1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * DTrace Process Control 33 * 34 * This file provides a set of routines that permit libdtrace and its clients 35 * to create and grab process handles using libproc, and to share these handles 36 * between library mechanisms that need libproc access, such as ustack(), and 37 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 38 * The library provides several mechanisms in the libproc control layer: 39 * 40 * Reference Counting: The library code and client code can independently grab 41 * the same process handles without interfering with one another. Only when 42 * the reference count drops to zero and the handle is not being cached (see 43 * below for more information on caching) will Prelease() be called on it. 44 * 45 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 46 * the reference count drops to zero, the handle is not immediately released. 47 * Instead, libproc handles are maintained on dph_lrulist in order from most- 48 * recently accessed to least-recently accessed. Idle handles are maintained 49 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 50 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 51 * 52 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 53 * or created by dt_proc_create(), a control thread is created to provide 54 * callbacks on process exit and symbol table caching on dlopen()s. 55 * 56 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 57 * are provided to synchronize access to the libproc handle between libdtrace 58 * code and client code and the control thread's use of the ps_prochandle. 59 * 60 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 61 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 62 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 63 * synchronization between libdtrace control threads and the client thread. 64 * 65 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 66 * in a hash table indexed by PID. This provides basic locking and reference 67 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 68 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 69 * the current limit on the number of actively cached entries. 70 * 71 * The control thread for a process establishes breakpoints at the rtld_db 72 * locations of interest, updates mappings and symbol tables at these points, 73 * and handles exec and fork (by always following the parent). The control 74 * thread automatically exits when the process dies or control is lost. 75 * 76 * A simple notification mechanism is provided for libdtrace clients using 77 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 78 * such an event occurs, the dt_proc_t itself is enqueued on a notification 79 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 80 * up using this condition and will then call the client handler as necessary. 81 */ 82 83 #include <sys/syscall.h> 84 #include <sys/wait.h> 85 #include <strings.h> 86 #include <signal.h> 87 #include <assert.h> 88 #include <errno.h> 89 90 #include <dt_proc.h> 91 #include <dt_pid.h> 92 #include <dt_impl.h> 93 94 #include <libproc_compat.h> 95 96 #define IS_SYS_EXEC(w) (w == SYS_execve) 97 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork) 98 99 static dt_bkpt_t * 100 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 101 { 102 struct ps_prochandle *P = dpr->dpr_proc; 103 dt_bkpt_t *dbp; 104 105 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 106 107 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 108 dbp->dbp_func = func; 109 dbp->dbp_data = data; 110 dbp->dbp_addr = addr; 111 112 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 113 dbp->dbp_active = B_TRUE; 114 115 dt_list_append(&dpr->dpr_bps, dbp); 116 } 117 118 return (dbp); 119 } 120 121 static void 122 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 123 { 124 int state = Pstate(dpr->dpr_proc); 125 dt_bkpt_t *dbp, *nbp; 126 127 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 128 129 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 130 if (delbkpts && dbp->dbp_active && 131 state != PS_LOST && state != PS_UNDEAD) { 132 (void) Pdelbkpt(dpr->dpr_proc, 133 dbp->dbp_addr, dbp->dbp_instr); 134 } 135 nbp = dt_list_next(dbp); 136 dt_list_delete(&dpr->dpr_bps, dbp); 137 dt_free(dpr->dpr_hdl, dbp); 138 } 139 } 140 141 static void 142 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 143 { 144 unsigned long pc; 145 dt_bkpt_t *dbp; 146 147 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 148 149 proc_regget(dpr->dpr_proc, REG_PC, &pc); 150 proc_bkptregadj(&pc); 151 152 for (dbp = dt_list_next(&dpr->dpr_bps); 153 dbp != NULL; dbp = dt_list_next(dbp)) { 154 if (pc == dbp->dbp_addr) 155 break; 156 } 157 158 if (dbp == NULL) { 159 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 160 (int)dpr->dpr_pid, pc); 161 return; 162 } 163 164 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 165 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 166 167 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 168 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 169 } 170 171 static void 172 dt_proc_bpenable(dt_proc_t *dpr) 173 { 174 dt_bkpt_t *dbp; 175 176 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 177 178 for (dbp = dt_list_next(&dpr->dpr_bps); 179 dbp != NULL; dbp = dt_list_next(dbp)) { 180 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 181 dbp->dbp_addr, &dbp->dbp_instr) == 0) 182 dbp->dbp_active = B_TRUE; 183 } 184 185 dt_dprintf("breakpoints enabled\n"); 186 } 187 188 static void 189 dt_proc_bpdisable(dt_proc_t *dpr) 190 { 191 dt_bkpt_t *dbp; 192 193 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 194 195 for (dbp = dt_list_next(&dpr->dpr_bps); 196 dbp != NULL; dbp = dt_list_next(dbp)) { 197 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 198 dbp->dbp_addr, dbp->dbp_instr) == 0) 199 dbp->dbp_active = B_FALSE; 200 } 201 202 dt_dprintf("breakpoints disabled\n"); 203 } 204 205 static void 206 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 207 const char *msg) 208 { 209 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 210 211 if (dprn == NULL) { 212 dt_dprintf("failed to allocate notification for %d %s\n", 213 (int)dpr->dpr_pid, msg); 214 } else { 215 dprn->dprn_dpr = dpr; 216 if (msg == NULL) 217 dprn->dprn_errmsg[0] = '\0'; 218 else 219 (void) strlcpy(dprn->dprn_errmsg, msg, 220 sizeof (dprn->dprn_errmsg)); 221 222 (void) pthread_mutex_lock(&dph->dph_lock); 223 224 dprn->dprn_next = dph->dph_notify; 225 dph->dph_notify = dprn; 226 227 (void) pthread_cond_broadcast(&dph->dph_cv); 228 (void) pthread_mutex_unlock(&dph->dph_lock); 229 } 230 } 231 232 /* 233 * Check to see if the control thread was requested to stop when the victim 234 * process reached a particular event (why) rather than continuing the victim. 235 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 236 * If 'why' is not set, this function returns immediately and does nothing. 237 */ 238 static void 239 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 240 { 241 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 242 assert(why != DT_PROC_STOP_IDLE); 243 244 if (dpr->dpr_stop & why) { 245 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 246 dpr->dpr_stop &= ~why; 247 248 (void) pthread_cond_broadcast(&dpr->dpr_cv); 249 250 /* 251 * We disable breakpoints while stopped to preserve the 252 * integrity of the program text for both our own disassembly 253 * and that of the kernel. 254 */ 255 dt_proc_bpdisable(dpr); 256 257 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 258 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 259 260 dt_proc_bpenable(dpr); 261 } 262 } 263 264 /*ARGSUSED*/ 265 static void 266 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 267 { 268 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 269 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 270 } 271 272 static void 273 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 274 { 275 rd_event_msg_t rdm; 276 rd_err_e err; 277 278 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 279 dt_dprintf("pid %d: failed to get %s event message: %s\n", 280 (int)dpr->dpr_pid, evname, rd_errstr(err)); 281 return; 282 } 283 284 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 285 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 286 287 switch (rdm.type) { 288 case RD_DLACTIVITY: 289 if (rdm.u.state != RD_CONSISTENT) 290 break; 291 292 Pupdate_syms(dpr->dpr_proc); 293 if (dt_pid_create_probes_module(dtp, dpr) != 0) 294 dt_proc_notify(dtp, dtp->dt_procs, dpr, 295 dpr->dpr_errmsg); 296 297 break; 298 case RD_PREINIT: 299 Pupdate_syms(dpr->dpr_proc); 300 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 301 break; 302 case RD_POSTINIT: 303 Pupdate_syms(dpr->dpr_proc); 304 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 305 break; 306 } 307 } 308 309 static void 310 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 311 { 312 rd_notify_t rdn; 313 rd_err_e err; 314 315 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 316 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 317 (int)dpr->dpr_pid, evname, rd_errstr(err)); 318 return; 319 } 320 321 if (rdn.type != RD_NOTIFY_BPT) { 322 dt_dprintf("pid %d: event %s has unexpected type %d\n", 323 (int)dpr->dpr_pid, evname, rdn.type); 324 return; 325 } 326 327 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 328 /* XXX ugly */ 329 (dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname)); 330 } 331 332 /* 333 * Common code for enabling events associated with the run-time linker after 334 * attaching to a process or after a victim process completes an exec(2). 335 */ 336 static void 337 dt_proc_attach(dt_proc_t *dpr, int exec) 338 { 339 rd_err_e err; 340 GElf_Sym sym; 341 342 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 343 344 if (exec) { 345 346 dt_proc_bpdestroy(dpr, B_FALSE); 347 } 348 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 349 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 350 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 351 } else { 352 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 353 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 354 "rtld_db agent initialization failed"); 355 } 356 357 Pupdate_maps(dpr->dpr_proc); 358 359 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 360 "a.out", "main", &sym, NULL) == 0) { 361 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 362 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 363 } else { 364 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 365 (int)dpr->dpr_pid, strerror(errno)); 366 } 367 } 368 369 typedef struct dt_proc_control_data { 370 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 371 dt_proc_t *dpcd_proc; /* proccess to control */ 372 } dt_proc_control_data_t; 373 374 /* 375 * Main loop for all victim process control threads. We initialize all the 376 * appropriate /proc control mechanisms, and then enter a loop waiting for 377 * the process to stop on an event or die. We process any events by calling 378 * appropriate subroutines, and exit when the victim dies or we lose control. 379 * 380 * The control thread synchronizes the use of dpr_proc with other libdtrace 381 * threads using dpr_lock. We hold the lock for all of our operations except 382 * waiting while the process is running: this is accomplished by writing a 383 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 384 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 385 */ 386 static void * 387 dt_proc_control(void *arg) 388 { 389 dt_proc_control_data_t *datap = arg; 390 dtrace_hdl_t *dtp = datap->dpcd_hdl; 391 dt_proc_t *dpr = datap->dpcd_proc; 392 dt_proc_hash_t *dph = dtp->dt_procs; 393 struct ps_prochandle *P = dpr->dpr_proc; 394 int pid = dpr->dpr_pid; 395 int notify = B_FALSE; 396 397 /* 398 * We disable the POSIX thread cancellation mechanism so that the 399 * client program using libdtrace can't accidentally cancel our thread. 400 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 401 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 402 */ 403 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 404 405 /* 406 * Set up the corresponding process for tracing by libdtrace. We want 407 * to be able to catch breakpoints and efficiently single-step over 408 * them, and we need to enable librtld_db to watch libdl activity. 409 */ 410 (void) pthread_mutex_lock(&dpr->dpr_lock); 411 412 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 413 414 /* 415 * If DT_CLOSE_KILL is set, we created the process; otherwise we 416 * grabbed it. Check for an appropriate stop request and wait for 417 * dt_proc_continue. 418 */ 419 if (dpr->dpr_close == DT_CLOSE_KILL) 420 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 421 else 422 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 423 424 if (Psetrun(P, 0, 0) == -1) { 425 dt_dprintf("pid %d: failed to set running: %s\n", 426 (int)dpr->dpr_pid, strerror(errno)); 427 } 428 429 (void) pthread_mutex_unlock(&dpr->dpr_lock); 430 431 /* 432 * Wait for the process corresponding to this control thread to stop, 433 * process the event, and then set it running again. We want to sleep 434 * with dpr_lock *unheld* so that other parts of libdtrace can use the 435 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 436 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 437 * Once the process stops, we wake up, grab dpr_lock, and then call 438 * Pwait() (which will return immediately) and do our processing. 439 */ 440 while (!dpr->dpr_quit) { 441 const lwpstatus_t *psp; 442 443 /* Wait for the process to report status. */ 444 proc_wstatus(P); 445 if (errno == EINTR) 446 continue; /* check dpr_quit and continue waiting */ 447 448 (void) pthread_mutex_lock(&dpr->dpr_lock); 449 450 switch (Pstate(P)) { 451 case PS_STOP: 452 psp = proc_getlwpstatus(P); 453 454 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 455 pid, psp->pr_why, psp->pr_what); 456 457 /* 458 * If the process stops showing one of the events that 459 * we are tracing, perform the appropriate response. 460 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 461 * PR_JOBCONTROL by design: if one of these conditions 462 * occurs, we will fall through to Psetrun() but the 463 * process will remain stopped in the kernel by the 464 * corresponding mechanism (e.g. job control stop). 465 */ 466 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 467 dt_proc_bpmatch(dtp, dpr); 468 else if (psp->pr_why == PR_SYSENTRY && 469 IS_SYS_FORK(psp->pr_what)) 470 dt_proc_bpdisable(dpr); 471 else if (psp->pr_why == PR_SYSEXIT && 472 IS_SYS_FORK(psp->pr_what)) 473 dt_proc_bpenable(dpr); 474 else if (psp->pr_why == PR_SYSEXIT && 475 IS_SYS_EXEC(psp->pr_what)) 476 dt_proc_attach(dpr, B_TRUE); 477 break; 478 479 case PS_LOST: 480 dt_dprintf("pid %d: proc lost: %s\n", 481 pid, strerror(errno)); 482 483 dpr->dpr_quit = B_TRUE; 484 notify = B_TRUE; 485 break; 486 487 case PS_UNDEAD: 488 dt_dprintf("pid %d: proc died\n", pid); 489 dpr->dpr_quit = B_TRUE; 490 notify = B_TRUE; 491 break; 492 } 493 494 if (Pstate(P) != PS_UNDEAD) { 495 if (dpr->dpr_quit && dpr->dpr_close == DT_CLOSE_KILL) { 496 /* 497 * We're about to kill the child, so don't 498 * bother resuming it. In some cases, such as 499 * an initialization error, we shouldn't have 500 * started it in the first place, so letting it 501 * run could be harmful. 502 */ 503 } else if (Psetrun(P, 0, 0) == -1) { 504 dt_dprintf("pid %d: failed to set running: " 505 "%s\n", (int)dpr->dpr_pid, strerror(errno)); 506 } 507 } 508 509 (void) pthread_mutex_unlock(&dpr->dpr_lock); 510 } 511 512 /* 513 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 514 * the dt_proc_t structure on the dt_proc_hash_t notification list. 515 */ 516 if (notify) 517 dt_proc_notify(dtp, dph, dpr, NULL); 518 519 /* 520 * Destroy and remove any remaining breakpoints, set dpr_done and clear 521 * dpr_tid to indicate the control thread has exited, and notify any 522 * waiting thread in dt_proc_destroy() that we have succesfully exited. 523 */ 524 (void) pthread_mutex_lock(&dpr->dpr_lock); 525 526 dt_proc_bpdestroy(dpr, B_TRUE); 527 dpr->dpr_done = B_TRUE; 528 dpr->dpr_tid = 0; 529 530 (void) pthread_cond_broadcast(&dpr->dpr_cv); 531 (void) pthread_mutex_unlock(&dpr->dpr_lock); 532 533 return (NULL); 534 } 535 536 /*PRINTFLIKE3*/ 537 static struct ps_prochandle * 538 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 539 { 540 va_list ap; 541 542 va_start(ap, format); 543 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 544 va_end(ap); 545 546 if (dpr->dpr_proc != NULL) 547 Prelease(dpr->dpr_proc, 0); 548 549 dt_free(dtp, dpr); 550 (void) dt_set_errno(dtp, EDT_COMPILER); 551 return (NULL); 552 } 553 554 dt_proc_t * 555 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 556 { 557 dt_proc_hash_t *dph = dtp->dt_procs; 558 pid_t pid = proc_getpid(P); 559 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 560 561 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 562 if (dpr->dpr_pid == pid) 563 break; 564 else 565 dpp = &dpr->dpr_hash; 566 } 567 568 assert(dpr != NULL); 569 assert(dpr->dpr_proc == P); 570 571 if (remove) 572 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 573 574 return (dpr); 575 } 576 577 static void 578 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 579 { 580 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 581 dt_proc_hash_t *dph = dtp->dt_procs; 582 dt_proc_notify_t *npr, **npp; 583 int rflag; 584 585 assert(dpr != NULL); 586 587 switch (dpr->dpr_close) { 588 case DT_CLOSE_KILL: 589 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid); 590 rflag = PRELEASE_KILL; 591 break; 592 case DT_CLOSE_RUN: 593 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 594 rflag = 0; 595 break; 596 } 597 598 if (dpr->dpr_tid) { 599 /* 600 * Set the dpr_quit flag to tell the daemon thread to exit. We 601 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 602 * long-term /proc system call. Our daemon threads have POSIX 603 * cancellation disabled, so EINTR will be the only effect. We 604 * then wait for dpr_done to indicate the thread has exited. 605 * 606 * We can't use pthread_kill() to send SIGCANCEL because the 607 * interface forbids it and we can't use pthread_cancel() 608 * because with cancellation disabled it won't actually 609 * send SIGCANCEL to the target thread, so we use _lwp_kill() 610 * to do the job. This is all built on evil knowledge of 611 * the details of the cancellation mechanism in libc. 612 */ 613 (void) pthread_mutex_lock(&dpr->dpr_lock); 614 dpr->dpr_quit = B_TRUE; 615 pthread_kill(dpr->dpr_tid, SIGTHR); 616 617 /* 618 * If the process is currently idling in dt_proc_stop(), re- 619 * enable breakpoints and poke it into running again. 620 */ 621 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 622 dt_proc_bpenable(dpr); 623 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 624 (void) pthread_cond_broadcast(&dpr->dpr_cv); 625 } 626 627 while (!dpr->dpr_done) 628 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 629 630 (void) pthread_mutex_unlock(&dpr->dpr_lock); 631 } 632 633 /* 634 * Before we free the process structure, remove this dt_proc_t from the 635 * lookup hash, and then walk the dt_proc_hash_t's notification list 636 * and remove this dt_proc_t if it is enqueued. 637 */ 638 (void) pthread_mutex_lock(&dph->dph_lock); 639 (void) dt_proc_lookup(dtp, P, B_TRUE); 640 npp = &dph->dph_notify; 641 642 while ((npr = *npp) != NULL) { 643 if (npr->dprn_dpr == dpr) { 644 *npp = npr->dprn_next; 645 dt_free(dtp, npr); 646 } else { 647 npp = &npr->dprn_next; 648 } 649 } 650 651 (void) pthread_mutex_unlock(&dph->dph_lock); 652 653 /* 654 * Remove the dt_proc_list from the LRU list, release the underlying 655 * libproc handle, and free our dt_proc_t data structure. 656 */ 657 if (dpr->dpr_cacheable) { 658 assert(dph->dph_lrucnt != 0); 659 dph->dph_lrucnt--; 660 } 661 662 dt_list_delete(&dph->dph_lrulist, dpr); 663 Prelease(dpr->dpr_proc, rflag); 664 dt_free(dtp, dpr); 665 } 666 667 static int 668 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 669 { 670 dt_proc_control_data_t data; 671 sigset_t nset, oset; 672 pthread_attr_t a; 673 int err; 674 675 (void) pthread_mutex_lock(&dpr->dpr_lock); 676 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 677 678 (void) pthread_attr_init(&a); 679 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 680 681 (void) sigfillset(&nset); 682 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 683 (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */ 684 685 data.dpcd_hdl = dtp; 686 data.dpcd_proc = dpr; 687 688 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 689 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 690 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 691 692 /* 693 * If the control thread was created, then wait on dpr_cv for either 694 * dpr_done to be set (the victim died or the control thread failed) 695 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 696 * stopped by /proc and the control thread is at the rendezvous event. 697 * On success, we return with the process and control thread stopped: 698 * the caller can then apply dt_proc_continue() to resume both. 699 */ 700 if (err == 0) { 701 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 702 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 703 704 /* 705 * If dpr_done is set, the control thread aborted before it 706 * reached the rendezvous event. This is either due to PS_LOST 707 * or PS_UNDEAD (i.e. the process died). We try to provide a 708 * small amount of useful information to help figure it out. 709 */ 710 if (dpr->dpr_done) { 711 int stat = proc_getwstat(dpr->dpr_proc); 712 int pid = proc_getpid(dpr->dpr_proc); 713 if (proc_state(dpr->dpr_proc) == PS_LOST) { 714 (void) dt_proc_error(dpr->dpr_hdl, dpr, 715 "failed to control pid %d: process exec'd " 716 "set-id or unobservable program\n", pid); 717 } else if (WIFSIGNALED(stat)) { 718 (void) dt_proc_error(dpr->dpr_hdl, dpr, 719 "failed to control pid %d: process died " 720 "from signal %d\n", pid, WTERMSIG(stat)); 721 } else { 722 (void) dt_proc_error(dpr->dpr_hdl, dpr, 723 "failed to control pid %d: process exited " 724 "with status %d\n", pid, WEXITSTATUS(stat)); 725 } 726 727 err = ESRCH; /* cause grab() or create() to fail */ 728 } 729 } else { 730 (void) dt_proc_error(dpr->dpr_hdl, dpr, 731 "failed to create control thread for process-id %d: %s\n", 732 (int)dpr->dpr_pid, strerror(err)); 733 } 734 735 if (err == 0) 736 (void) pthread_mutex_unlock(&dpr->dpr_lock); 737 (void) pthread_attr_destroy(&a); 738 739 return (err); 740 } 741 742 struct ps_prochandle * 743 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 744 proc_child_func *pcf, void *child_arg) 745 { 746 dt_proc_hash_t *dph = dtp->dt_procs; 747 dt_proc_t *dpr; 748 int err; 749 750 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 751 return (NULL); /* errno is set for us */ 752 753 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 754 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 755 756 if ((err = proc_create(file, argv, dtp->dt_proc_env, pcf, child_arg, 757 &dpr->dpr_proc)) != 0) { 758 return (dt_proc_error(dtp, dpr, 759 "failed to execute %s: %s\n", file, Pcreate_error(err))); 760 } 761 762 dpr->dpr_hdl = dtp; 763 dpr->dpr_pid = proc_getpid(dpr->dpr_proc); 764 dpr->dpr_close = DT_CLOSE_KILL; 765 766 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 767 return (NULL); /* dt_proc_error() has been called for us */ 768 769 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 770 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 771 dt_list_prepend(&dph->dph_lrulist, dpr); 772 773 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 774 dpr->dpr_refs++; 775 776 return (dpr->dpr_proc); 777 } 778 779 struct ps_prochandle * 780 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 781 { 782 dt_proc_hash_t *dph = dtp->dt_procs; 783 uint_t h = pid & (dph->dph_hashlen - 1); 784 dt_proc_t *dpr, *opr; 785 int err; 786 787 /* 788 * Search the hash table for the pid. If it is already grabbed or 789 * created, move the handle to the front of the lrulist, increment 790 * the reference count, and return the existing ps_prochandle. 791 */ 792 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 793 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 794 /* 795 * If the cached handle was opened read-only and 796 * this request is for a writeable handle, mark 797 * the cached handle as stale and open a new handle. 798 * Since it's stale, unmark it as cacheable. 799 */ 800 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 801 dt_dprintf("upgrading pid %d\n", (int)pid); 802 dpr->dpr_stale = B_TRUE; 803 dpr->dpr_cacheable = B_FALSE; 804 dph->dph_lrucnt--; 805 break; 806 } 807 808 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 809 dt_list_delete(&dph->dph_lrulist, dpr); 810 dt_list_prepend(&dph->dph_lrulist, dpr); 811 dpr->dpr_refs++; 812 return (dpr->dpr_proc); 813 } 814 } 815 816 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 817 return (NULL); /* errno is set for us */ 818 819 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 820 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 821 822 if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) { 823 return (dt_proc_error(dtp, dpr, 824 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 825 } 826 827 dpr->dpr_hdl = dtp; 828 dpr->dpr_pid = pid; 829 dpr->dpr_close = DT_CLOSE_RUN; 830 831 /* 832 * If we are attempting to grab the process without a monitor 833 * thread, then mark the process cacheable only if it's being 834 * grabbed read-only. If we're currently caching more process 835 * handles than dph_lrulim permits, attempt to find the 836 * least-recently-used handle that is currently unreferenced and 837 * release it from the cache. Otherwise we are grabbing the process 838 * for control: create a control thread for this process and store 839 * its ID in dpr->dpr_tid. 840 */ 841 if (nomonitor || (flags & PGRAB_RDONLY)) { 842 if (dph->dph_lrucnt >= dph->dph_lrulim) { 843 for (opr = dt_list_prev(&dph->dph_lrulist); 844 opr != NULL; opr = dt_list_prev(opr)) { 845 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 846 dt_proc_destroy(dtp, opr->dpr_proc); 847 break; 848 } 849 } 850 } 851 852 if (flags & PGRAB_RDONLY) { 853 dpr->dpr_cacheable = B_TRUE; 854 dpr->dpr_rdonly = B_TRUE; 855 dph->dph_lrucnt++; 856 } 857 858 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 859 return (NULL); /* dt_proc_error() has been called for us */ 860 861 dpr->dpr_hash = dph->dph_hash[h]; 862 dph->dph_hash[h] = dpr; 863 dt_list_prepend(&dph->dph_lrulist, dpr); 864 865 dt_dprintf("grabbed pid %d\n", (int)pid); 866 dpr->dpr_refs++; 867 868 return (dpr->dpr_proc); 869 } 870 871 void 872 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 873 { 874 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 875 dt_proc_hash_t *dph = dtp->dt_procs; 876 877 assert(dpr != NULL); 878 assert(dpr->dpr_refs != 0); 879 880 if (--dpr->dpr_refs == 0 && 881 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 882 dt_proc_destroy(dtp, P); 883 } 884 885 void 886 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 887 { 888 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 889 890 (void) pthread_mutex_lock(&dpr->dpr_lock); 891 892 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 893 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 894 (void) pthread_cond_broadcast(&dpr->dpr_cv); 895 } 896 897 (void) pthread_mutex_unlock(&dpr->dpr_lock); 898 } 899 900 void 901 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 902 { 903 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 904 int err = pthread_mutex_lock(&dpr->dpr_lock); 905 assert(err == 0); /* check for recursion */ 906 } 907 908 void 909 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 910 { 911 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 912 int err = pthread_mutex_unlock(&dpr->dpr_lock); 913 assert(err == 0); /* check for unheld lock */ 914 } 915 916 void 917 dt_proc_init(dtrace_hdl_t *dtp) 918 { 919 extern char **environ; 920 static char *envdef[] = { 921 "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */ 922 NULL 923 }; 924 char **p; 925 int i; 926 927 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 928 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL) 929 return; 930 931 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 932 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 933 934 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 935 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 936 937 /* 938 * Count how big our environment needs to be. 939 */ 940 for (i = 1, p = environ; *p != NULL; i++, p++) 941 continue; 942 for (p = envdef; *p != NULL; i++, p++) 943 continue; 944 945 if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL) 946 return; 947 948 for (i = 0, p = environ; *p != NULL; i++, p++) { 949 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) 950 goto err; 951 } 952 for (p = envdef; *p != NULL; i++, p++) { 953 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) 954 goto err; 955 } 956 957 return; 958 959 err: 960 while (--i != 0) { 961 dt_free(dtp, dtp->dt_proc_env[i]); 962 } 963 dt_free(dtp, dtp->dt_proc_env); 964 dtp->dt_proc_env = NULL; 965 } 966 967 void 968 dt_proc_fini(dtrace_hdl_t *dtp) 969 { 970 dt_proc_hash_t *dph = dtp->dt_procs; 971 dt_proc_t *dpr; 972 char **p; 973 974 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 975 dt_proc_destroy(dtp, dpr->dpr_proc); 976 977 dtp->dt_procs = NULL; 978 dt_free(dtp, dph); 979 980 for (p = dtp->dt_proc_env; *p != NULL; p++) 981 dt_free(dtp, *p); 982 983 dt_free(dtp, dtp->dt_proc_env); 984 dtp->dt_proc_env = NULL; 985 } 986 987 struct ps_prochandle * 988 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, 989 proc_child_func *pcf, void *child_arg) 990 { 991 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 992 struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg); 993 994 if (P != NULL && idp != NULL && idp->di_id == 0) { 995 idp->di_id = proc_getpid(P); /* $target = created pid */ 996 } 997 998 return (P); 999 } 1000 1001 struct ps_prochandle * 1002 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1003 { 1004 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1005 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1006 1007 if (P != NULL && idp != NULL && idp->di_id == 0) 1008 idp->di_id = pid; /* $target = grabbed pid */ 1009 1010 return (P); 1011 } 1012 1013 void 1014 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1015 { 1016 dt_proc_release(dtp, P); 1017 } 1018 1019 void 1020 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1021 { 1022 dt_proc_continue(dtp, P); 1023 } 1024