 static int 1195 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1196 { 1197 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1198 mlist_t *ml; 1199 1200 if (tdp->t_flags & TDESC_F_RESOLVED) 1201 return (1); 1202 1203 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1204 if (ml->ml_size == 0) { 1205 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1206 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1207 tdp->t_id, 1208 ml->ml_name, tdesc_name(ml->ml_type), 1209 ml->ml_type->t_id, ml->ml_type->t_id); 1210 } 1211 } 1212 1213 return (1); 1214 } 1215 1216 static void 1217 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1218 { 1219 Dwarf_Attribute attr; 1220 Dwarf_Half tag; 1221 Dwarf_Die arg; 1222 fndef_t *fn; 1223 int i; 1224 1225 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1226 1227 /* 1228 * We'll begin by processing any type definition nodes that may be 1229 * lurking underneath this one. 1230 */ 1231 for (arg = die_child(dw, die); arg != NULL; 1232 arg = die_sibling(dw, arg)) { 1233 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1234 tag != DW_TAG_unspecified_parameters) { 1235 /* Nested type declaration */ 1236 die_create_one(dw, arg); 1237 } 1238 } 1239 1240 if (die_isdecl(dw, die)) { 1241 /* 1242 * This is a prototype. We don't add prototypes to the 1243 * tree, so we're going to drop the tdesc. Unfortunately, 1244 * it has already been added to the tree. Nobody will reference 1245 * it, though, and it will be leaked. 1246 */ 1247 return; 1248 } 1249 1250 fn = xcalloc(sizeof (fndef_t)); 1251 1252 tdp->t_type = FUNCTION; 1253 1254 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1255 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1256 } else { 1257 fn->fn_ret = tdesc_intr_void(dw); 1258 } 1259 1260 /* 1261 * Count the arguments to the function, then read them in. 1262 */ 1263 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1264 arg = die_sibling(dw, arg)) { 1265 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1266 fn->fn_nargs++; 1267 else if (tag == DW_TAG_unspecified_parameters && 1268 fn->fn_nargs > 0) 1269 fn->fn_vargs = 1; 1270 } 1271 1272 if (fn->fn_nargs != 0) { 1273 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1274 (fn->fn_nargs > 1 ? "s" : "")); 1275 1276 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1277 for (i = 0, arg = die_child(dw, die); 1278 arg != NULL && i < (int) fn->fn_nargs; 1279 arg = die_sibling(dw, arg)) { 1280 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1281 continue; 1282 1283 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1284 DW_AT_type); 1285 } 1286 } 1287 1288 tdp->t_fndef = fn; 1289 tdp->t_flags |= TDESC_F_RESOLVED; 1290 } 1291 1292 /* 1293 * GCC and DevPro use different names for the base types. While the terms are 1294 * the same, they are arranged in a different order. Some terms, such as int, 1295 * are implied in one, and explicitly named in the other. Given a base type 1296 * as input, this routine will return a common name, along with an intr_t 1297 * that reflects said name. 1298 */ 1299 static intr_t * 1300 die_base_name_parse(const char *name, char **newp) 1301 { 1302 char buf[100]; 1303 char const *base; 1304 char *c; 1305 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1306 int sign = 1; 1307 char fmt = '\0'; 1308 intr_t *intr; 1309 1310 if (strlen(name) > sizeof (buf) - 1) 1311 terminate("base type name \"%s\" is too long\n", name); 1312 1313 strncpy(buf, name, sizeof (buf)); 1314 1315 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1316 if (strcmp(c, "signed") == 0) 1317 sign = 1; 1318 else if (strcmp(c, "unsigned") == 0) 1319 sign = 0; 1320 else if (strcmp(c, "long") == 0) 1321 nlong++; 1322 else if (strcmp(c, "char") == 0) { 1323 nchar++; 1324 fmt = 'c'; 1325 } else if (strcmp(c, "short") == 0) 1326 nshort++; 1327 else if (strcmp(c, "int") == 0) 1328 nint++; 1329 else { 1330 /* 1331 * If we don't recognize any of the tokens, we'll tell 1332 * the caller to fall back to the dwarf-provided 1333 * encoding information. 1334 */ 1335 return (NULL); 1336 } 1337 } 1338 1339 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1340 return (NULL); 1341 1342 if (nchar > 0) { 1343 if (nlong > 0 || nshort > 0 || nint > 0) 1344 return (NULL); 1345 1346 base = "char"; 1347 1348 } else if (nshort > 0) { 1349 if (nlong > 0) 1350 return (NULL); 1351 1352 base = "short"; 1353 1354 } else if (nlong > 0) { 1355 base = "long"; 1356 1357 } else { 1358 base = "int"; 1359 } 1360 1361 intr = xcalloc(sizeof (intr_t)); 1362 intr->intr_type = INTR_INT; 1363 intr->intr_signed = sign; 1364 intr->intr_iformat = fmt; 1365 1366 snprintf(buf, sizeof (buf), "%s%s%s", 1367 (sign ? "" : "unsigned "), 1368 (nlong > 1 ? "long " : ""), 1369 base); 1370 1371 *newp = xstrdup(buf); 1372 return (intr); 1373 } 1374 1375 typedef struct fp_size_map { 1376 size_t fsm_typesz[2]; /* size of {32,64} type */ 1377 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1378 } fp_size_map_t; 1379 1380 static const fp_size_map_t fp_encodings[] = { 1381 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1382 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1383 #ifdef __sparc 1384 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1385 #else 1386 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1387 #endif 1388 { { 0, 0 }, { 0, 0, 0 } } 1389 }; 1390 1391 static uint_t 1392 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1393 { 1394 const fp_size_map_t *map = fp_encodings; 1395 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1396 uint_t mult = 1, col = 0; 1397 1398 if (enc == DW_ATE_complex_float) { 1399 mult = 2; 1400 col = 1; 1401 } else if (enc == DW_ATE_imaginary_float 1402 #ifdef illumos 1403 || enc == DW_ATE_SUN_imaginary_float 1404 #endif 1405 ) 1406 col = 2; 1407 1408 while (map->fsm_typesz[szidx] != 0) { 1409 if (map->fsm_typesz[szidx] * mult == sz) 1410 return (map->fsm_enc[col]); 1411 map++; 1412 } 1413 1414 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1415 /*NOTREACHED*/ 1416 return (0); 1417 } 1418 1419 static intr_t * 1420 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1421 { 1422 intr_t *intr = xcalloc(sizeof (intr_t)); 1423 Dwarf_Signed enc; 1424 1425 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1426 1427 switch (enc) { 1428 case DW_ATE_unsigned: 1429 case DW_ATE_address: 1430 intr->intr_type = INTR_INT; 1431 break; 1432 case DW_ATE_unsigned_char: 1433 intr->intr_type = INTR_INT; 1434 intr->intr_iformat = 'c'; 1435 break; 1436 case DW_ATE_signed: 1437 intr->intr_type = INTR_INT; 1438 intr->intr_signed = 1; 1439 break; 1440 case DW_ATE_signed_char: 1441 intr->intr_type = INTR_INT; 1442 intr->intr_signed = 1; 1443 intr->intr_iformat = 'c'; 1444 break; 1445 case DW_ATE_boolean: 1446 intr->intr_type = INTR_INT; 1447 intr->intr_signed = 1; 1448 intr->intr_iformat = 'b'; 1449 break; 1450 case DW_ATE_float: 1451 case DW_ATE_complex_float: 1452 case DW_ATE_imaginary_float: 1453 #ifdef illumos 1454 case DW_ATE_SUN_imaginary_float: 1455 case DW_ATE_SUN_interval_float: 1456 #endif 1457 intr->intr_type = INTR_REAL; 1458 intr->intr_signed = 1; 1459 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1460 break; 1461 default: 1462 terminate("die %llu: unknown base type encoding 0x%llx\n", 1463 off, enc); 1464 } 1465 1466 return (intr); 1467 } 1468 1469 static void 1470 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1471 { 1472 Dwarf_Unsigned sz; 1473 intr_t *intr; 1474 char *new; 1475 1476 debug(3, "die %llu: creating base type\n", off); 1477 1478 /* 1479 * The compilers have their own clever (internally inconsistent) ideas 1480 * as to what base types should look like. Some times gcc will, for 1481 * example, use DW_ATE_signed_char for char. Other times, however, it 1482 * will use DW_ATE_signed. Needless to say, this causes some problems 1483 * down the road, particularly with merging. We do, however, use the 1484 * DWARF idea of type sizes, as this allows us to avoid caring about 1485 * the data model. 1486 */ 1487 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1488 1489 /* Check for bogus gcc DW_AT_byte_size attribute */ 1490 if (sz == (unsigned)-1) { 1491 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1492 __func__); 1493 sz = 0; 1494 } 1495 1496 if (tdp->t_name == NULL) 1497 terminate("die %llu: base type without name\n", off); 1498 1499 /* XXX make a name parser for float too */ 1500 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1501 /* Found it. We'll use the parsed version */ 1502 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1503 tdesc_name(tdp), new); 1504 1505 free(tdp->t_name); 1506 tdp->t_name = new; 1507 } else { 1508 /* 1509 * We didn't recognize the type, so we'll create an intr_t 1510 * based on the DWARF data. 1511 */ 1512 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1513 tdesc_name(tdp)); 1514 1515 intr = die_base_from_dwarf(dw, base, off, sz); 1516 } 1517 1518 intr->intr_nbits = sz * 8; 1519 1520 tdp->t_type = INTRINSIC; 1521 tdp->t_intr = intr; 1522 tdp->t_size = sz; 1523 1524 tdp->t_flags |= TDESC_F_RESOLVED; 1525 } 1526 1527 static void 1528 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1529 int type, const char *typename) 1530 { 1531 Dwarf_Attribute attr; 1532 1533 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1534 1535 tdp->t_type = type; 1536 1537 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1538 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1539 } else { 1540 tdp->t_tdesc = tdesc_intr_void(dw); 1541 } 1542 1543 if (type == POINTER) 1544 tdp->t_size = dw->dw_ptrsz; 1545 1546 tdp->t_flags |= TDESC_F_RESOLVED; 1547 1548 if (type == TYPEDEF) { 1549 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1550 ii->ii_type = II_TYPE; 1551 ii->ii_name = xstrdup(tdp->t_name); 1552 ii->ii_dtype = tdp; 1553 1554 iidesc_add(dw->dw_td->td_iihash, ii); 1555 } 1556 } 1557 1558 static void 1559 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1560 { 1561 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1562 } 1563 1564 static void 1565 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1566 { 1567 die_through_create(dw, die, off, tdp, CONST, "const"); 1568 } 1569 1570 static void 1571 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1572 { 1573 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1574 } 1575 1576 static void 1577 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1578 { 1579 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1580 } 1581 1582 static void 1583 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1584 { 1585 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1586 } 1587 1588 /*ARGSUSED3*/ 1589 static void 1590 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1591 { 1592 Dwarf_Die arg; 1593 Dwarf_Half tag; 1594 iidesc_t *ii; 1595 char *name; 1596 1597 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1598 1599 /* 1600 * We'll begin by processing any type definition nodes that may be 1601 * lurking underneath this one. 1602 */ 1603 for (arg = die_child(dw, die); arg != NULL; 1604 arg = die_sibling(dw, arg)) { 1605 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1606 tag != DW_TAG_variable) { 1607 /* Nested type declaration */ 1608 die_create_one(dw, arg); 1609 } 1610 } 1611 1612 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1613 /* 1614 * We process neither prototypes nor subprograms without 1615 * names. 1616 */ 1617 return; 1618 } 1619 1620 ii = xcalloc(sizeof (iidesc_t)); 1621 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1622 ii->ii_name = name; 1623 if (ii->ii_type == II_SFUN) 1624 ii->ii_owner = xstrdup(dw->dw_cuname); 1625 1626 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1627 (ii->ii_type == II_GFUN ? "global" : "static")); 1628 1629 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1630 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1631 else 1632 ii->ii_dtype = tdesc_intr_void(dw); 1633 1634 for (arg = die_child(dw, die); arg != NULL; 1635 arg = die_sibling(dw, arg)) { 1636 char *name1; 1637 1638 debug(3, "die %llu: looking at sub member at %llu\n", 1639 off, die_off(dw, die)); 1640 1641 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1642 continue; 1643 1644 if ((name1 = die_name(dw, arg)) == NULL) { 1645 terminate("die %llu: func arg %d has no name\n", 1646 off, ii->ii_nargs + 1); 1647 } 1648 1649 if (strcmp(name1, "...") == 0) { 1650 free(name1); 1651 ii->ii_vargs = 1; 1652 continue; 1653 } 1654 1655 ii->ii_nargs++; 1656 } 1657 1658 if (ii->ii_nargs > 0) { 1659 int i; 1660 1661 debug(3, "die %llu: function has %d argument%s\n", off, 1662 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1663 1664 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1665 1666 for (arg = die_child(dw, die), i = 0; 1667 arg != NULL && i < ii->ii_nargs; 1668 arg = die_sibling(dw, arg)) { 1669 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1670 continue; 1671 1672 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1673 DW_AT_type); 1674 } 1675 } 1676 1677 iidesc_add(dw->dw_td->td_iihash, ii); 1678 } 1679 1680 /*ARGSUSED3*/ 1681 static void 1682 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1683 { 1684 iidesc_t *ii; 1685 char *name; 1686 1687 debug(3, "die %llu: creating object definition\n", off); 1688 1689 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1690 return; /* skip prototypes and nameless objects */ 1691 1692 ii = xcalloc(sizeof (iidesc_t)); 1693 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1694 ii->ii_name = name; 1695 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1696 if (ii->ii_type == II_SVAR) 1697 ii->ii_owner = xstrdup(dw->dw_cuname); 1698 1699 iidesc_add(dw->dw_td->td_iihash, ii); 1700 } 1701 1702 /*ARGSUSED2*/ 1703 static int 1704 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1705 { 1706 if (fwd->t_flags & TDESC_F_RESOLVED) 1707 return (1); 1708 1709 if (fwd->t_tdesc != NULL) { 1710 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1711 tdesc_name(fwd)); 1712 *fwdp = fwd->t_tdesc; 1713 } 1714 1715 fwd->t_flags |= TDESC_F_RESOLVED; 1716 1717 return (1); 1718 } 1719 1720 /*ARGSUSED*/ 1721 static void 1722 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1723 { 1724 Dwarf_Die child = die_child(dw, die); 1725 1726 if (child != NULL) 1727 die_create(dw, child); 1728 } 1729 1730 /* 1731 * Used to map the die to a routine which can parse it, using the tag to do the 1732 * mapping. While the processing of most tags entails the creation of a tdesc, 1733 * there are a few which don't - primarily those which result in the creation of 1734 * iidescs which refer to existing tdescs. 1735 */ 1736 1737 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1738 1739 typedef struct die_creator { 1740 Dwarf_Half dc_tag; 1741 uint16_t dc_flags; 1742 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1743 } die_creator_t; 1744 1745 static const die_creator_t die_creators[] = { 1746 { DW_TAG_array_type, 0, die_array_create }, 1747 { DW_TAG_enumeration_type, 0, die_enum_create }, 1748 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1749 { DW_TAG_pointer_type, 0, die_pointer_create }, 1750 { DW_TAG_structure_type, 0, die_struct_create }, 1751 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1752 { DW_TAG_typedef, 0, die_typedef_create }, 1753 { DW_TAG_union_type, 0, die_union_create }, 1754 { DW_TAG_base_type, 0, die_base_create }, 1755 { DW_TAG_const_type, 0, die_const_create }, 1756 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1757 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1758 { DW_TAG_volatile_type, 0, die_volatile_create }, 1759 { DW_TAG_restrict_type, 0, die_restrict_create }, 1760 { 0, 0, NULL } 1761 }; 1762 1763 static const die_creator_t * 1764 die_tag2ctor(Dwarf_Half tag) 1765 { 1766 const die_creator_t *dc; 1767 1768 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1769 if (dc->dc_tag == tag) 1770 return (dc); 1771 } 1772 1773 return (NULL); 1774 } 1775 1776 static void 1777 die_create_one(dwarf_t *dw, Dwarf_Die die) 1778 { 1779 Dwarf_Off off = die_off(dw, die); 1780 const die_creator_t *dc; 1781 Dwarf_Half tag; 1782 tdesc_t *tdp; 1783 1784 debug(3, "die %llu <%llx>: create_one\n", off, off); 1785 1786 if (off > dw->dw_maxoff) { 1787 terminate("illegal die offset %llu (max %llu)\n", off, 1788 dw->dw_maxoff); 1789 } 1790 1791 tag = die_tag(dw, die); 1792 1793 if ((dc = die_tag2ctor(tag)) == NULL) { 1794 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1795 return; 1796 } 1797 1798 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1799 !(dc->dc_flags & DW_F_NOTDP)) { 1800 tdp = xcalloc(sizeof (tdesc_t)); 1801 tdp->t_id = off; 1802 tdesc_add(dw, tdp); 1803 } 1804 1805 if (tdp != NULL) 1806 tdp->t_name = die_name(dw, die); 1807 1808 dc->dc_create(dw, die, off, tdp); 1809 } 1810 1811 static void 1812 die_create(dwarf_t *dw, Dwarf_Die die) 1813 { 1814 do { 1815 die_create_one(dw, die); 1816 } while ((die = die_sibling(dw, die)) != NULL); 1817 } 1818 1819 static tdtrav_cb_f die_resolvers[] = { 1820 NULL, 1821 NULL, /* intrinsic */ 1822 NULL, /* pointer */ 1823 die_array_resolve, /* array */ 1824 NULL, /* function */ 1825 die_sou_resolve, /* struct */ 1826 die_sou_resolve, /* union */ 1827 die_enum_resolve, /* enum */ 1828 die_fwd_resolve, /* forward */ 1829 NULL, /* typedef */ 1830 NULL, /* typedef unres */ 1831 NULL, /* volatile */ 1832 NULL, /* const */ 1833 NULL, /* restrict */ 1834 }; 1835 1836 static tdtrav_cb_f die_fail_reporters[] = { 1837 NULL, 1838 NULL, /* intrinsic */ 1839 NULL, /* pointer */ 1840 die_array_failed, /* array */ 1841 NULL, /* function */ 1842 die_sou_failed, /* struct */ 1843 die_sou_failed, /* union */ 1844 NULL, /* enum */ 1845 NULL, /* forward */ 1846 NULL, /* typedef */ 1847 NULL, /* typedef unres */ 1848 NULL, /* volatile */ 1849 NULL, /* const */ 1850 NULL, /* restrict */ 1851 }; 1852 1853 static void 1854 die_resolve(dwarf_t *dw) 1855 { 1856 int last = -1; 1857 int pass = 0; 1858 1859 do { 1860 pass++; 1861 dw->dw_nunres = 0; 1862 1863 (void) iitraverse_hash(dw->dw_td->td_iihash, 1864 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1865 1866 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1867 1868 if ((int) dw->dw_nunres == last) { 1869 fprintf(stderr, "%s: failed to resolve the following " 1870 "types:\n", progname); 1871 1872 (void) iitraverse_hash(dw->dw_td->td_iihash, 1873 &dw->dw_td->td_curvgen, NULL, NULL, 1874 die_fail_reporters, dw); 1875 1876 terminate("failed to resolve types\n"); 1877 } 1878 1879 last = dw->dw_nunres; 1880 1881 } while (dw->dw_nunres != 0); 1882 } 1883 1884 /* 1885 * Any object containing a function or object symbol at any scope should also 1886 * contain DWARF data. 1887 */ 1888 static boolean_t 1889 should_have_dwarf(Elf *elf) 1890 { 1891 Elf_Scn *scn = NULL; 1892 Elf_Data *data = NULL; 1893 GElf_Shdr shdr; 1894 GElf_Sym sym; 1895 uint32_t symdx = 0; 1896 size_t nsyms = 0; 1897 boolean_t found = B_FALSE; 1898 1899 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1900 gelf_getshdr(scn, &shdr); 1901 1902 if (shdr.sh_type == SHT_SYMTAB) { 1903 found = B_TRUE; 1904 break; 1905 } 1906 } 1907 1908 if (!found) 1909 terminate("cannot convert stripped objects\n"); 1910 1911 data = elf_getdata(scn, NULL); 1912 nsyms = shdr.sh_size / shdr.sh_entsize; 1913 1914 for (symdx = 0; symdx < nsyms; symdx++) { 1915 gelf_getsym(data, symdx, &sym); 1916 1917 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1918 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1919 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1920 char *name; 1921 1922 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1923 1924 /* Studio emits these local symbols regardless */ 1925 if ((strcmp(name, "Bbss.bss") != 0) && 1926 (strcmp(name, "Ttbss.bss") != 0) && 1927 (strcmp(name, "Ddata.data") != 0) && 1928 (strcmp(name, "Ttdata.data") != 0) && 1929 (strcmp(name, "Drodata.rodata") != 0)) 1930 return (B_TRUE); 1931 } 1932 } 1933 1934 return (B_FALSE); 1935 } 1936 1937 /*ARGSUSED*/ 1938 int 1939 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1940 { 1941 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1942 Dwarf_Half vers, addrsz, offsz; 1943 Dwarf_Die cu = 0; 1944 Dwarf_Die child = 0; 1945 dwarf_t dw; 1946 char *prod = NULL; 1947 int rc; 1948 1949 bzero(&dw, sizeof (dwarf_t)); 1950 dw.dw_td = td; 1951 dw.dw_ptrsz = elf_ptrsz(elf); 1952 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1953 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1954 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1955 tdesc_namecmp); 1956 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1957 tdesc_namecmp); 1958 1959 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1960 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1961 if (should_have_dwarf(elf)) { 1962 errno = ENOENT; 1963 return (-1); 1964 } else { 1965 return (0); 1966 } 1967 } else if (rc != DW_DLV_OK) { 1968 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1969 /* 1970 * There's no type data in the DWARF section, but 1971 * libdwarf is too clever to handle that properly. 1972 */ 1973 return (0); 1974 } 1975 1976 terminate("failed to initialize DWARF: %s\n", 1977 dwarf_errmsg(dw.dw_err)); 1978 } 1979 1980 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1981 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1982 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1983 1984 if ((cu = die_sibling(&dw, NULL)) == NULL || 1985 (((child = die_child(&dw, cu)) == NULL) && 1986 should_have_dwarf(elf))) { 1987 terminate("file does not contain dwarf type data " 1988 "(try compiling with -g)\n"); 1989 } else if (child == NULL) { 1990 return (0); 1991 } 1992 1993 dw.dw_maxoff = nxthdr - 1; 1994 1995 if (dw.dw_maxoff > TID_FILEMAX) 1996 terminate("file contains too many types\n"); 1997 1998 debug(1, "DWARF version: %d\n", vers); 1999 if (vers < 2 || vers > 4) { 2000 terminate("file contains incompatible version %d DWARF code " 2001 "(version 2, 3 or 4 required)\n", vers); 2002 } 2003 2004 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 2005 debug(1, "DWARF emitter: %s\n", prod); 2006 free(prod); 2007 } 2008 2009 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2010 char *base = xstrdup(basename(dw.dw_cuname)); 2011 free(dw.dw_cuname); 2012 dw.dw_cuname = base; 2013 2014 debug(1, "CU name: %s\n", dw.dw_cuname); 2015 } 2016 2017 if ((child = die_child(&dw, cu)) != NULL) 2018 die_create(&dw, child); 2019 2020 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2021 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2022 terminate("multiple compilation units not supported\n"); 2023 2024 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2025 2026 die_resolve(&dw); 2027 2028 cvt_fixups(td, dw.dw_ptrsz); 2029 2030 /* leak the dwarf_t */ 2031 2032 return (0); 2033 } 2034