1 %{ 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 /* 27 * Copyright (c) 2013 by Delphix. All rights reserved. 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <string.h> 32 #include <stdlib.h> 33 #include <stdio.h> 34 #include <assert.h> 35 #include <ctype.h> 36 #include <errno.h> 37 38 #include <dt_impl.h> 39 #include <dt_grammar.h> 40 #include <dt_parser.h> 41 #include <dt_string.h> 42 43 /* 44 * We need to undefine lex's input and unput macros so that references to these 45 * call the functions provided at the end of this source file. 46 */ 47 #ifdef illumos 48 #undef input 49 #undef unput 50 #else 51 /* 52 * Define YY_INPUT for flex since input() can't be re-defined. 53 */ 54 #define YY_INPUT(buf, result, max_size) \ 55 if (yypcb->pcb_fileptr != NULL) { \ 56 if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == \ 57 0) && ferror(yypcb->pcb_fileptr)) \ 58 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \ 59 } else { \ 60 int n; \ 61 for (n = 0; n < max_size && \ 62 yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; \ 63 n++) \ 64 buf[n] = *yypcb->pcb_strptr++; \ 65 result = n; \ 66 } 67 /* 68 * Do not EOF let tokens to be put back. This does not work with flex. 69 * On the other hand, leaving current buffer in same state it was when 70 * last EOF was received guarantees that input() will keep returning EOF 71 * for all subsequent invocations, which is the effect desired. 72 */ 73 #undef unput 74 #define unput(c) \ 75 do { \ 76 int _c = c; \ 77 if (_c != EOF) \ 78 yyunput(_c, yytext_ptr); \ 79 } while(0) 80 #endif 81 82 static int id_or_type(const char *); 83 #ifdef illumos 84 static int input(void); 85 static void unput(int); 86 #endif 87 88 /* 89 * We first define a set of labeled states for use in the D lexer and then a 90 * set of regular expressions to simplify things below. The lexer states are: 91 * 92 * S0 - D program clause and expression lexing 93 * S1 - D comments (i.e. skip everything until end of comment) 94 * S2 - D program outer scope (probe specifiers and declarations) 95 * S3 - D control line parsing (i.e. after ^# is seen but before \n) 96 * S4 - D control line scan (locate control directives only and invoke S3) 97 */ 98 %} 99 100 %option yylineno 101 102 %e 1500 /* maximum nodes */ 103 %p 4900 /* maximum positions */ 104 %n 600 /* maximum states */ 105 %a 3000 /* maximum transitions */ 106 107 %s S0 S1 S2 S3 S4 108 109 RGX_AGG "@"[a-zA-Z_][0-9a-zA-Z_]* 110 RGX_PSPEC [-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]* 111 RGX_ALTIDENT [a-zA-Z_][0-9a-zA-Z_]* 112 RGX_LMID LM[0-9a-fA-F]+` 113 RGX_MOD_IDENT [a-zA-Z_`][0-9a-z.A-Z_`]*` 114 RGX_IDENT [a-zA-Z_`][0-9a-zA-Z_`]* 115 RGX_INT ([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]? 116 RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]? 117 RGX_WS [\f\n\r\t\v ] 118 RGX_STR ([^"\\\n]|\\[^"\n]|\\\")* 119 RGX_CHR ([^'\\\n]|\\[^'\n]|\\')* 120 RGX_INTERP ^[\f\t\v ]*#!.* 121 RGX_CTL ^[\f\t\v ]*# 122 123 %% 124 125 %{ 126 127 /* 128 * We insert a special prologue into yylex() itself: if the pcb contains a 129 * context token, we return that prior to running the normal lexer. This 130 * allows libdtrace to force yacc into one of our three parsing contexts: D 131 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE). 132 * Once the token is returned, we clear it so this only happens once. 133 */ 134 if (yypcb->pcb_token != 0) { 135 int tok = yypcb->pcb_token; 136 yypcb->pcb_token = 0; 137 return (tok); 138 } 139 140 %} 141 142 <S0>auto return (DT_KEY_AUTO); 143 <S0>break return (DT_KEY_BREAK); 144 <S0>case return (DT_KEY_CASE); 145 <S0>char return (DT_KEY_CHAR); 146 <S0>const return (DT_KEY_CONST); 147 <S0>continue return (DT_KEY_CONTINUE); 148 <S0>counter return (DT_KEY_COUNTER); 149 <S0>default return (DT_KEY_DEFAULT); 150 <S0>do return (DT_KEY_DO); 151 <S0>double return (DT_KEY_DOUBLE); 152 <S0>else return (DT_KEY_ELSE); 153 <S0>enum return (DT_KEY_ENUM); 154 <S0>extern return (DT_KEY_EXTERN); 155 <S0>float return (DT_KEY_FLOAT); 156 <S0>for return (DT_KEY_FOR); 157 <S0>goto return (DT_KEY_GOTO); 158 <S0>if return (DT_KEY_IF); 159 <S0>import return (DT_KEY_IMPORT); 160 <S0>inline return (DT_KEY_INLINE); 161 <S0>int return (DT_KEY_INT); 162 <S0>long return (DT_KEY_LONG); 163 <S0>offsetof return (DT_TOK_OFFSETOF); 164 <S0>probe return (DT_KEY_PROBE); 165 <S0>provider return (DT_KEY_PROVIDER); 166 <S0>register return (DT_KEY_REGISTER); 167 <S0>restrict return (DT_KEY_RESTRICT); 168 <S0>return return (DT_KEY_RETURN); 169 <S0>self return (DT_KEY_SELF); 170 <S0>short return (DT_KEY_SHORT); 171 <S0>signed return (DT_KEY_SIGNED); 172 <S0>sizeof return (DT_TOK_SIZEOF); 173 <S0>static return (DT_KEY_STATIC); 174 <S0>string return (DT_KEY_STRING); 175 <S0>stringof return (DT_TOK_STRINGOF); 176 <S0>struct return (DT_KEY_STRUCT); 177 <S0>switch return (DT_KEY_SWITCH); 178 <S0>this return (DT_KEY_THIS); 179 <S0>translator return (DT_KEY_XLATOR); 180 <S0>typedef return (DT_KEY_TYPEDEF); 181 <S0>union return (DT_KEY_UNION); 182 <S0>unsigned return (DT_KEY_UNSIGNED); 183 <S0>userland return (DT_KEY_USERLAND); 184 <S0>void return (DT_KEY_VOID); 185 <S0>volatile return (DT_KEY_VOLATILE); 186 <S0>while return (DT_KEY_WHILE); 187 <S0>xlate return (DT_TOK_XLATE); 188 189 <S2>auto { yybegin(YYS_EXPR); return (DT_KEY_AUTO); } 190 <S2>char { yybegin(YYS_EXPR); return (DT_KEY_CHAR); } 191 <S2>const { yybegin(YYS_EXPR); return (DT_KEY_CONST); } 192 <S2>counter { yybegin(YYS_DEFINE); return (DT_KEY_COUNTER); } 193 <S2>double { yybegin(YYS_EXPR); return (DT_KEY_DOUBLE); } 194 <S2>enum { yybegin(YYS_EXPR); return (DT_KEY_ENUM); } 195 <S2>extern { yybegin(YYS_EXPR); return (DT_KEY_EXTERN); } 196 <S2>float { yybegin(YYS_EXPR); return (DT_KEY_FLOAT); } 197 <S2>import { yybegin(YYS_EXPR); return (DT_KEY_IMPORT); } 198 <S2>inline { yybegin(YYS_DEFINE); return (DT_KEY_INLINE); } 199 <S2>int { yybegin(YYS_EXPR); return (DT_KEY_INT); } 200 <S2>long { yybegin(YYS_EXPR); return (DT_KEY_LONG); } 201 <S2>provider { yybegin(YYS_DEFINE); return (DT_KEY_PROVIDER); } 202 <S2>register { yybegin(YYS_EXPR); return (DT_KEY_REGISTER); } 203 <S2>restrict { yybegin(YYS_EXPR); return (DT_KEY_RESTRICT); } 204 <S2>self { yybegin(YYS_EXPR); return (DT_KEY_SELF); } 205 <S2>short { yybegin(YYS_EXPR); return (DT_KEY_SHORT); } 206 <S2>signed { yybegin(YYS_EXPR); return (DT_KEY_SIGNED); } 207 <S2>static { yybegin(YYS_EXPR); return (DT_KEY_STATIC); } 208 <S2>string { yybegin(YYS_EXPR); return (DT_KEY_STRING); } 209 <S2>struct { yybegin(YYS_EXPR); return (DT_KEY_STRUCT); } 210 <S2>this { yybegin(YYS_EXPR); return (DT_KEY_THIS); } 211 <S2>translator { yybegin(YYS_DEFINE); return (DT_KEY_XLATOR); } 212 <S2>typedef { yybegin(YYS_EXPR); return (DT_KEY_TYPEDEF); } 213 <S2>union { yybegin(YYS_EXPR); return (DT_KEY_UNION); } 214 <S2>unsigned { yybegin(YYS_EXPR); return (DT_KEY_UNSIGNED); } 215 <S2>void { yybegin(YYS_EXPR); return (DT_KEY_VOID); } 216 <S2>volatile { yybegin(YYS_EXPR); return (DT_KEY_VOLATILE); } 217 218 <S0>"$$"[0-9]+ { 219 int i = atoi(yytext + 2); 220 char *v = ""; 221 222 /* 223 * A macro argument reference substitutes the text of 224 * an argument in place of the current token. When we 225 * see $$<d> we fetch the saved string from pcb_sargv 226 * (or use the default argument if the option has been 227 * set and the argument hasn't been specified) and 228 * return a token corresponding to this string. 229 */ 230 if (i < 0 || (i >= yypcb->pcb_sargc && 231 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 232 xyerror(D_MACRO_UNDEF, "macro argument %s is " 233 "not defined\n", yytext); 234 } 235 236 if (i < yypcb->pcb_sargc) { 237 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 238 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 239 } 240 241 if ((yylval.l_str = strdup(v)) == NULL) 242 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 243 244 (void) stresc2chr(yylval.l_str); 245 return (DT_TOK_STRING); 246 } 247 248 <S0>"$"[0-9]+ { 249 int i = atoi(yytext + 1); 250 char *p, *v = "0"; 251 252 /* 253 * A macro argument reference substitutes the text of 254 * one identifier or integer pattern for another. When 255 * we see $<d> we fetch the saved string from pcb_sargv 256 * (or use the default argument if the option has been 257 * set and the argument hasn't been specified) and 258 * return a token corresponding to this string. 259 */ 260 if (i < 0 || (i >= yypcb->pcb_sargc && 261 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 262 xyerror(D_MACRO_UNDEF, "macro argument %s is " 263 "not defined\n", yytext); 264 } 265 266 if (i < yypcb->pcb_sargc) { 267 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 268 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 269 } 270 271 /* 272 * If the macro text is not a valid integer or ident, 273 * then we treat it as a string. The string may be 274 * optionally enclosed in quotes, which we strip. 275 */ 276 if (strbadidnum(v)) { 277 size_t len = strlen(v); 278 279 if (len != 1 && *v == '"' && v[len - 1] == '"') 280 yylval.l_str = strndup(v + 1, len - 2); 281 else 282 yylval.l_str = strndup(v, len); 283 284 if (yylval.l_str == NULL) 285 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 286 287 (void) stresc2chr(yylval.l_str); 288 return (DT_TOK_STRING); 289 } 290 291 /* 292 * If the macro text is not a string an begins with a 293 * digit or a +/- sign, process it as an integer token. 294 */ 295 if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') { 296 if (isdigit(v[0])) 297 yyintprefix = 0; 298 else 299 yyintprefix = *v++; 300 301 errno = 0; 302 yylval.l_int = strtoull(v, &p, 0); 303 (void) strncpy(yyintsuffix, p, 304 sizeof (yyintsuffix)); 305 yyintdecimal = *v != '0'; 306 307 if (errno == ERANGE) { 308 xyerror(D_MACRO_OFLOW, "macro argument" 309 " %s constant %s results in integer" 310 " overflow\n", yytext, v); 311 } 312 313 return (DT_TOK_INT); 314 } 315 316 return (id_or_type(v)); 317 } 318 319 <S0>"$$"{RGX_IDENT} { 320 dt_ident_t *idp = dt_idhash_lookup( 321 yypcb->pcb_hdl->dt_macros, yytext + 2); 322 323 char s[16]; /* enough for UINT_MAX + \0 */ 324 325 if (idp == NULL) { 326 xyerror(D_MACRO_UNDEF, "macro variable %s " 327 "is not defined\n", yytext); 328 } 329 330 /* 331 * For the moment, all current macro variables are of 332 * type id_t (refer to dtrace_update() for details). 333 */ 334 (void) snprintf(s, sizeof (s), "%u", idp->di_id); 335 if ((yylval.l_str = strdup(s)) == NULL) 336 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 337 338 return (DT_TOK_STRING); 339 } 340 341 <S0>"$"{RGX_IDENT} { 342 dt_ident_t *idp = dt_idhash_lookup( 343 yypcb->pcb_hdl->dt_macros, yytext + 1); 344 345 if (idp == NULL) { 346 xyerror(D_MACRO_UNDEF, "macro variable %s " 347 "is not defined\n", yytext); 348 } 349 350 /* 351 * For the moment, all current macro variables are of 352 * type id_t (refer to dtrace_update() for details). 353 */ 354 yylval.l_int = (intmax_t)(int)idp->di_id; 355 yyintprefix = 0; 356 yyintsuffix[0] = '\0'; 357 yyintdecimal = 1; 358 359 return (DT_TOK_INT); 360 } 361 362 <S0>{RGX_IDENT} | 363 <S0>{RGX_MOD_IDENT}{RGX_IDENT} | 364 <S0>{RGX_MOD_IDENT} { 365 return (id_or_type(yytext)); 366 } 367 368 <S0>{RGX_AGG} { 369 if ((yylval.l_str = strdup(yytext)) == NULL) 370 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 371 return (DT_TOK_AGG); 372 } 373 374 <S0>"@" { 375 if ((yylval.l_str = strdup("@_")) == NULL) 376 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 377 return (DT_TOK_AGG); 378 } 379 380 <S0>{RGX_INT} | 381 <S2>{RGX_INT} | 382 <S3>{RGX_INT} { 383 char *p; 384 385 errno = 0; 386 yylval.l_int = strtoull(yytext, &p, 0); 387 yyintprefix = 0; 388 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix)); 389 yyintdecimal = yytext[0] != '0'; 390 391 if (errno == ERANGE) { 392 xyerror(D_INT_OFLOW, "constant %s results in " 393 "integer overflow\n", yytext); 394 } 395 396 if (*p != '\0' && strchr("uUlL", *p) == NULL) { 397 xyerror(D_INT_DIGIT, "constant %s contains " 398 "invalid digit %c\n", yytext, *p); 399 } 400 401 if ((YYSTATE) != S3) 402 return (DT_TOK_INT); 403 404 yypragma = dt_node_link(yypragma, 405 dt_node_int(yylval.l_int)); 406 } 407 408 <S0>{RGX_FP} yyerror("floating-point constants are not permitted\n"); 409 410 <S0>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal"); 411 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal"); 412 413 <S0>\"{RGX_STR}\" | 414 <S3>\"{RGX_STR}\" { 415 /* 416 * Quoted string -- convert C escape sequences and 417 * return the string as a token. 418 */ 419 yylval.l_str = strndup(yytext + 1, yyleng - 2); 420 421 if (yylval.l_str == NULL) 422 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 423 424 (void) stresc2chr(yylval.l_str); 425 if ((YYSTATE) != S3) 426 return (DT_TOK_STRING); 427 428 yypragma = dt_node_link(yypragma, 429 dt_node_string(yylval.l_str)); 430 } 431 432 <S0>'{RGX_CHR}$ xyerror(D_CHR_NL, "newline encountered in character constant"); 433 434 <S0>'{RGX_CHR}' { 435 char *s, *p, *q; 436 size_t nbytes; 437 438 /* 439 * Character constant -- convert C escape sequences and 440 * return the character as an integer immediate value. 441 */ 442 if (yyleng == 2) 443 xyerror(D_CHR_NULL, "empty character constant"); 444 445 s = yytext + 1; 446 yytext[yyleng - 1] = '\0'; 447 nbytes = stresc2chr(s); 448 yylval.l_int = 0; 449 yyintprefix = 0; 450 yyintsuffix[0] = '\0'; 451 yyintdecimal = 1; 452 453 if (nbytes > sizeof (yylval.l_int)) { 454 xyerror(D_CHR_OFLOW, "character constant is " 455 "too long"); 456 } 457 #if BYTE_ORDER == _LITTLE_ENDIAN 458 p = ((char *)&yylval.l_int) + nbytes - 1; 459 for (q = s; nbytes != 0; nbytes--) 460 *p-- = *q++; 461 #else 462 bcopy(s, ((char *)&yylval.l_int) + 463 sizeof (yylval.l_int) - nbytes, nbytes); 464 #endif 465 return (DT_TOK_INT); 466 } 467 468 <S0>"/*" | 469 <S2>"/*" { 470 yypcb->pcb_cstate = (YYSTATE); 471 BEGIN(S1); 472 } 473 474 <S0>{RGX_INTERP} | 475 <S2>{RGX_INTERP} ; /* discard any #! lines */ 476 477 <S0>{RGX_CTL} | 478 <S2>{RGX_CTL} | 479 <S4>{RGX_CTL} { 480 assert(yypragma == NULL); 481 yypcb->pcb_cstate = (YYSTATE); 482 BEGIN(S3); 483 } 484 485 <S4>. ; /* discard */ 486 <S4>"\n" ; /* discard */ 487 488 <S0>"/" { 489 int c, tok; 490 491 /* 492 * The use of "/" as the predicate delimiter and as the 493 * integer division symbol requires special lookahead 494 * to avoid a shift/reduce conflict in the D grammar. 495 * We look ahead to the next non-whitespace character. 496 * If we encounter EOF, ";", "{", or "/", then this "/" 497 * closes the predicate and we return DT_TOK_EPRED. 498 * If we encounter anything else, it's DT_TOK_DIV. 499 */ 500 while ((c = input()) != 0) { 501 if (strchr("\f\n\r\t\v ", c) == NULL) 502 break; 503 } 504 505 if (c == 0 || c == ';' || c == '{' || c == '/') { 506 if (yypcb->pcb_parens != 0) { 507 yyerror("closing ) expected in " 508 "predicate before /\n"); 509 } 510 if (yypcb->pcb_brackets != 0) { 511 yyerror("closing ] expected in " 512 "predicate before /\n"); 513 } 514 tok = DT_TOK_EPRED; 515 } else 516 tok = DT_TOK_DIV; 517 518 unput(c); 519 return (tok); 520 } 521 522 <S0>"(" { 523 yypcb->pcb_parens++; 524 return (DT_TOK_LPAR); 525 } 526 527 <S0>")" { 528 if (--yypcb->pcb_parens < 0) 529 yyerror("extra ) in input stream\n"); 530 return (DT_TOK_RPAR); 531 } 532 533 <S0>"[" { 534 yypcb->pcb_brackets++; 535 return (DT_TOK_LBRAC); 536 } 537 538 <S0>"]" { 539 if (--yypcb->pcb_brackets < 0) 540 yyerror("extra ] in input stream\n"); 541 return (DT_TOK_RBRAC); 542 } 543 544 <S0>"{" | 545 <S2>"{" { 546 yypcb->pcb_braces++; 547 return ('{'); 548 } 549 550 <S0>"}" { 551 if (--yypcb->pcb_braces < 0) 552 yyerror("extra } in input stream\n"); 553 return ('}'); 554 } 555 556 <S0>"|" return (DT_TOK_BOR); 557 <S0>"^" return (DT_TOK_XOR); 558 <S0>"&" return (DT_TOK_BAND); 559 <S0>"&&" return (DT_TOK_LAND); 560 <S0>"^^" return (DT_TOK_LXOR); 561 <S0>"||" return (DT_TOK_LOR); 562 <S0>"==" return (DT_TOK_EQU); 563 <S0>"!=" return (DT_TOK_NEQ); 564 <S0>"<" return (DT_TOK_LT); 565 <S0>"<=" return (DT_TOK_LE); 566 <S0>">" return (DT_TOK_GT); 567 <S0>">=" return (DT_TOK_GE); 568 <S0>"<<" return (DT_TOK_LSH); 569 <S0>">>" return (DT_TOK_RSH); 570 <S0>"+" return (DT_TOK_ADD); 571 <S0>"-" return (DT_TOK_SUB); 572 <S0>"*" return (DT_TOK_MUL); 573 <S0>"%" return (DT_TOK_MOD); 574 <S0>"~" return (DT_TOK_BNEG); 575 <S0>"!" return (DT_TOK_LNEG); 576 <S0>"?" return (DT_TOK_QUESTION); 577 <S0>":" return (DT_TOK_COLON); 578 <S0>"." return (DT_TOK_DOT); 579 <S0>"->" return (DT_TOK_PTR); 580 <S0>"=" return (DT_TOK_ASGN); 581 <S0>"+=" return (DT_TOK_ADD_EQ); 582 <S0>"-=" return (DT_TOK_SUB_EQ); 583 <S0>"*=" return (DT_TOK_MUL_EQ); 584 <S0>"/=" return (DT_TOK_DIV_EQ); 585 <S0>"%=" return (DT_TOK_MOD_EQ); 586 <S0>"&=" return (DT_TOK_AND_EQ); 587 <S0>"^=" return (DT_TOK_XOR_EQ); 588 <S0>"|=" return (DT_TOK_OR_EQ); 589 <S0>"<<=" return (DT_TOK_LSH_EQ); 590 <S0>">>=" return (DT_TOK_RSH_EQ); 591 <S0>"++" return (DT_TOK_ADDADD); 592 <S0>"--" return (DT_TOK_SUBSUB); 593 <S0>"..." return (DT_TOK_ELLIPSIS); 594 <S0>"," return (DT_TOK_COMMA); 595 <S0>";" return (';'); 596 <S0>{RGX_WS} ; /* discard */ 597 <S0>"\\"\n ; /* discard */ 598 <S0>. yyerror("syntax error near \"%c\"\n", yytext[0]); 599 600 <S1>"/*" yyerror("/* encountered inside a comment\n"); 601 <S1>"*/" BEGIN(yypcb->pcb_cstate); 602 <S1>.|\n ; /* discard */ 603 604 <S2>{RGX_PSPEC} { 605 /* 606 * S2 has an ambiguity because RGX_PSPEC includes '*' 607 * as a glob character and '*' also can be DT_TOK_STAR. 608 * Since lex always matches the longest token, this 609 * rule can be matched by an input string like "int*", 610 * which could begin a global variable declaration such 611 * as "int*x;" or could begin a RGX_PSPEC with globbing 612 * such as "int* { trace(timestamp); }". If C_PSPEC is 613 * not set, we must resolve the ambiguity in favor of 614 * the type and perform lexer pushback if the fragment 615 * before '*' or entire fragment matches a type name. 616 * If C_PSPEC is set, we always return a PSPEC token. 617 * If C_PSPEC is off, the user can avoid ambiguity by 618 * including a ':' delimiter in the specifier, which 619 * they should be doing anyway to specify the provider. 620 */ 621 if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) && 622 strchr(yytext, ':') == NULL) { 623 624 char *p = strchr(yytext, '*'); 625 char *q = yytext + yyleng - 1; 626 627 if (p != NULL && p > yytext) 628 *p = '\0'; /* prune yytext */ 629 630 if (dt_type_lookup(yytext, NULL) == 0) { 631 yylval.l_str = strdup(yytext); 632 633 if (yylval.l_str == NULL) { 634 longjmp(yypcb->pcb_jmpbuf, 635 EDT_NOMEM); 636 } 637 638 if (p != NULL && p > yytext) { 639 for (*p = '*'; q >= p; q--) 640 unput(*q); 641 } 642 643 yybegin(YYS_EXPR); 644 return (DT_TOK_TNAME); 645 } 646 647 if (p != NULL && p > yytext) 648 *p = '*'; /* restore yytext */ 649 } 650 651 if ((yylval.l_str = strdup(yytext)) == NULL) 652 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 653 654 return (DT_TOK_PSPEC); 655 } 656 657 <S2>"/" return (DT_TOK_DIV); 658 <S2>"," return (DT_TOK_COMMA); 659 660 <S2>{RGX_WS} ; /* discard */ 661 <S2>. yyerror("syntax error near \"%c\"\n", yytext[0]); 662 663 <S3>\n { 664 dt_pragma(yypragma); 665 yypragma = NULL; 666 BEGIN(yypcb->pcb_cstate); 667 } 668 669 <S3>[\f\t\v ]+ ; /* discard */ 670 671 <S3>[^\f\n\t\v "]+ { 672 dt_node_t *dnp; 673 674 if ((yylval.l_str = strdup(yytext)) == NULL) 675 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 676 677 /* 678 * We want to call dt_node_ident() here, but we can't 679 * because it will expand inlined identifiers, which we 680 * don't want to do from #pragma context in order to 681 * support pragmas that apply to the ident itself. We 682 * call dt_node_string() and then reset dn_op instead. 683 */ 684 dnp = dt_node_string(yylval.l_str); 685 dnp->dn_kind = DT_NODE_IDENT; 686 dnp->dn_op = DT_TOK_IDENT; 687 yypragma = dt_node_link(yypragma, dnp); 688 } 689 690 <S3>. yyerror("syntax error near \"%c\"\n", yytext[0]); 691 692 %% 693 694 /* 695 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro. 696 * We use two main states for lexing because probe descriptions use a syntax 697 * that is incompatible with the normal D tokens (e.g. names can contain "-"). 698 * yybegin also handles the job of switching between two lists of dt_nodes 699 * as we allocate persistent definitions, like inlines, and transient nodes 700 * that will be freed once we are done parsing the current program file. 701 */ 702 void 703 yybegin(yystate_t state) 704 { 705 #ifdef YYDEBUG 706 yydebug = _dtrace_debug; 707 #endif 708 if (yypcb->pcb_yystate == state) 709 return; /* nothing to do if we're in the state already */ 710 711 if (yypcb->pcb_yystate == YYS_DEFINE) { 712 yypcb->pcb_list = yypcb->pcb_hold; 713 yypcb->pcb_hold = NULL; 714 } 715 716 switch (state) { 717 case YYS_CLAUSE: 718 BEGIN(S2); 719 break; 720 case YYS_DEFINE: 721 assert(yypcb->pcb_hold == NULL); 722 yypcb->pcb_hold = yypcb->pcb_list; 723 yypcb->pcb_list = NULL; 724 /*FALLTHRU*/ 725 case YYS_EXPR: 726 BEGIN(S0); 727 break; 728 case YYS_DONE: 729 break; 730 case YYS_CONTROL: 731 BEGIN(S4); 732 break; 733 default: 734 xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state); 735 } 736 737 yypcb->pcb_yystate = state; 738 } 739 740 void 741 yyinit(dt_pcb_t *pcb) 742 { 743 yypcb = pcb; 744 yylineno = 1; 745 yypragma = NULL; 746 #ifdef illumos 747 yysptr = yysbuf; 748 #endif 749 YY_FLUSH_BUFFER; 750 } 751 752 /* 753 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate 754 * token to the parser indicating either an identifier or a typedef name. 755 * User-defined global variables always take precedence over types, but we do 756 * use some heuristics because D programs can look at an ever-changing set of 757 * kernel types and also can implicitly instantiate variables by assignment, 758 * unlike in C. The code here is ordered carefully as lookups are not cheap. 759 */ 760 static int 761 id_or_type(const char *s) 762 { 763 dtrace_hdl_t *dtp = yypcb->pcb_hdl; 764 dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; 765 int c0, c1, ttok = DT_TOK_TNAME; 766 dt_ident_t *idp; 767 768 if ((s = yylval.l_str = strdup(s)) == NULL) 769 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 770 771 /* 772 * If the lexeme is a global variable or likely identifier or *not* a 773 * type_name, then it is an identifier token. 774 */ 775 if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL || 776 dt_idhash_lookup(yypcb->pcb_idents, s) != NULL || 777 dt_type_lookup(s, NULL) != 0) 778 return (DT_TOK_IDENT); 779 780 /* 781 * If we're in the midst of parsing a declaration and a type_specifier 782 * has already been shifted, then return DT_TOK_IDENT instead of TNAME. 783 * This semantic is necessary to permit valid ISO C code such as: 784 * 785 * typedef int foo; 786 * struct s { foo foo; }; 787 * 788 * without causing shift/reduce conflicts in the direct_declarator part 789 * of the grammar. The result is that we must check for conflicting 790 * redeclarations of the same identifier as part of dt_node_decl(). 791 */ 792 if (ddp != NULL && ddp->dd_name != NULL) 793 return (DT_TOK_IDENT); 794 795 /* 796 * If the lexeme is a type name and we are not in a program clause, 797 * then always interpret it as a type and return DT_TOK_TNAME. 798 */ 799 if ((YYSTATE) != S0) 800 return (DT_TOK_TNAME); 801 802 /* 803 * If the lexeme matches a type name but is in a program clause, then 804 * it could be a type or it could be an undefined variable. Peek at 805 * the next token to decide. If we see ++, --, [, or =, we know there 806 * might be an assignment that is trying to create a global variable, 807 * so we optimistically return DT_TOK_IDENT. There is no harm in being 808 * wrong: a type_name followed by ++, --, [, or = is a syntax error. 809 */ 810 while ((c0 = input()) != 0) { 811 if (strchr("\f\n\r\t\v ", c0) == NULL) 812 break; 813 } 814 815 switch (c0) { 816 case '+': 817 case '-': 818 if ((c1 = input()) == c0) 819 ttok = DT_TOK_IDENT; 820 unput(c1); 821 break; 822 823 case '=': 824 if ((c1 = input()) != c0) 825 ttok = DT_TOK_IDENT; 826 unput(c1); 827 break; 828 case '[': 829 ttok = DT_TOK_IDENT; 830 break; 831 } 832 833 if (ttok == DT_TOK_IDENT) { 834 idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0, 835 0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); 836 837 if (idp == NULL) 838 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 839 } 840 841 unput(c0); 842 return (ttok); 843 } 844 845 #ifdef illumos 846 static int 847 input(void) 848 { 849 int c; 850 851 if (yysptr > yysbuf) 852 c = *--yysptr; 853 else if (yypcb->pcb_fileptr != NULL) 854 c = fgetc(yypcb->pcb_fileptr); 855 else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen) 856 c = *(unsigned char *)(yypcb->pcb_strptr++); 857 else 858 c = EOF; 859 860 if (c == '\n') 861 yylineno++; 862 863 if (c != EOF) 864 return (c); 865 866 if ((YYSTATE) == S1) 867 yyerror("end-of-file encountered before matching */\n"); 868 869 if ((YYSTATE) == S3) 870 yyerror("end-of-file encountered before end of control line\n"); 871 872 if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr)) 873 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); 874 875 return (0); /* EOF */ 876 } 877 878 static void 879 unput(int c) 880 { 881 if (c == '\n') 882 yylineno--; 883 884 *yysptr++ = c; 885 yytchar = c; 886 } 887 #endif /* illumos */ 888