1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #include <stdio.h> 84 #include <stdlib.h> 85 #include <string.h> 86 #include <strings.h> 87 #include <errno.h> 88 #include <libelf.h> 89 #include <libdwarf.h> 90 #include <libgen.h> 91 #include <dwarf.h> 92 93 #include "ctf_headers.h" 94 #include "ctftools.h" 95 #include "memory.h" 96 #include "list.h" 97 #include "traverse.h" 98 99 /* The versions of DWARF which we support. */ 100 #define DWARF_VERSION 2 101 #define DWARF_VERSION3 3 102 #define DWARF_VERSION4 4 103 104 /* 105 * We need to define a couple of our own intrinsics, to smooth out some of the 106 * differences between the GCC and DevPro DWARF emitters. See the referenced 107 * routines and the special cases in the file comment for more details. 108 * 109 * Type IDs are 32 bits wide. We're going to use the top of that field to 110 * indicate types that we've created ourselves. 111 */ 112 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 113 #define TID_VOID 0x40000001 /* see die_void() */ 114 #define TID_LONG 0x40000002 /* see die_array() */ 115 116 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 117 118 /* 119 * To reduce the staggering amount of error-handling code that would otherwise 120 * be required, the attribute-retrieval routines handle most of their own 121 * errors. If the following flag is supplied as the value of the `req' 122 * argument, they will also handle the absence of a requested attribute by 123 * terminating the program. 124 */ 125 #define DW_ATTR_REQ 1 126 127 #define TDESC_HASH_BUCKETS 511 128 129 typedef struct dwarf { 130 Dwarf_Debug dw_dw; /* for libdwarf */ 131 Dwarf_Error dw_err; /* for libdwarf */ 132 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 133 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 134 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 135 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 136 hash_t *dw_enumhash; /* hash of memberless enums by name */ 137 tdesc_t *dw_void; /* manufactured void type */ 138 tdesc_t *dw_long; /* manufactured long type for arrays */ 139 size_t dw_ptrsz; /* size of a pointer in this file */ 140 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 141 uint_t dw_nunres; /* count of unresolved types */ 142 char *dw_cuname; /* name of compilation unit */ 143 } dwarf_t; 144 145 static void die_create_one(dwarf_t *, Dwarf_Die); 146 static void die_create(dwarf_t *, Dwarf_Die); 147 148 static tid_t 149 mfgtid_next(dwarf_t *dw) 150 { 151 return (++dw->dw_mfgtid_last); 152 } 153 154 static void 155 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 156 { 157 hash_add(dw->dw_tidhash, tdp); 158 } 159 160 static tdesc_t * 161 tdesc_lookup(dwarf_t *dw, int tid) 162 { 163 tdesc_t tmpl; 164 void *tdp; 165 166 tmpl.t_id = tid; 167 168 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 169 return (tdp); 170 else 171 return (NULL); 172 } 173 174 /* 175 * Resolve a tdesc down to a node which should have a size. Returns the size, 176 * zero if the size hasn't yet been determined. 177 */ 178 static size_t 179 tdesc_size(tdesc_t *tdp) 180 { 181 for (;;) { 182 switch (tdp->t_type) { 183 case INTRINSIC: 184 case POINTER: 185 case ARRAY: 186 case FUNCTION: 187 case STRUCT: 188 case UNION: 189 case ENUM: 190 return (tdp->t_size); 191 192 case FORWARD: 193 return (0); 194 195 case TYPEDEF: 196 case VOLATILE: 197 case CONST: 198 case RESTRICT: 199 tdp = tdp->t_tdesc; 200 continue; 201 202 case 0: /* not yet defined */ 203 return (0); 204 205 default: 206 terminate("tdp %u: tdesc_size on unknown type %d\n", 207 tdp->t_id, tdp->t_type); 208 } 209 } 210 } 211 212 static size_t 213 tdesc_bitsize(tdesc_t *tdp) 214 { 215 for (;;) { 216 switch (tdp->t_type) { 217 case INTRINSIC: 218 return (tdp->t_intr->intr_nbits); 219 220 case ARRAY: 221 case FUNCTION: 222 case STRUCT: 223 case UNION: 224 case ENUM: 225 case POINTER: 226 return (tdp->t_size * NBBY); 227 228 case FORWARD: 229 return (0); 230 231 case TYPEDEF: 232 case VOLATILE: 233 case RESTRICT: 234 case CONST: 235 tdp = tdp->t_tdesc; 236 continue; 237 238 case 0: /* not yet defined */ 239 return (0); 240 241 default: 242 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 243 tdp->t_id, tdp->t_type); 244 } 245 } 246 } 247 248 static tdesc_t * 249 tdesc_basetype(tdesc_t *tdp) 250 { 251 for (;;) { 252 switch (tdp->t_type) { 253 case TYPEDEF: 254 case VOLATILE: 255 case RESTRICT: 256 case CONST: 257 tdp = tdp->t_tdesc; 258 break; 259 case 0: /* not yet defined */ 260 return (NULL); 261 default: 262 return (tdp); 263 } 264 } 265 } 266 267 static Dwarf_Off 268 die_off(dwarf_t *dw, Dwarf_Die die) 269 { 270 Dwarf_Off off; 271 272 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 273 return (off); 274 275 terminate("failed to get offset for die: %s\n", 276 dwarf_errmsg(dw->dw_err)); 277 /*NOTREACHED*/ 278 return (0); 279 } 280 281 static Dwarf_Die 282 die_sibling(dwarf_t *dw, Dwarf_Die die) 283 { 284 Dwarf_Die sib; 285 int rc; 286 287 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 288 DW_DLV_OK) 289 return (sib); 290 else if (rc == DW_DLV_NO_ENTRY) 291 return (NULL); 292 293 terminate("die %llu: failed to find type sibling: %s\n", 294 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 295 /*NOTREACHED*/ 296 return (NULL); 297 } 298 299 static Dwarf_Die 300 die_child(dwarf_t *dw, Dwarf_Die die) 301 { 302 Dwarf_Die child; 303 int rc; 304 305 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 306 return (child); 307 else if (rc == DW_DLV_NO_ENTRY) 308 return (NULL); 309 310 terminate("die %llu: failed to find type child: %s\n", 311 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 312 /*NOTREACHED*/ 313 return (NULL); 314 } 315 316 static Dwarf_Half 317 die_tag(dwarf_t *dw, Dwarf_Die die) 318 { 319 Dwarf_Half tag; 320 321 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 322 return (tag); 323 324 terminate("die %llu: failed to get tag for type: %s\n", 325 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 326 /*NOTREACHED*/ 327 return (0); 328 } 329 330 static Dwarf_Attribute 331 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 332 { 333 Dwarf_Attribute attr; 334 int rc; 335 336 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 337 return (attr); 338 } else if (rc == DW_DLV_NO_ENTRY) { 339 if (req) { 340 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 341 name); 342 } else { 343 return (NULL); 344 } 345 } 346 347 terminate("die %llu: failed to get attribute for type: %s\n", 348 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 349 /*NOTREACHED*/ 350 return (NULL); 351 } 352 353 static int 354 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 355 int req) 356 { 357 *valp = 0; 358 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 359 if (req) 360 terminate("die %llu: failed to get signed: %s\n", 361 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 362 return (0); 363 } 364 365 return (1); 366 } 367 368 static int 369 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 370 int req) 371 { 372 *valp = 0; 373 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 374 if (req) 375 terminate("die %llu: failed to get unsigned: %s\n", 376 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 377 return (0); 378 } 379 380 return (1); 381 } 382 383 static int 384 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 385 { 386 *valp = 0; 387 388 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 389 if (req) 390 terminate("die %llu: failed to get flag: %s\n", 391 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 392 return (0); 393 } 394 395 return (1); 396 } 397 398 static int 399 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 400 { 401 const char *str = NULL; 402 403 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 404 str == NULL) { 405 if (req) 406 terminate("die %llu: failed to get string: %s\n", 407 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 408 else 409 *strp = NULL; 410 return (0); 411 } else 412 *strp = xstrdup(str); 413 414 return (1); 415 } 416 417 static Dwarf_Off 418 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 419 { 420 Dwarf_Off off; 421 422 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 423 terminate("die %llu: failed to get ref: %s\n", 424 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 425 } 426 427 return (off); 428 } 429 430 static char * 431 die_name(dwarf_t *dw, Dwarf_Die die) 432 { 433 char *str = NULL; 434 435 (void) die_string(dw, die, DW_AT_name, &str, 0); 436 if (str == NULL) 437 str = xstrdup(""); 438 439 return (str); 440 } 441 442 static int 443 die_isdecl(dwarf_t *dw, Dwarf_Die die) 444 { 445 Dwarf_Bool val; 446 447 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 448 } 449 450 static int 451 die_isglobal(dwarf_t *dw, Dwarf_Die die) 452 { 453 Dwarf_Signed vis; 454 Dwarf_Bool ext; 455 456 /* 457 * Some compilers (gcc) use DW_AT_external to indicate function 458 * visibility. Others (Sun) use DW_AT_visibility. 459 */ 460 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 461 return (vis == DW_VIS_exported); 462 else 463 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 464 } 465 466 static tdesc_t * 467 die_add(dwarf_t *dw, Dwarf_Off off) 468 { 469 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 470 471 tdp->t_id = off; 472 473 tdesc_add(dw, tdp); 474 475 return (tdp); 476 } 477 478 static tdesc_t * 479 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 480 { 481 Dwarf_Off ref = die_attr_ref(dw, die, name); 482 tdesc_t *tdp; 483 484 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 485 return (tdp); 486 487 return (die_add(dw, ref)); 488 } 489 490 static int 491 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 492 Dwarf_Unsigned *valp, int req __unused) 493 { 494 Dwarf_Locdesc *loc = NULL; 495 Dwarf_Signed locnum = 0; 496 Dwarf_Attribute at; 497 Dwarf_Half form; 498 499 if (name != DW_AT_data_member_location) 500 terminate("die %llu: can only process attribute " 501 "DW_AT_data_member_location\n", die_off(dw, die)); 502 503 if ((at = die_attr(dw, die, name, 0)) == NULL) 504 return (0); 505 506 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 507 return (0); 508 509 switch (form) { 510 case DW_FORM_sec_offset: 511 case DW_FORM_block: 512 case DW_FORM_block1: 513 case DW_FORM_block2: 514 case DW_FORM_block4: 515 /* 516 * GCC in base and Clang (3.3 or below) generates 517 * DW_AT_data_member_location attribute with DW_FORM_block* 518 * form. The attribute contains one DW_OP_plus_uconst 519 * operator. The member offset stores in the operand. 520 */ 521 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 522 return (0); 523 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 524 terminate("die %llu: cannot parse member offset with " 525 "operator other than DW_OP_plus_uconst\n", 526 die_off(dw, die)); 527 } 528 *valp = loc->ld_s->lr_number; 529 if (loc != NULL) { 530 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 531 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 532 } 533 break; 534 535 case DW_FORM_data1: 536 case DW_FORM_data2: 537 case DW_FORM_data4: 538 case DW_FORM_data8: 539 case DW_FORM_udata: 540 /* 541 * Clang 3.4 generates DW_AT_data_member_location attribute 542 * with DW_FORM_data* form (constant class). The attribute 543 * stores a contant value which is the member offset. 544 * 545 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 546 * could be used as a section offset (offset into .debug_loc in 547 * this case). Here we assume the attribute always stores a 548 * constant because we know Clang 3.4 does this and GCC in 549 * base won't emit DW_FORM_data[48] for this attribute. This 550 * code will remain correct if future vesrions of Clang and 551 * GCC conform to DWARF4 standard and only use the form 552 * DW_FORM_sec_offset for section offset. 553 */ 554 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 555 DW_DLV_OK) 556 return (0); 557 break; 558 559 default: 560 terminate("die %llu: cannot parse member offset with form " 561 "%u\n", die_off(dw, die), form); 562 } 563 564 return (1); 565 } 566 567 static tdesc_t * 568 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 569 { 570 tdesc_t *tdp; 571 intr_t *intr; 572 573 intr = xcalloc(sizeof (intr_t)); 574 intr->intr_type = INTR_INT; 575 intr->intr_signed = 1; 576 intr->intr_nbits = sz * NBBY; 577 578 tdp = xcalloc(sizeof (tdesc_t)); 579 tdp->t_name = xstrdup(name); 580 tdp->t_size = sz; 581 tdp->t_id = tid; 582 tdp->t_type = INTRINSIC; 583 tdp->t_intr = intr; 584 tdp->t_flags = TDESC_F_RESOLVED; 585 586 tdesc_add(dw, tdp); 587 588 return (tdp); 589 } 590 591 /* 592 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 593 * type reference implies a reference to a void type. A void *, for example 594 * will be represented by a pointer die without a DW_AT_type. CTF requires 595 * that pointer nodes point to something, so we'll create a void for use as 596 * the target. Note that the DWARF data may already create a void type. Ours 597 * would then be a duplicate, but it'll be removed in the self-uniquification 598 * merge performed at the completion of DWARF->tdesc conversion. 599 */ 600 static tdesc_t * 601 tdesc_intr_void(dwarf_t *dw) 602 { 603 if (dw->dw_void == NULL) 604 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 605 606 return (dw->dw_void); 607 } 608 609 static tdesc_t * 610 tdesc_intr_long(dwarf_t *dw) 611 { 612 if (dw->dw_long == NULL) { 613 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 614 dw->dw_ptrsz); 615 } 616 617 return (dw->dw_long); 618 } 619 620 /* 621 * Used for creating bitfield types. We create a copy of an existing intrinsic, 622 * adjusting the size of the copy to match what the caller requested. The 623 * caller can then use the copy as the type for a bitfield structure member. 624 */ 625 static tdesc_t * 626 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 627 { 628 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 629 630 if (!(old->t_flags & TDESC_F_RESOLVED)) { 631 terminate("tdp %u: attempt to make a bit field from an " 632 "unresolved type\n", old->t_id); 633 } 634 635 new->t_name = xstrdup(old->t_name); 636 new->t_size = old->t_size; 637 new->t_id = mfgtid_next(dw); 638 new->t_type = INTRINSIC; 639 new->t_flags = TDESC_F_RESOLVED; 640 641 new->t_intr = xcalloc(sizeof (intr_t)); 642 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 643 new->t_intr->intr_nbits = bitsz; 644 645 tdesc_add(dw, new); 646 647 return (new); 648 } 649 650 static void 651 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 652 tdesc_t *dimtdp) 653 { 654 Dwarf_Unsigned uval; 655 Dwarf_Signed sval; 656 tdesc_t *ctdp = NULL; 657 Dwarf_Die dim2; 658 ardef_t *ar; 659 660 if ((dim2 = die_sibling(dw, dim)) == NULL) { 661 ctdp = arrtdp; 662 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 663 ctdp = xcalloc(sizeof (tdesc_t)); 664 ctdp->t_id = mfgtid_next(dw); 665 debug(3, "die %llu: creating new type %u for sub-dimension\n", 666 die_off(dw, dim2), ctdp->t_id); 667 tdesc_array_create(dw, dim2, arrtdp, ctdp); 668 } else { 669 terminate("die %llu: unexpected non-subrange node in array\n", 670 die_off(dw, dim2)); 671 } 672 673 dimtdp->t_type = ARRAY; 674 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 675 676 /* 677 * Array bounds can be signed or unsigned, but there are several kinds 678 * of signless forms (data1, data2, etc) that take their sign from the 679 * routine that is trying to interpret them. That is, data1 can be 680 * either signed or unsigned, depending on whether you use the signed or 681 * unsigned accessor function. GCC will use the signless forms to store 682 * unsigned values which have their high bit set, so we need to try to 683 * read them first as unsigned to get positive values. We could also 684 * try signed first, falling back to unsigned if we got a negative 685 * value. 686 */ 687 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 688 ar->ad_nelems = uval + 1; 689 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 690 ar->ad_nelems = sval + 1; 691 else 692 ar->ad_nelems = 0; 693 694 /* 695 * Different compilers use different index types. Force the type to be 696 * a common, known value (long). 697 */ 698 ar->ad_idxtype = tdesc_intr_long(dw); 699 ar->ad_contents = ctdp; 700 701 if (ar->ad_contents->t_size != 0) { 702 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 703 dimtdp->t_flags |= TDESC_F_RESOLVED; 704 } 705 } 706 707 /* 708 * Create a tdesc from an array node. Some arrays will come with byte size 709 * attributes, and thus can be resolved immediately. Others don't, and will 710 * need to wait until the second pass for resolution. 711 */ 712 static void 713 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 714 { 715 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 716 Dwarf_Unsigned uval; 717 Dwarf_Die dim; 718 719 debug(3, "die %llu <%llx>: creating array\n", off, off); 720 721 if ((dim = die_child(dw, arr)) == NULL || 722 die_tag(dw, dim) != DW_TAG_subrange_type) 723 terminate("die %llu: failed to retrieve array bounds\n", off); 724 725 tdesc_array_create(dw, dim, arrtdp, tdp); 726 727 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 728 tdesc_t *dimtdp; 729 int flags; 730 731 /* Check for bogus gcc DW_AT_byte_size attribute */ 732 if (uval == (unsigned)-1) { 733 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 734 __func__); 735 uval = 0; 736 } 737 738 tdp->t_size = uval; 739 740 /* 741 * Ensure that sub-dimensions have sizes too before marking 742 * as resolved. 743 */ 744 flags = TDESC_F_RESOLVED; 745 for (dimtdp = tdp->t_ardef->ad_contents; 746 dimtdp->t_type == ARRAY; 747 dimtdp = dimtdp->t_ardef->ad_contents) { 748 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 749 flags = 0; 750 break; 751 } 752 } 753 754 tdp->t_flags |= flags; 755 } 756 757 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 758 tdp->t_ardef->ad_nelems, tdp->t_size); 759 } 760 761 /*ARGSUSED1*/ 762 static int 763 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 764 { 765 dwarf_t *dw = private; 766 size_t sz; 767 768 if (tdp->t_flags & TDESC_F_RESOLVED) 769 return (1); 770 771 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 772 tdp->t_ardef->ad_contents->t_id); 773 774 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) { 775 debug(3, "unable to resolve array %s (%d) contents %d\n", 776 tdesc_name(tdp), tdp->t_id, 777 tdp->t_ardef->ad_contents->t_id); 778 779 dw->dw_nunres++; 780 return (1); 781 } 782 783 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 784 tdp->t_flags |= TDESC_F_RESOLVED; 785 786 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 787 788 return (1); 789 } 790 791 /*ARGSUSED1*/ 792 static int 793 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 794 { 795 tdesc_t *cont = tdp->t_ardef->ad_contents; 796 797 if (tdp->t_flags & TDESC_F_RESOLVED) 798 return (1); 799 800 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 801 tdp->t_id, tdesc_name(cont), cont->t_id); 802 803 return (1); 804 } 805 806 /* 807 * Most enums (those with members) will be resolved during this first pass. 808 * Others - those without members (see the file comment) - won't be, and will 809 * need to wait until the second pass when they can be matched with their full 810 * definitions. 811 */ 812 static void 813 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 814 { 815 Dwarf_Die mem; 816 Dwarf_Unsigned uval; 817 Dwarf_Signed sval; 818 819 debug(3, "die %llu: creating enum\n", off); 820 821 tdp->t_type = ENUM; 822 823 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 824 /* Check for bogus gcc DW_AT_byte_size attribute */ 825 if (uval == (unsigned)-1) { 826 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 827 __func__); 828 uval = 0; 829 } 830 tdp->t_size = uval; 831 832 if ((mem = die_child(dw, die)) != NULL) { 833 elist_t **elastp = &tdp->t_emem; 834 835 do { 836 elist_t *el; 837 838 if (die_tag(dw, mem) != DW_TAG_enumerator) { 839 /* Nested type declaration */ 840 die_create_one(dw, mem); 841 continue; 842 } 843 844 el = xcalloc(sizeof (elist_t)); 845 el->el_name = die_name(dw, mem); 846 847 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 848 el->el_number = sval; 849 } else if (die_unsigned(dw, mem, DW_AT_const_value, 850 &uval, 0)) { 851 el->el_number = uval; 852 } else { 853 terminate("die %llu: enum %llu: member without " 854 "value\n", off, die_off(dw, mem)); 855 } 856 857 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 858 die_off(dw, mem), el->el_name, el->el_number); 859 860 *elastp = el; 861 elastp = &el->el_next; 862 863 } while ((mem = die_sibling(dw, mem)) != NULL); 864 865 hash_add(dw->dw_enumhash, tdp); 866 867 tdp->t_flags |= TDESC_F_RESOLVED; 868 869 if (tdp->t_name != NULL) { 870 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 871 ii->ii_type = II_SOU; 872 ii->ii_name = xstrdup(tdp->t_name); 873 ii->ii_dtype = tdp; 874 875 iidesc_add(dw->dw_td->td_iihash, ii); 876 } 877 } 878 } 879 880 static int 881 die_enum_match(void *arg1, void *arg2) 882 { 883 tdesc_t *tdp = arg1, **fullp = arg2; 884 885 if (tdp->t_emem != NULL) { 886 *fullp = tdp; 887 return (-1); /* stop the iteration */ 888 } 889 890 return (0); 891 } 892 893 /*ARGSUSED1*/ 894 static int 895 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 896 { 897 dwarf_t *dw = private; 898 tdesc_t *full = NULL; 899 900 if (tdp->t_flags & TDESC_F_RESOLVED) 901 return (1); 902 903 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 904 905 /* 906 * The answer to this one won't change from iteration to iteration, 907 * so don't even try. 908 */ 909 if (full == NULL) { 910 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 911 tdesc_name(tdp)); 912 } 913 914 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 915 tdesc_name(tdp), full->t_id); 916 917 tdp->t_flags |= TDESC_F_RESOLVED; 918 919 return (1); 920 } 921 922 static int 923 die_fwd_map(void *arg1, void *arg2) 924 { 925 tdesc_t *fwd = arg1, *sou = arg2; 926 927 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 928 tdesc_name(fwd), sou->t_id); 929 fwd->t_tdesc = sou; 930 931 return (0); 932 } 933 934 /* 935 * Structures and unions will never be resolved during the first pass, as we 936 * won't be able to fully determine the member sizes. The second pass, which 937 * have access to sizing information, will be able to complete the resolution. 938 */ 939 static void 940 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 941 int type, const char *typename) 942 { 943 Dwarf_Unsigned sz, bysz, bitsz, bitoff, maxsz=0; 944 Dwarf_Die mem; 945 mlist_t *ml, **mlastp; 946 iidesc_t *ii; 947 948 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 949 950 debug(3, "die %llu: creating %s %s\n", off, 951 (tdp->t_type == FORWARD ? "forward decl" : typename), 952 tdesc_name(tdp)); 953 954 if (tdp->t_type == FORWARD) { 955 hash_add(dw->dw_fwdhash, tdp); 956 return; 957 } 958 959 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 960 961 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 962 tdp->t_size = sz; 963 964 /* 965 * GCC allows empty SOUs as an extension. 966 */ 967 if ((mem = die_child(dw, str)) == NULL) { 968 goto out; 969 } 970 971 mlastp = &tdp->t_members; 972 973 do { 974 Dwarf_Off memoff = die_off(dw, mem); 975 Dwarf_Half tag = die_tag(dw, mem); 976 Dwarf_Unsigned mloff; 977 978 if (tag != DW_TAG_member) { 979 /* Nested type declaration */ 980 die_create_one(dw, mem); 981 continue; 982 } 983 984 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 985 986 ml = xcalloc(sizeof (mlist_t)); 987 988 /* 989 * This could be a GCC anon struct/union member, so we'll allow 990 * an empty name, even though nothing can really handle them 991 * properly. Note that some versions of GCC miss out debug 992 * info for anon structs, though recent versions are fixed (gcc 993 * bug 11816). 994 */ 995 if ((ml->ml_name = die_name(dw, mem)) == NULL) 996 ml->ml_name = NULL; 997 998 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 999 debug(3, "die_sou_create(): ml_type = %p t_id = %d\n", 1000 ml->ml_type, ml->ml_type->t_id); 1001 1002 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1003 &mloff, 0)) { 1004 debug(3, "die %llu: got mloff %llx\n", off, 1005 (u_longlong_t)mloff); 1006 ml->ml_offset = mloff * 8; 1007 } 1008 1009 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1010 ml->ml_size = bitsz; 1011 else 1012 ml->ml_size = tdesc_bitsize(ml->ml_type); 1013 1014 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1015 #if BYTE_ORDER == _BIG_ENDIAN 1016 ml->ml_offset += bitoff; 1017 #else 1018 /* 1019 * Note that Clang 3.4 will sometimes generate 1020 * member DIE before generating the DIE for the 1021 * member's type. The code can not handle this 1022 * properly so that tdesc_bitsize(ml->ml_type) will 1023 * return 0 because ml->ml_type is unknown. As a 1024 * result, a wrong member offset will be calculated. 1025 * To workaround this, we can instead try to 1026 * retrieve the value of DW_AT_byte_size attribute 1027 * which stores the byte size of the space occupied 1028 * by the type. If this attribute exists, its value 1029 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1030 */ 1031 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1032 bysz > 0) 1033 ml->ml_offset += bysz * NBBY - bitoff - 1034 ml->ml_size; 1035 else 1036 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1037 bitoff - ml->ml_size; 1038 #endif 1039 } 1040 1041 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1042 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1043 1044 *mlastp = ml; 1045 mlastp = &ml->ml_next; 1046 1047 /* Find the size of the largest member to work around a gcc 1048 * bug. See GCC Bugzilla 35998. 1049 */ 1050 if (maxsz < ml->ml_size) 1051 maxsz = ml->ml_size; 1052 1053 } while ((mem = die_sibling(dw, mem)) != NULL); 1054 1055 /* See if we got a bogus DW_AT_byte_size. GCC will sometimes 1056 * emit this. 1057 */ 1058 if (sz == (unsigned)-1) { 1059 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1060 __func__); 1061 tdp->t_size = maxsz / 8; /* maxsz is in bits, t_size is bytes */ 1062 } 1063 1064 /* 1065 * GCC will attempt to eliminate unused types, thus decreasing the 1066 * size of the emitted dwarf. That is, if you declare a foo_t in your 1067 * header, include said header in your source file, and neglect to 1068 * actually use (directly or indirectly) the foo_t in the source file, 1069 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1070 * the theory. 1071 * 1072 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1073 * and then neglect to emit the members. Strangely, the loner struct 1074 * tag will always be followed by a proper nested declaration of 1075 * something else. This is clearly a bug, but we're not going to have 1076 * time to get it fixed before this goo goes back, so we'll have to work 1077 * around it. If we see a no-membered struct with a nested declaration 1078 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1079 * Being paranoid, we won't simply remove it from the hash. Instead, 1080 * we'll decline to create an iidesc for it, thus ensuring that this 1081 * type won't make it into the output file. To be safe, we'll also 1082 * change the name. 1083 */ 1084 if (tdp->t_members == NULL) { 1085 const char *old = tdesc_name(tdp); 1086 size_t newsz = 7 + strlen(old) + 1; 1087 char *new = xmalloc(newsz); 1088 (void) snprintf(new, newsz, "orphan %s", old); 1089 1090 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1091 1092 if (tdp->t_name != NULL) 1093 free(tdp->t_name); 1094 tdp->t_name = new; 1095 return; 1096 } 1097 1098 out: 1099 if (tdp->t_name != NULL) { 1100 ii = xcalloc(sizeof (iidesc_t)); 1101 ii->ii_type = II_SOU; 1102 ii->ii_name = xstrdup(tdp->t_name); 1103 ii->ii_dtype = tdp; 1104 1105 iidesc_add(dw->dw_td->td_iihash, ii); 1106 } 1107 } 1108 1109 static void 1110 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1111 { 1112 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1113 } 1114 1115 static void 1116 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1117 { 1118 die_sou_create(dw, die, off, tdp, UNION, "union"); 1119 } 1120 1121 /*ARGSUSED1*/ 1122 static int 1123 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1124 { 1125 dwarf_t *dw = private; 1126 mlist_t *ml; 1127 tdesc_t *mt; 1128 1129 if (tdp->t_flags & TDESC_F_RESOLVED) 1130 return (1); 1131 1132 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1133 1134 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1135 if (ml->ml_size == 0) { 1136 mt = tdesc_basetype(ml->ml_type); 1137 1138 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1139 continue; 1140 1141 /* 1142 * For empty members, or GCC/C99 flexible array 1143 * members, a size of 0 is correct. 1144 */ 1145 if (mt->t_members == NULL) 1146 continue; 1147 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1148 continue; 1149 1150 dw->dw_nunres++; 1151 return (1); 1152 } 1153 1154 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1155 dw->dw_nunres++; 1156 return (1); 1157 } 1158 1159 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1160 mt->t_intr->intr_nbits != (int)ml->ml_size) { 1161 /* 1162 * This member is a bitfield, and needs to reference 1163 * an intrinsic type with the same width. If the 1164 * currently-referenced type isn't of the same width, 1165 * we'll copy it, adjusting the width of the copy to 1166 * the size we'd like. 1167 */ 1168 debug(3, "tdp %u: creating bitfield for %d bits\n", 1169 tdp->t_id, ml->ml_size); 1170 1171 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1172 } 1173 } 1174 1175 tdp->t_flags |= TDESC_F_RESOLVED; 1176 1177 return (1); 1178 } 1179 1180 /*ARGSUSED1*/ 1181 static int 1182 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1183 { 1184 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1185 mlist_t *ml; 1186 1187 if (tdp->t_flags & TDESC_F_RESOLVED) 1188 return (1); 1189 1190 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1191 if (ml->ml_size == 0) { 1192 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1193 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1194 tdp->t_id, 1195 ml->ml_name, tdesc_name(ml->ml_type), 1196 ml->ml_type->t_id, ml->ml_type->t_id); 1197 } 1198 } 1199 1200 return (1); 1201 } 1202 1203 static void 1204 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1205 { 1206 Dwarf_Attribute attr; 1207 Dwarf_Half tag; 1208 Dwarf_Die arg; 1209 fndef_t *fn; 1210 int i; 1211 1212 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1213 1214 /* 1215 * We'll begin by processing any type definition nodes that may be 1216 * lurking underneath this one. 1217 */ 1218 for (arg = die_child(dw, die); arg != NULL; 1219 arg = die_sibling(dw, arg)) { 1220 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1221 tag != DW_TAG_unspecified_parameters) { 1222 /* Nested type declaration */ 1223 die_create_one(dw, arg); 1224 } 1225 } 1226 1227 if (die_isdecl(dw, die)) { 1228 /* 1229 * This is a prototype. We don't add prototypes to the 1230 * tree, so we're going to drop the tdesc. Unfortunately, 1231 * it has already been added to the tree. Nobody will reference 1232 * it, though, and it will be leaked. 1233 */ 1234 return; 1235 } 1236 1237 fn = xcalloc(sizeof (fndef_t)); 1238 1239 tdp->t_type = FUNCTION; 1240 1241 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1242 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1243 } else { 1244 fn->fn_ret = tdesc_intr_void(dw); 1245 } 1246 1247 /* 1248 * Count the arguments to the function, then read them in. 1249 */ 1250 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1251 arg = die_sibling(dw, arg)) { 1252 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1253 fn->fn_nargs++; 1254 else if (tag == DW_TAG_unspecified_parameters && 1255 fn->fn_nargs > 0) 1256 fn->fn_vargs = 1; 1257 } 1258 1259 if (fn->fn_nargs != 0) { 1260 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1261 (fn->fn_nargs > 1 ? "s" : "")); 1262 1263 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1264 for (i = 0, arg = die_child(dw, die); 1265 arg != NULL && i < (int) fn->fn_nargs; 1266 arg = die_sibling(dw, arg)) { 1267 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1268 continue; 1269 1270 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1271 DW_AT_type); 1272 } 1273 } 1274 1275 tdp->t_fndef = fn; 1276 tdp->t_flags |= TDESC_F_RESOLVED; 1277 } 1278 1279 /* 1280 * GCC and DevPro use different names for the base types. While the terms are 1281 * the same, they are arranged in a different order. Some terms, such as int, 1282 * are implied in one, and explicitly named in the other. Given a base type 1283 * as input, this routine will return a common name, along with an intr_t 1284 * that reflects said name. 1285 */ 1286 static intr_t * 1287 die_base_name_parse(const char *name, char **newp) 1288 { 1289 char buf[100]; 1290 char const *base; 1291 char *c; 1292 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1293 int sign = 1; 1294 char fmt = '\0'; 1295 intr_t *intr; 1296 1297 if (strlen(name) > sizeof (buf) - 1) 1298 terminate("base type name \"%s\" is too long\n", name); 1299 1300 strncpy(buf, name, sizeof (buf)); 1301 1302 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1303 if (strcmp(c, "signed") == 0) 1304 sign = 1; 1305 else if (strcmp(c, "unsigned") == 0) 1306 sign = 0; 1307 else if (strcmp(c, "long") == 0) 1308 nlong++; 1309 else if (strcmp(c, "char") == 0) { 1310 nchar++; 1311 fmt = 'c'; 1312 } else if (strcmp(c, "short") == 0) 1313 nshort++; 1314 else if (strcmp(c, "int") == 0) 1315 nint++; 1316 else { 1317 /* 1318 * If we don't recognize any of the tokens, we'll tell 1319 * the caller to fall back to the dwarf-provided 1320 * encoding information. 1321 */ 1322 return (NULL); 1323 } 1324 } 1325 1326 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1327 return (NULL); 1328 1329 if (nchar > 0) { 1330 if (nlong > 0 || nshort > 0 || nint > 0) 1331 return (NULL); 1332 1333 base = "char"; 1334 1335 } else if (nshort > 0) { 1336 if (nlong > 0) 1337 return (NULL); 1338 1339 base = "short"; 1340 1341 } else if (nlong > 0) { 1342 base = "long"; 1343 1344 } else { 1345 base = "int"; 1346 } 1347 1348 intr = xcalloc(sizeof (intr_t)); 1349 intr->intr_type = INTR_INT; 1350 intr->intr_signed = sign; 1351 intr->intr_iformat = fmt; 1352 1353 snprintf(buf, sizeof (buf), "%s%s%s", 1354 (sign ? "" : "unsigned "), 1355 (nlong > 1 ? "long " : ""), 1356 base); 1357 1358 *newp = xstrdup(buf); 1359 return (intr); 1360 } 1361 1362 typedef struct fp_size_map { 1363 size_t fsm_typesz[2]; /* size of {32,64} type */ 1364 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1365 } fp_size_map_t; 1366 1367 static const fp_size_map_t fp_encodings[] = { 1368 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1369 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1370 #ifdef __sparc 1371 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1372 #else 1373 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1374 #endif 1375 { { 0, 0 }, { 0, 0, 0 } } 1376 }; 1377 1378 static uint_t 1379 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1380 { 1381 const fp_size_map_t *map = fp_encodings; 1382 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1383 uint_t mult = 1, col = 0; 1384 1385 if (enc == DW_ATE_complex_float) { 1386 mult = 2; 1387 col = 1; 1388 } else if (enc == DW_ATE_imaginary_float 1389 #if defined(sun) 1390 || enc == DW_ATE_SUN_imaginary_float 1391 #endif 1392 ) 1393 col = 2; 1394 1395 while (map->fsm_typesz[szidx] != 0) { 1396 if (map->fsm_typesz[szidx] * mult == sz) 1397 return (map->fsm_enc[col]); 1398 map++; 1399 } 1400 1401 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1402 /*NOTREACHED*/ 1403 return (0); 1404 } 1405 1406 static intr_t * 1407 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1408 { 1409 intr_t *intr = xcalloc(sizeof (intr_t)); 1410 Dwarf_Signed enc; 1411 1412 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1413 1414 switch (enc) { 1415 case DW_ATE_unsigned: 1416 case DW_ATE_address: 1417 intr->intr_type = INTR_INT; 1418 break; 1419 case DW_ATE_unsigned_char: 1420 intr->intr_type = INTR_INT; 1421 intr->intr_iformat = 'c'; 1422 break; 1423 case DW_ATE_signed: 1424 intr->intr_type = INTR_INT; 1425 intr->intr_signed = 1; 1426 break; 1427 case DW_ATE_signed_char: 1428 intr->intr_type = INTR_INT; 1429 intr->intr_signed = 1; 1430 intr->intr_iformat = 'c'; 1431 break; 1432 case DW_ATE_boolean: 1433 intr->intr_type = INTR_INT; 1434 intr->intr_signed = 1; 1435 intr->intr_iformat = 'b'; 1436 break; 1437 case DW_ATE_float: 1438 case DW_ATE_complex_float: 1439 case DW_ATE_imaginary_float: 1440 #if defined(sun) 1441 case DW_ATE_SUN_imaginary_float: 1442 case DW_ATE_SUN_interval_float: 1443 #endif 1444 intr->intr_type = INTR_REAL; 1445 intr->intr_signed = 1; 1446 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1447 break; 1448 default: 1449 terminate("die %llu: unknown base type encoding 0x%llx\n", 1450 off, enc); 1451 } 1452 1453 return (intr); 1454 } 1455 1456 static void 1457 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1458 { 1459 Dwarf_Unsigned sz; 1460 intr_t *intr; 1461 char *new; 1462 1463 debug(3, "die %llu: creating base type\n", off); 1464 1465 /* 1466 * The compilers have their own clever (internally inconsistent) ideas 1467 * as to what base types should look like. Some times gcc will, for 1468 * example, use DW_ATE_signed_char for char. Other times, however, it 1469 * will use DW_ATE_signed. Needless to say, this causes some problems 1470 * down the road, particularly with merging. We do, however, use the 1471 * DWARF idea of type sizes, as this allows us to avoid caring about 1472 * the data model. 1473 */ 1474 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1475 1476 /* Check for bogus gcc DW_AT_byte_size attribute */ 1477 if (sz == (unsigned)-1) { 1478 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1479 __func__); 1480 sz = 0; 1481 } 1482 1483 if (tdp->t_name == NULL) 1484 terminate("die %llu: base type without name\n", off); 1485 1486 /* XXX make a name parser for float too */ 1487 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1488 /* Found it. We'll use the parsed version */ 1489 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1490 tdesc_name(tdp), new); 1491 1492 free(tdp->t_name); 1493 tdp->t_name = new; 1494 } else { 1495 /* 1496 * We didn't recognize the type, so we'll create an intr_t 1497 * based on the DWARF data. 1498 */ 1499 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1500 tdesc_name(tdp)); 1501 1502 intr = die_base_from_dwarf(dw, base, off, sz); 1503 } 1504 1505 intr->intr_nbits = sz * 8; 1506 1507 tdp->t_type = INTRINSIC; 1508 tdp->t_intr = intr; 1509 tdp->t_size = sz; 1510 1511 tdp->t_flags |= TDESC_F_RESOLVED; 1512 } 1513 1514 static void 1515 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1516 int type, const char *typename) 1517 { 1518 Dwarf_Attribute attr; 1519 1520 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1521 1522 tdp->t_type = type; 1523 1524 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1525 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1526 } else { 1527 tdp->t_tdesc = tdesc_intr_void(dw); 1528 } 1529 1530 if (type == POINTER) 1531 tdp->t_size = dw->dw_ptrsz; 1532 1533 tdp->t_flags |= TDESC_F_RESOLVED; 1534 1535 if (type == TYPEDEF) { 1536 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1537 ii->ii_type = II_TYPE; 1538 ii->ii_name = xstrdup(tdp->t_name); 1539 ii->ii_dtype = tdp; 1540 1541 iidesc_add(dw->dw_td->td_iihash, ii); 1542 } 1543 } 1544 1545 static void 1546 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1547 { 1548 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1549 } 1550 1551 static void 1552 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1553 { 1554 die_through_create(dw, die, off, tdp, CONST, "const"); 1555 } 1556 1557 static void 1558 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1559 { 1560 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1561 } 1562 1563 static void 1564 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1565 { 1566 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1567 } 1568 1569 static void 1570 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1571 { 1572 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1573 } 1574 1575 /*ARGSUSED3*/ 1576 static void 1577 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1578 { 1579 Dwarf_Die arg; 1580 Dwarf_Half tag; 1581 iidesc_t *ii; 1582 char *name; 1583 1584 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1585 1586 /* 1587 * We'll begin by processing any type definition nodes that may be 1588 * lurking underneath this one. 1589 */ 1590 for (arg = die_child(dw, die); arg != NULL; 1591 arg = die_sibling(dw, arg)) { 1592 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1593 tag != DW_TAG_variable) { 1594 /* Nested type declaration */ 1595 die_create_one(dw, arg); 1596 } 1597 } 1598 1599 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1600 /* 1601 * We process neither prototypes nor subprograms without 1602 * names. 1603 */ 1604 return; 1605 } 1606 1607 ii = xcalloc(sizeof (iidesc_t)); 1608 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1609 ii->ii_name = name; 1610 if (ii->ii_type == II_SFUN) 1611 ii->ii_owner = xstrdup(dw->dw_cuname); 1612 1613 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1614 (ii->ii_type == II_GFUN ? "global" : "static")); 1615 1616 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1617 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1618 else 1619 ii->ii_dtype = tdesc_intr_void(dw); 1620 1621 for (arg = die_child(dw, die); arg != NULL; 1622 arg = die_sibling(dw, arg)) { 1623 char *name1; 1624 1625 debug(3, "die %llu: looking at sub member at %llu\n", 1626 off, die_off(dw, die)); 1627 1628 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1629 continue; 1630 1631 if ((name1 = die_name(dw, arg)) == NULL) { 1632 terminate("die %llu: func arg %d has no name\n", 1633 off, ii->ii_nargs + 1); 1634 } 1635 1636 if (strcmp(name1, "...") == 0) { 1637 free(name1); 1638 ii->ii_vargs = 1; 1639 continue; 1640 } 1641 1642 ii->ii_nargs++; 1643 } 1644 1645 if (ii->ii_nargs > 0) { 1646 int i; 1647 1648 debug(3, "die %llu: function has %d argument%s\n", off, 1649 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1650 1651 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1652 1653 for (arg = die_child(dw, die), i = 0; 1654 arg != NULL && i < ii->ii_nargs; 1655 arg = die_sibling(dw, arg)) { 1656 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1657 continue; 1658 1659 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1660 DW_AT_type); 1661 } 1662 } 1663 1664 iidesc_add(dw->dw_td->td_iihash, ii); 1665 } 1666 1667 /*ARGSUSED3*/ 1668 static void 1669 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1670 { 1671 iidesc_t *ii; 1672 char *name; 1673 1674 debug(3, "die %llu: creating object definition\n", off); 1675 1676 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1677 return; /* skip prototypes and nameless objects */ 1678 1679 ii = xcalloc(sizeof (iidesc_t)); 1680 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1681 ii->ii_name = name; 1682 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1683 if (ii->ii_type == II_SVAR) 1684 ii->ii_owner = xstrdup(dw->dw_cuname); 1685 1686 iidesc_add(dw->dw_td->td_iihash, ii); 1687 } 1688 1689 /*ARGSUSED2*/ 1690 static int 1691 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1692 { 1693 if (fwd->t_flags & TDESC_F_RESOLVED) 1694 return (1); 1695 1696 if (fwd->t_tdesc != NULL) { 1697 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1698 tdesc_name(fwd)); 1699 *fwdp = fwd->t_tdesc; 1700 } 1701 1702 fwd->t_flags |= TDESC_F_RESOLVED; 1703 1704 return (1); 1705 } 1706 1707 /*ARGSUSED*/ 1708 static void 1709 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1710 { 1711 Dwarf_Die child = die_child(dw, die); 1712 1713 if (child != NULL) 1714 die_create(dw, child); 1715 } 1716 1717 /* 1718 * Used to map the die to a routine which can parse it, using the tag to do the 1719 * mapping. While the processing of most tags entails the creation of a tdesc, 1720 * there are a few which don't - primarily those which result in the creation of 1721 * iidescs which refer to existing tdescs. 1722 */ 1723 1724 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1725 1726 typedef struct die_creator { 1727 Dwarf_Half dc_tag; 1728 uint16_t dc_flags; 1729 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1730 } die_creator_t; 1731 1732 static const die_creator_t die_creators[] = { 1733 { DW_TAG_array_type, 0, die_array_create }, 1734 { DW_TAG_enumeration_type, 0, die_enum_create }, 1735 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1736 { DW_TAG_pointer_type, 0, die_pointer_create }, 1737 { DW_TAG_structure_type, 0, die_struct_create }, 1738 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1739 { DW_TAG_typedef, 0, die_typedef_create }, 1740 { DW_TAG_union_type, 0, die_union_create }, 1741 { DW_TAG_base_type, 0, die_base_create }, 1742 { DW_TAG_const_type, 0, die_const_create }, 1743 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1744 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1745 { DW_TAG_volatile_type, 0, die_volatile_create }, 1746 { DW_TAG_restrict_type, 0, die_restrict_create }, 1747 { 0, 0, NULL } 1748 }; 1749 1750 static const die_creator_t * 1751 die_tag2ctor(Dwarf_Half tag) 1752 { 1753 const die_creator_t *dc; 1754 1755 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1756 if (dc->dc_tag == tag) 1757 return (dc); 1758 } 1759 1760 return (NULL); 1761 } 1762 1763 static void 1764 die_create_one(dwarf_t *dw, Dwarf_Die die) 1765 { 1766 Dwarf_Off off = die_off(dw, die); 1767 const die_creator_t *dc; 1768 Dwarf_Half tag; 1769 tdesc_t *tdp; 1770 1771 debug(3, "die %llu <%llx>: create_one\n", off, off); 1772 1773 if (off > dw->dw_maxoff) { 1774 terminate("illegal die offset %llu (max %llu)\n", off, 1775 dw->dw_maxoff); 1776 } 1777 1778 tag = die_tag(dw, die); 1779 1780 if ((dc = die_tag2ctor(tag)) == NULL) { 1781 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1782 return; 1783 } 1784 1785 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1786 !(dc->dc_flags & DW_F_NOTDP)) { 1787 tdp = xcalloc(sizeof (tdesc_t)); 1788 tdp->t_id = off; 1789 tdesc_add(dw, tdp); 1790 } 1791 1792 if (tdp != NULL) 1793 tdp->t_name = die_name(dw, die); 1794 1795 dc->dc_create(dw, die, off, tdp); 1796 } 1797 1798 static void 1799 die_create(dwarf_t *dw, Dwarf_Die die) 1800 { 1801 do { 1802 die_create_one(dw, die); 1803 } while ((die = die_sibling(dw, die)) != NULL); 1804 } 1805 1806 static tdtrav_cb_f die_resolvers[] = { 1807 NULL, 1808 NULL, /* intrinsic */ 1809 NULL, /* pointer */ 1810 die_array_resolve, /* array */ 1811 NULL, /* function */ 1812 die_sou_resolve, /* struct */ 1813 die_sou_resolve, /* union */ 1814 die_enum_resolve, /* enum */ 1815 die_fwd_resolve, /* forward */ 1816 NULL, /* typedef */ 1817 NULL, /* typedef unres */ 1818 NULL, /* volatile */ 1819 NULL, /* const */ 1820 NULL, /* restrict */ 1821 }; 1822 1823 static tdtrav_cb_f die_fail_reporters[] = { 1824 NULL, 1825 NULL, /* intrinsic */ 1826 NULL, /* pointer */ 1827 die_array_failed, /* array */ 1828 NULL, /* function */ 1829 die_sou_failed, /* struct */ 1830 die_sou_failed, /* union */ 1831 NULL, /* enum */ 1832 NULL, /* forward */ 1833 NULL, /* typedef */ 1834 NULL, /* typedef unres */ 1835 NULL, /* volatile */ 1836 NULL, /* const */ 1837 NULL, /* restrict */ 1838 }; 1839 1840 static void 1841 die_resolve(dwarf_t *dw) 1842 { 1843 int last = -1; 1844 int pass = 0; 1845 1846 do { 1847 pass++; 1848 dw->dw_nunres = 0; 1849 1850 (void) iitraverse_hash(dw->dw_td->td_iihash, 1851 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1852 1853 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1854 1855 if ((int) dw->dw_nunres == last) { 1856 fprintf(stderr, "%s: failed to resolve the following " 1857 "types:\n", progname); 1858 1859 (void) iitraverse_hash(dw->dw_td->td_iihash, 1860 &dw->dw_td->td_curvgen, NULL, NULL, 1861 die_fail_reporters, dw); 1862 1863 terminate("failed to resolve types\n"); 1864 } 1865 1866 last = dw->dw_nunres; 1867 1868 } while (dw->dw_nunres != 0); 1869 } 1870 1871 /* 1872 * Any object containing a function or object symbol at any scope should also 1873 * contain DWARF data. 1874 */ 1875 static boolean_t 1876 should_have_dwarf(Elf *elf) 1877 { 1878 Elf_Scn *scn = NULL; 1879 Elf_Data *data = NULL; 1880 GElf_Shdr shdr; 1881 GElf_Sym sym; 1882 uint32_t symdx = 0; 1883 size_t nsyms = 0; 1884 boolean_t found = B_FALSE; 1885 1886 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1887 gelf_getshdr(scn, &shdr); 1888 1889 if (shdr.sh_type == SHT_SYMTAB) { 1890 found = B_TRUE; 1891 break; 1892 } 1893 } 1894 1895 if (!found) 1896 terminate("cannot convert stripped objects\n"); 1897 1898 data = elf_getdata(scn, NULL); 1899 nsyms = shdr.sh_size / shdr.sh_entsize; 1900 1901 for (symdx = 0; symdx < nsyms; symdx++) { 1902 gelf_getsym(data, symdx, &sym); 1903 1904 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1905 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1906 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1907 char *name; 1908 1909 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1910 1911 /* Studio emits these local symbols regardless */ 1912 if ((strcmp(name, "Bbss.bss") != 0) && 1913 (strcmp(name, "Ttbss.bss") != 0) && 1914 (strcmp(name, "Ddata.data") != 0) && 1915 (strcmp(name, "Ttdata.data") != 0) && 1916 (strcmp(name, "Drodata.rodata") != 0)) 1917 return (B_TRUE); 1918 } 1919 } 1920 1921 return (B_FALSE); 1922 } 1923 1924 /*ARGSUSED*/ 1925 int 1926 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1927 { 1928 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1929 Dwarf_Half vers, addrsz, offsz; 1930 Dwarf_Die cu = 0; 1931 Dwarf_Die child = 0; 1932 dwarf_t dw; 1933 char *prod = NULL; 1934 int rc; 1935 1936 bzero(&dw, sizeof (dwarf_t)); 1937 dw.dw_td = td; 1938 dw.dw_ptrsz = elf_ptrsz(elf); 1939 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1940 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1941 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1942 tdesc_namecmp); 1943 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1944 tdesc_namecmp); 1945 1946 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1947 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1948 if (should_have_dwarf(elf)) { 1949 errno = ENOENT; 1950 return (-1); 1951 } else { 1952 return (0); 1953 } 1954 } else if (rc != DW_DLV_OK) { 1955 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1956 /* 1957 * There's no type data in the DWARF section, but 1958 * libdwarf is too clever to handle that properly. 1959 */ 1960 return (0); 1961 } 1962 1963 terminate("failed to initialize DWARF: %s\n", 1964 dwarf_errmsg(dw.dw_err)); 1965 } 1966 1967 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1968 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1969 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1970 1971 if ((cu = die_sibling(&dw, NULL)) == NULL || 1972 (((child = die_child(&dw, cu)) == NULL) && 1973 should_have_dwarf(elf))) { 1974 terminate("file does not contain dwarf type data " 1975 "(try compiling with -g)\n"); 1976 } else if (child == NULL) { 1977 return (0); 1978 } 1979 1980 dw.dw_maxoff = nxthdr - 1; 1981 1982 if (dw.dw_maxoff > TID_FILEMAX) 1983 terminate("file contains too many types\n"); 1984 1985 debug(1, "DWARF version: %d\n", vers); 1986 if (vers != DWARF_VERSION && vers != DWARF_VERSION3 && 1987 vers != DWARF_VERSION4) { 1988 terminate("file contains incompatible version %d DWARF code " 1989 "(version 2, 3, or 4 required)\n", vers); 1990 } 1991 1992 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 1993 debug(1, "DWARF emitter: %s\n", prod); 1994 free(prod); 1995 } 1996 1997 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 1998 char *base = xstrdup(basename(dw.dw_cuname)); 1999 free(dw.dw_cuname); 2000 dw.dw_cuname = base; 2001 2002 debug(1, "CU name: %s\n", dw.dw_cuname); 2003 } 2004 2005 if ((child = die_child(&dw, cu)) != NULL) 2006 die_create(&dw, child); 2007 2008 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2009 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2010 terminate("multiple compilation units not supported\n"); 2011 2012 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2013 2014 die_resolve(&dw); 2015 2016 cvt_fixups(td, dw.dw_ptrsz); 2017 2018 /* leak the dwarf_t */ 2019 2020 return (0); 2021 } 2022