1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #include <stdio.h> 84 #include <stdlib.h> 85 #include <string.h> 86 #include <strings.h> 87 #include <errno.h> 88 #include <libelf.h> 89 #include <libdwarf.h> 90 #include <libgen.h> 91 #include <dwarf.h> 92 93 #include "ctf_headers.h" 94 #include "ctftools.h" 95 #include "memory.h" 96 #include "list.h" 97 #include "traverse.h" 98 99 /* 100 * We need to define a couple of our own intrinsics, to smooth out some of the 101 * differences between the GCC and DevPro DWARF emitters. See the referenced 102 * routines and the special cases in the file comment for more details. 103 * 104 * Type IDs are 32 bits wide. We're going to use the top of that field to 105 * indicate types that we've created ourselves. 106 */ 107 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 108 #define TID_VOID 0x40000001 /* see die_void() */ 109 #define TID_LONG 0x40000002 /* see die_array() */ 110 111 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 112 113 /* 114 * To reduce the staggering amount of error-handling code that would otherwise 115 * be required, the attribute-retrieval routines handle most of their own 116 * errors. If the following flag is supplied as the value of the `req' 117 * argument, they will also handle the absence of a requested attribute by 118 * terminating the program. 119 */ 120 #define DW_ATTR_REQ 1 121 122 #define TDESC_HASH_BUCKETS 511 123 124 typedef struct dwarf { 125 Dwarf_Debug dw_dw; /* for libdwarf */ 126 Dwarf_Error dw_err; /* for libdwarf */ 127 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 128 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 129 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 130 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 131 hash_t *dw_enumhash; /* hash of memberless enums by name */ 132 tdesc_t *dw_void; /* manufactured void type */ 133 tdesc_t *dw_long; /* manufactured long type for arrays */ 134 size_t dw_ptrsz; /* size of a pointer in this file */ 135 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 136 uint_t dw_nunres; /* count of unresolved types */ 137 char *dw_cuname; /* name of compilation unit */ 138 } dwarf_t; 139 140 static void die_create_one(dwarf_t *, Dwarf_Die); 141 static void die_create(dwarf_t *, Dwarf_Die); 142 143 static tid_t 144 mfgtid_next(dwarf_t *dw) 145 { 146 return (++dw->dw_mfgtid_last); 147 } 148 149 static void 150 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 151 { 152 hash_add(dw->dw_tidhash, tdp); 153 } 154 155 static tdesc_t * 156 tdesc_lookup(dwarf_t *dw, int tid) 157 { 158 tdesc_t tmpl; 159 void *tdp; 160 161 tmpl.t_id = tid; 162 163 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 164 return (tdp); 165 else 166 return (NULL); 167 } 168 169 /* 170 * Resolve a tdesc down to a node which should have a size. Returns the size, 171 * zero if the size hasn't yet been determined. 172 */ 173 static size_t 174 tdesc_size(tdesc_t *tdp) 175 { 176 for (;;) { 177 switch (tdp->t_type) { 178 case INTRINSIC: 179 case POINTER: 180 case ARRAY: 181 case FUNCTION: 182 case STRUCT: 183 case UNION: 184 case ENUM: 185 return (tdp->t_size); 186 187 case FORWARD: 188 return (0); 189 190 case TYPEDEF: 191 case VOLATILE: 192 case CONST: 193 case RESTRICT: 194 tdp = tdp->t_tdesc; 195 continue; 196 197 case 0: /* not yet defined */ 198 return (0); 199 200 default: 201 terminate("tdp %u: tdesc_size on unknown type %d\n", 202 tdp->t_id, tdp->t_type); 203 } 204 } 205 } 206 207 static size_t 208 tdesc_bitsize(tdesc_t *tdp) 209 { 210 for (;;) { 211 switch (tdp->t_type) { 212 case INTRINSIC: 213 return (tdp->t_intr->intr_nbits); 214 215 case ARRAY: 216 case FUNCTION: 217 case STRUCT: 218 case UNION: 219 case ENUM: 220 case POINTER: 221 return (tdp->t_size * NBBY); 222 223 case FORWARD: 224 return (0); 225 226 case TYPEDEF: 227 case VOLATILE: 228 case RESTRICT: 229 case CONST: 230 tdp = tdp->t_tdesc; 231 continue; 232 233 case 0: /* not yet defined */ 234 return (0); 235 236 default: 237 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 238 tdp->t_id, tdp->t_type); 239 } 240 } 241 } 242 243 static tdesc_t * 244 tdesc_basetype(tdesc_t *tdp) 245 { 246 for (;;) { 247 switch (tdp->t_type) { 248 case TYPEDEF: 249 case VOLATILE: 250 case RESTRICT: 251 case CONST: 252 tdp = tdp->t_tdesc; 253 break; 254 case 0: /* not yet defined */ 255 return (NULL); 256 default: 257 return (tdp); 258 } 259 } 260 } 261 262 static Dwarf_Off 263 die_off(dwarf_t *dw, Dwarf_Die die) 264 { 265 Dwarf_Off off; 266 267 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 268 return (off); 269 270 terminate("failed to get offset for die: %s\n", 271 dwarf_errmsg(dw->dw_err)); 272 /*NOTREACHED*/ 273 return (0); 274 } 275 276 static Dwarf_Die 277 die_sibling(dwarf_t *dw, Dwarf_Die die) 278 { 279 Dwarf_Die sib; 280 int rc; 281 282 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 283 DW_DLV_OK) 284 return (sib); 285 else if (rc == DW_DLV_NO_ENTRY) 286 return (NULL); 287 288 terminate("die %llu: failed to find type sibling: %s\n", 289 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 290 /*NOTREACHED*/ 291 return (NULL); 292 } 293 294 static Dwarf_Die 295 die_child(dwarf_t *dw, Dwarf_Die die) 296 { 297 Dwarf_Die child; 298 int rc; 299 300 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 301 return (child); 302 else if (rc == DW_DLV_NO_ENTRY) 303 return (NULL); 304 305 terminate("die %llu: failed to find type child: %s\n", 306 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 307 /*NOTREACHED*/ 308 return (NULL); 309 } 310 311 static Dwarf_Half 312 die_tag(dwarf_t *dw, Dwarf_Die die) 313 { 314 Dwarf_Half tag; 315 316 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 317 return (tag); 318 319 terminate("die %llu: failed to get tag for type: %s\n", 320 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 321 /*NOTREACHED*/ 322 return (0); 323 } 324 325 static Dwarf_Attribute 326 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 327 { 328 Dwarf_Attribute attr; 329 int rc; 330 331 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 332 return (attr); 333 } else if (rc == DW_DLV_NO_ENTRY) { 334 if (req) { 335 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 336 name); 337 } else { 338 return (NULL); 339 } 340 } 341 342 terminate("die %llu: failed to get attribute for type: %s\n", 343 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 344 /*NOTREACHED*/ 345 return (NULL); 346 } 347 348 static int 349 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 350 int req) 351 { 352 *valp = 0; 353 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 354 if (req) 355 terminate("die %llu: failed to get signed: %s\n", 356 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 357 return (0); 358 } 359 360 return (1); 361 } 362 363 static int 364 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 365 int req) 366 { 367 *valp = 0; 368 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 369 if (req) 370 terminate("die %llu: failed to get unsigned: %s\n", 371 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 372 return (0); 373 } 374 375 return (1); 376 } 377 378 static int 379 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 380 { 381 *valp = 0; 382 383 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 384 if (req) 385 terminate("die %llu: failed to get flag: %s\n", 386 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 387 return (0); 388 } 389 390 return (1); 391 } 392 393 static int 394 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 395 { 396 const char *str = NULL; 397 398 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 399 str == NULL) { 400 if (req) 401 terminate("die %llu: failed to get string: %s\n", 402 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 403 else 404 *strp = NULL; 405 return (0); 406 } else 407 *strp = xstrdup(str); 408 409 return (1); 410 } 411 412 static Dwarf_Off 413 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 414 { 415 Dwarf_Off off; 416 417 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 418 terminate("die %llu: failed to get ref: %s\n", 419 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 420 } 421 422 return (off); 423 } 424 425 static char * 426 die_name(dwarf_t *dw, Dwarf_Die die) 427 { 428 char *str = NULL; 429 430 (void) die_string(dw, die, DW_AT_name, &str, 0); 431 if (str == NULL) 432 str = xstrdup(""); 433 434 return (str); 435 } 436 437 static int 438 die_isdecl(dwarf_t *dw, Dwarf_Die die) 439 { 440 Dwarf_Bool val; 441 442 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 443 } 444 445 static int 446 die_isglobal(dwarf_t *dw, Dwarf_Die die) 447 { 448 Dwarf_Signed vis; 449 Dwarf_Bool ext; 450 451 /* 452 * Some compilers (gcc) use DW_AT_external to indicate function 453 * visibility. Others (Sun) use DW_AT_visibility. 454 */ 455 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 456 return (vis == DW_VIS_exported); 457 else 458 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 459 } 460 461 static tdesc_t * 462 die_add(dwarf_t *dw, Dwarf_Off off) 463 { 464 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 465 466 tdp->t_id = off; 467 468 tdesc_add(dw, tdp); 469 470 return (tdp); 471 } 472 473 static tdesc_t * 474 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 475 { 476 Dwarf_Off ref = die_attr_ref(dw, die, name); 477 tdesc_t *tdp; 478 479 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 480 return (tdp); 481 482 return (die_add(dw, ref)); 483 } 484 485 static int 486 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 487 Dwarf_Unsigned *valp, int req __unused) 488 { 489 Dwarf_Locdesc *loc = NULL; 490 Dwarf_Signed locnum = 0; 491 Dwarf_Attribute at; 492 Dwarf_Half form; 493 494 if (name != DW_AT_data_member_location) 495 terminate("die %llu: can only process attribute " 496 "DW_AT_data_member_location\n", die_off(dw, die)); 497 498 if ((at = die_attr(dw, die, name, 0)) == NULL) 499 return (0); 500 501 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 502 return (0); 503 504 switch (form) { 505 case DW_FORM_sec_offset: 506 case DW_FORM_block: 507 case DW_FORM_block1: 508 case DW_FORM_block2: 509 case DW_FORM_block4: 510 /* 511 * GCC in base and Clang (3.3 or below) generates 512 * DW_AT_data_member_location attribute with DW_FORM_block* 513 * form. The attribute contains one DW_OP_plus_uconst 514 * operator. The member offset stores in the operand. 515 */ 516 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 517 return (0); 518 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 519 terminate("die %llu: cannot parse member offset with " 520 "operator other than DW_OP_plus_uconst\n", 521 die_off(dw, die)); 522 } 523 *valp = loc->ld_s->lr_number; 524 if (loc != NULL) { 525 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 526 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 527 } 528 break; 529 530 case DW_FORM_data1: 531 case DW_FORM_data2: 532 case DW_FORM_data4: 533 case DW_FORM_data8: 534 case DW_FORM_udata: 535 /* 536 * Clang 3.4 generates DW_AT_data_member_location attribute 537 * with DW_FORM_data* form (constant class). The attribute 538 * stores a contant value which is the member offset. 539 * 540 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 541 * could be used as a section offset (offset into .debug_loc in 542 * this case). Here we assume the attribute always stores a 543 * constant because we know Clang 3.4 does this and GCC in 544 * base won't emit DW_FORM_data[48] for this attribute. This 545 * code will remain correct if future vesrions of Clang and 546 * GCC conform to DWARF4 standard and only use the form 547 * DW_FORM_sec_offset for section offset. 548 */ 549 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 550 DW_DLV_OK) 551 return (0); 552 break; 553 554 default: 555 terminate("die %llu: cannot parse member offset with form " 556 "%u\n", die_off(dw, die), form); 557 } 558 559 return (1); 560 } 561 562 static tdesc_t * 563 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 564 { 565 tdesc_t *tdp; 566 intr_t *intr; 567 568 intr = xcalloc(sizeof (intr_t)); 569 intr->intr_type = INTR_INT; 570 intr->intr_signed = 1; 571 intr->intr_nbits = sz * NBBY; 572 573 tdp = xcalloc(sizeof (tdesc_t)); 574 tdp->t_name = xstrdup(name); 575 tdp->t_size = sz; 576 tdp->t_id = tid; 577 tdp->t_type = INTRINSIC; 578 tdp->t_intr = intr; 579 tdp->t_flags = TDESC_F_RESOLVED; 580 581 tdesc_add(dw, tdp); 582 583 return (tdp); 584 } 585 586 /* 587 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 588 * type reference implies a reference to a void type. A void *, for example 589 * will be represented by a pointer die without a DW_AT_type. CTF requires 590 * that pointer nodes point to something, so we'll create a void for use as 591 * the target. Note that the DWARF data may already create a void type. Ours 592 * would then be a duplicate, but it'll be removed in the self-uniquification 593 * merge performed at the completion of DWARF->tdesc conversion. 594 */ 595 static tdesc_t * 596 tdesc_intr_void(dwarf_t *dw) 597 { 598 if (dw->dw_void == NULL) 599 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 600 601 return (dw->dw_void); 602 } 603 604 static tdesc_t * 605 tdesc_intr_long(dwarf_t *dw) 606 { 607 if (dw->dw_long == NULL) { 608 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 609 dw->dw_ptrsz); 610 } 611 612 return (dw->dw_long); 613 } 614 615 /* 616 * Used for creating bitfield types. We create a copy of an existing intrinsic, 617 * adjusting the size of the copy to match what the caller requested. The 618 * caller can then use the copy as the type for a bitfield structure member. 619 */ 620 static tdesc_t * 621 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz, const char *suffix) 622 { 623 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 624 625 if (!(old->t_flags & TDESC_F_RESOLVED)) { 626 terminate("tdp %u: attempt to make a bit field from an " 627 "unresolved type\n", old->t_id); 628 } 629 630 xasprintf(&new->t_name, "%s %s", old->t_name, suffix); 631 new->t_size = old->t_size; 632 new->t_id = mfgtid_next(dw); 633 new->t_type = INTRINSIC; 634 new->t_flags = TDESC_F_RESOLVED; 635 636 new->t_intr = xcalloc(sizeof (intr_t)); 637 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 638 new->t_intr->intr_nbits = bitsz; 639 640 tdesc_add(dw, new); 641 642 return (new); 643 } 644 645 static void 646 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 647 tdesc_t *dimtdp) 648 { 649 Dwarf_Unsigned uval; 650 Dwarf_Signed sval; 651 tdesc_t *ctdp = NULL; 652 Dwarf_Die dim2; 653 ardef_t *ar; 654 655 if ((dim2 = die_sibling(dw, dim)) == NULL) { 656 ctdp = arrtdp; 657 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 658 ctdp = xcalloc(sizeof (tdesc_t)); 659 ctdp->t_id = mfgtid_next(dw); 660 debug(3, "die %llu: creating new type %u for sub-dimension\n", 661 die_off(dw, dim2), ctdp->t_id); 662 tdesc_array_create(dw, dim2, arrtdp, ctdp); 663 } else { 664 terminate("die %llu: unexpected non-subrange node in array\n", 665 die_off(dw, dim2)); 666 } 667 668 dimtdp->t_type = ARRAY; 669 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 670 671 /* 672 * Array bounds can be signed or unsigned, but there are several kinds 673 * of signless forms (data1, data2, etc) that take their sign from the 674 * routine that is trying to interpret them. That is, data1 can be 675 * either signed or unsigned, depending on whether you use the signed or 676 * unsigned accessor function. GCC will use the signless forms to store 677 * unsigned values which have their high bit set, so we need to try to 678 * read them first as unsigned to get positive values. We could also 679 * try signed first, falling back to unsigned if we got a negative 680 * value. 681 */ 682 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 683 ar->ad_nelems = uval + 1; 684 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 685 ar->ad_nelems = sval + 1; 686 else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0)) 687 ar->ad_nelems = uval; 688 else if (die_signed(dw, dim, DW_AT_count, &sval, 0)) 689 ar->ad_nelems = sval; 690 else 691 ar->ad_nelems = 0; 692 693 /* 694 * Different compilers use different index types. Force the type to be 695 * a common, known value (long). 696 */ 697 ar->ad_idxtype = tdesc_intr_long(dw); 698 ar->ad_contents = ctdp; 699 700 if (ar->ad_contents->t_size != 0) { 701 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 702 dimtdp->t_flags |= TDESC_F_RESOLVED; 703 } 704 } 705 706 /* 707 * Create a tdesc from an array node. Some arrays will come with byte size 708 * attributes, and thus can be resolved immediately. Others don't, and will 709 * need to wait until the second pass for resolution. 710 */ 711 static void 712 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 713 { 714 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 715 Dwarf_Unsigned uval; 716 Dwarf_Die dim; 717 718 debug(3, "die %llu <%llx>: creating array\n", off, off); 719 720 if ((dim = die_child(dw, arr)) == NULL || 721 die_tag(dw, dim) != DW_TAG_subrange_type) 722 terminate("die %llu: failed to retrieve array bounds\n", off); 723 724 tdesc_array_create(dw, dim, arrtdp, tdp); 725 726 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 727 tdesc_t *dimtdp; 728 int flags; 729 730 tdp->t_size = uval; 731 732 /* 733 * Ensure that sub-dimensions have sizes too before marking 734 * as resolved. 735 */ 736 flags = TDESC_F_RESOLVED; 737 for (dimtdp = tdp->t_ardef->ad_contents; 738 dimtdp->t_type == ARRAY; 739 dimtdp = dimtdp->t_ardef->ad_contents) { 740 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 741 flags = 0; 742 break; 743 } 744 } 745 746 tdp->t_flags |= flags; 747 } 748 749 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 750 tdp->t_ardef->ad_nelems, tdp->t_size); 751 } 752 753 /*ARGSUSED1*/ 754 static int 755 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 756 { 757 dwarf_t *dw = private; 758 size_t sz; 759 760 if (tdp->t_flags & TDESC_F_RESOLVED) 761 return (1); 762 763 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 764 tdp->t_ardef->ad_contents->t_id); 765 766 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 && 767 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) { 768 debug(3, "unable to resolve array %s (%d) contents %d\n", 769 tdesc_name(tdp), tdp->t_id, 770 tdp->t_ardef->ad_contents->t_id); 771 772 dw->dw_nunres++; 773 return (1); 774 } 775 776 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 777 tdp->t_flags |= TDESC_F_RESOLVED; 778 779 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 780 781 return (1); 782 } 783 784 /*ARGSUSED1*/ 785 static int 786 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 787 { 788 tdesc_t *cont = tdp->t_ardef->ad_contents; 789 790 if (tdp->t_flags & TDESC_F_RESOLVED) 791 return (1); 792 793 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 794 tdp->t_id, tdesc_name(cont), cont->t_id); 795 796 return (1); 797 } 798 799 /* 800 * Most enums (those with members) will be resolved during this first pass. 801 * Others - those without members (see the file comment) - won't be, and will 802 * need to wait until the second pass when they can be matched with their full 803 * definitions. 804 */ 805 static void 806 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 807 { 808 Dwarf_Die mem; 809 Dwarf_Unsigned uval; 810 Dwarf_Signed sval; 811 812 if (die_isdecl(dw, die)) { 813 tdp->t_type = FORWARD; 814 return; 815 } 816 817 debug(3, "die %llu: creating enum\n", off); 818 819 tdp->t_type = ENUM; 820 821 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 822 tdp->t_size = uval; 823 824 if ((mem = die_child(dw, die)) != NULL) { 825 elist_t **elastp = &tdp->t_emem; 826 827 do { 828 elist_t *el; 829 830 if (die_tag(dw, mem) != DW_TAG_enumerator) { 831 /* Nested type declaration */ 832 die_create_one(dw, mem); 833 continue; 834 } 835 836 el = xcalloc(sizeof (elist_t)); 837 el->el_name = die_name(dw, mem); 838 839 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 840 el->el_number = sval; 841 } else if (die_unsigned(dw, mem, DW_AT_const_value, 842 &uval, 0)) { 843 el->el_number = uval; 844 } else { 845 terminate("die %llu: enum %llu: member without " 846 "value\n", off, die_off(dw, mem)); 847 } 848 849 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 850 die_off(dw, mem), el->el_name, el->el_number); 851 852 *elastp = el; 853 elastp = &el->el_next; 854 855 } while ((mem = die_sibling(dw, mem)) != NULL); 856 857 hash_add(dw->dw_enumhash, tdp); 858 859 tdp->t_flags |= TDESC_F_RESOLVED; 860 861 if (tdp->t_name != NULL) { 862 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 863 ii->ii_type = II_SOU; 864 ii->ii_name = xstrdup(tdp->t_name); 865 ii->ii_dtype = tdp; 866 867 iidesc_add(dw->dw_td->td_iihash, ii); 868 } 869 } 870 } 871 872 static int 873 die_enum_match(void *arg1, void *arg2) 874 { 875 tdesc_t *tdp = arg1, **fullp = arg2; 876 877 if (tdp->t_emem != NULL) { 878 *fullp = tdp; 879 return (-1); /* stop the iteration */ 880 } 881 882 return (0); 883 } 884 885 /*ARGSUSED1*/ 886 static int 887 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 888 { 889 dwarf_t *dw = private; 890 tdesc_t *full = NULL; 891 892 if (tdp->t_flags & TDESC_F_RESOLVED) 893 return (1); 894 895 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 896 897 /* 898 * The answer to this one won't change from iteration to iteration, 899 * so don't even try. 900 */ 901 if (full == NULL) { 902 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 903 tdesc_name(tdp)); 904 } 905 906 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 907 tdesc_name(tdp), full->t_id); 908 909 tdp->t_flags |= TDESC_F_RESOLVED; 910 911 return (1); 912 } 913 914 static int 915 die_fwd_map(void *arg1, void *arg2) 916 { 917 tdesc_t *fwd = arg1, *sou = arg2; 918 919 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 920 tdesc_name(fwd), sou->t_id); 921 fwd->t_tdesc = sou; 922 923 return (0); 924 } 925 926 /* 927 * Structures and unions will never be resolved during the first pass, as we 928 * won't be able to fully determine the member sizes. The second pass, which 929 * have access to sizing information, will be able to complete the resolution. 930 */ 931 static void 932 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 933 int type, const char *typename) 934 { 935 Dwarf_Unsigned sz, bitsz, bitoff; 936 #if BYTE_ORDER == _LITTLE_ENDIAN 937 Dwarf_Unsigned bysz; 938 #endif 939 Dwarf_Die mem; 940 mlist_t *ml, **mlastp; 941 iidesc_t *ii; 942 943 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 944 945 debug(3, "die %llu: creating %s %s\n", off, 946 (tdp->t_type == FORWARD ? "forward decl" : typename), 947 tdesc_name(tdp)); 948 949 if (tdp->t_type == FORWARD) { 950 hash_add(dw->dw_fwdhash, tdp); 951 return; 952 } 953 954 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 955 956 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 957 tdp->t_size = sz; 958 959 /* 960 * GCC allows empty SOUs as an extension. 961 */ 962 if ((mem = die_child(dw, str)) == NULL) { 963 goto out; 964 } 965 966 mlastp = &tdp->t_members; 967 968 do { 969 Dwarf_Off memoff = die_off(dw, mem); 970 Dwarf_Half tag = die_tag(dw, mem); 971 Dwarf_Unsigned mloff; 972 973 if (tag != DW_TAG_member) { 974 /* Nested type declaration */ 975 die_create_one(dw, mem); 976 continue; 977 } 978 979 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 980 981 ml = xcalloc(sizeof (mlist_t)); 982 983 /* 984 * This could be a GCC anon struct/union member, so we'll allow 985 * an empty name, even though nothing can really handle them 986 * properly. Note that some versions of GCC miss out debug 987 * info for anon structs, though recent versions are fixed (gcc 988 * bug 11816). 989 */ 990 if ((ml->ml_name = die_name(dw, mem)) == NULL) 991 ml->ml_name = NULL; 992 993 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 994 995 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 996 &mloff, 0)) { 997 debug(3, "die %llu: got mloff %llx\n", off, 998 (u_longlong_t)mloff); 999 ml->ml_offset = mloff * 8; 1000 } 1001 1002 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1003 ml->ml_size = bitsz; 1004 else 1005 ml->ml_size = tdesc_bitsize(ml->ml_type); 1006 1007 if (die_unsigned(dw, mem, DW_AT_data_bit_offset, &bitoff, 0)) { 1008 ml->ml_offset += bitoff; 1009 } else if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1010 #if BYTE_ORDER == _BIG_ENDIAN 1011 ml->ml_offset += bitoff; 1012 #else 1013 /* 1014 * Note that Clang 3.4 will sometimes generate 1015 * member DIE before generating the DIE for the 1016 * member's type. The code can not handle this 1017 * properly so that tdesc_bitsize(ml->ml_type) will 1018 * return 0 because ml->ml_type is unknown. As a 1019 * result, a wrong member offset will be calculated. 1020 * To workaround this, we can instead try to 1021 * retrieve the value of DW_AT_byte_size attribute 1022 * which stores the byte size of the space occupied 1023 * by the type. If this attribute exists, its value 1024 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1025 */ 1026 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1027 bysz > 0) 1028 ml->ml_offset += bysz * NBBY - bitoff - 1029 ml->ml_size; 1030 else 1031 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1032 bitoff - ml->ml_size; 1033 #endif 1034 } 1035 1036 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1037 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1038 1039 *mlastp = ml; 1040 mlastp = &ml->ml_next; 1041 } while ((mem = die_sibling(dw, mem)) != NULL); 1042 1043 /* 1044 * GCC will attempt to eliminate unused types, thus decreasing the 1045 * size of the emitted dwarf. That is, if you declare a foo_t in your 1046 * header, include said header in your source file, and neglect to 1047 * actually use (directly or indirectly) the foo_t in the source file, 1048 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1049 * the theory. 1050 * 1051 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1052 * and then neglect to emit the members. Strangely, the loner struct 1053 * tag will always be followed by a proper nested declaration of 1054 * something else. This is clearly a bug, but we're not going to have 1055 * time to get it fixed before this goo goes back, so we'll have to work 1056 * around it. If we see a no-membered struct with a nested declaration 1057 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1058 * Being paranoid, we won't simply remove it from the hash. Instead, 1059 * we'll decline to create an iidesc for it, thus ensuring that this 1060 * type won't make it into the output file. To be safe, we'll also 1061 * change the name. 1062 */ 1063 if (tdp->t_members == NULL) { 1064 const char *old = tdesc_name(tdp); 1065 size_t newsz = 7 + strlen(old) + 1; 1066 char *new = xmalloc(newsz); 1067 (void) snprintf(new, newsz, "orphan %s", old); 1068 1069 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1070 1071 if (tdp->t_name != NULL) 1072 free(tdp->t_name); 1073 tdp->t_name = new; 1074 return; 1075 } 1076 1077 out: 1078 if (tdp->t_name != NULL) { 1079 ii = xcalloc(sizeof (iidesc_t)); 1080 ii->ii_type = II_SOU; 1081 ii->ii_name = xstrdup(tdp->t_name); 1082 ii->ii_dtype = tdp; 1083 1084 iidesc_add(dw->dw_td->td_iihash, ii); 1085 } 1086 } 1087 1088 static void 1089 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1090 { 1091 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1092 } 1093 1094 static void 1095 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1096 { 1097 die_sou_create(dw, die, off, tdp, UNION, "union"); 1098 } 1099 1100 /*ARGSUSED1*/ 1101 static int 1102 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1103 { 1104 dwarf_t *dw = private; 1105 mlist_t *ml; 1106 tdesc_t *mt; 1107 1108 if (tdp->t_flags & TDESC_F_RESOLVED) 1109 return (1); 1110 1111 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1112 1113 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1114 if (ml->ml_size == 0) { 1115 mt = tdesc_basetype(ml->ml_type); 1116 1117 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1118 continue; 1119 1120 /* 1121 * For empty members, or GCC/C99 flexible array 1122 * members, a size of 0 is correct. Structs and unions 1123 * consisting of flexible array members will also have 1124 * size 0. 1125 */ 1126 if (mt->t_members == NULL) 1127 continue; 1128 if (mt->t_type == ARRAY) { 1129 if (mt->t_ardef->ad_nelems == 0) 1130 continue; 1131 mt = tdesc_basetype(mt->t_ardef->ad_contents); 1132 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1133 (mt->t_type == STRUCT || 1134 mt->t_type == UNION) && 1135 mt->t_members == NULL) 1136 continue; 1137 } 1138 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1139 (mt->t_type == STRUCT || mt->t_type == UNION)) 1140 continue; 1141 1142 dw->dw_nunres++; 1143 return (1); 1144 } 1145 1146 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1147 dw->dw_nunres++; 1148 return (1); 1149 } 1150 1151 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1152 mt->t_intr->intr_nbits != ml->ml_size) { 1153 /* 1154 * This member is a bitfield, and needs to reference 1155 * an intrinsic type with the same width. If the 1156 * currently-referenced type isn't of the same width, 1157 * we'll copy it, adjusting the width of the copy to 1158 * the size we'd like. 1159 */ 1160 debug(3, "tdp %u: creating bitfield for %d bits\n", 1161 tdp->t_id, ml->ml_size); 1162 1163 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size, 1164 "bitfield"); 1165 } 1166 } 1167 1168 tdp->t_flags |= TDESC_F_RESOLVED; 1169 1170 return (1); 1171 } 1172 1173 /*ARGSUSED1*/ 1174 static int 1175 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1176 { 1177 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1178 mlist_t *ml; 1179 1180 if (tdp->t_flags & TDESC_F_RESOLVED) 1181 return (1); 1182 1183 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1184 if (ml->ml_size == 0) { 1185 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1186 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1187 tdp->t_id, 1188 ml->ml_name, tdesc_name(ml->ml_type), 1189 ml->ml_type->t_id, ml->ml_type->t_id); 1190 } 1191 } 1192 1193 return (1); 1194 } 1195 1196 static void 1197 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1198 { 1199 Dwarf_Attribute attr; 1200 Dwarf_Half tag; 1201 Dwarf_Die arg; 1202 fndef_t *fn; 1203 int i; 1204 1205 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1206 1207 /* 1208 * We'll begin by processing any type definition nodes that may be 1209 * lurking underneath this one. 1210 */ 1211 for (arg = die_child(dw, die); arg != NULL; 1212 arg = die_sibling(dw, arg)) { 1213 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1214 tag != DW_TAG_unspecified_parameters) { 1215 /* Nested type declaration */ 1216 die_create_one(dw, arg); 1217 } 1218 } 1219 1220 if (die_isdecl(dw, die)) { 1221 /* 1222 * This is a prototype. We don't add prototypes to the 1223 * tree, so we're going to drop the tdesc. Unfortunately, 1224 * it has already been added to the tree. Nobody will reference 1225 * it, though, and it will be leaked. 1226 */ 1227 return; 1228 } 1229 1230 fn = xcalloc(sizeof (fndef_t)); 1231 1232 tdp->t_type = FUNCTION; 1233 1234 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1235 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1236 } else { 1237 fn->fn_ret = tdesc_intr_void(dw); 1238 } 1239 1240 /* 1241 * Count the arguments to the function, then read them in. 1242 */ 1243 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1244 arg = die_sibling(dw, arg)) { 1245 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1246 fn->fn_nargs++; 1247 else if (tag == DW_TAG_unspecified_parameters && 1248 fn->fn_nargs > 0) 1249 fn->fn_vargs = 1; 1250 } 1251 1252 if (fn->fn_nargs != 0) { 1253 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1254 (fn->fn_nargs > 1 ? "s" : "")); 1255 1256 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1257 for (i = 0, arg = die_child(dw, die); 1258 arg != NULL && i < (int) fn->fn_nargs; 1259 arg = die_sibling(dw, arg)) { 1260 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1261 continue; 1262 1263 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1264 DW_AT_type); 1265 } 1266 } 1267 1268 tdp->t_fndef = fn; 1269 tdp->t_flags |= TDESC_F_RESOLVED; 1270 } 1271 1272 /* 1273 * GCC and DevPro use different names for the base types. While the terms are 1274 * the same, they are arranged in a different order. Some terms, such as int, 1275 * are implied in one, and explicitly named in the other. Given a base type 1276 * as input, this routine will return a common name, along with an intr_t 1277 * that reflects said name. 1278 */ 1279 static intr_t * 1280 die_base_name_parse(const char *name, char **newp) 1281 { 1282 char buf[256]; 1283 char const *base; 1284 char *c; 1285 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1286 int sign = 1; 1287 char fmt = '\0'; 1288 intr_t *intr; 1289 1290 if (strlen(name) > sizeof (buf) - 1) 1291 terminate("base type name \"%s\" is too long\n", name); 1292 1293 strncpy(buf, name, sizeof (buf)); 1294 1295 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1296 if (strcmp(c, "signed") == 0) 1297 sign = 1; 1298 else if (strcmp(c, "unsigned") == 0) 1299 sign = 0; 1300 else if (strcmp(c, "long") == 0) 1301 nlong++; 1302 else if (strcmp(c, "char") == 0) { 1303 nchar++; 1304 fmt = 'c'; 1305 } else if (strcmp(c, "short") == 0) 1306 nshort++; 1307 else if (strcmp(c, "int") == 0) 1308 nint++; 1309 else { 1310 /* 1311 * If we don't recognize any of the tokens, we'll tell 1312 * the caller to fall back to the dwarf-provided 1313 * encoding information. 1314 */ 1315 return (NULL); 1316 } 1317 } 1318 1319 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1320 return (NULL); 1321 1322 if (nchar > 0) { 1323 if (nlong > 0 || nshort > 0 || nint > 0) 1324 return (NULL); 1325 1326 base = "char"; 1327 1328 } else if (nshort > 0) { 1329 if (nlong > 0) 1330 return (NULL); 1331 1332 base = "short"; 1333 1334 } else if (nlong > 0) { 1335 base = "long"; 1336 1337 } else { 1338 base = "int"; 1339 } 1340 1341 intr = xcalloc(sizeof (intr_t)); 1342 intr->intr_type = INTR_INT; 1343 intr->intr_signed = sign; 1344 intr->intr_iformat = fmt; 1345 1346 snprintf(buf, sizeof (buf), "%s%s%s", 1347 (sign ? "" : "unsigned "), 1348 (nlong > 1 ? "long " : ""), 1349 base); 1350 1351 *newp = xstrdup(buf); 1352 return (intr); 1353 } 1354 1355 typedef struct fp_size_map { 1356 size_t fsm_typesz[2]; /* size of {32,64} type */ 1357 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1358 } fp_size_map_t; 1359 1360 static const fp_size_map_t fp_encodings[] = { 1361 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1362 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1363 #ifdef __sparc 1364 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1365 #else 1366 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1367 #endif 1368 { { 0, 0 }, { 0, 0, 0 } } 1369 }; 1370 1371 static uint_t 1372 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Unsigned enc, size_t sz) 1373 { 1374 const fp_size_map_t *map = fp_encodings; 1375 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1376 uint_t mult = 1, col = 0; 1377 1378 if (enc == DW_ATE_complex_float) { 1379 mult = 2; 1380 col = 1; 1381 } else if (enc == DW_ATE_imaginary_float 1382 #ifdef illumos 1383 || enc == DW_ATE_SUN_imaginary_float 1384 #endif 1385 ) 1386 col = 2; 1387 1388 while (map->fsm_typesz[szidx] != 0) { 1389 if (map->fsm_typesz[szidx] * mult == sz) 1390 return (map->fsm_enc[col]); 1391 map++; 1392 } 1393 1394 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1395 /*NOTREACHED*/ 1396 return (0); 1397 } 1398 1399 static intr_t * 1400 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1401 { 1402 intr_t *intr = xcalloc(sizeof (intr_t)); 1403 Dwarf_Unsigned enc; 1404 1405 (void) die_unsigned(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1406 1407 switch (enc) { 1408 case DW_ATE_unsigned: 1409 case DW_ATE_address: 1410 intr->intr_type = INTR_INT; 1411 break; 1412 case DW_ATE_unsigned_char: 1413 intr->intr_type = INTR_INT; 1414 intr->intr_iformat = 'c'; 1415 break; 1416 case DW_ATE_signed: 1417 intr->intr_type = INTR_INT; 1418 intr->intr_signed = 1; 1419 break; 1420 case DW_ATE_signed_char: 1421 intr->intr_type = INTR_INT; 1422 intr->intr_signed = 1; 1423 intr->intr_iformat = 'c'; 1424 break; 1425 case DW_ATE_boolean: 1426 intr->intr_type = INTR_INT; 1427 intr->intr_signed = 1; 1428 intr->intr_iformat = 'b'; 1429 break; 1430 case DW_ATE_float: 1431 case DW_ATE_complex_float: 1432 case DW_ATE_imaginary_float: 1433 #ifdef illumos 1434 case DW_ATE_SUN_imaginary_float: 1435 case DW_ATE_SUN_interval_float: 1436 #endif 1437 intr->intr_type = INTR_REAL; 1438 intr->intr_signed = 1; 1439 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1440 break; 1441 default: 1442 terminate("die %llu: unknown base type encoding 0x%llx\n", 1443 off, enc); 1444 } 1445 1446 return (intr); 1447 } 1448 1449 static void 1450 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1451 { 1452 Dwarf_Unsigned sz; 1453 intr_t *intr; 1454 char *new; 1455 1456 debug(3, "die %llu: creating base type\n", off); 1457 1458 /* 1459 * The compilers have their own clever (internally inconsistent) ideas 1460 * as to what base types should look like. Some times gcc will, for 1461 * example, use DW_ATE_signed_char for char. Other times, however, it 1462 * will use DW_ATE_signed. Needless to say, this causes some problems 1463 * down the road, particularly with merging. We do, however, use the 1464 * DWARF idea of type sizes, as this allows us to avoid caring about 1465 * the data model. 1466 */ 1467 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1468 1469 if (tdp->t_name == NULL) 1470 terminate("die %llu: base type without name\n", off); 1471 1472 /* XXX make a name parser for float too */ 1473 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1474 /* Found it. We'll use the parsed version */ 1475 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1476 tdesc_name(tdp), new); 1477 1478 free(tdp->t_name); 1479 tdp->t_name = new; 1480 } else { 1481 /* 1482 * We didn't recognize the type, so we'll create an intr_t 1483 * based on the DWARF data. 1484 */ 1485 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1486 tdesc_name(tdp)); 1487 1488 intr = die_base_from_dwarf(dw, base, off, sz); 1489 } 1490 1491 intr->intr_nbits = sz * 8; 1492 1493 tdp->t_type = INTRINSIC; 1494 tdp->t_intr = intr; 1495 tdp->t_size = sz; 1496 1497 tdp->t_flags |= TDESC_F_RESOLVED; 1498 } 1499 1500 static void 1501 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1502 int type, const char *typename) 1503 { 1504 Dwarf_Attribute attr; 1505 1506 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1507 1508 tdp->t_type = type; 1509 1510 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1511 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1512 } else { 1513 tdp->t_tdesc = tdesc_intr_void(dw); 1514 } 1515 1516 if (type == POINTER) 1517 tdp->t_size = dw->dw_ptrsz; 1518 1519 tdp->t_flags |= TDESC_F_RESOLVED; 1520 1521 if (type == TYPEDEF) { 1522 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1523 ii->ii_type = II_TYPE; 1524 ii->ii_name = xstrdup(tdp->t_name); 1525 ii->ii_dtype = tdp; 1526 1527 iidesc_add(dw->dw_td->td_iihash, ii); 1528 } 1529 } 1530 1531 static void 1532 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1533 { 1534 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1535 } 1536 1537 static void 1538 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1539 { 1540 die_through_create(dw, die, off, tdp, CONST, "const"); 1541 } 1542 1543 static void 1544 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1545 { 1546 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1547 } 1548 1549 static void 1550 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1551 { 1552 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1553 } 1554 1555 static void 1556 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1557 { 1558 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1559 } 1560 1561 /*ARGSUSED3*/ 1562 static void 1563 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1564 { 1565 Dwarf_Die arg; 1566 Dwarf_Half tag; 1567 iidesc_t *ii; 1568 char *name; 1569 1570 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1571 1572 /* 1573 * We'll begin by processing any type definition nodes that may be 1574 * lurking underneath this one. 1575 */ 1576 for (arg = die_child(dw, die); arg != NULL; 1577 arg = die_sibling(dw, arg)) { 1578 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1579 tag != DW_TAG_variable) { 1580 /* Nested type declaration */ 1581 die_create_one(dw, arg); 1582 } 1583 } 1584 1585 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1586 /* 1587 * We process neither prototypes nor subprograms without 1588 * names. 1589 */ 1590 return; 1591 } 1592 1593 ii = xcalloc(sizeof (iidesc_t)); 1594 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1595 ii->ii_name = name; 1596 if (ii->ii_type == II_SFUN) 1597 ii->ii_owner = xstrdup(dw->dw_cuname); 1598 1599 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1600 (ii->ii_type == II_GFUN ? "global" : "static")); 1601 1602 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1603 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1604 else 1605 ii->ii_dtype = tdesc_intr_void(dw); 1606 1607 for (arg = die_child(dw, die); arg != NULL; 1608 arg = die_sibling(dw, arg)) { 1609 char *name1; 1610 1611 debug(3, "die %llu: looking at sub member at %llu\n", 1612 off, die_off(dw, die)); 1613 1614 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1615 continue; 1616 1617 if ((name1 = die_name(dw, arg)) == NULL) { 1618 terminate("die %llu: func arg %d has no name\n", 1619 off, ii->ii_nargs + 1); 1620 } 1621 1622 if (strcmp(name1, "...") == 0) { 1623 free(name1); 1624 ii->ii_vargs = 1; 1625 continue; 1626 } 1627 free(name1); 1628 1629 ii->ii_nargs++; 1630 } 1631 1632 if (ii->ii_nargs > 0) { 1633 int i; 1634 1635 debug(3, "die %llu: function has %d argument%s\n", off, 1636 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1637 1638 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1639 1640 for (arg = die_child(dw, die), i = 0; 1641 arg != NULL && i < ii->ii_nargs; 1642 arg = die_sibling(dw, arg)) { 1643 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1644 continue; 1645 1646 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1647 DW_AT_type); 1648 } 1649 } 1650 1651 iidesc_add(dw->dw_td->td_iihash, ii); 1652 } 1653 1654 /*ARGSUSED3*/ 1655 static void 1656 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1657 { 1658 iidesc_t *ii; 1659 char *name; 1660 1661 debug(3, "die %llu: creating object definition\n", off); 1662 1663 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1664 return; /* skip prototypes and nameless objects */ 1665 1666 ii = xcalloc(sizeof (iidesc_t)); 1667 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1668 ii->ii_name = name; 1669 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1670 if (ii->ii_type == II_SVAR) 1671 ii->ii_owner = xstrdup(dw->dw_cuname); 1672 1673 iidesc_add(dw->dw_td->td_iihash, ii); 1674 } 1675 1676 /*ARGSUSED2*/ 1677 static int 1678 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1679 { 1680 if (fwd->t_flags & TDESC_F_RESOLVED) 1681 return (1); 1682 1683 if (fwd->t_tdesc != NULL) { 1684 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1685 tdesc_name(fwd)); 1686 *fwdp = fwd->t_tdesc; 1687 } 1688 1689 fwd->t_flags |= TDESC_F_RESOLVED; 1690 1691 return (1); 1692 } 1693 1694 /*ARGSUSED*/ 1695 static void 1696 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1697 { 1698 Dwarf_Die child = die_child(dw, die); 1699 1700 if (child != NULL) 1701 die_create(dw, child); 1702 } 1703 1704 /* 1705 * Used to map the die to a routine which can parse it, using the tag to do the 1706 * mapping. While the processing of most tags entails the creation of a tdesc, 1707 * there are a few which don't - primarily those which result in the creation of 1708 * iidescs which refer to existing tdescs. 1709 */ 1710 1711 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1712 1713 typedef struct die_creator { 1714 Dwarf_Half dc_tag; 1715 uint16_t dc_flags; 1716 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1717 } die_creator_t; 1718 1719 static const die_creator_t die_creators[] = { 1720 { DW_TAG_array_type, 0, die_array_create }, 1721 { DW_TAG_enumeration_type, 0, die_enum_create }, 1722 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1723 { DW_TAG_pointer_type, 0, die_pointer_create }, 1724 { DW_TAG_structure_type, 0, die_struct_create }, 1725 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1726 { DW_TAG_typedef, 0, die_typedef_create }, 1727 { DW_TAG_union_type, 0, die_union_create }, 1728 { DW_TAG_base_type, 0, die_base_create }, 1729 { DW_TAG_const_type, 0, die_const_create }, 1730 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1731 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1732 { DW_TAG_volatile_type, 0, die_volatile_create }, 1733 { DW_TAG_restrict_type, 0, die_restrict_create }, 1734 { 0, 0, NULL } 1735 }; 1736 1737 static const die_creator_t * 1738 die_tag2ctor(Dwarf_Half tag) 1739 { 1740 const die_creator_t *dc; 1741 1742 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1743 if (dc->dc_tag == tag) 1744 return (dc); 1745 } 1746 1747 return (NULL); 1748 } 1749 1750 static void 1751 die_create_one(dwarf_t *dw, Dwarf_Die die) 1752 { 1753 Dwarf_Off off = die_off(dw, die); 1754 const die_creator_t *dc; 1755 Dwarf_Half tag; 1756 tdesc_t *tdp; 1757 1758 debug(3, "die %llu <%llx>: create_one\n", off, off); 1759 1760 if (off > dw->dw_maxoff) { 1761 terminate("illegal die offset %llu (max %llu)\n", off, 1762 dw->dw_maxoff); 1763 } 1764 1765 tag = die_tag(dw, die); 1766 1767 if ((dc = die_tag2ctor(tag)) == NULL) { 1768 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1769 return; 1770 } 1771 1772 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1773 !(dc->dc_flags & DW_F_NOTDP)) { 1774 tdp = xcalloc(sizeof (tdesc_t)); 1775 tdp->t_id = off; 1776 tdesc_add(dw, tdp); 1777 } 1778 1779 if (tdp != NULL) 1780 tdp->t_name = die_name(dw, die); 1781 1782 dc->dc_create(dw, die, off, tdp); 1783 } 1784 1785 static void 1786 die_create(dwarf_t *dw, Dwarf_Die die) 1787 { 1788 do { 1789 die_create_one(dw, die); 1790 } while ((die = die_sibling(dw, die)) != NULL); 1791 } 1792 1793 static tdtrav_cb_f die_resolvers[] = { 1794 NULL, 1795 NULL, /* intrinsic */ 1796 NULL, /* pointer */ 1797 die_array_resolve, /* array */ 1798 NULL, /* function */ 1799 die_sou_resolve, /* struct */ 1800 die_sou_resolve, /* union */ 1801 die_enum_resolve, /* enum */ 1802 die_fwd_resolve, /* forward */ 1803 NULL, /* typedef */ 1804 NULL, /* typedef unres */ 1805 NULL, /* volatile */ 1806 NULL, /* const */ 1807 NULL, /* restrict */ 1808 }; 1809 1810 static tdtrav_cb_f die_fail_reporters[] = { 1811 NULL, 1812 NULL, /* intrinsic */ 1813 NULL, /* pointer */ 1814 die_array_failed, /* array */ 1815 NULL, /* function */ 1816 die_sou_failed, /* struct */ 1817 die_sou_failed, /* union */ 1818 NULL, /* enum */ 1819 NULL, /* forward */ 1820 NULL, /* typedef */ 1821 NULL, /* typedef unres */ 1822 NULL, /* volatile */ 1823 NULL, /* const */ 1824 NULL, /* restrict */ 1825 }; 1826 1827 static void 1828 die_resolve(dwarf_t *dw) 1829 { 1830 int last = -1; 1831 int pass = 0; 1832 1833 do { 1834 pass++; 1835 dw->dw_nunres = 0; 1836 1837 (void) iitraverse_hash(dw->dw_td->td_iihash, 1838 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1839 1840 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1841 1842 if ((int) dw->dw_nunres == last) { 1843 fprintf(stderr, "%s: failed to resolve the following " 1844 "types:\n", progname); 1845 1846 (void) iitraverse_hash(dw->dw_td->td_iihash, 1847 &dw->dw_td->td_curvgen, NULL, NULL, 1848 die_fail_reporters, dw); 1849 1850 terminate("failed to resolve types\n"); 1851 } 1852 1853 last = dw->dw_nunres; 1854 1855 } while (dw->dw_nunres != 0); 1856 } 1857 1858 /* 1859 * Any object containing a function or object symbol at any scope should also 1860 * contain DWARF data. 1861 */ 1862 static boolean_t 1863 should_have_dwarf(Elf *elf) 1864 { 1865 Elf_Scn *scn = NULL; 1866 Elf_Data *data = NULL; 1867 GElf_Shdr shdr; 1868 GElf_Sym sym; 1869 uint32_t symdx = 0; 1870 size_t nsyms = 0; 1871 boolean_t found = B_FALSE; 1872 1873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1874 gelf_getshdr(scn, &shdr); 1875 1876 if (shdr.sh_type == SHT_SYMTAB) { 1877 found = B_TRUE; 1878 break; 1879 } 1880 } 1881 1882 if (!found) 1883 terminate("cannot convert stripped objects\n"); 1884 1885 data = elf_getdata(scn, NULL); 1886 nsyms = shdr.sh_size / shdr.sh_entsize; 1887 1888 for (symdx = 0; symdx < nsyms; symdx++) { 1889 gelf_getsym(data, symdx, &sym); 1890 1891 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1892 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1893 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1894 char *name; 1895 1896 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1897 1898 /* Studio emits these local symbols regardless */ 1899 if ((strcmp(name, "Bbss.bss") != 0) && 1900 (strcmp(name, "Ttbss.bss") != 0) && 1901 (strcmp(name, "Ddata.data") != 0) && 1902 (strcmp(name, "Ttdata.data") != 0) && 1903 (strcmp(name, "Drodata.rodata") != 0)) 1904 return (B_TRUE); 1905 } 1906 } 1907 1908 return (B_FALSE); 1909 } 1910 1911 /*ARGSUSED*/ 1912 int 1913 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1914 { 1915 Dwarf_Unsigned abboff, hdrlen, lang, nxthdr; 1916 Dwarf_Half vers, addrsz, offsz; 1917 Dwarf_Die cu = 0; 1918 Dwarf_Die child = 0; 1919 dwarf_t dw; 1920 char *prod = NULL; 1921 int rc; 1922 1923 bzero(&dw, sizeof (dwarf_t)); 1924 dw.dw_td = td; 1925 dw.dw_ptrsz = elf_ptrsz(elf); 1926 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1927 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1928 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1929 tdesc_namecmp); 1930 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1931 tdesc_namecmp); 1932 1933 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1934 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1935 if (should_have_dwarf(elf)) { 1936 errno = ENOENT; 1937 return (-1); 1938 } else { 1939 return (0); 1940 } 1941 } else if (rc != DW_DLV_OK) { 1942 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1943 /* 1944 * There's no type data in the DWARF section, but 1945 * libdwarf is too clever to handle that properly. 1946 */ 1947 return (0); 1948 } 1949 1950 terminate("failed to initialize DWARF: %s\n", 1951 dwarf_errmsg(dw.dw_err)); 1952 } 1953 1954 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1955 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) { 1956 if (dw.dw_err.err_error == DW_DLE_NO_ENTRY) 1957 exit(0); 1958 else 1959 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1960 } 1961 if ((cu = die_sibling(&dw, NULL)) == NULL || 1962 (((child = die_child(&dw, cu)) == NULL) && 1963 should_have_dwarf(elf))) { 1964 terminate("file does not contain dwarf type data " 1965 "(try compiling with -g)\n"); 1966 } else if (child == NULL) { 1967 return (0); 1968 } 1969 1970 dw.dw_maxoff = nxthdr - 1; 1971 1972 if (dw.dw_maxoff > TID_FILEMAX) 1973 terminate("file contains too many types\n"); 1974 1975 debug(1, "DWARF version: %d\n", vers); 1976 if (vers < 2 || vers > 4) { 1977 terminate("file contains incompatible version %d DWARF code " 1978 "(version 2, 3 or 4 required)\n", vers); 1979 } 1980 1981 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 1982 debug(1, "DWARF emitter: %s\n", prod); 1983 free(prod); 1984 } 1985 1986 if (dwarf_attrval_unsigned(cu, DW_AT_language, &lang, &dw.dw_err) == 0) 1987 switch (lang) { 1988 case DW_LANG_C: 1989 case DW_LANG_C89: 1990 case DW_LANG_C99: 1991 case DW_LANG_C11: 1992 case DW_LANG_C_plus_plus: 1993 case DW_LANG_C_plus_plus_03: 1994 case DW_LANG_C_plus_plus_11: 1995 case DW_LANG_C_plus_plus_14: 1996 case DW_LANG_Mips_Assembler: 1997 break; 1998 default: 1999 terminate("file contains DWARF for unsupported " 2000 "language %#x", lang); 2001 } 2002 else 2003 warning("die %llu: failed to get language attribute: %s\n", 2004 die_off(&dw, cu), dwarf_errmsg(dw.dw_err)); 2005 2006 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2007 char *base = xstrdup(basename(dw.dw_cuname)); 2008 free(dw.dw_cuname); 2009 dw.dw_cuname = base; 2010 2011 debug(1, "CU name: %s\n", dw.dw_cuname); 2012 } 2013 2014 if ((child = die_child(&dw, cu)) != NULL) 2015 die_create(&dw, child); 2016 2017 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2018 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2019 terminate("multiple compilation units not supported\n"); 2020 2021 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2022 2023 die_resolve(&dw); 2024 2025 cvt_fixups(td, dw.dw_ptrsz); 2026 2027 /* leak the dwarf_t */ 2028 2029 return (0); 2030 } 2031