1 %{ 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 /* 27 * Copyright (c) 2013 by Delphix. All rights reserved. 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <string.h> 32 #include <stdlib.h> 33 #include <stdio.h> 34 #include <assert.h> 35 #include <ctype.h> 36 #include <errno.h> 37 38 #include <dt_impl.h> 39 #include <dt_grammar.h> 40 #include <dt_parser.h> 41 #include <dt_string.h> 42 43 /* 44 * We need to undefine lex's input and unput macros so that references to these 45 * call the functions provided at the end of this source file. 46 */ 47 #if defined(sun) 48 #undef input 49 #undef unput 50 #else 51 /* 52 * Define YY_INPUT for flex since input() can't be re-defined. 53 */ 54 #define YY_INPUT(buf,result,max_size) \ 55 if (yypcb->pcb_fileptr != NULL) { \ 56 if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \ 57 && ferror(yypcb->pcb_fileptr)) \ 58 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \ 59 } else { \ 60 int n; \ 61 for (n = 0; n < max_size && \ 62 yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \ 63 buf[n] = *yypcb->pcb_strptr++; \ 64 result = n; \ 65 } 66 /* 67 * Do not EOF let tokens to be put back. This does not work with flex. 68 * On the other hand, leaving current buffer in same state it was when 69 * last EOF was received guarantees that input() will keep returning EOF 70 * for all subsequent invocations, which is the effect desired. 71 */ 72 #undef unput 73 #define unput(c) \ 74 do { \ 75 int _c = c; \ 76 if (_c != EOF) \ 77 yyunput(_c, yytext_ptr); \ 78 } while(0) 79 #endif 80 81 static int id_or_type(const char *); 82 #if defined(sun) 83 static int input(void); 84 static void unput(int); 85 #endif 86 87 /* 88 * We first define a set of labeled states for use in the D lexer and then a 89 * set of regular expressions to simplify things below. The lexer states are: 90 * 91 * S0 - D program clause and expression lexing 92 * S1 - D comments (i.e. skip everything until end of comment) 93 * S2 - D program outer scope (probe specifiers and declarations) 94 * S3 - D control line parsing (i.e. after ^# is seen but before \n) 95 * S4 - D control line scan (locate control directives only and invoke S3) 96 */ 97 %} 98 99 %e 1500 /* maximum nodes */ 100 %p 4900 /* maximum positions */ 101 %n 600 /* maximum states */ 102 %a 3000 /* maximum transitions */ 103 104 %s S0 S1 S2 S3 S4 105 106 RGX_AGG "@"[a-zA-Z_][0-9a-zA-Z_]* 107 RGX_PSPEC [-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]* 108 RGX_ALTIDENT [a-zA-Z_][0-9a-zA-Z_]* 109 RGX_LMID LM[0-9a-fA-F]+` 110 RGX_MOD_IDENT [a-zA-Z_`][0-9a-z.A-Z_`]*` 111 RGX_IDENT [a-zA-Z_`][0-9a-zA-Z_`]* 112 RGX_INT ([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]? 113 RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]? 114 RGX_WS [\f\n\r\t\v ] 115 RGX_STR ([^"\\\n]|\\[^"\n]|\\\")* 116 RGX_CHR ([^'\\\n]|\\[^'\n]|\\')* 117 RGX_INTERP ^[\f\t\v ]*#!.* 118 RGX_CTL ^[\f\t\v ]*# 119 120 %% 121 122 %{ 123 124 /* 125 * We insert a special prologue into yylex() itself: if the pcb contains a 126 * context token, we return that prior to running the normal lexer. This 127 * allows libdtrace to force yacc into one of our three parsing contexts: D 128 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE). 129 * Once the token is returned, we clear it so this only happens once. 130 */ 131 if (yypcb->pcb_token != 0) { 132 int tok = yypcb->pcb_token; 133 yypcb->pcb_token = 0; 134 return (tok); 135 } 136 137 %} 138 139 <S0>auto return (DT_KEY_AUTO); 140 <S0>break return (DT_KEY_BREAK); 141 <S0>case return (DT_KEY_CASE); 142 <S0>char return (DT_KEY_CHAR); 143 <S0>const return (DT_KEY_CONST); 144 <S0>continue return (DT_KEY_CONTINUE); 145 <S0>counter return (DT_KEY_COUNTER); 146 <S0>default return (DT_KEY_DEFAULT); 147 <S0>do return (DT_KEY_DO); 148 <S0>double return (DT_KEY_DOUBLE); 149 <S0>else return (DT_KEY_ELSE); 150 <S0>enum return (DT_KEY_ENUM); 151 <S0>extern return (DT_KEY_EXTERN); 152 <S0>float return (DT_KEY_FLOAT); 153 <S0>for return (DT_KEY_FOR); 154 <S0>goto return (DT_KEY_GOTO); 155 <S0>if return (DT_KEY_IF); 156 <S0>import return (DT_KEY_IMPORT); 157 <S0>inline return (DT_KEY_INLINE); 158 <S0>int return (DT_KEY_INT); 159 <S0>long return (DT_KEY_LONG); 160 <S0>offsetof return (DT_TOK_OFFSETOF); 161 <S0>probe return (DT_KEY_PROBE); 162 <S0>provider return (DT_KEY_PROVIDER); 163 <S0>register return (DT_KEY_REGISTER); 164 <S0>restrict return (DT_KEY_RESTRICT); 165 <S0>return return (DT_KEY_RETURN); 166 <S0>self return (DT_KEY_SELF); 167 <S0>short return (DT_KEY_SHORT); 168 <S0>signed return (DT_KEY_SIGNED); 169 <S0>sizeof return (DT_TOK_SIZEOF); 170 <S0>static return (DT_KEY_STATIC); 171 <S0>string return (DT_KEY_STRING); 172 <S0>stringof return (DT_TOK_STRINGOF); 173 <S0>struct return (DT_KEY_STRUCT); 174 <S0>switch return (DT_KEY_SWITCH); 175 <S0>this return (DT_KEY_THIS); 176 <S0>translator return (DT_KEY_XLATOR); 177 <S0>typedef return (DT_KEY_TYPEDEF); 178 <S0>union return (DT_KEY_UNION); 179 <S0>unsigned return (DT_KEY_UNSIGNED); 180 <S0>userland return (DT_KEY_USERLAND); 181 <S0>void return (DT_KEY_VOID); 182 <S0>volatile return (DT_KEY_VOLATILE); 183 <S0>while return (DT_KEY_WHILE); 184 <S0>xlate return (DT_TOK_XLATE); 185 186 <S2>auto { yybegin(YYS_EXPR); return (DT_KEY_AUTO); } 187 <S2>char { yybegin(YYS_EXPR); return (DT_KEY_CHAR); } 188 <S2>const { yybegin(YYS_EXPR); return (DT_KEY_CONST); } 189 <S2>counter { yybegin(YYS_DEFINE); return (DT_KEY_COUNTER); } 190 <S2>double { yybegin(YYS_EXPR); return (DT_KEY_DOUBLE); } 191 <S2>enum { yybegin(YYS_EXPR); return (DT_KEY_ENUM); } 192 <S2>extern { yybegin(YYS_EXPR); return (DT_KEY_EXTERN); } 193 <S2>float { yybegin(YYS_EXPR); return (DT_KEY_FLOAT); } 194 <S2>import { yybegin(YYS_EXPR); return (DT_KEY_IMPORT); } 195 <S2>inline { yybegin(YYS_DEFINE); return (DT_KEY_INLINE); } 196 <S2>int { yybegin(YYS_EXPR); return (DT_KEY_INT); } 197 <S2>long { yybegin(YYS_EXPR); return (DT_KEY_LONG); } 198 <S2>provider { yybegin(YYS_DEFINE); return (DT_KEY_PROVIDER); } 199 <S2>register { yybegin(YYS_EXPR); return (DT_KEY_REGISTER); } 200 <S2>restrict { yybegin(YYS_EXPR); return (DT_KEY_RESTRICT); } 201 <S2>self { yybegin(YYS_EXPR); return (DT_KEY_SELF); } 202 <S2>short { yybegin(YYS_EXPR); return (DT_KEY_SHORT); } 203 <S2>signed { yybegin(YYS_EXPR); return (DT_KEY_SIGNED); } 204 <S2>static { yybegin(YYS_EXPR); return (DT_KEY_STATIC); } 205 <S2>string { yybegin(YYS_EXPR); return (DT_KEY_STRING); } 206 <S2>struct { yybegin(YYS_EXPR); return (DT_KEY_STRUCT); } 207 <S2>this { yybegin(YYS_EXPR); return (DT_KEY_THIS); } 208 <S2>translator { yybegin(YYS_DEFINE); return (DT_KEY_XLATOR); } 209 <S2>typedef { yybegin(YYS_EXPR); return (DT_KEY_TYPEDEF); } 210 <S2>union { yybegin(YYS_EXPR); return (DT_KEY_UNION); } 211 <S2>unsigned { yybegin(YYS_EXPR); return (DT_KEY_UNSIGNED); } 212 <S2>void { yybegin(YYS_EXPR); return (DT_KEY_VOID); } 213 <S2>volatile { yybegin(YYS_EXPR); return (DT_KEY_VOLATILE); } 214 215 <S0>"$$"[0-9]+ { 216 int i = atoi(yytext + 2); 217 char *v = ""; 218 219 /* 220 * A macro argument reference substitutes the text of 221 * an argument in place of the current token. When we 222 * see $$<d> we fetch the saved string from pcb_sargv 223 * (or use the default argument if the option has been 224 * set and the argument hasn't been specified) and 225 * return a token corresponding to this string. 226 */ 227 if (i < 0 || (i >= yypcb->pcb_sargc && 228 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 229 xyerror(D_MACRO_UNDEF, "macro argument %s is " 230 "not defined\n", yytext); 231 } 232 233 if (i < yypcb->pcb_sargc) { 234 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 235 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 236 } 237 238 if ((yylval.l_str = strdup(v)) == NULL) 239 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 240 241 (void) stresc2chr(yylval.l_str); 242 return (DT_TOK_STRING); 243 } 244 245 <S0>"$"[0-9]+ { 246 int i = atoi(yytext + 1); 247 char *p, *v = "0"; 248 249 /* 250 * A macro argument reference substitutes the text of 251 * one identifier or integer pattern for another. When 252 * we see $<d> we fetch the saved string from pcb_sargv 253 * (or use the default argument if the option has been 254 * set and the argument hasn't been specified) and 255 * return a token corresponding to this string. 256 */ 257 if (i < 0 || (i >= yypcb->pcb_sargc && 258 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 259 xyerror(D_MACRO_UNDEF, "macro argument %s is " 260 "not defined\n", yytext); 261 } 262 263 if (i < yypcb->pcb_sargc) { 264 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 265 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 266 } 267 268 /* 269 * If the macro text is not a valid integer or ident, 270 * then we treat it as a string. The string may be 271 * optionally enclosed in quotes, which we strip. 272 */ 273 if (strbadidnum(v)) { 274 size_t len = strlen(v); 275 276 if (len != 1 && *v == '"' && v[len - 1] == '"') 277 yylval.l_str = strndup(v + 1, len - 2); 278 else 279 yylval.l_str = strndup(v, len); 280 281 if (yylval.l_str == NULL) 282 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 283 284 (void) stresc2chr(yylval.l_str); 285 return (DT_TOK_STRING); 286 } 287 288 /* 289 * If the macro text is not a string an begins with a 290 * digit or a +/- sign, process it as an integer token. 291 */ 292 if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') { 293 if (isdigit(v[0])) 294 yyintprefix = 0; 295 else 296 yyintprefix = *v++; 297 298 errno = 0; 299 yylval.l_int = strtoull(v, &p, 0); 300 (void) strncpy(yyintsuffix, p, 301 sizeof (yyintsuffix)); 302 yyintdecimal = *v != '0'; 303 304 if (errno == ERANGE) { 305 xyerror(D_MACRO_OFLOW, "macro argument" 306 " %s constant %s results in integer" 307 " overflow\n", yytext, v); 308 } 309 310 return (DT_TOK_INT); 311 } 312 313 return (id_or_type(v)); 314 } 315 316 <S0>"$$"{RGX_IDENT} { 317 dt_ident_t *idp = dt_idhash_lookup( 318 yypcb->pcb_hdl->dt_macros, yytext + 2); 319 320 char s[16]; /* enough for UINT_MAX + \0 */ 321 322 if (idp == NULL) { 323 xyerror(D_MACRO_UNDEF, "macro variable %s " 324 "is not defined\n", yytext); 325 } 326 327 /* 328 * For the moment, all current macro variables are of 329 * type id_t (refer to dtrace_update() for details). 330 */ 331 (void) snprintf(s, sizeof (s), "%u", idp->di_id); 332 if ((yylval.l_str = strdup(s)) == NULL) 333 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 334 335 return (DT_TOK_STRING); 336 } 337 338 <S0>"$"{RGX_IDENT} { 339 dt_ident_t *idp = dt_idhash_lookup( 340 yypcb->pcb_hdl->dt_macros, yytext + 1); 341 342 if (idp == NULL) { 343 xyerror(D_MACRO_UNDEF, "macro variable %s " 344 "is not defined\n", yytext); 345 } 346 347 /* 348 * For the moment, all current macro variables are of 349 * type id_t (refer to dtrace_update() for details). 350 */ 351 yylval.l_int = (intmax_t)(int)idp->di_id; 352 yyintprefix = 0; 353 yyintsuffix[0] = '\0'; 354 yyintdecimal = 1; 355 356 return (DT_TOK_INT); 357 } 358 359 <S0>{RGX_IDENT} | 360 <S0>{RGX_MOD_IDENT}{RGX_IDENT} | 361 <S0>{RGX_MOD_IDENT} { 362 return (id_or_type(yytext)); 363 } 364 365 <S0>{RGX_AGG} { 366 if ((yylval.l_str = strdup(yytext)) == NULL) 367 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 368 return (DT_TOK_AGG); 369 } 370 371 <S0>"@" { 372 if ((yylval.l_str = strdup("@_")) == NULL) 373 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 374 return (DT_TOK_AGG); 375 } 376 377 <S0>{RGX_INT} | 378 <S2>{RGX_INT} | 379 <S3>{RGX_INT} { 380 char *p; 381 382 errno = 0; 383 yylval.l_int = strtoull(yytext, &p, 0); 384 yyintprefix = 0; 385 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix)); 386 yyintdecimal = yytext[0] != '0'; 387 388 if (errno == ERANGE) { 389 xyerror(D_INT_OFLOW, "constant %s results in " 390 "integer overflow\n", yytext); 391 } 392 393 if (*p != '\0' && strchr("uUlL", *p) == NULL) { 394 xyerror(D_INT_DIGIT, "constant %s contains " 395 "invalid digit %c\n", yytext, *p); 396 } 397 398 if ((YYSTATE) != S3) 399 return (DT_TOK_INT); 400 401 yypragma = dt_node_link(yypragma, 402 dt_node_int(yylval.l_int)); 403 } 404 405 <S0>{RGX_FP} yyerror("floating-point constants are not permitted\n"); 406 407 <S0>\"{RGX_STR}$ | 408 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal"); 409 410 <S0>\"{RGX_STR}\" | 411 <S3>\"{RGX_STR}\" { 412 /* 413 * Quoted string -- convert C escape sequences and 414 * return the string as a token. 415 */ 416 yylval.l_str = strndup(yytext + 1, yyleng - 2); 417 418 if (yylval.l_str == NULL) 419 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 420 421 (void) stresc2chr(yylval.l_str); 422 if ((YYSTATE) != S3) 423 return (DT_TOK_STRING); 424 425 yypragma = dt_node_link(yypragma, 426 dt_node_string(yylval.l_str)); 427 } 428 429 <S0>'{RGX_CHR}$ xyerror(D_CHR_NL, "newline encountered in character constant"); 430 431 <S0>'{RGX_CHR}' { 432 char *s, *p, *q; 433 size_t nbytes; 434 435 /* 436 * Character constant -- convert C escape sequences and 437 * return the character as an integer immediate value. 438 */ 439 if (yyleng == 2) 440 xyerror(D_CHR_NULL, "empty character constant"); 441 442 s = yytext + 1; 443 yytext[yyleng - 1] = '\0'; 444 nbytes = stresc2chr(s); 445 yylval.l_int = 0; 446 yyintprefix = 0; 447 yyintsuffix[0] = '\0'; 448 yyintdecimal = 1; 449 450 if (nbytes > sizeof (yylval.l_int)) { 451 xyerror(D_CHR_OFLOW, "character constant is " 452 "too long"); 453 } 454 #if BYTE_ORDER == _LITTLE_ENDIAN 455 p = ((char *)&yylval.l_int) + nbytes - 1; 456 for (q = s; nbytes != 0; nbytes--) 457 *p-- = *q++; 458 #else 459 bcopy(s, ((char *)&yylval.l_int) + 460 sizeof (yylval.l_int) - nbytes, nbytes); 461 #endif 462 return (DT_TOK_INT); 463 } 464 465 <S0>"/*" | 466 <S2>"/*" { 467 yypcb->pcb_cstate = (YYSTATE); 468 BEGIN(S1); 469 } 470 471 <S0>{RGX_INTERP} | 472 <S2>{RGX_INTERP} ; /* discard any #! lines */ 473 474 <S0>{RGX_CTL} | 475 <S2>{RGX_CTL} | 476 <S4>{RGX_CTL} { 477 assert(yypragma == NULL); 478 yypcb->pcb_cstate = (YYSTATE); 479 BEGIN(S3); 480 } 481 482 <S4>. ; /* discard */ 483 <S4>"\n" ; /* discard */ 484 485 <S0>"/" { 486 int c, tok; 487 488 /* 489 * The use of "/" as the predicate delimiter and as the 490 * integer division symbol requires special lookahead 491 * to avoid a shift/reduce conflict in the D grammar. 492 * We look ahead to the next non-whitespace character. 493 * If we encounter EOF, ";", "{", or "/", then this "/" 494 * closes the predicate and we return DT_TOK_EPRED. 495 * If we encounter anything else, it's DT_TOK_DIV. 496 */ 497 while ((c = input()) != 0) { 498 if (strchr("\f\n\r\t\v ", c) == NULL) 499 break; 500 } 501 502 if (c == 0 || c == ';' || c == '{' || c == '/') { 503 if (yypcb->pcb_parens != 0) { 504 yyerror("closing ) expected in " 505 "predicate before /\n"); 506 } 507 if (yypcb->pcb_brackets != 0) { 508 yyerror("closing ] expected in " 509 "predicate before /\n"); 510 } 511 tok = DT_TOK_EPRED; 512 } else 513 tok = DT_TOK_DIV; 514 515 unput(c); 516 return (tok); 517 } 518 519 <S0>"(" { 520 yypcb->pcb_parens++; 521 return (DT_TOK_LPAR); 522 } 523 524 <S0>")" { 525 if (--yypcb->pcb_parens < 0) 526 yyerror("extra ) in input stream\n"); 527 return (DT_TOK_RPAR); 528 } 529 530 <S0>"[" { 531 yypcb->pcb_brackets++; 532 return (DT_TOK_LBRAC); 533 } 534 535 <S0>"]" { 536 if (--yypcb->pcb_brackets < 0) 537 yyerror("extra ] in input stream\n"); 538 return (DT_TOK_RBRAC); 539 } 540 541 <S0>"{" | 542 <S2>"{" { 543 yypcb->pcb_braces++; 544 return ('{'); 545 } 546 547 <S0>"}" { 548 if (--yypcb->pcb_braces < 0) 549 yyerror("extra } in input stream\n"); 550 return ('}'); 551 } 552 553 <S0>"|" return (DT_TOK_BOR); 554 <S0>"^" return (DT_TOK_XOR); 555 <S0>"&" return (DT_TOK_BAND); 556 <S0>"&&" return (DT_TOK_LAND); 557 <S0>"^^" return (DT_TOK_LXOR); 558 <S0>"||" return (DT_TOK_LOR); 559 <S0>"==" return (DT_TOK_EQU); 560 <S0>"!=" return (DT_TOK_NEQ); 561 <S0>"<" return (DT_TOK_LT); 562 <S0>"<=" return (DT_TOK_LE); 563 <S0>">" return (DT_TOK_GT); 564 <S0>">=" return (DT_TOK_GE); 565 <S0>"<<" return (DT_TOK_LSH); 566 <S0>">>" return (DT_TOK_RSH); 567 <S0>"+" return (DT_TOK_ADD); 568 <S0>"-" return (DT_TOK_SUB); 569 <S0>"*" return (DT_TOK_MUL); 570 <S0>"%" return (DT_TOK_MOD); 571 <S0>"~" return (DT_TOK_BNEG); 572 <S0>"!" return (DT_TOK_LNEG); 573 <S0>"?" return (DT_TOK_QUESTION); 574 <S0>":" return (DT_TOK_COLON); 575 <S0>"." return (DT_TOK_DOT); 576 <S0>"->" return (DT_TOK_PTR); 577 <S0>"=" return (DT_TOK_ASGN); 578 <S0>"+=" return (DT_TOK_ADD_EQ); 579 <S0>"-=" return (DT_TOK_SUB_EQ); 580 <S0>"*=" return (DT_TOK_MUL_EQ); 581 <S0>"/=" return (DT_TOK_DIV_EQ); 582 <S0>"%=" return (DT_TOK_MOD_EQ); 583 <S0>"&=" return (DT_TOK_AND_EQ); 584 <S0>"^=" return (DT_TOK_XOR_EQ); 585 <S0>"|=" return (DT_TOK_OR_EQ); 586 <S0>"<<=" return (DT_TOK_LSH_EQ); 587 <S0>">>=" return (DT_TOK_RSH_EQ); 588 <S0>"++" return (DT_TOK_ADDADD); 589 <S0>"--" return (DT_TOK_SUBSUB); 590 <S0>"..." return (DT_TOK_ELLIPSIS); 591 <S0>"," return (DT_TOK_COMMA); 592 <S0>";" return (';'); 593 <S0>{RGX_WS} ; /* discard */ 594 <S0>"\\"\n ; /* discard */ 595 <S0>. yyerror("syntax error near \"%c\"\n", yytext[0]); 596 597 <S1>"/*" yyerror("/* encountered inside a comment\n"); 598 <S1>"*/" BEGIN(yypcb->pcb_cstate); 599 <S1>.|\n ; /* discard */ 600 601 <S2>{RGX_PSPEC} { 602 /* 603 * S2 has an ambiguity because RGX_PSPEC includes '*' 604 * as a glob character and '*' also can be DT_TOK_STAR. 605 * Since lex always matches the longest token, this 606 * rule can be matched by an input string like "int*", 607 * which could begin a global variable declaration such 608 * as "int*x;" or could begin a RGX_PSPEC with globbing 609 * such as "int* { trace(timestamp); }". If C_PSPEC is 610 * not set, we must resolve the ambiguity in favor of 611 * the type and perform lexer pushback if the fragment 612 * before '*' or entire fragment matches a type name. 613 * If C_PSPEC is set, we always return a PSPEC token. 614 * If C_PSPEC is off, the user can avoid ambiguity by 615 * including a ':' delimiter in the specifier, which 616 * they should be doing anyway to specify the provider. 617 */ 618 if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) && 619 strchr(yytext, ':') == NULL) { 620 621 char *p = strchr(yytext, '*'); 622 char *q = yytext + yyleng - 1; 623 624 if (p != NULL && p > yytext) 625 *p = '\0'; /* prune yytext */ 626 627 if (dt_type_lookup(yytext, NULL) == 0) { 628 yylval.l_str = strdup(yytext); 629 630 if (yylval.l_str == NULL) { 631 longjmp(yypcb->pcb_jmpbuf, 632 EDT_NOMEM); 633 } 634 635 if (p != NULL && p > yytext) { 636 for (*p = '*'; q >= p; q--) 637 unput(*q); 638 } 639 640 yybegin(YYS_EXPR); 641 return (DT_TOK_TNAME); 642 } 643 644 if (p != NULL && p > yytext) 645 *p = '*'; /* restore yytext */ 646 } 647 648 if ((yylval.l_str = strdup(yytext)) == NULL) 649 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 650 651 return (DT_TOK_PSPEC); 652 } 653 654 <S2>"/" return (DT_TOK_DIV); 655 <S2>"," return (DT_TOK_COMMA); 656 657 <S2>{RGX_WS} ; /* discard */ 658 <S2>. yyerror("syntax error near \"%c\"\n", yytext[0]); 659 660 <S3>\n { 661 dt_pragma(yypragma); 662 yypragma = NULL; 663 BEGIN(yypcb->pcb_cstate); 664 } 665 666 <S3>[\f\t\v ]+ ; /* discard */ 667 668 <S3>[^\f\n\t\v "]+ { 669 dt_node_t *dnp; 670 671 if ((yylval.l_str = strdup(yytext)) == NULL) 672 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 673 674 /* 675 * We want to call dt_node_ident() here, but we can't 676 * because it will expand inlined identifiers, which we 677 * don't want to do from #pragma context in order to 678 * support pragmas that apply to the ident itself. We 679 * call dt_node_string() and then reset dn_op instead. 680 */ 681 dnp = dt_node_string(yylval.l_str); 682 dnp->dn_kind = DT_NODE_IDENT; 683 dnp->dn_op = DT_TOK_IDENT; 684 yypragma = dt_node_link(yypragma, dnp); 685 } 686 687 <S3>. yyerror("syntax error near \"%c\"\n", yytext[0]); 688 689 %% 690 691 /* 692 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro. 693 * We use two main states for lexing because probe descriptions use a syntax 694 * that is incompatible with the normal D tokens (e.g. names can contain "-"). 695 * yybegin also handles the job of switching between two lists of dt_nodes 696 * as we allocate persistent definitions, like inlines, and transient nodes 697 * that will be freed once we are done parsing the current program file. 698 */ 699 void 700 yybegin(yystate_t state) 701 { 702 #ifdef YYDEBUG 703 yydebug = _dtrace_debug; 704 #endif 705 if (yypcb->pcb_yystate == state) 706 return; /* nothing to do if we're in the state already */ 707 708 if (yypcb->pcb_yystate == YYS_DEFINE) { 709 yypcb->pcb_list = yypcb->pcb_hold; 710 yypcb->pcb_hold = NULL; 711 } 712 713 switch (state) { 714 case YYS_CLAUSE: 715 BEGIN(S2); 716 break; 717 case YYS_DEFINE: 718 assert(yypcb->pcb_hold == NULL); 719 yypcb->pcb_hold = yypcb->pcb_list; 720 yypcb->pcb_list = NULL; 721 /*FALLTHRU*/ 722 case YYS_EXPR: 723 BEGIN(S0); 724 break; 725 case YYS_DONE: 726 break; 727 case YYS_CONTROL: 728 BEGIN(S4); 729 break; 730 default: 731 xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state); 732 } 733 734 yypcb->pcb_yystate = state; 735 } 736 737 void 738 yyinit(dt_pcb_t *pcb) 739 { 740 yypcb = pcb; 741 yylineno = 1; 742 yypragma = NULL; 743 #if defined(sun) 744 yysptr = yysbuf; 745 #endif 746 } 747 748 /* 749 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate 750 * token to the parser indicating either an identifier or a typedef name. 751 * User-defined global variables always take precedence over types, but we do 752 * use some heuristics because D programs can look at an ever-changing set of 753 * kernel types and also can implicitly instantiate variables by assignment, 754 * unlike in C. The code here is ordered carefully as lookups are not cheap. 755 */ 756 static int 757 id_or_type(const char *s) 758 { 759 dtrace_hdl_t *dtp = yypcb->pcb_hdl; 760 dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; 761 int c0, c1, ttok = DT_TOK_TNAME; 762 dt_ident_t *idp; 763 764 if ((s = yylval.l_str = strdup(s)) == NULL) 765 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 766 767 /* 768 * If the lexeme is a global variable or likely identifier or *not* a 769 * type_name, then it is an identifier token. 770 */ 771 if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL || 772 dt_idhash_lookup(yypcb->pcb_idents, s) != NULL || 773 dt_type_lookup(s, NULL) != 0) 774 return (DT_TOK_IDENT); 775 776 /* 777 * If we're in the midst of parsing a declaration and a type_specifier 778 * has already been shifted, then return DT_TOK_IDENT instead of TNAME. 779 * This semantic is necessary to permit valid ISO C code such as: 780 * 781 * typedef int foo; 782 * struct s { foo foo; }; 783 * 784 * without causing shift/reduce conflicts in the direct_declarator part 785 * of the grammar. The result is that we must check for conflicting 786 * redeclarations of the same identifier as part of dt_node_decl(). 787 */ 788 if (ddp != NULL && ddp->dd_name != NULL) 789 return (DT_TOK_IDENT); 790 791 /* 792 * If the lexeme is a type name and we are not in a program clause, 793 * then always interpret it as a type and return DT_TOK_TNAME. 794 */ 795 if ((YYSTATE) != S0) 796 return (DT_TOK_TNAME); 797 798 /* 799 * If the lexeme matches a type name but is in a program clause, then 800 * it could be a type or it could be an undefined variable. Peek at 801 * the next token to decide. If we see ++, --, [, or =, we know there 802 * might be an assignment that is trying to create a global variable, 803 * so we optimistically return DT_TOK_IDENT. There is no harm in being 804 * wrong: a type_name followed by ++, --, [, or = is a syntax error. 805 */ 806 while ((c0 = input()) != 0) { 807 if (strchr("\f\n\r\t\v ", c0) == NULL) 808 break; 809 } 810 811 switch (c0) { 812 case '+': 813 case '-': 814 if ((c1 = input()) == c0) 815 ttok = DT_TOK_IDENT; 816 unput(c1); 817 break; 818 819 case '=': 820 if ((c1 = input()) != c0) 821 ttok = DT_TOK_IDENT; 822 unput(c1); 823 break; 824 case '[': 825 ttok = DT_TOK_IDENT; 826 break; 827 } 828 829 if (ttok == DT_TOK_IDENT) { 830 idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0, 831 0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); 832 833 if (idp == NULL) 834 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 835 } 836 837 unput(c0); 838 return (ttok); 839 } 840 841 #if defined(sun) 842 static int 843 input(void) 844 { 845 int c; 846 847 if (yysptr > yysbuf) 848 c = *--yysptr; 849 else if (yypcb->pcb_fileptr != NULL) 850 c = fgetc(yypcb->pcb_fileptr); 851 else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen) 852 c = *(unsigned char *)(yypcb->pcb_strptr++); 853 else 854 c = EOF; 855 856 if (c == '\n') 857 yylineno++; 858 859 if (c != EOF) 860 return (c); 861 862 if ((YYSTATE) == S1) 863 yyerror("end-of-file encountered before matching */\n"); 864 865 if ((YYSTATE) == S3) 866 yyerror("end-of-file encountered before end of control line\n"); 867 868 if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr)) 869 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); 870 871 return (0); /* EOF */ 872 } 873 874 static void 875 unput(int c) 876 { 877 if (c == '\n') 878 yylineno--; 879 880 *yysptr++ = c; 881 yytchar = c; 882 } 883 #endif 884