1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace Process Control 31 * 32 * This file provides a set of routines that permit libdtrace and its clients 33 * to create and grab process handles using libproc, and to share these handles 34 * between library mechanisms that need libproc access, such as ustack(), and 35 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 36 * The library provides several mechanisms in the libproc control layer: 37 * 38 * Reference Counting: The library code and client code can independently grab 39 * the same process handles without interfering with one another. Only when 40 * the reference count drops to zero and the handle is not being cached (see 41 * below for more information on caching) will Prelease() be called on it. 42 * 43 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 44 * the reference count drops to zero, the handle is not immediately released. 45 * Instead, libproc handles are maintained on dph_lrulist in order from most- 46 * recently accessed to least-recently accessed. Idle handles are maintained 47 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 48 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 49 * 50 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 51 * or created by dt_proc_create(), a control thread is created to provide 52 * callbacks on process exit and symbol table caching on dlopen()s. 53 * 54 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 55 * are provided to synchronize access to the libproc handle between libdtrace 56 * code and client code and the control thread's use of the ps_prochandle. 57 * 58 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 59 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 60 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 61 * synchronization between libdtrace control threads and the client thread. 62 * 63 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 64 * in a hash table indexed by PID. This provides basic locking and reference 65 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 66 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 67 * the current limit on the number of actively cached entries. 68 * 69 * The control thread for a process establishes breakpoints at the rtld_db 70 * locations of interest, updates mappings and symbol tables at these points, 71 * and handles exec and fork (by always following the parent). The control 72 * thread automatically exits when the process dies or control is lost. 73 * 74 * A simple notification mechanism is provided for libdtrace clients using 75 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 76 * such an event occurs, the dt_proc_t itself is enqueued on a notification 77 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 78 * up using this condition and will then call the client handler as necessary. 79 */ 80 81 #include <sys/wait.h> 82 #if defined(sun) 83 #include <sys/lwp.h> 84 #endif 85 #include <strings.h> 86 #include <signal.h> 87 #include <assert.h> 88 #include <errno.h> 89 90 #include <dt_proc.h> 91 #include <dt_pid.h> 92 #include <dt_impl.h> 93 94 #define IS_SYS_EXEC(w) (w == SYS_exec || w == SYS_execve) 95 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork1 || \ 96 w == SYS_forkall || w == SYS_forksys) 97 98 #ifdef DOODAD 99 static dt_bkpt_t * 100 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 101 { 102 struct ps_prochandle *P = dpr->dpr_proc; 103 dt_bkpt_t *dbp; 104 105 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 106 107 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 108 dbp->dbp_func = func; 109 dbp->dbp_data = data; 110 dbp->dbp_addr = addr; 111 112 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 113 dbp->dbp_active = B_TRUE; 114 115 dt_list_append(&dpr->dpr_bps, dbp); 116 } 117 118 return (dbp); 119 } 120 #endif 121 122 static void 123 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 124 { 125 #if defined(sun) 126 int state = Pstate(dpr->dpr_proc); 127 #else 128 int state = proc_state(dpr->dpr_proc); 129 #endif 130 dt_bkpt_t *dbp, *nbp; 131 132 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 133 134 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 135 printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__); 136 #ifdef DOODAD 137 if (delbkpts && dbp->dbp_active && 138 state != PS_LOST && state != PS_UNDEAD) { 139 (void) Pdelbkpt(dpr->dpr_proc, 140 dbp->dbp_addr, dbp->dbp_instr); 141 } 142 #endif 143 nbp = dt_list_next(dbp); 144 dt_list_delete(&dpr->dpr_bps, dbp); 145 dt_free(dpr->dpr_hdl, dbp); 146 } 147 } 148 149 #ifdef DOODAD 150 static void 151 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 152 { 153 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 154 dt_bkpt_t *dbp; 155 156 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 157 158 for (dbp = dt_list_next(&dpr->dpr_bps); 159 dbp != NULL; dbp = dt_list_next(dbp)) { 160 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 161 break; 162 } 163 164 if (dbp == NULL) { 165 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 166 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 167 return; 168 } 169 170 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 171 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 172 173 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 174 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 175 } 176 #endif 177 178 static void 179 dt_proc_bpenable(dt_proc_t *dpr) 180 { 181 dt_bkpt_t *dbp; 182 183 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 184 185 for (dbp = dt_list_next(&dpr->dpr_bps); 186 dbp != NULL; dbp = dt_list_next(dbp)) { 187 printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__); 188 #ifdef DOODAD 189 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 190 dbp->dbp_addr, &dbp->dbp_instr) == 0) 191 dbp->dbp_active = B_TRUE; 192 #endif 193 } 194 195 dt_dprintf("breakpoints enabled\n"); 196 } 197 198 static void 199 dt_proc_bpdisable(dt_proc_t *dpr) 200 { 201 dt_bkpt_t *dbp; 202 203 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 204 205 for (dbp = dt_list_next(&dpr->dpr_bps); 206 dbp != NULL; dbp = dt_list_next(dbp)) { 207 printf("%s:%s(%d): DOODAD\n",__FUNCTION__,__FILE__,__LINE__); 208 #ifdef DOODAD 209 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 210 dbp->dbp_addr, dbp->dbp_instr) == 0) 211 dbp->dbp_active = B_FALSE; 212 #endif 213 } 214 215 dt_dprintf("breakpoints disabled\n"); 216 } 217 218 static void 219 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 220 const char *msg) 221 { 222 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 223 224 if (dprn == NULL) { 225 dt_dprintf("failed to allocate notification for %d %s\n", 226 (int)dpr->dpr_pid, msg); 227 } else { 228 dprn->dprn_dpr = dpr; 229 if (msg == NULL) 230 dprn->dprn_errmsg[0] = '\0'; 231 else 232 (void) strlcpy(dprn->dprn_errmsg, msg, 233 sizeof (dprn->dprn_errmsg)); 234 235 (void) pthread_mutex_lock(&dph->dph_lock); 236 237 dprn->dprn_next = dph->dph_notify; 238 dph->dph_notify = dprn; 239 240 (void) pthread_cond_broadcast(&dph->dph_cv); 241 (void) pthread_mutex_unlock(&dph->dph_lock); 242 } 243 } 244 245 /* 246 * Check to see if the control thread was requested to stop when the victim 247 * process reached a particular event (why) rather than continuing the victim. 248 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 249 * If 'why' is not set, this function returns immediately and does nothing. 250 */ 251 static void 252 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 253 { 254 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 255 assert(why != DT_PROC_STOP_IDLE); 256 257 if (dpr->dpr_stop & why) { 258 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 259 dpr->dpr_stop &= ~why; 260 261 (void) pthread_cond_broadcast(&dpr->dpr_cv); 262 263 /* 264 * We disable breakpoints while stopped to preserve the 265 * integrity of the program text for both our own disassembly 266 * and that of the kernel. 267 */ 268 dt_proc_bpdisable(dpr); 269 270 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 271 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 272 273 dt_proc_bpenable(dpr); 274 } 275 } 276 277 /*ARGSUSED*/ 278 static void 279 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 280 { 281 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 282 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 283 } 284 285 #if defined(sun) 286 static void 287 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 288 { 289 rd_event_msg_t rdm; 290 rd_err_e err; 291 292 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 293 dt_dprintf("pid %d: failed to get %s event message: %s\n", 294 (int)dpr->dpr_pid, evname, rd_errstr(err)); 295 return; 296 } 297 298 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 299 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 300 301 switch (rdm.type) { 302 case RD_DLACTIVITY: 303 if (rdm.u.state != RD_CONSISTENT) 304 break; 305 306 Pupdate_syms(dpr->dpr_proc); 307 if (dt_pid_create_probes_module(dtp, dpr) != 0) 308 dt_proc_notify(dtp, dtp->dt_procs, dpr, 309 dpr->dpr_errmsg); 310 311 break; 312 case RD_PREINIT: 313 Pupdate_syms(dpr->dpr_proc); 314 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 315 break; 316 case RD_POSTINIT: 317 Pupdate_syms(dpr->dpr_proc); 318 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 319 break; 320 } 321 } 322 323 static void 324 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 325 { 326 rd_notify_t rdn; 327 rd_err_e err; 328 329 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 330 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 331 (int)dpr->dpr_pid, evname, rd_errstr(err)); 332 return; 333 } 334 335 if (rdn.type != RD_NOTIFY_BPT) { 336 dt_dprintf("pid %d: event %s has unexpected type %d\n", 337 (int)dpr->dpr_pid, evname, rdn.type); 338 return; 339 } 340 341 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 342 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 343 } 344 345 /* 346 * Common code for enabling events associated with the run-time linker after 347 * attaching to a process or after a victim process completes an exec(2). 348 */ 349 static void 350 dt_proc_attach(dt_proc_t *dpr, int exec) 351 { 352 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 353 rd_err_e err; 354 GElf_Sym sym; 355 356 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 357 358 if (exec) { 359 if (psp->pr_lwp.pr_errno != 0) 360 return; /* exec failed: nothing needs to be done */ 361 362 dt_proc_bpdestroy(dpr, B_FALSE); 363 Preset_maps(dpr->dpr_proc); 364 } 365 366 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 367 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 368 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 369 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 370 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 371 } else { 372 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 373 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 374 "rtld_db agent initialization failed"); 375 } 376 377 Pupdate_maps(dpr->dpr_proc); 378 379 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 380 "a.out", "main", &sym, NULL) == 0) { 381 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 382 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 383 } else { 384 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 385 (int)dpr->dpr_pid, strerror(errno)); 386 } 387 } 388 389 /* 390 * Wait for a stopped process to be set running again by some other debugger. 391 * This is typically not required by /proc-based debuggers, since the usual 392 * model is that one debugger controls one victim. But DTrace, as usual, has 393 * its own needs: the stop() action assumes that prun(1) or some other tool 394 * will be applied to resume the victim process. This could be solved by 395 * adding a PCWRUN directive to /proc, but that seems like overkill unless 396 * other debuggers end up needing this functionality, so we implement a cheap 397 * equivalent to PCWRUN using the set of existing kernel mechanisms. 398 * 399 * Our intent is really not just to wait for the victim to run, but rather to 400 * wait for it to run and then stop again for a reason other than the current 401 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 402 * to a stopped process and will return the same result without affecting the 403 * victim, we can just perform these operations repeatedly until Pstate() 404 * changes, the representative LWP ID changes, or the stop timestamp advances. 405 * dt_proc_control() will then rediscover the new state and continue as usual. 406 * When the process is still stopped in the same exact state, we sleep for a 407 * brief interval before waiting again so as not to spin consuming CPU cycles. 408 */ 409 static void 410 dt_proc_waitrun(dt_proc_t *dpr) 411 { 412 struct ps_prochandle *P = dpr->dpr_proc; 413 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 414 415 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 416 timestruc_t tstamp = psp->pr_tstamp; 417 lwpid_t lwpid = psp->pr_lwpid; 418 419 const long wstop = PCWSTOP; 420 int pfd = Pctlfd(P); 421 422 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 423 assert(psp->pr_flags & PR_STOPPED); 424 assert(Pstate(P) == PS_STOP); 425 426 /* 427 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 428 * so that if the libdtrace client is killed, the victim stays stopped. 429 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 430 */ 431 (void) Punsetflags(P, krflag); 432 Psync(P); 433 434 (void) pthread_mutex_unlock(&dpr->dpr_lock); 435 436 while (!dpr->dpr_quit) { 437 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 438 continue; /* check dpr_quit and continue waiting */ 439 440 (void) pthread_mutex_lock(&dpr->dpr_lock); 441 (void) Pstopstatus(P, PCNULL, 0); 442 psp = &Pstatus(P)->pr_lwp; 443 444 /* 445 * If we've reached a new state, found a new representative, or 446 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 447 * original setting and then return with dpr_lock held. 448 */ 449 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 450 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 451 (void) Psetflags(P, krflag); 452 Psync(P); 453 return; 454 } 455 456 (void) pthread_mutex_unlock(&dpr->dpr_lock); 457 (void) poll(NULL, 0, MILLISEC / 2); 458 } 459 460 (void) pthread_mutex_lock(&dpr->dpr_lock); 461 } 462 #endif 463 464 typedef struct dt_proc_control_data { 465 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 466 dt_proc_t *dpcd_proc; /* proccess to control */ 467 } dt_proc_control_data_t; 468 469 /* 470 * Main loop for all victim process control threads. We initialize all the 471 * appropriate /proc control mechanisms, and then enter a loop waiting for 472 * the process to stop on an event or die. We process any events by calling 473 * appropriate subroutines, and exit when the victim dies or we lose control. 474 * 475 * The control thread synchronizes the use of dpr_proc with other libdtrace 476 * threads using dpr_lock. We hold the lock for all of our operations except 477 * waiting while the process is running: this is accomplished by writing a 478 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 479 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 480 */ 481 static void * 482 dt_proc_control(void *arg) 483 { 484 dt_proc_control_data_t *datap = arg; 485 dtrace_hdl_t *dtp = datap->dpcd_hdl; 486 dt_proc_t *dpr = datap->dpcd_proc; 487 dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs; 488 struct ps_prochandle *P = dpr->dpr_proc; 489 int pid = dpr->dpr_pid; 490 491 #if defined(sun) 492 int pfd = Pctlfd(P); 493 494 const long wstop = PCWSTOP; 495 #endif 496 int notify = B_FALSE; 497 498 /* 499 * We disable the POSIX thread cancellation mechanism so that the 500 * client program using libdtrace can't accidentally cancel our thread. 501 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 502 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 503 */ 504 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 505 506 /* 507 * Set up the corresponding process for tracing by libdtrace. We want 508 * to be able to catch breakpoints and efficiently single-step over 509 * them, and we need to enable librtld_db to watch libdl activity. 510 */ 511 (void) pthread_mutex_lock(&dpr->dpr_lock); 512 513 #if defined(sun) 514 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 515 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 516 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 517 518 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 519 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 520 521 /* 522 * We must trace exit from exec() system calls so that if the exec is 523 * successful, we can reset our breakpoints and re-initialize libproc. 524 */ 525 (void) Psysexit(P, SYS_exec, B_TRUE); 526 (void) Psysexit(P, SYS_execve, B_TRUE); 527 528 /* 529 * We must trace entry and exit for fork() system calls in order to 530 * disable our breakpoints temporarily during the fork. We do not set 531 * the PR_FORK flag, so if fork succeeds the child begins executing and 532 * does not inherit any other tracing behaviors or a control thread. 533 */ 534 (void) Psysentry(P, SYS_vfork, B_TRUE); 535 (void) Psysexit(P, SYS_vfork, B_TRUE); 536 (void) Psysentry(P, SYS_fork1, B_TRUE); 537 (void) Psysexit(P, SYS_fork1, B_TRUE); 538 (void) Psysentry(P, SYS_forkall, B_TRUE); 539 (void) Psysexit(P, SYS_forkall, B_TRUE); 540 (void) Psysentry(P, SYS_forksys, B_TRUE); 541 (void) Psysexit(P, SYS_forksys, B_TRUE); 542 543 Psync(P); /* enable all /proc changes */ 544 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 545 546 /* 547 * If PR_KLC is set, we created the process; otherwise we grabbed it. 548 * Check for an appropriate stop request and wait for dt_proc_continue. 549 */ 550 if (Pstatus(P)->pr_flags & PR_KLC) 551 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 552 else 553 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 554 555 if (Psetrun(P, 0, 0) == -1) { 556 dt_dprintf("pid %d: failed to set running: %s\n", 557 (int)dpr->dpr_pid, strerror(errno)); 558 } 559 #else 560 /* 561 * If PR_KLC is set, we created the process; otherwise we grabbed it. 562 * Check for an appropriate stop request and wait for dt_proc_continue. 563 */ 564 if (proc_getflags(P) & PR_KLC) 565 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 566 else 567 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 568 569 if (proc_continue(P) != 0) 570 dt_dprintf("pid %d: failed to set running: %s\n", 571 (int)dpr->dpr_pid, strerror(errno)); 572 #endif 573 574 (void) pthread_mutex_unlock(&dpr->dpr_lock); 575 576 /* 577 * Wait for the process corresponding to this control thread to stop, 578 * process the event, and then set it running again. We want to sleep 579 * with dpr_lock *unheld* so that other parts of libdtrace can use the 580 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 581 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 582 * Once the process stops, we wake up, grab dpr_lock, and then call 583 * Pwait() (which will return immediately) and do our processing. 584 */ 585 while (!dpr->dpr_quit) { 586 #if defined(sun) 587 const lwpstatus_t *psp; 588 589 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 590 continue; /* check dpr_quit and continue waiting */ 591 #else 592 /* Wait for the process to report status. */ 593 proc_wait(P); 594 #endif 595 596 (void) pthread_mutex_lock(&dpr->dpr_lock); 597 598 #if defined(sun) 599 pwait_locked: 600 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 601 (void) pthread_mutex_unlock(&dpr->dpr_lock); 602 continue; /* check dpr_quit and continue waiting */ 603 } 604 #endif 605 606 #if defined(sun) 607 switch (Pstate(P)) { 608 #else 609 switch (proc_state(P)) { 610 #endif 611 case PS_STOP: 612 #ifdef DOODAD 613 psp = &Pstatus(P)->pr_lwp; 614 615 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 616 pid, psp->pr_why, psp->pr_what); 617 618 /* 619 * If the process stops showing PR_REQUESTED, then the 620 * DTrace stop() action was applied to it or another 621 * debugging utility (e.g. pstop(1)) asked it to stop. 622 * In either case, the user's intention is for the 623 * process to remain stopped until another external 624 * mechanism (e.g. prun(1)) is applied. So instead of 625 * setting the process running ourself, we wait for 626 * someone else to do so. Once that happens, we return 627 * to our normal loop waiting for an event of interest. 628 */ 629 if (psp->pr_why == PR_REQUESTED) { 630 dt_proc_waitrun(dpr); 631 (void) pthread_mutex_unlock(&dpr->dpr_lock); 632 continue; 633 } 634 635 /* 636 * If the process stops showing one of the events that 637 * we are tracing, perform the appropriate response. 638 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 639 * PR_JOBCONTROL by design: if one of these conditions 640 * occurs, we will fall through to Psetrun() but the 641 * process will remain stopped in the kernel by the 642 * corresponding mechanism (e.g. job control stop). 643 */ 644 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 645 dt_proc_bpmatch(dtp, dpr); 646 else if (psp->pr_why == PR_SYSENTRY && 647 IS_SYS_FORK(psp->pr_what)) 648 dt_proc_bpdisable(dpr); 649 else if (psp->pr_why == PR_SYSEXIT && 650 IS_SYS_FORK(psp->pr_what)) 651 dt_proc_bpenable(dpr); 652 else if (psp->pr_why == PR_SYSEXIT && 653 IS_SYS_EXEC(psp->pr_what)) 654 dt_proc_attach(dpr, B_TRUE); 655 #endif 656 break; 657 658 case PS_LOST: 659 #if defined(sun) 660 if (Preopen(P) == 0) 661 goto pwait_locked; 662 #endif 663 664 dt_dprintf("pid %d: proc lost: %s\n", 665 pid, strerror(errno)); 666 667 dpr->dpr_quit = B_TRUE; 668 notify = B_TRUE; 669 break; 670 671 case PS_UNDEAD: 672 dt_dprintf("pid %d: proc died\n", pid); 673 dpr->dpr_quit = B_TRUE; 674 notify = B_TRUE; 675 break; 676 } 677 678 #if defined(sun) 679 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 680 dt_dprintf("pid %d: failed to set running: %s\n", 681 (int)dpr->dpr_pid, strerror(errno)); 682 } 683 #endif 684 685 (void) pthread_mutex_unlock(&dpr->dpr_lock); 686 } 687 688 /* 689 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 690 * the dt_proc_t structure on the dt_proc_hash_t notification list. 691 */ 692 if (notify) 693 dt_proc_notify(dtp, dph, dpr, NULL); 694 695 /* 696 * Destroy and remove any remaining breakpoints, set dpr_done and clear 697 * dpr_tid to indicate the control thread has exited, and notify any 698 * waiting thread in dt_proc_destroy() that we have succesfully exited. 699 */ 700 (void) pthread_mutex_lock(&dpr->dpr_lock); 701 702 dt_proc_bpdestroy(dpr, B_TRUE); 703 dpr->dpr_done = B_TRUE; 704 dpr->dpr_tid = 0; 705 706 (void) pthread_cond_broadcast(&dpr->dpr_cv); 707 (void) pthread_mutex_unlock(&dpr->dpr_lock); 708 709 return (NULL); 710 } 711 712 /*PRINTFLIKE3*/ 713 static struct ps_prochandle * 714 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 715 { 716 va_list ap; 717 718 va_start(ap, format); 719 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 720 va_end(ap); 721 722 if (dpr->dpr_proc != NULL) 723 #if defined(sun) 724 Prelease(dpr->dpr_proc, 0); 725 #else 726 proc_detach(dpr->dpr_proc); 727 #endif 728 729 dt_free(dtp, dpr); 730 (void) dt_set_errno(dtp, EDT_COMPILER); 731 return (NULL); 732 } 733 734 dt_proc_t * 735 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 736 { 737 dt_proc_hash_t *dph = dtp->dt_procs; 738 #if defined(sun) 739 pid_t pid = Pstatus(P)->pr_pid; 740 #else 741 pid_t pid = proc_getpid(P); 742 #endif 743 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 744 745 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 746 if (dpr->dpr_pid == pid) 747 break; 748 else 749 dpp = &dpr->dpr_hash; 750 } 751 752 assert(dpr != NULL); 753 assert(dpr->dpr_proc == P); 754 755 if (remove) 756 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 757 758 return (dpr); 759 } 760 761 static void 762 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 763 { 764 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 765 dt_proc_hash_t *dph = dtp->dt_procs; 766 dt_proc_notify_t *npr, **npp; 767 int rflag; 768 769 assert(dpr != NULL); 770 771 /* 772 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 773 * an external debugger and we were waiting in dt_proc_waitrun(). 774 * Leave the process in this condition using PRELEASE_HANG. 775 */ 776 #if defined(sun) 777 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 778 #else 779 if (!(proc_getflags(dpr->dpr_proc) & (PR_KLC | PR_RLC))) { 780 #endif 781 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 782 #if defined(sun) 783 rflag = PRELEASE_HANG; 784 #else 785 rflag = 0 /* XXX */; 786 #endif 787 } else { 788 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 789 rflag = 0; /* apply kill or run-on-last-close */ 790 } 791 792 if (dpr->dpr_tid) { 793 /* 794 * Set the dpr_quit flag to tell the daemon thread to exit. We 795 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 796 * long-term /proc system call. Our daemon threads have POSIX 797 * cancellation disabled, so EINTR will be the only effect. We 798 * then wait for dpr_done to indicate the thread has exited. 799 * 800 * We can't use pthread_kill() to send SIGCANCEL because the 801 * interface forbids it and we can't use pthread_cancel() 802 * because with cancellation disabled it won't actually 803 * send SIGCANCEL to the target thread, so we use _lwp_kill() 804 * to do the job. This is all built on evil knowledge of 805 * the details of the cancellation mechanism in libc. 806 */ 807 (void) pthread_mutex_lock(&dpr->dpr_lock); 808 dpr->dpr_quit = B_TRUE; 809 #if defined(sun) 810 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 811 #else 812 (void) pthread_kill(dpr->dpr_tid, SIGUSR1); 813 #endif 814 815 /* 816 * If the process is currently idling in dt_proc_stop(), re- 817 * enable breakpoints and poke it into running again. 818 */ 819 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 820 dt_proc_bpenable(dpr); 821 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 822 (void) pthread_cond_broadcast(&dpr->dpr_cv); 823 } 824 825 while (!dpr->dpr_done) 826 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 827 828 (void) pthread_mutex_unlock(&dpr->dpr_lock); 829 } 830 831 /* 832 * Before we free the process structure, remove this dt_proc_t from the 833 * lookup hash, and then walk the dt_proc_hash_t's notification list 834 * and remove this dt_proc_t if it is enqueued. 835 */ 836 (void) pthread_mutex_lock(&dph->dph_lock); 837 (void) dt_proc_lookup(dtp, P, B_TRUE); 838 npp = &dph->dph_notify; 839 840 while ((npr = *npp) != NULL) { 841 if (npr->dprn_dpr == dpr) { 842 *npp = npr->dprn_next; 843 dt_free(dtp, npr); 844 } else { 845 npp = &npr->dprn_next; 846 } 847 } 848 849 (void) pthread_mutex_unlock(&dph->dph_lock); 850 851 /* 852 * Remove the dt_proc_list from the LRU list, release the underlying 853 * libproc handle, and free our dt_proc_t data structure. 854 */ 855 if (dpr->dpr_cacheable) { 856 assert(dph->dph_lrucnt != 0); 857 dph->dph_lrucnt--; 858 } 859 860 dt_list_delete(&dph->dph_lrulist, dpr); 861 #if defined(sun) 862 Prelease(dpr->dpr_proc, rflag); 863 #else 864 proc_detach(dpr->dpr_proc); 865 #endif 866 dt_free(dtp, dpr); 867 } 868 869 static int 870 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 871 { 872 dt_proc_control_data_t data; 873 sigset_t nset, oset; 874 pthread_attr_t a; 875 int err; 876 877 (void) pthread_mutex_lock(&dpr->dpr_lock); 878 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 879 880 (void) pthread_attr_init(&a); 881 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 882 883 (void) sigfillset(&nset); 884 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 885 #if defined(sun) 886 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 887 #else 888 (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */ 889 #endif 890 891 data.dpcd_hdl = dtp; 892 data.dpcd_proc = dpr; 893 894 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 895 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 896 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 897 898 /* 899 * If the control thread was created, then wait on dpr_cv for either 900 * dpr_done to be set (the victim died or the control thread failed) 901 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 902 * stopped by /proc and the control thread is at the rendezvous event. 903 * On success, we return with the process and control thread stopped: 904 * the caller can then apply dt_proc_continue() to resume both. 905 */ 906 if (err == 0) { 907 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 908 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 909 910 /* 911 * If dpr_done is set, the control thread aborted before it 912 * reached the rendezvous event. This is either due to PS_LOST 913 * or PS_UNDEAD (i.e. the process died). We try to provide a 914 * small amount of useful information to help figure it out. 915 */ 916 if (dpr->dpr_done) { 917 #if defined(sun) 918 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 919 int stat = prp ? prp->pr_wstat : 0; 920 #endif 921 int pid = dpr->dpr_pid; 922 923 #if defined(sun) 924 if (Pstate(dpr->dpr_proc) == PS_LOST) { 925 #else 926 if (proc_state(dpr->dpr_proc) == PS_LOST) { 927 #endif 928 (void) dt_proc_error(dpr->dpr_hdl, dpr, 929 "failed to control pid %d: process exec'd " 930 "set-id or unobservable program\n", pid); 931 #if defined(sun) 932 } else if (WIFSIGNALED(stat)) { 933 (void) dt_proc_error(dpr->dpr_hdl, dpr, 934 "failed to control pid %d: process died " 935 "from signal %d\n", pid, WTERMSIG(stat)); 936 } else { 937 (void) dt_proc_error(dpr->dpr_hdl, dpr, 938 "failed to control pid %d: process exited " 939 "with status %d\n", pid, WEXITSTATUS(stat)); 940 #endif 941 } 942 943 err = ESRCH; /* cause grab() or create() to fail */ 944 } 945 } else { 946 (void) dt_proc_error(dpr->dpr_hdl, dpr, 947 "failed to create control thread for process-id %d: %s\n", 948 (int)dpr->dpr_pid, strerror(err)); 949 } 950 951 (void) pthread_mutex_unlock(&dpr->dpr_lock); 952 (void) pthread_attr_destroy(&a); 953 954 return (err); 955 } 956 957 struct ps_prochandle * 958 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 959 proc_child_func *pcf, void *child_arg) 960 { 961 dt_proc_hash_t *dph = dtp->dt_procs; 962 dt_proc_t *dpr; 963 int err; 964 965 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 966 return (NULL); /* errno is set for us */ 967 968 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 969 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 970 971 #if defined(sun) 972 if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) { 973 return (dt_proc_error(dtp, dpr, 974 "failed to execute %s: %s\n", file, Pcreate_error(err))); 975 } 976 977 dpr->dpr_hdl = dtp; 978 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 979 980 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 981 (void) Psetflags(dpr->dpr_proc, PR_KLC); 982 #else 983 (void) proc_clearflags(dpr->dpr_proc, PR_RLC); 984 (void) proc_setflags(dpr->dpr_proc, PR_KLC); 985 if ((err = proc_create(file, argv, pcf, child_arg, &dpr->dpr_proc)) != 0) 986 return (dt_proc_error(dtp, dpr, 987 "failed to execute %s: %s\n", file, strerror(err))); 988 dpr->dpr_hdl = dtp; 989 dpr->dpr_pid = proc_getpid(dpr->dpr_proc); 990 #endif 991 992 #if defined(sun) 993 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 994 #else 995 if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_IDLE) != 0) 996 #endif 997 return (NULL); /* dt_proc_error() has been called for us */ 998 999 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 1000 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 1001 dt_list_prepend(&dph->dph_lrulist, dpr); 1002 1003 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 1004 dpr->dpr_refs++; 1005 1006 return (dpr->dpr_proc); 1007 } 1008 1009 struct ps_prochandle * 1010 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 1011 { 1012 dt_proc_hash_t *dph = dtp->dt_procs; 1013 uint_t h = pid & (dph->dph_hashlen - 1); 1014 dt_proc_t *dpr, *opr; 1015 int err; 1016 1017 /* 1018 * Search the hash table for the pid. If it is already grabbed or 1019 * created, move the handle to the front of the lrulist, increment 1020 * the reference count, and return the existing ps_prochandle. 1021 */ 1022 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 1023 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 1024 /* 1025 * If the cached handle was opened read-only and 1026 * this request is for a writeable handle, mark 1027 * the cached handle as stale and open a new handle. 1028 * Since it's stale, unmark it as cacheable. 1029 */ 1030 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 1031 dt_dprintf("upgrading pid %d\n", (int)pid); 1032 dpr->dpr_stale = B_TRUE; 1033 dpr->dpr_cacheable = B_FALSE; 1034 dph->dph_lrucnt--; 1035 break; 1036 } 1037 1038 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 1039 dt_list_delete(&dph->dph_lrulist, dpr); 1040 dt_list_prepend(&dph->dph_lrulist, dpr); 1041 dpr->dpr_refs++; 1042 return (dpr->dpr_proc); 1043 } 1044 } 1045 1046 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 1047 return (NULL); /* errno is set for us */ 1048 1049 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 1050 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 1051 1052 #if defined(sun) 1053 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 1054 return (dt_proc_error(dtp, dpr, 1055 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 1056 } 1057 #else 1058 if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) 1059 return (dt_proc_error(dtp, dpr, 1060 "failed to grab pid %d: %s\n", (int) pid, strerror(err))); 1061 #endif 1062 1063 dpr->dpr_hdl = dtp; 1064 dpr->dpr_pid = pid; 1065 1066 #if defined(sun) 1067 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 1068 (void) Psetflags(dpr->dpr_proc, PR_RLC); 1069 #else 1070 (void) proc_clearflags(dpr->dpr_proc, PR_KLC); 1071 (void) proc_setflags(dpr->dpr_proc, PR_RLC); 1072 #endif 1073 1074 /* 1075 * If we are attempting to grab the process without a monitor 1076 * thread, then mark the process cacheable only if it's being 1077 * grabbed read-only. If we're currently caching more process 1078 * handles than dph_lrulim permits, attempt to find the 1079 * least-recently-used handle that is currently unreferenced and 1080 * release it from the cache. Otherwise we are grabbing the process 1081 * for control: create a control thread for this process and store 1082 * its ID in dpr->dpr_tid. 1083 */ 1084 if (nomonitor || (flags & PGRAB_RDONLY)) { 1085 if (dph->dph_lrucnt >= dph->dph_lrulim) { 1086 for (opr = dt_list_prev(&dph->dph_lrulist); 1087 opr != NULL; opr = dt_list_prev(opr)) { 1088 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 1089 dt_proc_destroy(dtp, opr->dpr_proc); 1090 break; 1091 } 1092 } 1093 } 1094 1095 if (flags & PGRAB_RDONLY) { 1096 dpr->dpr_cacheable = B_TRUE; 1097 dpr->dpr_rdonly = B_TRUE; 1098 dph->dph_lrucnt++; 1099 } 1100 1101 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 1102 return (NULL); /* dt_proc_error() has been called for us */ 1103 1104 dpr->dpr_hash = dph->dph_hash[h]; 1105 dph->dph_hash[h] = dpr; 1106 dt_list_prepend(&dph->dph_lrulist, dpr); 1107 1108 dt_dprintf("grabbed pid %d\n", (int)pid); 1109 dpr->dpr_refs++; 1110 1111 return (dpr->dpr_proc); 1112 } 1113 1114 void 1115 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1116 { 1117 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1118 dt_proc_hash_t *dph = dtp->dt_procs; 1119 1120 assert(dpr != NULL); 1121 assert(dpr->dpr_refs != 0); 1122 1123 if (--dpr->dpr_refs == 0 && 1124 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 1125 dt_proc_destroy(dtp, P); 1126 } 1127 1128 void 1129 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1130 { 1131 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1132 1133 (void) pthread_mutex_lock(&dpr->dpr_lock); 1134 1135 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1136 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1137 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1138 } 1139 1140 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1141 } 1142 1143 void 1144 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1145 { 1146 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1147 int err = pthread_mutex_lock(&dpr->dpr_lock); 1148 assert(err == 0); /* check for recursion */ 1149 } 1150 1151 void 1152 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1153 { 1154 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1155 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1156 assert(err == 0); /* check for unheld lock */ 1157 } 1158 1159 void 1160 dt_proc_hash_create(dtrace_hdl_t *dtp) 1161 { 1162 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1163 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) { 1164 1165 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1166 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1167 1168 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1169 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1170 } 1171 } 1172 1173 void 1174 dt_proc_hash_destroy(dtrace_hdl_t *dtp) 1175 { 1176 dt_proc_hash_t *dph = dtp->dt_procs; 1177 dt_proc_t *dpr; 1178 1179 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1180 dt_proc_destroy(dtp, dpr->dpr_proc); 1181 1182 dtp->dt_procs = NULL; 1183 dt_free(dtp, dph); 1184 } 1185 1186 struct ps_prochandle * 1187 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 1188 proc_child_func *pcf, void *child_arg) 1189 { 1190 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1191 struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg); 1192 1193 if (P != NULL && idp != NULL && idp->di_id == 0) 1194 #if defined(sun) 1195 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1196 #else 1197 idp->di_id = proc_getpid(P); /* $target = created pid */ 1198 #endif 1199 1200 return (P); 1201 } 1202 1203 struct ps_prochandle * 1204 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1205 { 1206 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1207 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1208 1209 if (P != NULL && idp != NULL && idp->di_id == 0) 1210 idp->di_id = pid; /* $target = grabbed pid */ 1211 1212 return (P); 1213 } 1214 1215 void 1216 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1217 { 1218 dt_proc_release(dtp, P); 1219 } 1220 1221 void 1222 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1223 { 1224 dt_proc_continue(dtp, P); 1225 } 1226