xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_lex.l (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 %{
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
25  */
26 
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <assert.h>
31 #include <ctype.h>
32 #include <errno.h>
33 
34 #include <dt_impl.h>
35 #include <dt_grammar.h>
36 #include <dt_parser.h>
37 #include <dt_string.h>
38 
39 /*
40  * We need to undefine lex's input and unput macros so that references to these
41  * call the functions provided at the end of this source file.
42  */
43 #if defined(sun)
44 #undef input
45 #undef unput
46 #else
47 /*
48  * Define YY_INPUT for flex since input() can't be re-defined.
49  */
50 #define YY_INPUT(buf,result,max_size) \
51 	if (yypcb->pcb_fileptr != NULL) { \
52 		if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \
53 		    && ferror(yypcb->pcb_fileptr)) \
54 			longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \
55 	} else { \
56 		int n; \
57 		for (n = 0; n < max_size && \
58 		    yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \
59 			buf[n] = *yypcb->pcb_strptr++; \
60 		result = n; \
61 	}
62 /*
63  * Do not EOF let tokens to be put back. This does not work with flex.
64  * On the other hand, leaving current buffer in same state it was when
65  * last EOF was received guarantees that input() will keep returning EOF
66  * for all subsequent invocations, which is the effect desired.
67  */
68 #undef  unput
69 #define unput(c)					\
70 	do {						\
71 		int _c = c;				\
72 		if (_c != EOF)				\
73 			yyunput(_c, yytext_ptr);	\
74 	} while(0)
75 #endif
76 
77 static int id_or_type(const char *);
78 #if defined(sun)
79 static int input(void);
80 static void unput(int);
81 #endif
82 
83 /*
84  * We first define a set of labeled states for use in the D lexer and then a
85  * set of regular expressions to simplify things below. The lexer states are:
86  *
87  * S0 - D program clause and expression lexing
88  * S1 - D comments (i.e. skip everything until end of comment)
89  * S2 - D program outer scope (probe specifiers and declarations)
90  * S3 - D control line parsing (i.e. after ^# is seen but before \n)
91  * S4 - D control line scan (locate control directives only and invoke S3)
92  */
93 %}
94 
95 %e 1500		/* maximum nodes */
96 %p 3700		/* maximum positions */
97 %n 600		/* maximum states */
98 
99 %s S0 S1 S2 S3 S4
100 
101 RGX_AGG		"@"[a-zA-Z_][0-9a-zA-Z_]*
102 RGX_PSPEC	[-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]*
103 RGX_IDENT	[a-zA-Z_`][0-9a-zA-Z_`]*
104 RGX_INT		([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]?
105 RGX_FP		([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]?
106 RGX_WS		[\f\n\r\t\v ]
107 RGX_STR		([^"\\\n]|\\[^"\n]|\\\")*
108 RGX_CHR		([^'\\\n]|\\[^'\n]|\\')*
109 RGX_INTERP	^[\f\t\v ]*#!.*
110 RGX_CTL		^[\f\t\v ]*#
111 
112 %%
113 
114 %{
115 
116 /*
117  * We insert a special prologue into yylex() itself: if the pcb contains a
118  * context token, we return that prior to running the normal lexer.  This
119  * allows libdtrace to force yacc into one of our three parsing contexts: D
120  * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE).
121  * Once the token is returned, we clear it so this only happens once.
122  */
123 if (yypcb->pcb_token != 0) {
124 	int tok = yypcb->pcb_token;
125 	yypcb->pcb_token = 0;
126 	return (tok);
127 }
128 
129 %}
130 
131 <S0>auto	return (DT_KEY_AUTO);
132 <S0>break	return (DT_KEY_BREAK);
133 <S0>case	return (DT_KEY_CASE);
134 <S0>char	return (DT_KEY_CHAR);
135 <S0>const	return (DT_KEY_CONST);
136 <S0>continue	return (DT_KEY_CONTINUE);
137 <S0>counter	return (DT_KEY_COUNTER);
138 <S0>default	return (DT_KEY_DEFAULT);
139 <S0>do		return (DT_KEY_DO);
140 <S0>double	return (DT_KEY_DOUBLE);
141 <S0>else	return (DT_KEY_ELSE);
142 <S0>enum	return (DT_KEY_ENUM);
143 <S0>extern	return (DT_KEY_EXTERN);
144 <S0>float	return (DT_KEY_FLOAT);
145 <S0>for		return (DT_KEY_FOR);
146 <S0>goto	return (DT_KEY_GOTO);
147 <S0>if		return (DT_KEY_IF);
148 <S0>import	return (DT_KEY_IMPORT);
149 <S0>inline	return (DT_KEY_INLINE);
150 <S0>int		return (DT_KEY_INT);
151 <S0>long	return (DT_KEY_LONG);
152 <S0>offsetof	return (DT_TOK_OFFSETOF);
153 <S0>probe	return (DT_KEY_PROBE);
154 <S0>provider	return (DT_KEY_PROVIDER);
155 <S0>register	return (DT_KEY_REGISTER);
156 <S0>restrict	return (DT_KEY_RESTRICT);
157 <S0>return	return (DT_KEY_RETURN);
158 <S0>self	return (DT_KEY_SELF);
159 <S0>short	return (DT_KEY_SHORT);
160 <S0>signed	return (DT_KEY_SIGNED);
161 <S0>sizeof	return (DT_TOK_SIZEOF);
162 <S0>static	return (DT_KEY_STATIC);
163 <S0>string	return (DT_KEY_STRING);
164 <S0>stringof	return (DT_TOK_STRINGOF);
165 <S0>struct	return (DT_KEY_STRUCT);
166 <S0>switch	return (DT_KEY_SWITCH);
167 <S0>this	return (DT_KEY_THIS);
168 <S0>translator	return (DT_KEY_XLATOR);
169 <S0>typedef	return (DT_KEY_TYPEDEF);
170 <S0>union	return (DT_KEY_UNION);
171 <S0>unsigned	return (DT_KEY_UNSIGNED);
172 <S0>void	return (DT_KEY_VOID);
173 <S0>volatile	return (DT_KEY_VOLATILE);
174 <S0>while	return (DT_KEY_WHILE);
175 <S0>xlate	return (DT_TOK_XLATE);
176 
177 <S2>auto	{ yybegin(YYS_EXPR);	return (DT_KEY_AUTO); }
178 <S2>char	{ yybegin(YYS_EXPR);	return (DT_KEY_CHAR); }
179 <S2>const	{ yybegin(YYS_EXPR);	return (DT_KEY_CONST); }
180 <S2>counter	{ yybegin(YYS_DEFINE);	return (DT_KEY_COUNTER); }
181 <S2>double	{ yybegin(YYS_EXPR);	return (DT_KEY_DOUBLE); }
182 <S2>enum	{ yybegin(YYS_EXPR);	return (DT_KEY_ENUM); }
183 <S2>extern	{ yybegin(YYS_EXPR);	return (DT_KEY_EXTERN); }
184 <S2>float	{ yybegin(YYS_EXPR);	return (DT_KEY_FLOAT); }
185 <S2>import	{ yybegin(YYS_EXPR);	return (DT_KEY_IMPORT); }
186 <S2>inline	{ yybegin(YYS_DEFINE);	return (DT_KEY_INLINE); }
187 <S2>int		{ yybegin(YYS_EXPR);	return (DT_KEY_INT); }
188 <S2>long	{ yybegin(YYS_EXPR);	return (DT_KEY_LONG); }
189 <S2>provider	{ yybegin(YYS_DEFINE);	return (DT_KEY_PROVIDER); }
190 <S2>register	{ yybegin(YYS_EXPR);	return (DT_KEY_REGISTER); }
191 <S2>restrict	{ yybegin(YYS_EXPR);	return (DT_KEY_RESTRICT); }
192 <S2>self	{ yybegin(YYS_EXPR);	return (DT_KEY_SELF); }
193 <S2>short	{ yybegin(YYS_EXPR);	return (DT_KEY_SHORT); }
194 <S2>signed	{ yybegin(YYS_EXPR);	return (DT_KEY_SIGNED); }
195 <S2>static	{ yybegin(YYS_EXPR);	return (DT_KEY_STATIC); }
196 <S2>string	{ yybegin(YYS_EXPR);	return (DT_KEY_STRING); }
197 <S2>struct	{ yybegin(YYS_EXPR);	return (DT_KEY_STRUCT); }
198 <S2>this	{ yybegin(YYS_EXPR);	return (DT_KEY_THIS); }
199 <S2>translator	{ yybegin(YYS_DEFINE);	return (DT_KEY_XLATOR); }
200 <S2>typedef	{ yybegin(YYS_EXPR);	return (DT_KEY_TYPEDEF); }
201 <S2>union	{ yybegin(YYS_EXPR);	return (DT_KEY_UNION); }
202 <S2>unsigned	{ yybegin(YYS_EXPR);	return (DT_KEY_UNSIGNED); }
203 <S2>void	{ yybegin(YYS_EXPR);	return (DT_KEY_VOID); }
204 <S2>volatile	{ yybegin(YYS_EXPR);	return (DT_KEY_VOLATILE); }
205 
206 <S0>"$$"[0-9]+	{
207 			int i = atoi(yytext + 2);
208 			char *v = "";
209 
210 			/*
211 			 * A macro argument reference substitutes the text of
212 			 * an argument in place of the current token.  When we
213 			 * see $$<d> we fetch the saved string from pcb_sargv
214 			 * (or use the default argument if the option has been
215 			 * set and the argument hasn't been specified) and
216 			 * return a token corresponding to this string.
217 			 */
218 			if (i < 0 || (i >= yypcb->pcb_sargc &&
219 			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
220 				xyerror(D_MACRO_UNDEF, "macro argument %s is "
221 				    "not defined\n", yytext);
222 			}
223 
224 			if (i < yypcb->pcb_sargc) {
225 				v = yypcb->pcb_sargv[i]; /* get val from pcb */
226 				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
227 			}
228 
229 			if ((yylval.l_str = strdup(v)) == NULL)
230 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
231 
232 			(void) stresc2chr(yylval.l_str);
233 			return (DT_TOK_STRING);
234 		}
235 
236 <S0>"$"[0-9]+	{
237 			int i = atoi(yytext + 1);
238 			char *p, *v = "0";
239 
240 			/*
241 			 * A macro argument reference substitutes the text of
242 			 * one identifier or integer pattern for another.  When
243 			 * we see $<d> we fetch the saved string from pcb_sargv
244 			 * (or use the default argument if the option has been
245 			 * set and the argument hasn't been specified) and
246 			 * return a token corresponding to this string.
247 			 */
248 			if (i < 0 || (i >= yypcb->pcb_sargc &&
249 			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
250 				xyerror(D_MACRO_UNDEF, "macro argument %s is "
251 				    "not defined\n", yytext);
252 			}
253 
254 			if (i < yypcb->pcb_sargc) {
255 				v = yypcb->pcb_sargv[i]; /* get val from pcb */
256 				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
257 			}
258 
259 			/*
260 			 * If the macro text is not a valid integer or ident,
261 			 * then we treat it as a string.  The string may be
262 			 * optionally enclosed in quotes, which we strip.
263 			 */
264 			if (strbadidnum(v)) {
265 				size_t len = strlen(v);
266 
267 				if (len != 1 && *v == '"' && v[len - 1] == '"')
268 					yylval.l_str = strndup(v + 1, len - 2);
269 				else
270 					yylval.l_str = strndup(v, len);
271 
272 				if (yylval.l_str == NULL)
273 					longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
274 
275 				(void) stresc2chr(yylval.l_str);
276 				return (DT_TOK_STRING);
277 			}
278 
279 			/*
280 			 * If the macro text is not a string an begins with a
281 			 * digit or a +/- sign, process it as an integer token.
282 			 */
283 			if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') {
284 				if (isdigit(v[0]))
285 					yyintprefix = 0;
286 				else
287 					yyintprefix = *v++;
288 
289 				errno = 0;
290 				yylval.l_int = strtoull(v, &p, 0);
291 				(void) strncpy(yyintsuffix, p,
292 				    sizeof (yyintsuffix));
293 				yyintdecimal = *v != '0';
294 
295 				if (errno == ERANGE) {
296 					xyerror(D_MACRO_OFLOW, "macro argument"
297 					    " %s constant %s results in integer"
298 					    " overflow\n", yytext, v);
299 				}
300 
301 				return (DT_TOK_INT);
302 			}
303 
304 			return (id_or_type(v));
305 		}
306 
307 <S0>"$$"{RGX_IDENT} {
308 			dt_ident_t *idp = dt_idhash_lookup(
309 			    yypcb->pcb_hdl->dt_macros, yytext + 2);
310 
311 			char s[16]; /* enough for UINT_MAX + \0 */
312 
313 			if (idp == NULL) {
314 				xyerror(D_MACRO_UNDEF, "macro variable %s "
315 				    "is not defined\n", yytext);
316 			}
317 
318 			/*
319 			 * For the moment, all current macro variables are of
320 			 * type id_t (refer to dtrace_update() for details).
321 			 */
322 			(void) snprintf(s, sizeof (s), "%u", idp->di_id);
323 			if ((yylval.l_str = strdup(s)) == NULL)
324 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
325 
326 			return (DT_TOK_STRING);
327 		}
328 
329 <S0>"$"{RGX_IDENT} {
330 			dt_ident_t *idp = dt_idhash_lookup(
331 			    yypcb->pcb_hdl->dt_macros, yytext + 1);
332 
333 			if (idp == NULL) {
334 				xyerror(D_MACRO_UNDEF, "macro variable %s "
335 				    "is not defined\n", yytext);
336 			}
337 
338 			/*
339 			 * For the moment, all current macro variables are of
340 			 * type id_t (refer to dtrace_update() for details).
341 			 */
342 			yylval.l_int = (intmax_t)(int)idp->di_id;
343 			yyintprefix = 0;
344 			yyintsuffix[0] = '\0';
345 			yyintdecimal = 1;
346 
347 			return (DT_TOK_INT);
348 		}
349 
350 <S0>{RGX_IDENT}	{
351 			return (id_or_type(yytext));
352 		}
353 
354 <S0>{RGX_AGG}	{
355 			if ((yylval.l_str = strdup(yytext)) == NULL)
356 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
357 			return (DT_TOK_AGG);
358 		}
359 
360 <S0>"@"		{
361 			if ((yylval.l_str = strdup("@_")) == NULL)
362 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
363 			return (DT_TOK_AGG);
364 		}
365 
366 <S0>{RGX_INT}	|
367 <S2>{RGX_INT}	|
368 <S3>{RGX_INT}	{
369 			char *p;
370 
371 			errno = 0;
372 			yylval.l_int = strtoull(yytext, &p, 0);
373 			yyintprefix = 0;
374 			(void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
375 			yyintdecimal = yytext[0] != '0';
376 
377 			if (errno == ERANGE) {
378 				xyerror(D_INT_OFLOW, "constant %s results in "
379 				    "integer overflow\n", yytext);
380 			}
381 
382 			if (*p != '\0' && strchr("uUlL", *p) == NULL) {
383 				xyerror(D_INT_DIGIT, "constant %s contains "
384 				    "invalid digit %c\n", yytext, *p);
385 			}
386 
387 			if ((YYSTATE) != S3)
388 				return (DT_TOK_INT);
389 
390 			yypragma = dt_node_link(yypragma,
391 			    dt_node_int(yylval.l_int));
392 		}
393 
394 <S0>{RGX_FP}	yyerror("floating-point constants are not permitted\n");
395 
396 <S0>\"{RGX_STR}$ |
397 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal");
398 
399 <S0>\"{RGX_STR}\" |
400 <S3>\"{RGX_STR}\" {
401 			/*
402 			 * Quoted string -- convert C escape sequences and
403 			 * return the string as a token.
404 			 */
405 			yylval.l_str = strndup(yytext + 1, yyleng - 2);
406 
407 			if (yylval.l_str == NULL)
408 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
409 
410 			(void) stresc2chr(yylval.l_str);
411 			if ((YYSTATE) != S3)
412 				return (DT_TOK_STRING);
413 
414 			yypragma = dt_node_link(yypragma,
415 			    dt_node_string(yylval.l_str));
416 		}
417 
418 <S0>'{RGX_CHR}$	xyerror(D_CHR_NL, "newline encountered in character constant");
419 
420 <S0>'{RGX_CHR}'	{
421 			char *s, *p, *q;
422 			size_t nbytes;
423 
424 			/*
425 			 * Character constant -- convert C escape sequences and
426 			 * return the character as an integer immediate value.
427 			 */
428 			if (yyleng == 2)
429 				xyerror(D_CHR_NULL, "empty character constant");
430 
431 			s = yytext + 1;
432 			yytext[yyleng - 1] = '\0';
433 			nbytes = stresc2chr(s);
434 			yylval.l_int = 0;
435 			yyintprefix = 0;
436 			yyintsuffix[0] = '\0';
437 			yyintdecimal = 1;
438 
439 			if (nbytes > sizeof (yylval.l_int)) {
440 				xyerror(D_CHR_OFLOW, "character constant is "
441 				    "too long");
442 			}
443 #if BYTE_ORDER == _LITTLE_ENDIAN
444 			p = ((char *)&yylval.l_int) + nbytes - 1;
445 			for (q = s; nbytes != 0; nbytes--)
446 				*p-- = *q++;
447 #else
448 			bcopy(s, ((char *)&yylval.l_int) +
449 			    sizeof (yylval.l_int) - nbytes, nbytes);
450 #endif
451 			return (DT_TOK_INT);
452 		}
453 
454 <S0>"/*"	|
455 <S2>"/*"	{
456 			yypcb->pcb_cstate = (YYSTATE);
457 			BEGIN(S1);
458 		}
459 
460 <S0>{RGX_INTERP} |
461 <S2>{RGX_INTERP} ;	/* discard any #! lines */
462 
463 <S0>{RGX_CTL}	|
464 <S2>{RGX_CTL}	|
465 <S4>{RGX_CTL}	{
466 			assert(yypragma == NULL);
467 			yypcb->pcb_cstate = (YYSTATE);
468 			BEGIN(S3);
469 		}
470 
471 <S4>.		;	/* discard */
472 <S4>"\n"	;	/* discard */
473 
474 <S0>"/"		{
475 			int c, tok;
476 
477 			/*
478 			 * The use of "/" as the predicate delimiter and as the
479 			 * integer division symbol requires special lookahead
480 			 * to avoid a shift/reduce conflict in the D grammar.
481 			 * We look ahead to the next non-whitespace character.
482 			 * If we encounter EOF, ";", "{", or "/", then this "/"
483 			 * closes the predicate and we return DT_TOK_EPRED.
484 			 * If we encounter anything else, it's DT_TOK_DIV.
485 			 */
486 			while ((c = input()) != 0) {
487 				if (strchr("\f\n\r\t\v ", c) == NULL)
488 					break;
489 			}
490 
491 			if (c == 0 || c == ';' || c == '{' || c == '/') {
492 				if (yypcb->pcb_parens != 0) {
493 					yyerror("closing ) expected in "
494 					    "predicate before /\n");
495 				}
496 				if (yypcb->pcb_brackets != 0) {
497 					yyerror("closing ] expected in "
498 					    "predicate before /\n");
499 				}
500 				tok = DT_TOK_EPRED;
501 			} else
502 				tok = DT_TOK_DIV;
503 
504 			unput(c);
505 			return (tok);
506 		}
507 
508 <S0>"("		{
509 			yypcb->pcb_parens++;
510 			return (DT_TOK_LPAR);
511 		}
512 
513 <S0>")"		{
514 			if (--yypcb->pcb_parens < 0)
515 				yyerror("extra ) in input stream\n");
516 			return (DT_TOK_RPAR);
517 		}
518 
519 <S0>"["		{
520 			yypcb->pcb_brackets++;
521 			return (DT_TOK_LBRAC);
522 		}
523 
524 <S0>"]"		{
525 			if (--yypcb->pcb_brackets < 0)
526 				yyerror("extra ] in input stream\n");
527 			return (DT_TOK_RBRAC);
528 		}
529 
530 <S0>"{"		|
531 <S2>"{"		{
532 			yypcb->pcb_braces++;
533 			return ('{');
534 		}
535 
536 <S0>"}"		{
537 			if (--yypcb->pcb_braces < 0)
538 				yyerror("extra } in input stream\n");
539 			return ('}');
540 		}
541 
542 <S0>"|"		return (DT_TOK_BOR);
543 <S0>"^"		return (DT_TOK_XOR);
544 <S0>"&"		return (DT_TOK_BAND);
545 <S0>"&&"	return (DT_TOK_LAND);
546 <S0>"^^"	return (DT_TOK_LXOR);
547 <S0>"||"	return (DT_TOK_LOR);
548 <S0>"=="	return (DT_TOK_EQU);
549 <S0>"!="	return (DT_TOK_NEQ);
550 <S0>"<"		return (DT_TOK_LT);
551 <S0>"<="	return (DT_TOK_LE);
552 <S0>">"		return (DT_TOK_GT);
553 <S0>">="	return (DT_TOK_GE);
554 <S0>"<<"	return (DT_TOK_LSH);
555 <S0>">>"	return (DT_TOK_RSH);
556 <S0>"+"		return (DT_TOK_ADD);
557 <S0>"-"		return (DT_TOK_SUB);
558 <S0>"*"		return (DT_TOK_MUL);
559 <S0>"%"		return (DT_TOK_MOD);
560 <S0>"~"		return (DT_TOK_BNEG);
561 <S0>"!"		return (DT_TOK_LNEG);
562 <S0>"?"		return (DT_TOK_QUESTION);
563 <S0>":"		return (DT_TOK_COLON);
564 <S0>"."		return (DT_TOK_DOT);
565 <S0>"->"	return (DT_TOK_PTR);
566 <S0>"="		return (DT_TOK_ASGN);
567 <S0>"+="	return (DT_TOK_ADD_EQ);
568 <S0>"-="	return (DT_TOK_SUB_EQ);
569 <S0>"*="	return (DT_TOK_MUL_EQ);
570 <S0>"/="	return (DT_TOK_DIV_EQ);
571 <S0>"%="	return (DT_TOK_MOD_EQ);
572 <S0>"&="	return (DT_TOK_AND_EQ);
573 <S0>"^="	return (DT_TOK_XOR_EQ);
574 <S0>"|="	return (DT_TOK_OR_EQ);
575 <S0>"<<="	return (DT_TOK_LSH_EQ);
576 <S0>">>="	return (DT_TOK_RSH_EQ);
577 <S0>"++"	return (DT_TOK_ADDADD);
578 <S0>"--"	return (DT_TOK_SUBSUB);
579 <S0>"..."	return (DT_TOK_ELLIPSIS);
580 <S0>","		return (DT_TOK_COMMA);
581 <S0>";"		return (';');
582 <S0>{RGX_WS}	; /* discard */
583 <S0>"\\"\n	; /* discard */
584 <S0>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
585 
586 <S1>"/*"	yyerror("/* encountered inside a comment\n");
587 <S1>"*/"	BEGIN(yypcb->pcb_cstate);
588 <S1>.|\n	; /* discard */
589 
590 <S2>{RGX_PSPEC}	{
591 			/*
592 			 * S2 has an ambiguity because RGX_PSPEC includes '*'
593 			 * as a glob character and '*' also can be DT_TOK_STAR.
594 			 * Since lex always matches the longest token, this
595 			 * rule can be matched by an input string like "int*",
596 			 * which could begin a global variable declaration such
597 			 * as "int*x;" or could begin a RGX_PSPEC with globbing
598 			 * such as "int* { trace(timestamp); }".  If C_PSPEC is
599 			 * not set, we must resolve the ambiguity in favor of
600 			 * the type and perform lexer pushback if the fragment
601 			 * before '*' or entire fragment matches a type name.
602 			 * If C_PSPEC is set, we always return a PSPEC token.
603 			 * If C_PSPEC is off, the user can avoid ambiguity by
604 			 * including a ':' delimiter in the specifier, which
605 			 * they should be doing anyway to specify the provider.
606 			 */
607 			if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) &&
608 			    strchr(yytext, ':') == NULL) {
609 
610 				char *p = strchr(yytext, '*');
611 				char *q = yytext + yyleng - 1;
612 
613 				if (p != NULL && p > yytext)
614 					*p = '\0'; /* prune yytext */
615 
616 				if (dt_type_lookup(yytext, NULL) == 0) {
617 					yylval.l_str = strdup(yytext);
618 
619 					if (yylval.l_str == NULL) {
620 						longjmp(yypcb->pcb_jmpbuf,
621 						    EDT_NOMEM);
622 					}
623 
624 					if (p != NULL && p > yytext) {
625 						for (*p = '*'; q >= p; q--)
626 							unput(*q);
627 					}
628 
629 					yybegin(YYS_EXPR);
630 					return (DT_TOK_TNAME);
631 				}
632 
633 				if (p != NULL && p > yytext)
634 					*p = '*'; /* restore yytext */
635 			}
636 
637 			if ((yylval.l_str = strdup(yytext)) == NULL)
638 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
639 
640 			return (DT_TOK_PSPEC);
641 		}
642 
643 <S2>"/"		return (DT_TOK_DIV);
644 <S2>","		return (DT_TOK_COMMA);
645 
646 <S2>{RGX_WS}	; /* discard */
647 <S2>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
648 
649 <S3>\n		{
650 			dt_pragma(yypragma);
651 			yypragma = NULL;
652 			BEGIN(yypcb->pcb_cstate);
653 		}
654 
655 <S3>[\f\t\v ]+	; /* discard */
656 
657 <S3>[^\f\n\t\v "]+ {
658 			dt_node_t *dnp;
659 
660 			if ((yylval.l_str = strdup(yytext)) == NULL)
661 				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
662 
663 			/*
664 			 * We want to call dt_node_ident() here, but we can't
665 			 * because it will expand inlined identifiers, which we
666 			 * don't want to do from #pragma context in order to
667 			 * support pragmas that apply to the ident itself.  We
668 			 * call dt_node_string() and then reset dn_op instead.
669 			 */
670 			dnp = dt_node_string(yylval.l_str);
671 			dnp->dn_kind = DT_NODE_IDENT;
672 			dnp->dn_op = DT_TOK_IDENT;
673 			yypragma = dt_node_link(yypragma, dnp);
674 		}
675 
676 <S3>.		yyerror("syntax error near \"%c\"\n", yytext[0]);
677 
678 %%
679 
680 /*
681  * yybegin provides a wrapper for use from C code around the lex BEGIN() macro.
682  * We use two main states for lexing because probe descriptions use a syntax
683  * that is incompatible with the normal D tokens (e.g. names can contain "-").
684  * yybegin also handles the job of switching between two lists of dt_nodes
685  * as we allocate persistent definitions, like inlines, and transient nodes
686  * that will be freed once we are done parsing the current program file.
687  */
688 void
689 yybegin(yystate_t state)
690 {
691 #ifdef	YYDEBUG
692 	yydebug = _dtrace_debug;
693 #endif
694 	if (yypcb->pcb_yystate == state)
695 		return; /* nothing to do if we're in the state already */
696 
697 	if (yypcb->pcb_yystate == YYS_DEFINE) {
698 		yypcb->pcb_list = yypcb->pcb_hold;
699 		yypcb->pcb_hold = NULL;
700 	}
701 
702 	switch (state) {
703 	case YYS_CLAUSE:
704 		BEGIN(S2);
705 		break;
706 	case YYS_DEFINE:
707 		assert(yypcb->pcb_hold == NULL);
708 		yypcb->pcb_hold = yypcb->pcb_list;
709 		yypcb->pcb_list = NULL;
710 		/*FALLTHRU*/
711 	case YYS_EXPR:
712 		BEGIN(S0);
713 		break;
714 	case YYS_DONE:
715 		break;
716 	case YYS_CONTROL:
717 		BEGIN(S4);
718 		break;
719 	default:
720 		xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state);
721 	}
722 
723 	yypcb->pcb_yystate = state;
724 }
725 
726 void
727 yyinit(dt_pcb_t *pcb)
728 {
729 	yypcb = pcb;
730 	yylineno = 1;
731 	yypragma = NULL;
732 #if defined(sun)
733 	yysptr = yysbuf;
734 #endif
735 }
736 
737 /*
738  * Given a lexeme 's' (typically yytext), set yylval and return an appropriate
739  * token to the parser indicating either an identifier or a typedef name.
740  * User-defined global variables always take precedence over types, but we do
741  * use some heuristics because D programs can look at an ever-changing set of
742  * kernel types and also can implicitly instantiate variables by assignment,
743  * unlike in C.  The code here is ordered carefully as lookups are not cheap.
744  */
745 static int
746 id_or_type(const char *s)
747 {
748 	dtrace_hdl_t *dtp = yypcb->pcb_hdl;
749 	dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
750 	int c0, c1, ttok = DT_TOK_TNAME;
751 	dt_ident_t *idp;
752 
753 	if ((s = yylval.l_str = strdup(s)) == NULL)
754 		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
755 
756 	/*
757 	 * If the lexeme is a global variable or likely identifier or *not* a
758 	 * type_name, then it is an identifier token.
759 	 */
760 	if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL ||
761 	    dt_idhash_lookup(yypcb->pcb_idents, s) != NULL ||
762 	    dt_type_lookup(s, NULL) != 0)
763 		return (DT_TOK_IDENT);
764 
765 	/*
766 	 * If we're in the midst of parsing a declaration and a type_specifier
767 	 * has already been shifted, then return DT_TOK_IDENT instead of TNAME.
768 	 * This semantic is necessary to permit valid ISO C code such as:
769 	 *
770 	 * typedef int foo;
771 	 * struct s { foo foo; };
772 	 *
773 	 * without causing shift/reduce conflicts in the direct_declarator part
774 	 * of the grammar.  The result is that we must check for conflicting
775 	 * redeclarations of the same identifier as part of dt_node_decl().
776 	 */
777 	if (ddp != NULL && ddp->dd_name != NULL)
778 		return (DT_TOK_IDENT);
779 
780 	/*
781 	 * If the lexeme is a type name and we are not in a program clause,
782 	 * then always interpret it as a type and return DT_TOK_TNAME.
783 	 */
784 	if ((YYSTATE) != S0)
785 		return (DT_TOK_TNAME);
786 
787 	/*
788 	 * If the lexeme matches a type name but is in a program clause, then
789 	 * it could be a type or it could be an undefined variable.  Peek at
790 	 * the next token to decide.  If we see ++, --, [, or =, we know there
791 	 * might be an assignment that is trying to create a global variable,
792 	 * so we optimistically return DT_TOK_IDENT.  There is no harm in being
793 	 * wrong: a type_name followed by ++, --, [, or = is a syntax error.
794 	 */
795 	while ((c0 = input()) != 0) {
796 		if (strchr("\f\n\r\t\v ", c0) == NULL)
797 			break;
798 	}
799 
800 	switch (c0) {
801 	case '+':
802 	case '-':
803 		if ((c1 = input()) == c0)
804 			ttok = DT_TOK_IDENT;
805 		unput(c1);
806 		break;
807 
808 	case '=':
809 		if ((c1 = input()) != c0)
810 			ttok = DT_TOK_IDENT;
811 		unput(c1);
812 		break;
813 	case '[':
814 		ttok = DT_TOK_IDENT;
815 		break;
816 	}
817 
818 	if (ttok == DT_TOK_IDENT) {
819 		idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0,
820 		    0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);
821 
822 		if (idp == NULL)
823 			longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
824 	}
825 
826 	unput(c0);
827 	return (ttok);
828 }
829 
830 #if defined(sun)
831 static int
832 input(void)
833 {
834 	int c;
835 
836 	if (yysptr > yysbuf)
837 		c = *--yysptr;
838 	else if (yypcb->pcb_fileptr != NULL)
839 		c = fgetc(yypcb->pcb_fileptr);
840 	else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen)
841 		c = *(unsigned char *)(yypcb->pcb_strptr++);
842 	else
843 		c = EOF;
844 
845 	if (c == '\n')
846 		yylineno++;
847 
848 	if (c != EOF)
849 		return (c);
850 
851 	if ((YYSTATE) == S1)
852 		yyerror("end-of-file encountered before matching */\n");
853 
854 	if ((YYSTATE) == S3)
855 		yyerror("end-of-file encountered before end of control line\n");
856 
857 	if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr))
858 		longjmp(yypcb->pcb_jmpbuf, EDT_FIO);
859 
860 	return (0); /* EOF */
861 }
862 
863 static void
864 unput(int c)
865 {
866 	if (c == '\n')
867 		yylineno--;
868 
869 	*yysptr++ = c;
870 	yytchar = c;
871 }
872 #endif
873