1 %{ 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <string.h> 29 #include <stdlib.h> 30 #include <stdio.h> 31 #include <assert.h> 32 #include <ctype.h> 33 #include <errno.h> 34 35 #include <dt_impl.h> 36 #include <dt_grammar.h> 37 #include <dt_parser.h> 38 #include <dt_string.h> 39 40 /* 41 * We need to undefine lex's input and unput macros so that references to these 42 * call the functions provided at the end of this source file. 43 */ 44 #if defined(sun) 45 #undef input 46 #undef unput 47 #else 48 /* 49 * Define YY_INPUT for flex since input() can't be re-defined. 50 */ 51 #define YY_INPUT(buf,result,max_size) \ 52 if (yypcb->pcb_fileptr != NULL) { \ 53 if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \ 54 && ferror(yypcb->pcb_fileptr)) \ 55 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \ 56 } else { \ 57 int n; \ 58 for (n = 0; n < max_size && \ 59 yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \ 60 buf[n] = *yypcb->pcb_strptr++; \ 61 result = n; \ 62 } 63 #endif 64 65 static int id_or_type(const char *); 66 #if defined(sun) 67 static int input(void); 68 static void unput(int); 69 #endif 70 71 /* 72 * We first define a set of labeled states for use in the D lexer and then a 73 * set of regular expressions to simplify things below. The lexer states are: 74 * 75 * S0 - D program clause and expression lexing 76 * S1 - D comments (i.e. skip everything until end of comment) 77 * S2 - D program outer scope (probe specifiers and declarations) 78 * S3 - D control line parsing (i.e. after ^# is seen but before \n) 79 * S4 - D control line scan (locate control directives only and invoke S3) 80 */ 81 %} 82 83 %e 1500 /* maximum nodes */ 84 %p 3700 /* maximum positions */ 85 %n 600 /* maximum states */ 86 87 %s S0 S1 S2 S3 S4 88 89 RGX_AGG "@"[a-zA-Z_][0-9a-zA-Z_]* 90 RGX_PSPEC [-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]* 91 RGX_IDENT [a-zA-Z_`][0-9a-zA-Z_`]* 92 RGX_INT ([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]? 93 RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]? 94 RGX_WS [\f\n\r\t\v ] 95 RGX_STR ([^"\\\n]|\\[^"\n]|\\\")* 96 RGX_CHR ([^'\\\n]|\\[^'\n]|\\')* 97 RGX_INTERP ^[\f\t\v ]*#!.* 98 RGX_CTL ^[\f\t\v ]*# 99 100 %% 101 102 %{ 103 104 /* 105 * We insert a special prologue into yylex() itself: if the pcb contains a 106 * context token, we return that prior to running the normal lexer. This 107 * allows libdtrace to force yacc into one of our three parsing contexts: D 108 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE). 109 * Once the token is returned, we clear it so this only happens once. 110 */ 111 if (yypcb->pcb_token != 0) { 112 int tok = yypcb->pcb_token; 113 yypcb->pcb_token = 0; 114 return (tok); 115 } 116 117 %} 118 119 <S0>auto return (DT_KEY_AUTO); 120 <S0>break return (DT_KEY_BREAK); 121 <S0>case return (DT_KEY_CASE); 122 <S0>char return (DT_KEY_CHAR); 123 <S0>const return (DT_KEY_CONST); 124 <S0>continue return (DT_KEY_CONTINUE); 125 <S0>counter return (DT_KEY_COUNTER); 126 <S0>default return (DT_KEY_DEFAULT); 127 <S0>do return (DT_KEY_DO); 128 <S0>double return (DT_KEY_DOUBLE); 129 <S0>else return (DT_KEY_ELSE); 130 <S0>enum return (DT_KEY_ENUM); 131 <S0>extern return (DT_KEY_EXTERN); 132 <S0>float return (DT_KEY_FLOAT); 133 <S0>for return (DT_KEY_FOR); 134 <S0>goto return (DT_KEY_GOTO); 135 <S0>if return (DT_KEY_IF); 136 <S0>import return (DT_KEY_IMPORT); 137 <S0>inline return (DT_KEY_INLINE); 138 <S0>int return (DT_KEY_INT); 139 <S0>long return (DT_KEY_LONG); 140 <S0>offsetof return (DT_TOK_OFFSETOF); 141 <S0>probe return (DT_KEY_PROBE); 142 <S0>provider return (DT_KEY_PROVIDER); 143 <S0>register return (DT_KEY_REGISTER); 144 <S0>restrict return (DT_KEY_RESTRICT); 145 <S0>return return (DT_KEY_RETURN); 146 <S0>self return (DT_KEY_SELF); 147 <S0>short return (DT_KEY_SHORT); 148 <S0>signed return (DT_KEY_SIGNED); 149 <S0>sizeof return (DT_TOK_SIZEOF); 150 <S0>static return (DT_KEY_STATIC); 151 <S0>string return (DT_KEY_STRING); 152 <S0>stringof return (DT_TOK_STRINGOF); 153 <S0>struct return (DT_KEY_STRUCT); 154 <S0>switch return (DT_KEY_SWITCH); 155 <S0>this return (DT_KEY_THIS); 156 <S0>translator return (DT_KEY_XLATOR); 157 <S0>typedef return (DT_KEY_TYPEDEF); 158 <S0>union return (DT_KEY_UNION); 159 <S0>unsigned return (DT_KEY_UNSIGNED); 160 <S0>void return (DT_KEY_VOID); 161 <S0>volatile return (DT_KEY_VOLATILE); 162 <S0>while return (DT_KEY_WHILE); 163 <S0>xlate return (DT_TOK_XLATE); 164 165 <S2>auto { yybegin(YYS_EXPR); return (DT_KEY_AUTO); } 166 <S2>char { yybegin(YYS_EXPR); return (DT_KEY_CHAR); } 167 <S2>const { yybegin(YYS_EXPR); return (DT_KEY_CONST); } 168 <S2>counter { yybegin(YYS_DEFINE); return (DT_KEY_COUNTER); } 169 <S2>double { yybegin(YYS_EXPR); return (DT_KEY_DOUBLE); } 170 <S2>enum { yybegin(YYS_EXPR); return (DT_KEY_ENUM); } 171 <S2>extern { yybegin(YYS_EXPR); return (DT_KEY_EXTERN); } 172 <S2>float { yybegin(YYS_EXPR); return (DT_KEY_FLOAT); } 173 <S2>import { yybegin(YYS_EXPR); return (DT_KEY_IMPORT); } 174 <S2>inline { yybegin(YYS_DEFINE); return (DT_KEY_INLINE); } 175 <S2>int { yybegin(YYS_EXPR); return (DT_KEY_INT); } 176 <S2>long { yybegin(YYS_EXPR); return (DT_KEY_LONG); } 177 <S2>provider { yybegin(YYS_DEFINE); return (DT_KEY_PROVIDER); } 178 <S2>register { yybegin(YYS_EXPR); return (DT_KEY_REGISTER); } 179 <S2>restrict { yybegin(YYS_EXPR); return (DT_KEY_RESTRICT); } 180 <S2>self { yybegin(YYS_EXPR); return (DT_KEY_SELF); } 181 <S2>short { yybegin(YYS_EXPR); return (DT_KEY_SHORT); } 182 <S2>signed { yybegin(YYS_EXPR); return (DT_KEY_SIGNED); } 183 <S2>static { yybegin(YYS_EXPR); return (DT_KEY_STATIC); } 184 <S2>string { yybegin(YYS_EXPR); return (DT_KEY_STRING); } 185 <S2>struct { yybegin(YYS_EXPR); return (DT_KEY_STRUCT); } 186 <S2>this { yybegin(YYS_EXPR); return (DT_KEY_THIS); } 187 <S2>translator { yybegin(YYS_DEFINE); return (DT_KEY_XLATOR); } 188 <S2>typedef { yybegin(YYS_EXPR); return (DT_KEY_TYPEDEF); } 189 <S2>union { yybegin(YYS_EXPR); return (DT_KEY_UNION); } 190 <S2>unsigned { yybegin(YYS_EXPR); return (DT_KEY_UNSIGNED); } 191 <S2>void { yybegin(YYS_EXPR); return (DT_KEY_VOID); } 192 <S2>volatile { yybegin(YYS_EXPR); return (DT_KEY_VOLATILE); } 193 194 <S0>"$$"[0-9]+ { 195 int i = atoi(yytext + 2); 196 char *v = ""; 197 198 /* 199 * A macro argument reference substitutes the text of 200 * an argument in place of the current token. When we 201 * see $$<d> we fetch the saved string from pcb_sargv 202 * (or use the default argument if the option has been 203 * set and the argument hasn't been specified) and 204 * return a token corresponding to this string. 205 */ 206 if (i < 0 || (i >= yypcb->pcb_sargc && 207 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 208 xyerror(D_MACRO_UNDEF, "macro argument %s is " 209 "not defined\n", yytext); 210 } 211 212 if (i < yypcb->pcb_sargc) { 213 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 214 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 215 } 216 217 if ((yylval.l_str = strdup(v)) == NULL) 218 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 219 220 (void) stresc2chr(yylval.l_str); 221 return (DT_TOK_STRING); 222 } 223 224 <S0>"$"[0-9]+ { 225 int i = atoi(yytext + 1); 226 char *p, *v = "0"; 227 228 /* 229 * A macro argument reference substitutes the text of 230 * one identifier or integer pattern for another. When 231 * we see $<d> we fetch the saved string from pcb_sargv 232 * (or use the default argument if the option has been 233 * set and the argument hasn't been specified) and 234 * return a token corresponding to this string. 235 */ 236 if (i < 0 || (i >= yypcb->pcb_sargc && 237 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 238 xyerror(D_MACRO_UNDEF, "macro argument %s is " 239 "not defined\n", yytext); 240 } 241 242 if (i < yypcb->pcb_sargc) { 243 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 244 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 245 } 246 247 /* 248 * If the macro text is not a valid integer or ident, 249 * then we treat it as a string. The string may be 250 * optionally enclosed in quotes, which we strip. 251 */ 252 if (strbadidnum(v)) { 253 size_t len = strlen(v); 254 255 if (len != 1 && *v == '"' && v[len - 1] == '"') 256 yylval.l_str = strndup(v + 1, len - 2); 257 else 258 yylval.l_str = strndup(v, len); 259 260 if (yylval.l_str == NULL) 261 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 262 263 (void) stresc2chr(yylval.l_str); 264 return (DT_TOK_STRING); 265 } 266 267 /* 268 * If the macro text is not a string an begins with a 269 * digit or a +/- sign, process it as an integer token. 270 */ 271 if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') { 272 if (isdigit(v[0])) 273 yyintprefix = 0; 274 else 275 yyintprefix = *v++; 276 277 errno = 0; 278 yylval.l_int = strtoull(v, &p, 0); 279 (void) strncpy(yyintsuffix, p, 280 sizeof (yyintsuffix)); 281 yyintdecimal = *v != '0'; 282 283 if (errno == ERANGE) { 284 xyerror(D_MACRO_OFLOW, "macro argument" 285 " %s constant %s results in integer" 286 " overflow\n", yytext, v); 287 } 288 289 return (DT_TOK_INT); 290 } 291 292 return (id_or_type(v)); 293 } 294 295 <S0>"$$"{RGX_IDENT} { 296 dt_ident_t *idp = dt_idhash_lookup( 297 yypcb->pcb_hdl->dt_macros, yytext + 2); 298 299 char s[16]; /* enough for UINT_MAX + \0 */ 300 301 if (idp == NULL) { 302 xyerror(D_MACRO_UNDEF, "macro variable %s " 303 "is not defined\n", yytext); 304 } 305 306 /* 307 * For the moment, all current macro variables are of 308 * type id_t (refer to dtrace_update() for details). 309 */ 310 (void) snprintf(s, sizeof (s), "%u", idp->di_id); 311 if ((yylval.l_str = strdup(s)) == NULL) 312 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 313 314 return (DT_TOK_STRING); 315 } 316 317 <S0>"$"{RGX_IDENT} { 318 dt_ident_t *idp = dt_idhash_lookup( 319 yypcb->pcb_hdl->dt_macros, yytext + 1); 320 321 if (idp == NULL) { 322 xyerror(D_MACRO_UNDEF, "macro variable %s " 323 "is not defined\n", yytext); 324 } 325 326 /* 327 * For the moment, all current macro variables are of 328 * type id_t (refer to dtrace_update() for details). 329 */ 330 yylval.l_int = (intmax_t)(int)idp->di_id; 331 yyintprefix = 0; 332 yyintsuffix[0] = '\0'; 333 yyintdecimal = 1; 334 335 return (DT_TOK_INT); 336 } 337 338 <S0>{RGX_IDENT} { 339 return (id_or_type(yytext)); 340 } 341 342 <S0>{RGX_AGG} { 343 if ((yylval.l_str = strdup(yytext)) == NULL) 344 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 345 return (DT_TOK_AGG); 346 } 347 348 <S0>"@" { 349 if ((yylval.l_str = strdup("@_")) == NULL) 350 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 351 return (DT_TOK_AGG); 352 } 353 354 <S0>{RGX_INT} | 355 <S2>{RGX_INT} | 356 <S3>{RGX_INT} { 357 char *p; 358 359 errno = 0; 360 yylval.l_int = strtoull(yytext, &p, 0); 361 yyintprefix = 0; 362 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix)); 363 yyintdecimal = yytext[0] != '0'; 364 365 if (errno == ERANGE) { 366 xyerror(D_INT_OFLOW, "constant %s results in " 367 "integer overflow\n", yytext); 368 } 369 370 if (*p != '\0' && strchr("uUlL", *p) == NULL) { 371 xyerror(D_INT_DIGIT, "constant %s contains " 372 "invalid digit %c\n", yytext, *p); 373 } 374 375 if ((YYSTATE) != S3) 376 return (DT_TOK_INT); 377 378 yypragma = dt_node_link(yypragma, 379 dt_node_int(yylval.l_int)); 380 } 381 382 <S0>{RGX_FP} yyerror("floating-point constants are not permitted\n"); 383 384 <S0>\"{RGX_STR}$ | 385 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal"); 386 387 <S0>\"{RGX_STR}\" | 388 <S3>\"{RGX_STR}\" { 389 /* 390 * Quoted string -- convert C escape sequences and 391 * return the string as a token. 392 */ 393 yylval.l_str = strndup(yytext + 1, yyleng - 2); 394 395 if (yylval.l_str == NULL) 396 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 397 398 (void) stresc2chr(yylval.l_str); 399 if ((YYSTATE) != S3) 400 return (DT_TOK_STRING); 401 402 yypragma = dt_node_link(yypragma, 403 dt_node_string(yylval.l_str)); 404 } 405 406 <S0>'{RGX_CHR}$ xyerror(D_CHR_NL, "newline encountered in character constant"); 407 408 <S0>'{RGX_CHR}' { 409 char *s, *p, *q; 410 size_t nbytes; 411 412 /* 413 * Character constant -- convert C escape sequences and 414 * return the character as an integer immediate value. 415 */ 416 if (yyleng == 2) 417 xyerror(D_CHR_NULL, "empty character constant"); 418 419 s = yytext + 1; 420 yytext[yyleng - 1] = '\0'; 421 nbytes = stresc2chr(s); 422 yylval.l_int = 0; 423 yyintprefix = 0; 424 yyintsuffix[0] = '\0'; 425 yyintdecimal = 1; 426 427 if (nbytes > sizeof (yylval.l_int)) { 428 xyerror(D_CHR_OFLOW, "character constant is " 429 "too long"); 430 } 431 #if BYTE_ORDER == _LITTLE_ENDIAN 432 p = ((char *)&yylval.l_int) + nbytes - 1; 433 for (q = s; nbytes != 0; nbytes--) 434 *p-- = *q++; 435 #else 436 bcopy(s, ((char *)&yylval.l_int) + 437 sizeof (yylval.l_int) - nbytes, nbytes); 438 #endif 439 return (DT_TOK_INT); 440 } 441 442 <S0>"/*" | 443 <S2>"/*" { 444 yypcb->pcb_cstate = (YYSTATE); 445 BEGIN(S1); 446 } 447 448 <S0>{RGX_INTERP} | 449 <S2>{RGX_INTERP} ; /* discard any #! lines */ 450 451 <S0>{RGX_CTL} | 452 <S2>{RGX_CTL} | 453 <S4>{RGX_CTL} { 454 assert(yypragma == NULL); 455 yypcb->pcb_cstate = (YYSTATE); 456 BEGIN(S3); 457 } 458 459 <S4>. ; /* discard */ 460 <S4>"\n" ; /* discard */ 461 462 <S0>"/" { 463 int c, tok; 464 465 /* 466 * The use of "/" as the predicate delimiter and as the 467 * integer division symbol requires special lookahead 468 * to avoid a shift/reduce conflict in the D grammar. 469 * We look ahead to the next non-whitespace character. 470 * If we encounter EOF, ";", "{", or "/", then this "/" 471 * closes the predicate and we return DT_TOK_EPRED. 472 * If we encounter anything else, it's DT_TOK_DIV. 473 */ 474 while ((c = input()) != 0) { 475 if (strchr("\f\n\r\t\v ", c) == NULL) 476 break; 477 } 478 479 if (c == 0 || c == ';' || c == '{' || c == '/') { 480 if (yypcb->pcb_parens != 0) { 481 yyerror("closing ) expected in " 482 "predicate before /\n"); 483 } 484 if (yypcb->pcb_brackets != 0) { 485 yyerror("closing ] expected in " 486 "predicate before /\n"); 487 } 488 tok = DT_TOK_EPRED; 489 } else 490 tok = DT_TOK_DIV; 491 492 unput(c); 493 return (tok); 494 } 495 496 <S0>"(" { 497 yypcb->pcb_parens++; 498 return (DT_TOK_LPAR); 499 } 500 501 <S0>")" { 502 if (--yypcb->pcb_parens < 0) 503 yyerror("extra ) in input stream\n"); 504 return (DT_TOK_RPAR); 505 } 506 507 <S0>"[" { 508 yypcb->pcb_brackets++; 509 return (DT_TOK_LBRAC); 510 } 511 512 <S0>"]" { 513 if (--yypcb->pcb_brackets < 0) 514 yyerror("extra ] in input stream\n"); 515 return (DT_TOK_RBRAC); 516 } 517 518 <S0>"{" | 519 <S2>"{" { 520 yypcb->pcb_braces++; 521 return ('{'); 522 } 523 524 <S0>"}" { 525 if (--yypcb->pcb_braces < 0) 526 yyerror("extra } in input stream\n"); 527 return ('}'); 528 } 529 530 <S0>"|" return (DT_TOK_BOR); 531 <S0>"^" return (DT_TOK_XOR); 532 <S0>"&" return (DT_TOK_BAND); 533 <S0>"&&" return (DT_TOK_LAND); 534 <S0>"^^" return (DT_TOK_LXOR); 535 <S0>"||" return (DT_TOK_LOR); 536 <S0>"==" return (DT_TOK_EQU); 537 <S0>"!=" return (DT_TOK_NEQ); 538 <S0>"<" return (DT_TOK_LT); 539 <S0>"<=" return (DT_TOK_LE); 540 <S0>">" return (DT_TOK_GT); 541 <S0>">=" return (DT_TOK_GE); 542 <S0>"<<" return (DT_TOK_LSH); 543 <S0>">>" return (DT_TOK_RSH); 544 <S0>"+" return (DT_TOK_ADD); 545 <S0>"-" return (DT_TOK_SUB); 546 <S0>"*" return (DT_TOK_MUL); 547 <S0>"%" return (DT_TOK_MOD); 548 <S0>"~" return (DT_TOK_BNEG); 549 <S0>"!" return (DT_TOK_LNEG); 550 <S0>"?" return (DT_TOK_QUESTION); 551 <S0>":" return (DT_TOK_COLON); 552 <S0>"." return (DT_TOK_DOT); 553 <S0>"->" return (DT_TOK_PTR); 554 <S0>"=" return (DT_TOK_ASGN); 555 <S0>"+=" return (DT_TOK_ADD_EQ); 556 <S0>"-=" return (DT_TOK_SUB_EQ); 557 <S0>"*=" return (DT_TOK_MUL_EQ); 558 <S0>"/=" return (DT_TOK_DIV_EQ); 559 <S0>"%=" return (DT_TOK_MOD_EQ); 560 <S0>"&=" return (DT_TOK_AND_EQ); 561 <S0>"^=" return (DT_TOK_XOR_EQ); 562 <S0>"|=" return (DT_TOK_OR_EQ); 563 <S0>"<<=" return (DT_TOK_LSH_EQ); 564 <S0>">>=" return (DT_TOK_RSH_EQ); 565 <S0>"++" return (DT_TOK_ADDADD); 566 <S0>"--" return (DT_TOK_SUBSUB); 567 <S0>"..." return (DT_TOK_ELLIPSIS); 568 <S0>"," return (DT_TOK_COMMA); 569 <S0>";" return (';'); 570 <S0>{RGX_WS} ; /* discard */ 571 <S0>"\\"\n ; /* discard */ 572 <S0>. yyerror("syntax error near \"%c\"\n", yytext[0]); 573 574 <S1>"/*" yyerror("/* encountered inside a comment\n"); 575 <S1>"*/" BEGIN(yypcb->pcb_cstate); 576 <S1>.|\n ; /* discard */ 577 578 <S2>{RGX_PSPEC} { 579 /* 580 * S2 has an ambiguity because RGX_PSPEC includes '*' 581 * as a glob character and '*' also can be DT_TOK_STAR. 582 * Since lex always matches the longest token, this 583 * rule can be matched by an input string like "int*", 584 * which could begin a global variable declaration such 585 * as "int*x;" or could begin a RGX_PSPEC with globbing 586 * such as "int* { trace(timestamp); }". If C_PSPEC is 587 * not set, we must resolve the ambiguity in favor of 588 * the type and perform lexer pushback if the fragment 589 * before '*' or entire fragment matches a type name. 590 * If C_PSPEC is set, we always return a PSPEC token. 591 * If C_PSPEC is off, the user can avoid ambiguity by 592 * including a ':' delimiter in the specifier, which 593 * they should be doing anyway to specify the provider. 594 */ 595 if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) && 596 strchr(yytext, ':') == NULL) { 597 598 char *p = strchr(yytext, '*'); 599 char *q = yytext + yyleng - 1; 600 601 if (p != NULL && p > yytext) 602 *p = '\0'; /* prune yytext */ 603 604 if (dt_type_lookup(yytext, NULL) == 0) { 605 yylval.l_str = strdup(yytext); 606 607 if (yylval.l_str == NULL) { 608 longjmp(yypcb->pcb_jmpbuf, 609 EDT_NOMEM); 610 } 611 612 if (p != NULL && p > yytext) { 613 for (*p = '*'; q >= p; q--) 614 unput(*q); 615 } 616 617 yybegin(YYS_EXPR); 618 return (DT_TOK_TNAME); 619 } 620 621 if (p != NULL && p > yytext) 622 *p = '*'; /* restore yytext */ 623 } 624 625 if ((yylval.l_str = strdup(yytext)) == NULL) 626 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 627 628 return (DT_TOK_PSPEC); 629 } 630 631 <S2>"/" return (DT_TOK_DIV); 632 <S2>"," return (DT_TOK_COMMA); 633 634 <S2>{RGX_WS} ; /* discard */ 635 <S2>. yyerror("syntax error near \"%c\"\n", yytext[0]); 636 637 <S3>\n { 638 dt_pragma(yypragma); 639 yypragma = NULL; 640 BEGIN(yypcb->pcb_cstate); 641 } 642 643 <S3>[\f\t\v ]+ ; /* discard */ 644 645 <S3>[^\f\n\t\v "]+ { 646 dt_node_t *dnp; 647 648 if ((yylval.l_str = strdup(yytext)) == NULL) 649 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 650 651 /* 652 * We want to call dt_node_ident() here, but we can't 653 * because it will expand inlined identifiers, which we 654 * don't want to do from #pragma context in order to 655 * support pragmas that apply to the ident itself. We 656 * call dt_node_string() and then reset dn_op instead. 657 */ 658 dnp = dt_node_string(yylval.l_str); 659 dnp->dn_kind = DT_NODE_IDENT; 660 dnp->dn_op = DT_TOK_IDENT; 661 yypragma = dt_node_link(yypragma, dnp); 662 } 663 664 <S3>. yyerror("syntax error near \"%c\"\n", yytext[0]); 665 666 %% 667 668 /* 669 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro. 670 * We use two main states for lexing because probe descriptions use a syntax 671 * that is incompatible with the normal D tokens (e.g. names can contain "-"). 672 * yybegin also handles the job of switching between two lists of dt_nodes 673 * as we allocate persistent definitions, like inlines, and transient nodes 674 * that will be freed once we are done parsing the current program file. 675 */ 676 void 677 yybegin(yystate_t state) 678 { 679 #ifdef YYDEBUG 680 yydebug = _dtrace_debug; 681 #endif 682 if (yypcb->pcb_yystate == state) 683 return; /* nothing to do if we're in the state already */ 684 685 if (yypcb->pcb_yystate == YYS_DEFINE) { 686 yypcb->pcb_list = yypcb->pcb_hold; 687 yypcb->pcb_hold = NULL; 688 } 689 690 switch (state) { 691 case YYS_CLAUSE: 692 BEGIN(S2); 693 break; 694 case YYS_DEFINE: 695 assert(yypcb->pcb_hold == NULL); 696 yypcb->pcb_hold = yypcb->pcb_list; 697 yypcb->pcb_list = NULL; 698 /*FALLTHRU*/ 699 case YYS_EXPR: 700 BEGIN(S0); 701 break; 702 case YYS_DONE: 703 break; 704 case YYS_CONTROL: 705 BEGIN(S4); 706 break; 707 default: 708 xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state); 709 } 710 711 yypcb->pcb_yystate = state; 712 } 713 714 void 715 yyinit(dt_pcb_t *pcb) 716 { 717 yypcb = pcb; 718 yylineno = 1; 719 yypragma = NULL; 720 #if defined(sun) 721 yysptr = yysbuf; 722 #endif 723 } 724 725 /* 726 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate 727 * token to the parser indicating either an identifier or a typedef name. 728 * User-defined global variables always take precedence over types, but we do 729 * use some heuristics because D programs can look at an ever-changing set of 730 * kernel types and also can implicitly instantiate variables by assignment, 731 * unlike in C. The code here is ordered carefully as lookups are not cheap. 732 */ 733 static int 734 id_or_type(const char *s) 735 { 736 dtrace_hdl_t *dtp = yypcb->pcb_hdl; 737 dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; 738 int c0, c1, ttok = DT_TOK_TNAME; 739 dt_ident_t *idp; 740 741 if ((s = yylval.l_str = strdup(s)) == NULL) 742 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 743 744 /* 745 * If the lexeme is a global variable or likely identifier or *not* a 746 * type_name, then it is an identifier token. 747 */ 748 if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL || 749 dt_idhash_lookup(yypcb->pcb_idents, s) != NULL || 750 dt_type_lookup(s, NULL) != 0) 751 return (DT_TOK_IDENT); 752 753 /* 754 * If we're in the midst of parsing a declaration and a type_specifier 755 * has already been shifted, then return DT_TOK_IDENT instead of TNAME. 756 * This semantic is necessary to permit valid ISO C code such as: 757 * 758 * typedef int foo; 759 * struct s { foo foo; }; 760 * 761 * without causing shift/reduce conflicts in the direct_declarator part 762 * of the grammar. The result is that we must check for conflicting 763 * redeclarations of the same identifier as part of dt_node_decl(). 764 */ 765 if (ddp != NULL && ddp->dd_name != NULL) 766 return (DT_TOK_IDENT); 767 768 /* 769 * If the lexeme is a type name and we are not in a program clause, 770 * then always interpret it as a type and return DT_TOK_TNAME. 771 */ 772 if ((YYSTATE) != S0) 773 return (DT_TOK_TNAME); 774 775 /* 776 * If the lexeme matches a type name but is in a program clause, then 777 * it could be a type or it could be an undefined variable. Peek at 778 * the next token to decide. If we see ++, --, [, or =, we know there 779 * might be an assignment that is trying to create a global variable, 780 * so we optimistically return DT_TOK_IDENT. There is no harm in being 781 * wrong: a type_name followed by ++, --, [, or = is a syntax error. 782 */ 783 while ((c0 = input()) != 0) { 784 if (strchr("\f\n\r\t\v ", c0) == NULL) 785 break; 786 } 787 788 switch (c0) { 789 case '+': 790 case '-': 791 if ((c1 = input()) == c0) 792 ttok = DT_TOK_IDENT; 793 unput(c1); 794 break; 795 796 case '=': 797 if ((c1 = input()) != c0) 798 ttok = DT_TOK_IDENT; 799 unput(c1); 800 break; 801 case '[': 802 ttok = DT_TOK_IDENT; 803 break; 804 } 805 806 if (ttok == DT_TOK_IDENT) { 807 idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0, 808 0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); 809 810 if (idp == NULL) 811 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 812 } 813 814 if (c0 != EOF) 815 unput(c0); 816 return (ttok); 817 } 818 819 #if defined(sun) 820 static int 821 input(void) 822 { 823 int c; 824 825 if (yysptr > yysbuf) 826 c = *--yysptr; 827 else if (yypcb->pcb_fileptr != NULL) 828 c = fgetc(yypcb->pcb_fileptr); 829 else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen) 830 c = *yypcb->pcb_strptr++; 831 else 832 c = EOF; 833 834 if (c == '\n') 835 yylineno++; 836 837 if (c != EOF) 838 return (c); 839 840 if ((YYSTATE) == S1) 841 yyerror("end-of-file encountered before matching */\n"); 842 843 if ((YYSTATE) == S3) 844 yyerror("end-of-file encountered before end of control line\n"); 845 846 if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr)) 847 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); 848 849 return (0); /* EOF */ 850 } 851 852 static void 853 unput(int c) 854 { 855 if (c == '\n') 856 yylineno--; 857 858 *yysptr++ = c; 859 yytchar = c; 860 } 861 #endif 862