xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #if defined(sun)
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #if !defined(sun)
44 #include <libproc_compat.h>
45 #endif
46 
47 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
48 
49 /*
50  * We declare this here because (1) we need it and (2) we want to avoid a
51  * dependency on libm in libdtrace.
52  */
53 static long double
54 dt_fabsl(long double x)
55 {
56 	if (x < 0)
57 		return (-x);
58 
59 	return (x);
60 }
61 
62 /*
63  * 128-bit arithmetic functions needed to support the stddev() aggregating
64  * action.
65  */
66 static int
67 dt_gt_128(uint64_t *a, uint64_t *b)
68 {
69 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
70 }
71 
72 static int
73 dt_ge_128(uint64_t *a, uint64_t *b)
74 {
75 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
76 }
77 
78 static int
79 dt_le_128(uint64_t *a, uint64_t *b)
80 {
81 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
82 }
83 
84 /*
85  * Shift the 128-bit value in a by b. If b is positive, shift left.
86  * If b is negative, shift right.
87  */
88 static void
89 dt_shift_128(uint64_t *a, int b)
90 {
91 	uint64_t mask;
92 
93 	if (b == 0)
94 		return;
95 
96 	if (b < 0) {
97 		b = -b;
98 		if (b >= 64) {
99 			a[0] = a[1] >> (b - 64);
100 			a[1] = 0;
101 		} else {
102 			a[0] >>= b;
103 			mask = 1LL << (64 - b);
104 			mask -= 1;
105 			a[0] |= ((a[1] & mask) << (64 - b));
106 			a[1] >>= b;
107 		}
108 	} else {
109 		if (b >= 64) {
110 			a[1] = a[0] << (b - 64);
111 			a[0] = 0;
112 		} else {
113 			a[1] <<= b;
114 			mask = a[0] >> (64 - b);
115 			a[1] |= mask;
116 			a[0] <<= b;
117 		}
118 	}
119 }
120 
121 static int
122 dt_nbits_128(uint64_t *a)
123 {
124 	int nbits = 0;
125 	uint64_t tmp[2];
126 	uint64_t zero[2] = { 0, 0 };
127 
128 	tmp[0] = a[0];
129 	tmp[1] = a[1];
130 
131 	dt_shift_128(tmp, -1);
132 	while (dt_gt_128(tmp, zero)) {
133 		dt_shift_128(tmp, -1);
134 		nbits++;
135 	}
136 
137 	return (nbits);
138 }
139 
140 static void
141 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
142 {
143 	uint64_t result[2];
144 
145 	result[0] = minuend[0] - subtrahend[0];
146 	result[1] = minuend[1] - subtrahend[1] -
147 	    (minuend[0] < subtrahend[0] ? 1 : 0);
148 
149 	difference[0] = result[0];
150 	difference[1] = result[1];
151 }
152 
153 static void
154 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
155 {
156 	uint64_t result[2];
157 
158 	result[0] = addend1[0] + addend2[0];
159 	result[1] = addend1[1] + addend2[1] +
160 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
161 
162 	sum[0] = result[0];
163 	sum[1] = result[1];
164 }
165 
166 /*
167  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
168  * use native multiplication on those, and then re-combine into the
169  * resulting 128-bit value.
170  *
171  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
172  *     hi1 * hi2 << 64 +
173  *     hi1 * lo2 << 32 +
174  *     hi2 * lo1 << 32 +
175  *     lo1 * lo2
176  */
177 static void
178 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
179 {
180 	uint64_t hi1, hi2, lo1, lo2;
181 	uint64_t tmp[2];
182 
183 	hi1 = factor1 >> 32;
184 	hi2 = factor2 >> 32;
185 
186 	lo1 = factor1 & DT_MASK_LO;
187 	lo2 = factor2 & DT_MASK_LO;
188 
189 	product[0] = lo1 * lo2;
190 	product[1] = hi1 * hi2;
191 
192 	tmp[0] = hi1 * lo2;
193 	tmp[1] = 0;
194 	dt_shift_128(tmp, 32);
195 	dt_add_128(product, tmp, product);
196 
197 	tmp[0] = hi2 * lo1;
198 	tmp[1] = 0;
199 	dt_shift_128(tmp, 32);
200 	dt_add_128(product, tmp, product);
201 }
202 
203 /*
204  * This is long-hand division.
205  *
206  * We initialize subtrahend by shifting divisor left as far as possible. We
207  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
208  * subtract and set the appropriate bit in the result.  We then shift
209  * subtrahend right by one bit for the next comparison.
210  */
211 static void
212 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
213 {
214 	uint64_t result[2] = { 0, 0 };
215 	uint64_t remainder[2];
216 	uint64_t subtrahend[2];
217 	uint64_t divisor_128[2];
218 	uint64_t mask[2] = { 1, 0 };
219 	int log = 0;
220 
221 	assert(divisor != 0);
222 
223 	divisor_128[0] = divisor;
224 	divisor_128[1] = 0;
225 
226 	remainder[0] = dividend[0];
227 	remainder[1] = dividend[1];
228 
229 	subtrahend[0] = divisor;
230 	subtrahend[1] = 0;
231 
232 	while (divisor > 0) {
233 		log++;
234 		divisor >>= 1;
235 	}
236 
237 	dt_shift_128(subtrahend, 128 - log);
238 	dt_shift_128(mask, 128 - log);
239 
240 	while (dt_ge_128(remainder, divisor_128)) {
241 		if (dt_ge_128(remainder, subtrahend)) {
242 			dt_subtract_128(remainder, subtrahend, remainder);
243 			result[0] |= mask[0];
244 			result[1] |= mask[1];
245 		}
246 
247 		dt_shift_128(subtrahend, -1);
248 		dt_shift_128(mask, -1);
249 	}
250 
251 	quotient[0] = result[0];
252 	quotient[1] = result[1];
253 }
254 
255 /*
256  * This is the long-hand method of calculating a square root.
257  * The algorithm is as follows:
258  *
259  * 1. Group the digits by 2 from the right.
260  * 2. Over the leftmost group, find the largest single-digit number
261  *    whose square is less than that group.
262  * 3. Subtract the result of the previous step (2 or 4, depending) and
263  *    bring down the next two-digit group.
264  * 4. For the result R we have so far, find the largest single-digit number
265  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
266  *    (Note that this is doubling R and performing a decimal left-shift by 1
267  *    and searching for the appropriate decimal to fill the one's place.)
268  *    The value x is the next digit in the square root.
269  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
270  * dealing with integers, so the above is sufficient.)
271  *
272  * In decimal, the square root of 582,734 would be calculated as so:
273  *
274  *     __7__6__3
275  *    | 58 27 34
276  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
277  *      --
278  *       9 27    (Subtract and bring down the next group.)
279  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
280  *      -----     the square root)
281  *         51 34 (Subtract and bring down the next group.)
282  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
283  *         -----  the square root)
284  *          5 65 (remainder)
285  *
286  * The above algorithm applies similarly in binary, but note that the
287  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
288  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
289  * preceding difference?
290  *
291  * In binary, the square root of 11011011 would be calculated as so:
292  *
293  *     __1__1__1__0
294  *    | 11 01 10 11
295  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
296  *      --
297  *      10 01 10 11
298  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
299  *      -----
300  *       1 00 10 11
301  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
302  *       -------
303  *          1 01 11
304  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
305  *
306  */
307 static uint64_t
308 dt_sqrt_128(uint64_t *square)
309 {
310 	uint64_t result[2] = { 0, 0 };
311 	uint64_t diff[2] = { 0, 0 };
312 	uint64_t one[2] = { 1, 0 };
313 	uint64_t next_pair[2];
314 	uint64_t next_try[2];
315 	uint64_t bit_pairs, pair_shift;
316 	int i;
317 
318 	bit_pairs = dt_nbits_128(square) / 2;
319 	pair_shift = bit_pairs * 2;
320 
321 	for (i = 0; i <= bit_pairs; i++) {
322 		/*
323 		 * Bring down the next pair of bits.
324 		 */
325 		next_pair[0] = square[0];
326 		next_pair[1] = square[1];
327 		dt_shift_128(next_pair, -pair_shift);
328 		next_pair[0] &= 0x3;
329 		next_pair[1] = 0;
330 
331 		dt_shift_128(diff, 2);
332 		dt_add_128(diff, next_pair, diff);
333 
334 		/*
335 		 * next_try = R << 2 + 1
336 		 */
337 		next_try[0] = result[0];
338 		next_try[1] = result[1];
339 		dt_shift_128(next_try, 2);
340 		dt_add_128(next_try, one, next_try);
341 
342 		if (dt_le_128(next_try, diff)) {
343 			dt_subtract_128(diff, next_try, diff);
344 			dt_shift_128(result, 1);
345 			dt_add_128(result, one, result);
346 		} else {
347 			dt_shift_128(result, 1);
348 		}
349 
350 		pair_shift -= 2;
351 	}
352 
353 	assert(result[1] == 0);
354 
355 	return (result[0]);
356 }
357 
358 uint64_t
359 dt_stddev(uint64_t *data, uint64_t normal)
360 {
361 	uint64_t avg_of_squares[2];
362 	uint64_t square_of_avg[2];
363 	int64_t norm_avg;
364 	uint64_t diff[2];
365 
366 	/*
367 	 * The standard approximation for standard deviation is
368 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
369 	 * of the average of the squares minus the square of the average.
370 	 */
371 	dt_divide_128(data + 2, normal, avg_of_squares);
372 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
373 
374 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
375 
376 	if (norm_avg < 0)
377 		norm_avg = -norm_avg;
378 
379 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
380 
381 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
382 
383 	return (dt_sqrt_128(diff));
384 }
385 
386 static int
387 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
388     dtrace_bufdesc_t *buf, size_t offs)
389 {
390 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
391 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
392 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
393 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
394 	const char *str = NULL;
395 	static const char *e_str[2] = { " -> ", " => " };
396 	static const char *r_str[2] = { " <- ", " <= " };
397 	static const char *ent = "entry", *ret = "return";
398 	static int entlen = 0, retlen = 0;
399 	dtrace_epid_t next, id = epd->dtepd_epid;
400 	int rval;
401 
402 	if (entlen == 0) {
403 		assert(retlen == 0);
404 		entlen = strlen(ent);
405 		retlen = strlen(ret);
406 	}
407 
408 	/*
409 	 * If the name of the probe is "entry" or ends with "-entry", we
410 	 * treat it as an entry; if it is "return" or ends with "-return",
411 	 * we treat it as a return.  (This allows application-provided probes
412 	 * like "method-entry" or "function-entry" to participate in flow
413 	 * indentation -- without accidentally misinterpreting popular probe
414 	 * names like "carpentry", "gentry" or "Coventry".)
415 	 */
416 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
417 	    (sub == n || sub[-1] == '-')) {
418 		flow = DTRACEFLOW_ENTRY;
419 		str = e_str[strcmp(p, "syscall") == 0];
420 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
421 	    (sub == n || sub[-1] == '-')) {
422 		flow = DTRACEFLOW_RETURN;
423 		str = r_str[strcmp(p, "syscall") == 0];
424 	}
425 
426 	/*
427 	 * If we're going to indent this, we need to check the ID of our last
428 	 * call.  If we're looking at the same probe ID but a different EPID,
429 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
430 	 * this scheme -- it's a heuristic.)
431 	 */
432 	if (flow == DTRACEFLOW_ENTRY) {
433 		if ((last != DTRACE_EPIDNONE && id != last &&
434 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
435 			flow = DTRACEFLOW_NONE;
436 	}
437 
438 	/*
439 	 * If we're going to unindent this, it's more difficult to see if
440 	 * we don't actually want to unindent it -- we need to look at the
441 	 * _next_ EPID.
442 	 */
443 	if (flow == DTRACEFLOW_RETURN) {
444 		offs += epd->dtepd_size;
445 
446 		do {
447 			if (offs >= buf->dtbd_size)
448 				goto out;
449 
450 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
451 
452 			if (next == DTRACE_EPIDNONE)
453 				offs += sizeof (id);
454 		} while (next == DTRACE_EPIDNONE);
455 
456 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
457 			return (rval);
458 
459 		if (next != id && npd->dtpd_id == pd->dtpd_id)
460 			flow = DTRACEFLOW_NONE;
461 	}
462 
463 out:
464 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
465 		data->dtpda_prefix = str;
466 	} else {
467 		data->dtpda_prefix = "| ";
468 	}
469 
470 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
471 		data->dtpda_indent -= 2;
472 
473 	data->dtpda_flow = flow;
474 
475 	return (0);
476 }
477 
478 static int
479 dt_nullprobe()
480 {
481 	return (DTRACE_CONSUME_THIS);
482 }
483 
484 static int
485 dt_nullrec()
486 {
487 	return (DTRACE_CONSUME_NEXT);
488 }
489 
490 int
491 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
492     uint64_t normal, long double total, char positives, char negatives)
493 {
494 	long double f;
495 	uint_t depth, len = 40;
496 
497 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
498 	const char *spaces = "                                        ";
499 
500 	assert(strlen(ats) == len && strlen(spaces) == len);
501 	assert(!(total == 0 && (positives || negatives)));
502 	assert(!(val < 0 && !negatives));
503 	assert(!(val > 0 && !positives));
504 	assert(!(val != 0 && total == 0));
505 
506 	if (!negatives) {
507 		if (positives) {
508 			f = (dt_fabsl((long double)val) * len) / total;
509 			depth = (uint_t)(f + 0.5);
510 		} else {
511 			depth = 0;
512 		}
513 
514 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
515 		    spaces + depth, (long long)val / normal));
516 	}
517 
518 	if (!positives) {
519 		f = (dt_fabsl((long double)val) * len) / total;
520 		depth = (uint_t)(f + 0.5);
521 
522 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
523 		    ats + len - depth, (long long)val / normal));
524 	}
525 
526 	/*
527 	 * If we're here, we have both positive and negative bucket values.
528 	 * To express this graphically, we're going to generate both positive
529 	 * and negative bars separated by a centerline.  These bars are half
530 	 * the size of normal quantize()/lquantize() bars, so we divide the
531 	 * length in half before calculating the bar length.
532 	 */
533 	len /= 2;
534 	ats = &ats[len];
535 	spaces = &spaces[len];
536 
537 	f = (dt_fabsl((long double)val) * len) / total;
538 	depth = (uint_t)(f + 0.5);
539 
540 	if (val <= 0) {
541 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
542 		    ats + len - depth, len, "", (long long)val / normal));
543 	} else {
544 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
545 		    ats + len - depth, spaces + depth,
546 		    (long long)val / normal));
547 	}
548 }
549 
550 int
551 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
552     size_t size, uint64_t normal)
553 {
554 	const int64_t *data = addr;
555 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
556 	long double total = 0;
557 	char positives = 0, negatives = 0;
558 
559 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
560 		return (dt_set_errno(dtp, EDT_DMISMATCH));
561 
562 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
563 		first_bin++;
564 
565 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
566 		/*
567 		 * There isn't any data.  This is possible if (and only if)
568 		 * negative increment values have been used.  In this case,
569 		 * we'll print the buckets around 0.
570 		 */
571 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
572 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
573 	} else {
574 		if (first_bin > 0)
575 			first_bin--;
576 
577 		while (last_bin > 0 && data[last_bin] == 0)
578 			last_bin--;
579 
580 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
581 			last_bin++;
582 	}
583 
584 	for (i = first_bin; i <= last_bin; i++) {
585 		positives |= (data[i] > 0);
586 		negatives |= (data[i] < 0);
587 		total += dt_fabsl((long double)data[i]);
588 	}
589 
590 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
591 	    "------------- Distribution -------------", "count") < 0)
592 		return (-1);
593 
594 	for (i = first_bin; i <= last_bin; i++) {
595 		if (dt_printf(dtp, fp, "%16lld ",
596 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
597 			return (-1);
598 
599 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
600 		    positives, negatives) < 0)
601 			return (-1);
602 	}
603 
604 	return (0);
605 }
606 
607 int
608 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
609     size_t size, uint64_t normal)
610 {
611 	const int64_t *data = addr;
612 	int i, first_bin, last_bin, base;
613 	uint64_t arg;
614 	long double total = 0;
615 	uint16_t step, levels;
616 	char positives = 0, negatives = 0;
617 
618 	if (size < sizeof (uint64_t))
619 		return (dt_set_errno(dtp, EDT_DMISMATCH));
620 
621 	arg = *data++;
622 	size -= sizeof (uint64_t);
623 
624 	base = DTRACE_LQUANTIZE_BASE(arg);
625 	step = DTRACE_LQUANTIZE_STEP(arg);
626 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
627 
628 	first_bin = 0;
629 	last_bin = levels + 1;
630 
631 	if (size != sizeof (uint64_t) * (levels + 2))
632 		return (dt_set_errno(dtp, EDT_DMISMATCH));
633 
634 	while (first_bin <= levels + 1 && data[first_bin] == 0)
635 		first_bin++;
636 
637 	if (first_bin > levels + 1) {
638 		first_bin = 0;
639 		last_bin = 2;
640 	} else {
641 		if (first_bin > 0)
642 			first_bin--;
643 
644 		while (last_bin > 0 && data[last_bin] == 0)
645 			last_bin--;
646 
647 		if (last_bin < levels + 1)
648 			last_bin++;
649 	}
650 
651 	for (i = first_bin; i <= last_bin; i++) {
652 		positives |= (data[i] > 0);
653 		negatives |= (data[i] < 0);
654 		total += dt_fabsl((long double)data[i]);
655 	}
656 
657 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
658 	    "------------- Distribution -------------", "count") < 0)
659 		return (-1);
660 
661 	for (i = first_bin; i <= last_bin; i++) {
662 		char c[32];
663 		int err;
664 
665 		if (i == 0) {
666 			(void) snprintf(c, sizeof (c), "< %d",
667 			    base / (uint32_t)normal);
668 			err = dt_printf(dtp, fp, "%16s ", c);
669 		} else if (i == levels + 1) {
670 			(void) snprintf(c, sizeof (c), ">= %d",
671 			    base + (levels * step));
672 			err = dt_printf(dtp, fp, "%16s ", c);
673 		} else {
674 			err = dt_printf(dtp, fp, "%16d ",
675 			    base + (i - 1) * step);
676 		}
677 
678 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
679 		    total, positives, negatives) < 0)
680 			return (-1);
681 	}
682 
683 	return (0);
684 }
685 
686 int
687 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
688     size_t size, uint64_t normal)
689 {
690 	int i, first_bin, last_bin, bin = 1, order, levels;
691 	uint16_t factor, low, high, nsteps;
692 	const int64_t *data = addr;
693 	int64_t value = 1, next, step;
694 	char positives = 0, negatives = 0;
695 	long double total = 0;
696 	uint64_t arg;
697 	char c[32];
698 
699 	if (size < sizeof (uint64_t))
700 		return (dt_set_errno(dtp, EDT_DMISMATCH));
701 
702 	arg = *data++;
703 	size -= sizeof (uint64_t);
704 
705 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
706 	low = DTRACE_LLQUANTIZE_LOW(arg);
707 	high = DTRACE_LLQUANTIZE_HIGH(arg);
708 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
709 
710 	/*
711 	 * We don't expect to be handed invalid llquantize() parameters here,
712 	 * but sanity check them (to a degree) nonetheless.
713 	 */
714 	if (size > INT32_MAX || factor < 2 || low >= high ||
715 	    nsteps == 0 || factor > nsteps)
716 		return (dt_set_errno(dtp, EDT_DMISMATCH));
717 
718 	levels = (int)size / sizeof (uint64_t);
719 
720 	first_bin = 0;
721 	last_bin = levels - 1;
722 
723 	while (first_bin < levels && data[first_bin] == 0)
724 		first_bin++;
725 
726 	if (first_bin == levels) {
727 		first_bin = 0;
728 		last_bin = 1;
729 	} else {
730 		if (first_bin > 0)
731 			first_bin--;
732 
733 		while (last_bin > 0 && data[last_bin] == 0)
734 			last_bin--;
735 
736 		if (last_bin < levels - 1)
737 			last_bin++;
738 	}
739 
740 	for (i = first_bin; i <= last_bin; i++) {
741 		positives |= (data[i] > 0);
742 		negatives |= (data[i] < 0);
743 		total += dt_fabsl((long double)data[i]);
744 	}
745 
746 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
747 	    "------------- Distribution -------------", "count") < 0)
748 		return (-1);
749 
750 	for (order = 0; order < low; order++)
751 		value *= factor;
752 
753 	next = value * factor;
754 	step = next > nsteps ? next / nsteps : 1;
755 
756 	if (first_bin == 0) {
757 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
758 
759 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
760 			return (-1);
761 
762 		if (dt_print_quantline(dtp, fp, data[0], normal,
763 		    total, positives, negatives) < 0)
764 			return (-1);
765 	}
766 
767 	while (order <= high) {
768 		if (bin >= first_bin && bin <= last_bin) {
769 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
770 				return (-1);
771 
772 			if (dt_print_quantline(dtp, fp, data[bin],
773 			    normal, total, positives, negatives) < 0)
774 				return (-1);
775 		}
776 
777 		assert(value < next);
778 		bin++;
779 
780 		if ((value += step) != next)
781 			continue;
782 
783 		next = value * factor;
784 		step = next > nsteps ? next / nsteps : 1;
785 		order++;
786 	}
787 
788 	if (last_bin < bin)
789 		return (0);
790 
791 	assert(last_bin == bin);
792 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
793 
794 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
795 		return (-1);
796 
797 	return (dt_print_quantline(dtp, fp, data[bin], normal,
798 	    total, positives, negatives));
799 }
800 
801 /*ARGSUSED*/
802 static int
803 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
804     size_t size, uint64_t normal)
805 {
806 	/* LINTED - alignment */
807 	int64_t *data = (int64_t *)addr;
808 
809 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
810 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
811 }
812 
813 /*ARGSUSED*/
814 static int
815 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
816     size_t size, uint64_t normal)
817 {
818 	/* LINTED - alignment */
819 	uint64_t *data = (uint64_t *)addr;
820 
821 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
822 	    (unsigned long long) dt_stddev(data, normal) : 0));
823 }
824 
825 /*ARGSUSED*/
826 int
827 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
828     size_t nbytes, int width, int quiet, int forceraw)
829 {
830 	/*
831 	 * If the byte stream is a series of printable characters, followed by
832 	 * a terminating byte, we print it out as a string.  Otherwise, we
833 	 * assume that it's something else and just print the bytes.
834 	 */
835 	int i, j, margin = 5;
836 	char *c = (char *)addr;
837 
838 	if (nbytes == 0)
839 		return (0);
840 
841 	if (forceraw)
842 		goto raw;
843 
844 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
845 		goto raw;
846 
847 	for (i = 0; i < nbytes; i++) {
848 		/*
849 		 * We define a "printable character" to be one for which
850 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
851 		 * or a character which is either backspace or the bell.
852 		 * Backspace and the bell are regrettably special because
853 		 * they fail the first two tests -- and yet they are entirely
854 		 * printable.  These are the only two control characters that
855 		 * have meaning for the terminal and for which isprint(3C) and
856 		 * isspace(3C) return 0.
857 		 */
858 		if (isprint(c[i]) || isspace(c[i]) ||
859 		    c[i] == '\b' || c[i] == '\a')
860 			continue;
861 
862 		if (c[i] == '\0' && i > 0) {
863 			/*
864 			 * This looks like it might be a string.  Before we
865 			 * assume that it is indeed a string, check the
866 			 * remainder of the byte range; if it contains
867 			 * additional non-nul characters, we'll assume that
868 			 * it's a binary stream that just happens to look like
869 			 * a string, and we'll print out the individual bytes.
870 			 */
871 			for (j = i + 1; j < nbytes; j++) {
872 				if (c[j] != '\0')
873 					break;
874 			}
875 
876 			if (j != nbytes)
877 				break;
878 
879 			if (quiet)
880 				return (dt_printf(dtp, fp, "%s", c));
881 			else
882 				return (dt_printf(dtp, fp, "  %-*s", width, c));
883 		}
884 
885 		break;
886 	}
887 
888 	if (i == nbytes) {
889 		/*
890 		 * The byte range is all printable characters, but there is
891 		 * no trailing nul byte.  We'll assume that it's a string and
892 		 * print it as such.
893 		 */
894 		char *s = alloca(nbytes + 1);
895 		bcopy(c, s, nbytes);
896 		s[nbytes] = '\0';
897 		return (dt_printf(dtp, fp, "  %-*s", width, s));
898 	}
899 
900 raw:
901 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
902 		return (-1);
903 
904 	for (i = 0; i < 16; i++)
905 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
906 			return (-1);
907 
908 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
909 		return (-1);
910 
911 
912 	for (i = 0; i < nbytes; i += 16) {
913 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
914 			return (-1);
915 
916 		for (j = i; j < i + 16 && j < nbytes; j++) {
917 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
918 				return (-1);
919 		}
920 
921 		while (j++ % 16) {
922 			if (dt_printf(dtp, fp, "   ") < 0)
923 				return (-1);
924 		}
925 
926 		if (dt_printf(dtp, fp, "  ") < 0)
927 			return (-1);
928 
929 		for (j = i; j < i + 16 && j < nbytes; j++) {
930 			if (dt_printf(dtp, fp, "%c",
931 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
932 				return (-1);
933 		}
934 
935 		if (dt_printf(dtp, fp, "\n") < 0)
936 			return (-1);
937 	}
938 
939 	return (0);
940 }
941 
942 int
943 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
944     caddr_t addr, int depth, int size)
945 {
946 	dtrace_syminfo_t dts;
947 	GElf_Sym sym;
948 	int i, indent;
949 	char c[PATH_MAX * 2];
950 	uint64_t pc;
951 
952 	if (dt_printf(dtp, fp, "\n") < 0)
953 		return (-1);
954 
955 	if (format == NULL)
956 		format = "%s";
957 
958 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
959 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
960 	else
961 		indent = _dtrace_stkindent;
962 
963 	for (i = 0; i < depth; i++) {
964 		switch (size) {
965 		case sizeof (uint32_t):
966 			/* LINTED - alignment */
967 			pc = *((uint32_t *)addr);
968 			break;
969 
970 		case sizeof (uint64_t):
971 			/* LINTED - alignment */
972 			pc = *((uint64_t *)addr);
973 			break;
974 
975 		default:
976 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
977 		}
978 
979 		if (pc == 0)
980 			break;
981 
982 		addr += size;
983 
984 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
985 			return (-1);
986 
987 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
988 			if (pc > sym.st_value) {
989 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
990 				    dts.dts_object, dts.dts_name,
991 				    (u_longlong_t)(pc - sym.st_value));
992 			} else {
993 				(void) snprintf(c, sizeof (c), "%s`%s",
994 				    dts.dts_object, dts.dts_name);
995 			}
996 		} else {
997 			/*
998 			 * We'll repeat the lookup, but this time we'll specify
999 			 * a NULL GElf_Sym -- indicating that we're only
1000 			 * interested in the containing module.
1001 			 */
1002 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1003 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1004 				    dts.dts_object, (u_longlong_t)pc);
1005 			} else {
1006 				(void) snprintf(c, sizeof (c), "0x%llx",
1007 				    (u_longlong_t)pc);
1008 			}
1009 		}
1010 
1011 		if (dt_printf(dtp, fp, format, c) < 0)
1012 			return (-1);
1013 
1014 		if (dt_printf(dtp, fp, "\n") < 0)
1015 			return (-1);
1016 	}
1017 
1018 	return (0);
1019 }
1020 
1021 int
1022 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1023     caddr_t addr, uint64_t arg)
1024 {
1025 	/* LINTED - alignment */
1026 	uint64_t *pc = (uint64_t *)addr;
1027 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1028 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1029 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1030 	const char *str = strsize ? strbase : NULL;
1031 	int err = 0;
1032 
1033 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1034 	struct ps_prochandle *P;
1035 	GElf_Sym sym;
1036 	int i, indent;
1037 	pid_t pid;
1038 
1039 	if (depth == 0)
1040 		return (0);
1041 
1042 	pid = (pid_t)*pc++;
1043 
1044 	if (dt_printf(dtp, fp, "\n") < 0)
1045 		return (-1);
1046 
1047 	if (format == NULL)
1048 		format = "%s";
1049 
1050 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1051 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1052 	else
1053 		indent = _dtrace_stkindent;
1054 
1055 	/*
1056 	 * Ultimately, we need to add an entry point in the library vector for
1057 	 * determining <symbol, offset> from <pid, address>.  For now, if
1058 	 * this is a vector open, we just print the raw address or string.
1059 	 */
1060 	if (dtp->dt_vector == NULL)
1061 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1062 	else
1063 		P = NULL;
1064 
1065 	if (P != NULL)
1066 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1067 
1068 	for (i = 0; i < depth && pc[i] != 0; i++) {
1069 		const prmap_t *map;
1070 
1071 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1072 			break;
1073 
1074 		if (P != NULL && Plookup_by_addr(P, pc[i],
1075 		    name, sizeof (name), &sym) == 0) {
1076 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1077 
1078 			if (pc[i] > sym.st_value) {
1079 				(void) snprintf(c, sizeof (c),
1080 				    "%s`%s+0x%llx", dt_basename(objname), name,
1081 				    (u_longlong_t)(pc[i] - sym.st_value));
1082 			} else {
1083 				(void) snprintf(c, sizeof (c),
1084 				    "%s`%s", dt_basename(objname), name);
1085 			}
1086 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1087 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1088 		    (map->pr_mflags & MA_WRITE)))) {
1089 			/*
1090 			 * If the current string pointer in the string table
1091 			 * does not point to an empty string _and_ the program
1092 			 * counter falls in a writable region, we'll use the
1093 			 * string from the string table instead of the raw
1094 			 * address.  This last condition is necessary because
1095 			 * some (broken) ustack helpers will return a string
1096 			 * even for a program counter that they can't
1097 			 * identify.  If we have a string for a program
1098 			 * counter that falls in a segment that isn't
1099 			 * writable, we assume that we have fallen into this
1100 			 * case and we refuse to use the string.
1101 			 */
1102 			(void) snprintf(c, sizeof (c), "%s", str);
1103 		} else {
1104 			if (P != NULL && Pobjname(P, pc[i], objname,
1105 			    sizeof (objname)) != 0) {
1106 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1107 				    dt_basename(objname), (u_longlong_t)pc[i]);
1108 			} else {
1109 				(void) snprintf(c, sizeof (c), "0x%llx",
1110 				    (u_longlong_t)pc[i]);
1111 			}
1112 		}
1113 
1114 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1115 			break;
1116 
1117 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1118 			break;
1119 
1120 		if (str != NULL && str[0] == '@') {
1121 			/*
1122 			 * If the first character of the string is an "at" sign,
1123 			 * then the string is inferred to be an annotation --
1124 			 * and it is printed out beneath the frame and offset
1125 			 * with brackets.
1126 			 */
1127 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1128 				break;
1129 
1130 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1131 
1132 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1133 				break;
1134 
1135 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1136 				break;
1137 		}
1138 
1139 		if (str != NULL) {
1140 			str += strlen(str) + 1;
1141 			if (str - strbase >= strsize)
1142 				str = NULL;
1143 		}
1144 	}
1145 
1146 	if (P != NULL) {
1147 		dt_proc_unlock(dtp, P);
1148 		dt_proc_release(dtp, P);
1149 	}
1150 
1151 	return (err);
1152 }
1153 
1154 static int
1155 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1156 {
1157 	/* LINTED - alignment */
1158 	uint64_t pid = ((uint64_t *)addr)[0];
1159 	/* LINTED - alignment */
1160 	uint64_t pc = ((uint64_t *)addr)[1];
1161 	const char *format = "  %-50s";
1162 	char *s;
1163 	int n, len = 256;
1164 
1165 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1166 		struct ps_prochandle *P;
1167 
1168 		if ((P = dt_proc_grab(dtp, pid,
1169 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1170 			GElf_Sym sym;
1171 
1172 			dt_proc_lock(dtp, P);
1173 
1174 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1175 				pc = sym.st_value;
1176 
1177 			dt_proc_unlock(dtp, P);
1178 			dt_proc_release(dtp, P);
1179 		}
1180 	}
1181 
1182 	do {
1183 		n = len;
1184 		s = alloca(n);
1185 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1186 
1187 	return (dt_printf(dtp, fp, format, s));
1188 }
1189 
1190 int
1191 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1192 {
1193 	/* LINTED - alignment */
1194 	uint64_t pid = ((uint64_t *)addr)[0];
1195 	/* LINTED - alignment */
1196 	uint64_t pc = ((uint64_t *)addr)[1];
1197 	int err = 0;
1198 
1199 	char objname[PATH_MAX], c[PATH_MAX * 2];
1200 	struct ps_prochandle *P;
1201 
1202 	if (format == NULL)
1203 		format = "  %-50s";
1204 
1205 	/*
1206 	 * See the comment in dt_print_ustack() for the rationale for
1207 	 * printing raw addresses in the vectored case.
1208 	 */
1209 	if (dtp->dt_vector == NULL)
1210 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1211 	else
1212 		P = NULL;
1213 
1214 	if (P != NULL)
1215 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1216 
1217 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1218 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1219 	} else {
1220 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1221 	}
1222 
1223 	err = dt_printf(dtp, fp, format, c);
1224 
1225 	if (P != NULL) {
1226 		dt_proc_unlock(dtp, P);
1227 		dt_proc_release(dtp, P);
1228 	}
1229 
1230 	return (err);
1231 }
1232 
1233 int
1234 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1235 {
1236 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1237 	size_t nbytes = *((uintptr_t *) addr);
1238 
1239 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1240 	    nbytes, 50, quiet, 1));
1241 }
1242 
1243 typedef struct dt_type_cbdata {
1244 	dtrace_hdl_t		*dtp;
1245 	dtrace_typeinfo_t	dtt;
1246 	caddr_t			addr;
1247 	caddr_t			addrend;
1248 	const char		*name;
1249 	int			f_type;
1250 	int			indent;
1251 	int			type_width;
1252 	int			name_width;
1253 	FILE			*fp;
1254 } dt_type_cbdata_t;
1255 
1256 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1257 
1258 static int
1259 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1260 {
1261 	dt_type_cbdata_t cbdata;
1262 	dt_type_cbdata_t *cbdatap = arg;
1263 	ssize_t ssz;
1264 
1265 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1266 		return (0);
1267 
1268 	off /= 8;
1269 
1270 	cbdata = *cbdatap;
1271 	cbdata.name = name;
1272 	cbdata.addr += off;
1273 	cbdata.addrend = cbdata.addr + ssz;
1274 
1275 	return (dt_print_type_data(&cbdata, type));
1276 }
1277 
1278 static int
1279 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1280 {
1281 	char buf[DT_TYPE_NAMELEN];
1282 	char *p;
1283 	dt_type_cbdata_t *cbdatap = arg;
1284 	size_t sz = strlen(name);
1285 
1286 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1287 
1288 	if ((p = strchr(buf, '[')) != NULL)
1289 		p[-1] = '\0';
1290 	else
1291 		p = "";
1292 
1293 	sz += strlen(p);
1294 
1295 	if (sz > cbdatap->name_width)
1296 		cbdatap->name_width = sz;
1297 
1298 	sz = strlen(buf);
1299 
1300 	if (sz > cbdatap->type_width)
1301 		cbdatap->type_width = sz;
1302 
1303 	return (0);
1304 }
1305 
1306 static int
1307 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1308 {
1309 	caddr_t addr = cbdatap->addr;
1310 	caddr_t addrend = cbdatap->addrend;
1311 	char buf[DT_TYPE_NAMELEN];
1312 	char *p;
1313 	int cnt = 0;
1314 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1315 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1316 
1317 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1318 
1319 	if ((p = strchr(buf, '[')) != NULL)
1320 		p[-1] = '\0';
1321 	else
1322 		p = "";
1323 
1324 	if (cbdatap->f_type) {
1325 		int type_width = roundup(cbdatap->type_width + 1, 4);
1326 		int name_width = roundup(cbdatap->name_width + 1, 4);
1327 
1328 		name_width -= strlen(cbdatap->name);
1329 
1330 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1331 	}
1332 
1333 	while (addr < addrend) {
1334 		dt_type_cbdata_t cbdata;
1335 		ctf_arinfo_t arinfo;
1336 		ctf_encoding_t cte;
1337 		uintptr_t *up;
1338 		void *vp = addr;
1339 		cbdata = *cbdatap;
1340 		cbdata.name = "";
1341 		cbdata.addr = addr;
1342 		cbdata.addrend = addr + ssz;
1343 		cbdata.f_type = 0;
1344 		cbdata.indent++;
1345 		cbdata.type_width = 0;
1346 		cbdata.name_width = 0;
1347 
1348 		if (cnt > 0)
1349 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1350 
1351 		switch (kind) {
1352 		case CTF_K_INTEGER:
1353 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1354 				return (-1);
1355 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1356 				switch (cte.cte_bits) {
1357 				case 8:
1358 					if (isprint(*((char *) vp)))
1359 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1360 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1361 					break;
1362 				case 16:
1363 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1364 					break;
1365 				case 32:
1366 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1367 					break;
1368 				case 64:
1369 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1370 					break;
1371 				default:
1372 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1373 					break;
1374 				}
1375 			else
1376 				switch (cte.cte_bits) {
1377 				case 8:
1378 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1379 					break;
1380 				case 16:
1381 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1382 					break;
1383 				case 32:
1384 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1385 					break;
1386 				case 64:
1387 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1388 					break;
1389 				default:
1390 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1391 					break;
1392 				}
1393 			break;
1394 		case CTF_K_FLOAT:
1395 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1396 			break;
1397 		case CTF_K_POINTER:
1398 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1399 			break;
1400 		case CTF_K_ARRAY:
1401 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1402 				return (-1);
1403 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1404 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1405 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1406 			break;
1407 		case CTF_K_FUNCTION:
1408 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1409 			break;
1410 		case CTF_K_STRUCT:
1411 			cbdata.f_type = 1;
1412 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1413 			    dt_print_type_width, &cbdata) != 0)
1414 				return (-1);
1415 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1416 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1417 			    dt_print_type_member, &cbdata) != 0)
1418 				return (-1);
1419 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1420 			break;
1421 		case CTF_K_UNION:
1422 			cbdata.f_type = 1;
1423 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1424 			    dt_print_type_width, &cbdata) != 0)
1425 				return (-1);
1426 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1427 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1428 			    dt_print_type_member, &cbdata) != 0)
1429 				return (-1);
1430 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1431 			break;
1432 		case CTF_K_ENUM:
1433 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1434 			break;
1435 		case CTF_K_TYPEDEF:
1436 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1437 			break;
1438 		case CTF_K_VOLATILE:
1439 			if (cbdatap->f_type)
1440 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1441 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1442 			break;
1443 		case CTF_K_CONST:
1444 			if (cbdatap->f_type)
1445 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1446 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1447 			break;
1448 		case CTF_K_RESTRICT:
1449 			if (cbdatap->f_type)
1450 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1451 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1452 			break;
1453 		default:
1454 			break;
1455 		}
1456 
1457 		addr += ssz;
1458 		cnt++;
1459 	}
1460 
1461 	return (0);
1462 }
1463 
1464 static int
1465 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1466 {
1467 	caddr_t addrend;
1468 	char *p;
1469 	dtrace_typeinfo_t dtt;
1470 	dt_type_cbdata_t cbdata;
1471 	int num = 0;
1472 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1473 	ssize_t ssz;
1474 
1475 	if (!quiet)
1476 		dt_printf(dtp, fp, "\n");
1477 
1478 	/* Get the total number of bytes of data buffered. */
1479 	size_t nbytes = *((uintptr_t *) addr);
1480 	addr += sizeof(uintptr_t);
1481 
1482 	/*
1483 	 * Get the size of the type so that we can check that it matches
1484 	 * the CTF data we look up and so that we can figure out how many
1485 	 * type elements are buffered.
1486 	 */
1487 	size_t typs = *((uintptr_t *) addr);
1488 	addr += sizeof(uintptr_t);
1489 
1490 	/*
1491 	 * Point to the type string in the buffer. Get it's string
1492 	 * length and round it up to become the offset to the start
1493 	 * of the buffered type data which we would like to be aligned
1494 	 * for easy access.
1495 	 */
1496 	char *strp = (char *) addr;
1497 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1498 
1499 	/*
1500 	 * The type string might have a format such as 'int [20]'.
1501 	 * Check if there is an array dimension present.
1502 	 */
1503 	if ((p = strchr(strp, '[')) != NULL) {
1504 		/* Strip off the array dimension. */
1505 		*p++ = '\0';
1506 
1507 		for (; *p != '\0' && *p != ']'; p++)
1508 			num = num * 10 + *p - '0';
1509 	} else
1510 		/* No array dimension, so default. */
1511 		num = 1;
1512 
1513 	/* Lookup the CTF type from the type string. */
1514 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1515 		return (-1);
1516 
1517 	/* Offset the buffer address to the start of the data... */
1518 	addr += offset;
1519 
1520 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1521 
1522 	if (typs != ssz) {
1523 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1524 		return (-1);
1525 	}
1526 
1527 	cbdata.dtp = dtp;
1528 	cbdata.dtt = dtt;
1529 	cbdata.name = "";
1530 	cbdata.addr = addr;
1531 	cbdata.addrend = addr + nbytes;
1532 	cbdata.indent = 1;
1533 	cbdata.f_type = 1;
1534 	cbdata.type_width = 0;
1535 	cbdata.name_width = 0;
1536 	cbdata.fp = fp;
1537 
1538 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1539 }
1540 
1541 static int
1542 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1543 {
1544 	/* LINTED - alignment */
1545 	uint64_t pc = *((uint64_t *)addr);
1546 	dtrace_syminfo_t dts;
1547 	GElf_Sym sym;
1548 	char c[PATH_MAX * 2];
1549 
1550 	if (format == NULL)
1551 		format = "  %-50s";
1552 
1553 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1554 		(void) snprintf(c, sizeof (c), "%s`%s",
1555 		    dts.dts_object, dts.dts_name);
1556 	} else {
1557 		/*
1558 		 * We'll repeat the lookup, but this time we'll specify a
1559 		 * NULL GElf_Sym -- indicating that we're only interested in
1560 		 * the containing module.
1561 		 */
1562 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1563 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1564 			    dts.dts_object, (u_longlong_t)pc);
1565 		} else {
1566 			(void) snprintf(c, sizeof (c), "0x%llx",
1567 			    (u_longlong_t)pc);
1568 		}
1569 	}
1570 
1571 	if (dt_printf(dtp, fp, format, c) < 0)
1572 		return (-1);
1573 
1574 	return (0);
1575 }
1576 
1577 int
1578 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1579 {
1580 	/* LINTED - alignment */
1581 	uint64_t pc = *((uint64_t *)addr);
1582 	dtrace_syminfo_t dts;
1583 	char c[PATH_MAX * 2];
1584 
1585 	if (format == NULL)
1586 		format = "  %-50s";
1587 
1588 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1589 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1590 	} else {
1591 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1592 	}
1593 
1594 	if (dt_printf(dtp, fp, format, c) < 0)
1595 		return (-1);
1596 
1597 	return (0);
1598 }
1599 
1600 typedef struct dt_normal {
1601 	dtrace_aggvarid_t dtnd_id;
1602 	uint64_t dtnd_normal;
1603 } dt_normal_t;
1604 
1605 static int
1606 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1607 {
1608 	dt_normal_t *normal = arg;
1609 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1610 	dtrace_aggvarid_t id = normal->dtnd_id;
1611 
1612 	if (agg->dtagd_nrecs == 0)
1613 		return (DTRACE_AGGWALK_NEXT);
1614 
1615 	if (agg->dtagd_varid != id)
1616 		return (DTRACE_AGGWALK_NEXT);
1617 
1618 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1619 	return (DTRACE_AGGWALK_NORMALIZE);
1620 }
1621 
1622 static int
1623 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1624 {
1625 	dt_normal_t normal;
1626 	caddr_t addr;
1627 
1628 	/*
1629 	 * We (should) have two records:  the aggregation ID followed by the
1630 	 * normalization value.
1631 	 */
1632 	addr = base + rec->dtrd_offset;
1633 
1634 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1635 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1636 
1637 	/* LINTED - alignment */
1638 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1639 	rec++;
1640 
1641 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1642 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1643 
1644 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1645 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1646 
1647 	addr = base + rec->dtrd_offset;
1648 
1649 	switch (rec->dtrd_size) {
1650 	case sizeof (uint64_t):
1651 		/* LINTED - alignment */
1652 		normal.dtnd_normal = *((uint64_t *)addr);
1653 		break;
1654 	case sizeof (uint32_t):
1655 		/* LINTED - alignment */
1656 		normal.dtnd_normal = *((uint32_t *)addr);
1657 		break;
1658 	case sizeof (uint16_t):
1659 		/* LINTED - alignment */
1660 		normal.dtnd_normal = *((uint16_t *)addr);
1661 		break;
1662 	case sizeof (uint8_t):
1663 		normal.dtnd_normal = *((uint8_t *)addr);
1664 		break;
1665 	default:
1666 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1667 	}
1668 
1669 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1670 
1671 	return (0);
1672 }
1673 
1674 static int
1675 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1676 {
1677 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1678 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1679 
1680 	if (agg->dtagd_nrecs == 0)
1681 		return (DTRACE_AGGWALK_NEXT);
1682 
1683 	if (agg->dtagd_varid != id)
1684 		return (DTRACE_AGGWALK_NEXT);
1685 
1686 	return (DTRACE_AGGWALK_DENORMALIZE);
1687 }
1688 
1689 static int
1690 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1691 {
1692 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1693 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1694 
1695 	if (agg->dtagd_nrecs == 0)
1696 		return (DTRACE_AGGWALK_NEXT);
1697 
1698 	if (agg->dtagd_varid != id)
1699 		return (DTRACE_AGGWALK_NEXT);
1700 
1701 	return (DTRACE_AGGWALK_CLEAR);
1702 }
1703 
1704 typedef struct dt_trunc {
1705 	dtrace_aggvarid_t dttd_id;
1706 	uint64_t dttd_remaining;
1707 } dt_trunc_t;
1708 
1709 static int
1710 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1711 {
1712 	dt_trunc_t *trunc = arg;
1713 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1714 	dtrace_aggvarid_t id = trunc->dttd_id;
1715 
1716 	if (agg->dtagd_nrecs == 0)
1717 		return (DTRACE_AGGWALK_NEXT);
1718 
1719 	if (agg->dtagd_varid != id)
1720 		return (DTRACE_AGGWALK_NEXT);
1721 
1722 	if (trunc->dttd_remaining == 0)
1723 		return (DTRACE_AGGWALK_REMOVE);
1724 
1725 	trunc->dttd_remaining--;
1726 	return (DTRACE_AGGWALK_NEXT);
1727 }
1728 
1729 static int
1730 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1731 {
1732 	dt_trunc_t trunc;
1733 	caddr_t addr;
1734 	int64_t remaining;
1735 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1736 
1737 	/*
1738 	 * We (should) have two records:  the aggregation ID followed by the
1739 	 * number of aggregation entries after which the aggregation is to be
1740 	 * truncated.
1741 	 */
1742 	addr = base + rec->dtrd_offset;
1743 
1744 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1745 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1746 
1747 	/* LINTED - alignment */
1748 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1749 	rec++;
1750 
1751 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1752 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1753 
1754 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1755 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1756 
1757 	addr = base + rec->dtrd_offset;
1758 
1759 	switch (rec->dtrd_size) {
1760 	case sizeof (uint64_t):
1761 		/* LINTED - alignment */
1762 		remaining = *((int64_t *)addr);
1763 		break;
1764 	case sizeof (uint32_t):
1765 		/* LINTED - alignment */
1766 		remaining = *((int32_t *)addr);
1767 		break;
1768 	case sizeof (uint16_t):
1769 		/* LINTED - alignment */
1770 		remaining = *((int16_t *)addr);
1771 		break;
1772 	case sizeof (uint8_t):
1773 		remaining = *((int8_t *)addr);
1774 		break;
1775 	default:
1776 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1777 	}
1778 
1779 	if (remaining < 0) {
1780 		func = dtrace_aggregate_walk_valsorted;
1781 		remaining = -remaining;
1782 	} else {
1783 		func = dtrace_aggregate_walk_valrevsorted;
1784 	}
1785 
1786 	assert(remaining >= 0);
1787 	trunc.dttd_remaining = remaining;
1788 
1789 	(void) func(dtp, dt_trunc_agg, &trunc);
1790 
1791 	return (0);
1792 }
1793 
1794 static int
1795 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1796     caddr_t addr, size_t size, uint64_t normal)
1797 {
1798 	int err;
1799 	dtrace_actkind_t act = rec->dtrd_action;
1800 
1801 	switch (act) {
1802 	case DTRACEACT_STACK:
1803 		return (dt_print_stack(dtp, fp, NULL, addr,
1804 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1805 
1806 	case DTRACEACT_USTACK:
1807 	case DTRACEACT_JSTACK:
1808 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1809 
1810 	case DTRACEACT_USYM:
1811 	case DTRACEACT_UADDR:
1812 		return (dt_print_usym(dtp, fp, addr, act));
1813 
1814 	case DTRACEACT_UMOD:
1815 		return (dt_print_umod(dtp, fp, NULL, addr));
1816 
1817 	case DTRACEACT_SYM:
1818 		return (dt_print_sym(dtp, fp, NULL, addr));
1819 
1820 	case DTRACEACT_MOD:
1821 		return (dt_print_mod(dtp, fp, NULL, addr));
1822 
1823 	case DTRACEAGG_QUANTIZE:
1824 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1825 
1826 	case DTRACEAGG_LQUANTIZE:
1827 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1828 
1829 	case DTRACEAGG_LLQUANTIZE:
1830 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1831 
1832 	case DTRACEAGG_AVG:
1833 		return (dt_print_average(dtp, fp, addr, size, normal));
1834 
1835 	case DTRACEAGG_STDDEV:
1836 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1837 
1838 	default:
1839 		break;
1840 	}
1841 
1842 	switch (size) {
1843 	case sizeof (uint64_t):
1844 		err = dt_printf(dtp, fp, " %16lld",
1845 		    /* LINTED - alignment */
1846 		    (long long)*((uint64_t *)addr) / normal);
1847 		break;
1848 	case sizeof (uint32_t):
1849 		/* LINTED - alignment */
1850 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1851 		    (uint32_t)normal);
1852 		break;
1853 	case sizeof (uint16_t):
1854 		/* LINTED - alignment */
1855 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1856 		    (uint32_t)normal);
1857 		break;
1858 	case sizeof (uint8_t):
1859 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1860 		    (uint32_t)normal);
1861 		break;
1862 	default:
1863 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1864 		break;
1865 	}
1866 
1867 	return (err);
1868 }
1869 
1870 int
1871 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1872 {
1873 	int i, aggact = 0;
1874 	dt_print_aggdata_t *pd = arg;
1875 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1876 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1877 	FILE *fp = pd->dtpa_fp;
1878 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1879 	dtrace_recdesc_t *rec;
1880 	dtrace_actkind_t act;
1881 	caddr_t addr;
1882 	size_t size;
1883 
1884 	/*
1885 	 * Iterate over each record description in the key, printing the traced
1886 	 * data, skipping the first datum (the tuple member created by the
1887 	 * compiler).
1888 	 */
1889 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1890 		rec = &agg->dtagd_rec[i];
1891 		act = rec->dtrd_action;
1892 		addr = aggdata->dtada_data + rec->dtrd_offset;
1893 		size = rec->dtrd_size;
1894 
1895 		if (DTRACEACT_ISAGG(act)) {
1896 			aggact = i;
1897 			break;
1898 		}
1899 
1900 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1901 			return (-1);
1902 
1903 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1904 		    DTRACE_BUFDATA_AGGKEY) < 0)
1905 			return (-1);
1906 	}
1907 
1908 	assert(aggact != 0);
1909 
1910 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1911 		uint64_t normal;
1912 
1913 		aggdata = aggsdata[i];
1914 		agg = aggdata->dtada_desc;
1915 		rec = &agg->dtagd_rec[aggact];
1916 		act = rec->dtrd_action;
1917 		addr = aggdata->dtada_data + rec->dtrd_offset;
1918 		size = rec->dtrd_size;
1919 
1920 		assert(DTRACEACT_ISAGG(act));
1921 		normal = aggdata->dtada_normal;
1922 
1923 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1924 			return (-1);
1925 
1926 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1927 		    DTRACE_BUFDATA_AGGVAL) < 0)
1928 			return (-1);
1929 
1930 		if (!pd->dtpa_allunprint)
1931 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1932 	}
1933 
1934 	if (dt_printf(dtp, fp, "\n") < 0)
1935 		return (-1);
1936 
1937 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1938 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1939 		return (-1);
1940 
1941 	return (0);
1942 }
1943 
1944 int
1945 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1946 {
1947 	dt_print_aggdata_t *pd = arg;
1948 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1949 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1950 
1951 	if (pd->dtpa_allunprint) {
1952 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1953 			return (0);
1954 	} else {
1955 		/*
1956 		 * If we're not printing all unprinted aggregations, then the
1957 		 * aggregation variable ID denotes a specific aggregation
1958 		 * variable that we should print -- skip any other aggregations
1959 		 * that we encounter.
1960 		 */
1961 		if (agg->dtagd_nrecs == 0)
1962 			return (0);
1963 
1964 		if (aggvarid != agg->dtagd_varid)
1965 			return (0);
1966 	}
1967 
1968 	return (dt_print_aggs(&aggdata, 1, arg));
1969 }
1970 
1971 int
1972 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1973     const char *option, const char *value)
1974 {
1975 	int len, rval;
1976 	char *msg;
1977 	const char *errstr;
1978 	dtrace_setoptdata_t optdata;
1979 
1980 	bzero(&optdata, sizeof (optdata));
1981 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1982 
1983 	if (dtrace_setopt(dtp, option, value) == 0) {
1984 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1985 		optdata.dtsda_probe = data;
1986 		optdata.dtsda_option = option;
1987 		optdata.dtsda_handle = dtp;
1988 
1989 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1990 			return (rval);
1991 
1992 		return (0);
1993 	}
1994 
1995 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1996 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1997 	msg = alloca(len);
1998 
1999 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2000 	    option, value, errstr);
2001 
2002 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2003 		return (0);
2004 
2005 	return (rval);
2006 }
2007 
2008 static int
2009 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2010     dtrace_bufdesc_t *buf, boolean_t just_one,
2011     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2012 {
2013 	dtrace_epid_t id;
2014 	size_t offs;
2015 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2016 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2017 	int rval, i, n;
2018 	uint64_t tracememsize = 0;
2019 	dtrace_probedata_t data;
2020 	uint64_t drops;
2021 
2022 	bzero(&data, sizeof (data));
2023 	data.dtpda_handle = dtp;
2024 	data.dtpda_cpu = cpu;
2025 	data.dtpda_flow = dtp->dt_flow;
2026 	data.dtpda_indent = dtp->dt_indent;
2027 	data.dtpda_prefix = dtp->dt_prefix;
2028 
2029 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2030 		dtrace_eprobedesc_t *epd;
2031 
2032 		/*
2033 		 * We're guaranteed to have an ID.
2034 		 */
2035 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2036 
2037 		if (id == DTRACE_EPIDNONE) {
2038 			/*
2039 			 * This is filler to assure proper alignment of the
2040 			 * next record; we simply ignore it.
2041 			 */
2042 			offs += sizeof (id);
2043 			continue;
2044 		}
2045 
2046 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2047 		    &data.dtpda_pdesc)) != 0)
2048 			return (rval);
2049 
2050 		epd = data.dtpda_edesc;
2051 		data.dtpda_data = buf->dtbd_data + offs;
2052 
2053 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2054 			rval = dt_handle(dtp, &data);
2055 
2056 			if (rval == DTRACE_CONSUME_NEXT)
2057 				goto nextepid;
2058 
2059 			if (rval == DTRACE_CONSUME_ERROR)
2060 				return (-1);
2061 		}
2062 
2063 		if (flow)
2064 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2065 			    buf, offs);
2066 
2067 		rval = (*efunc)(&data, arg);
2068 
2069 		if (flow) {
2070 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2071 				data.dtpda_indent += 2;
2072 		}
2073 
2074 		if (rval == DTRACE_CONSUME_NEXT)
2075 			goto nextepid;
2076 
2077 		if (rval == DTRACE_CONSUME_ABORT)
2078 			return (dt_set_errno(dtp, EDT_DIRABORT));
2079 
2080 		if (rval != DTRACE_CONSUME_THIS)
2081 			return (dt_set_errno(dtp, EDT_BADRVAL));
2082 
2083 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2084 			caddr_t addr;
2085 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2086 			dtrace_actkind_t act = rec->dtrd_action;
2087 
2088 			data.dtpda_data = buf->dtbd_data + offs +
2089 			    rec->dtrd_offset;
2090 			addr = data.dtpda_data;
2091 
2092 			if (act == DTRACEACT_LIBACT) {
2093 				uint64_t arg = rec->dtrd_arg;
2094 				dtrace_aggvarid_t id;
2095 
2096 				switch (arg) {
2097 				case DT_ACT_CLEAR:
2098 					/* LINTED - alignment */
2099 					id = *((dtrace_aggvarid_t *)addr);
2100 					(void) dtrace_aggregate_walk(dtp,
2101 					    dt_clear_agg, &id);
2102 					continue;
2103 
2104 				case DT_ACT_DENORMALIZE:
2105 					/* LINTED - alignment */
2106 					id = *((dtrace_aggvarid_t *)addr);
2107 					(void) dtrace_aggregate_walk(dtp,
2108 					    dt_denormalize_agg, &id);
2109 					continue;
2110 
2111 				case DT_ACT_FTRUNCATE:
2112 					if (fp == NULL)
2113 						continue;
2114 
2115 					(void) fflush(fp);
2116 					(void) ftruncate(fileno(fp), 0);
2117 					(void) fseeko(fp, 0, SEEK_SET);
2118 					continue;
2119 
2120 				case DT_ACT_NORMALIZE:
2121 					if (i == epd->dtepd_nrecs - 1)
2122 						return (dt_set_errno(dtp,
2123 						    EDT_BADNORMAL));
2124 
2125 					if (dt_normalize(dtp,
2126 					    buf->dtbd_data + offs, rec) != 0)
2127 						return (-1);
2128 
2129 					i++;
2130 					continue;
2131 
2132 				case DT_ACT_SETOPT: {
2133 					uint64_t *opts = dtp->dt_options;
2134 					dtrace_recdesc_t *valrec;
2135 					uint32_t valsize;
2136 					caddr_t val;
2137 					int rv;
2138 
2139 					if (i == epd->dtepd_nrecs - 1) {
2140 						return (dt_set_errno(dtp,
2141 						    EDT_BADSETOPT));
2142 					}
2143 
2144 					valrec = &epd->dtepd_rec[++i];
2145 					valsize = valrec->dtrd_size;
2146 
2147 					if (valrec->dtrd_action != act ||
2148 					    valrec->dtrd_arg != arg) {
2149 						return (dt_set_errno(dtp,
2150 						    EDT_BADSETOPT));
2151 					}
2152 
2153 					if (valsize > sizeof (uint64_t)) {
2154 						val = buf->dtbd_data + offs +
2155 						    valrec->dtrd_offset;
2156 					} else {
2157 						val = "1";
2158 					}
2159 
2160 					rv = dt_setopt(dtp, &data, addr, val);
2161 
2162 					if (rv != 0)
2163 						return (-1);
2164 
2165 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2166 					    DTRACEOPT_UNSET);
2167 					quiet = (opts[DTRACEOPT_QUIET] !=
2168 					    DTRACEOPT_UNSET);
2169 
2170 					continue;
2171 				}
2172 
2173 				case DT_ACT_TRUNC:
2174 					if (i == epd->dtepd_nrecs - 1)
2175 						return (dt_set_errno(dtp,
2176 						    EDT_BADTRUNC));
2177 
2178 					if (dt_trunc(dtp,
2179 					    buf->dtbd_data + offs, rec) != 0)
2180 						return (-1);
2181 
2182 					i++;
2183 					continue;
2184 
2185 				default:
2186 					continue;
2187 				}
2188 			}
2189 
2190 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2191 			    rec->dtrd_size == sizeof (uint64_t)) {
2192 			    	/* LINTED - alignment */
2193 				tracememsize = *((unsigned long long *)addr);
2194 				continue;
2195 			}
2196 
2197 			rval = (*rfunc)(&data, rec, arg);
2198 
2199 			if (rval == DTRACE_CONSUME_NEXT)
2200 				continue;
2201 
2202 			if (rval == DTRACE_CONSUME_ABORT)
2203 				return (dt_set_errno(dtp, EDT_DIRABORT));
2204 
2205 			if (rval != DTRACE_CONSUME_THIS)
2206 				return (dt_set_errno(dtp, EDT_BADRVAL));
2207 
2208 			if (act == DTRACEACT_STACK) {
2209 				int depth = rec->dtrd_arg;
2210 
2211 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2212 				    rec->dtrd_size / depth) < 0)
2213 					return (-1);
2214 				goto nextrec;
2215 			}
2216 
2217 			if (act == DTRACEACT_USTACK ||
2218 			    act == DTRACEACT_JSTACK) {
2219 				if (dt_print_ustack(dtp, fp, NULL,
2220 				    addr, rec->dtrd_arg) < 0)
2221 					return (-1);
2222 				goto nextrec;
2223 			}
2224 
2225 			if (act == DTRACEACT_SYM) {
2226 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2227 					return (-1);
2228 				goto nextrec;
2229 			}
2230 
2231 			if (act == DTRACEACT_MOD) {
2232 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2233 					return (-1);
2234 				goto nextrec;
2235 			}
2236 
2237 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2238 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2239 					return (-1);
2240 				goto nextrec;
2241 			}
2242 
2243 			if (act == DTRACEACT_UMOD) {
2244 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2245 					return (-1);
2246 				goto nextrec;
2247 			}
2248 
2249 			if (act == DTRACEACT_PRINTM) {
2250 				if (dt_print_memory(dtp, fp, addr) < 0)
2251 					return (-1);
2252 				goto nextrec;
2253 			}
2254 
2255 			if (act == DTRACEACT_PRINTT) {
2256 				if (dt_print_type(dtp, fp, addr) < 0)
2257 					return (-1);
2258 				goto nextrec;
2259 			}
2260 
2261 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2262 				void *fmtdata;
2263 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2264 				    const dtrace_probedata_t *,
2265 				    const dtrace_recdesc_t *, uint_t,
2266 				    const void *buf, size_t);
2267 
2268 				if ((fmtdata = dt_format_lookup(dtp,
2269 				    rec->dtrd_format)) == NULL)
2270 					goto nofmt;
2271 
2272 				switch (act) {
2273 				case DTRACEACT_PRINTF:
2274 					func = dtrace_fprintf;
2275 					break;
2276 				case DTRACEACT_PRINTA:
2277 					func = dtrace_fprinta;
2278 					break;
2279 				case DTRACEACT_SYSTEM:
2280 					func = dtrace_system;
2281 					break;
2282 				case DTRACEACT_FREOPEN:
2283 					func = dtrace_freopen;
2284 					break;
2285 				}
2286 
2287 				n = (*func)(dtp, fp, fmtdata, &data,
2288 				    rec, epd->dtepd_nrecs - i,
2289 				    (uchar_t *)buf->dtbd_data + offs,
2290 				    buf->dtbd_size - offs);
2291 
2292 				if (n < 0)
2293 					return (-1); /* errno is set for us */
2294 
2295 				if (n > 0)
2296 					i += n - 1;
2297 				goto nextrec;
2298 			}
2299 
2300 			/*
2301 			 * If this is a DIF expression, and the record has a
2302 			 * format set, this indicates we have a CTF type name
2303 			 * associated with the data and we should try to print
2304 			 * it out by type.
2305 			 */
2306 			if (act == DTRACEACT_DIFEXPR) {
2307 				const char *strdata = dt_strdata_lookup(dtp,
2308 				    rec->dtrd_format);
2309 				if (strdata != NULL) {
2310 					n = dtrace_print(dtp, fp, strdata,
2311 					    addr, rec->dtrd_size);
2312 
2313 					/*
2314 					 * dtrace_print() will return -1 on
2315 					 * error, or return the number of bytes
2316 					 * consumed.  It will return 0 if the
2317 					 * type couldn't be determined, and we
2318 					 * should fall through to the normal
2319 					 * trace method.
2320 					 */
2321 					if (n < 0)
2322 						return (-1);
2323 
2324 					if (n > 0)
2325 						goto nextrec;
2326 				}
2327 			}
2328 
2329 nofmt:
2330 			if (act == DTRACEACT_PRINTA) {
2331 				dt_print_aggdata_t pd;
2332 				dtrace_aggvarid_t *aggvars;
2333 				int j, naggvars = 0;
2334 				size_t size = ((epd->dtepd_nrecs - i) *
2335 				    sizeof (dtrace_aggvarid_t));
2336 
2337 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2338 					return (-1);
2339 
2340 				/*
2341 				 * This might be a printa() with multiple
2342 				 * aggregation variables.  We need to scan
2343 				 * forward through the records until we find
2344 				 * a record from a different statement.
2345 				 */
2346 				for (j = i; j < epd->dtepd_nrecs; j++) {
2347 					dtrace_recdesc_t *nrec;
2348 					caddr_t naddr;
2349 
2350 					nrec = &epd->dtepd_rec[j];
2351 
2352 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2353 						break;
2354 
2355 					if (nrec->dtrd_action != act) {
2356 						return (dt_set_errno(dtp,
2357 						    EDT_BADAGG));
2358 					}
2359 
2360 					naddr = buf->dtbd_data + offs +
2361 					    nrec->dtrd_offset;
2362 
2363 					aggvars[naggvars++] =
2364 					    /* LINTED - alignment */
2365 					    *((dtrace_aggvarid_t *)naddr);
2366 				}
2367 
2368 				i = j - 1;
2369 				bzero(&pd, sizeof (pd));
2370 				pd.dtpa_dtp = dtp;
2371 				pd.dtpa_fp = fp;
2372 
2373 				assert(naggvars >= 1);
2374 
2375 				if (naggvars == 1) {
2376 					pd.dtpa_id = aggvars[0];
2377 					dt_free(dtp, aggvars);
2378 
2379 					if (dt_printf(dtp, fp, "\n") < 0 ||
2380 					    dtrace_aggregate_walk_sorted(dtp,
2381 					    dt_print_agg, &pd) < 0)
2382 						return (-1);
2383 					goto nextrec;
2384 				}
2385 
2386 				if (dt_printf(dtp, fp, "\n") < 0 ||
2387 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2388 				    naggvars, dt_print_aggs, &pd) < 0) {
2389 					dt_free(dtp, aggvars);
2390 					return (-1);
2391 				}
2392 
2393 				dt_free(dtp, aggvars);
2394 				goto nextrec;
2395 			}
2396 
2397 			if (act == DTRACEACT_TRACEMEM) {
2398 				if (tracememsize == 0 ||
2399 				    tracememsize > rec->dtrd_size) {
2400 					tracememsize = rec->dtrd_size;
2401 				}
2402 
2403 				n = dt_print_bytes(dtp, fp, addr,
2404 				    tracememsize, 33, quiet, 1);
2405 
2406 				tracememsize = 0;
2407 
2408 				if (n < 0)
2409 					return (-1);
2410 
2411 				goto nextrec;
2412 			}
2413 
2414 			switch (rec->dtrd_size) {
2415 			case sizeof (uint64_t):
2416 				n = dt_printf(dtp, fp,
2417 				    quiet ? "%lld" : " %16lld",
2418 				    /* LINTED - alignment */
2419 				    *((unsigned long long *)addr));
2420 				break;
2421 			case sizeof (uint32_t):
2422 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2423 				    /* LINTED - alignment */
2424 				    *((uint32_t *)addr));
2425 				break;
2426 			case sizeof (uint16_t):
2427 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2428 				    /* LINTED - alignment */
2429 				    *((uint16_t *)addr));
2430 				break;
2431 			case sizeof (uint8_t):
2432 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2433 				    *((uint8_t *)addr));
2434 				break;
2435 			default:
2436 				n = dt_print_bytes(dtp, fp, addr,
2437 				    rec->dtrd_size, 33, quiet, 0);
2438 				break;
2439 			}
2440 
2441 			if (n < 0)
2442 				return (-1); /* errno is set for us */
2443 
2444 nextrec:
2445 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2446 				return (-1); /* errno is set for us */
2447 		}
2448 
2449 		/*
2450 		 * Call the record callback with a NULL record to indicate
2451 		 * that we're done processing this EPID.
2452 		 */
2453 		rval = (*rfunc)(&data, NULL, arg);
2454 nextepid:
2455 		offs += epd->dtepd_size;
2456 		dtp->dt_last_epid = id;
2457 		if (just_one) {
2458 			buf->dtbd_oldest = offs;
2459 			break;
2460 		}
2461 	}
2462 
2463 	dtp->dt_flow = data.dtpda_flow;
2464 	dtp->dt_indent = data.dtpda_indent;
2465 	dtp->dt_prefix = data.dtpda_prefix;
2466 
2467 	if ((drops = buf->dtbd_drops) == 0)
2468 		return (0);
2469 
2470 	/*
2471 	 * Explicitly zero the drops to prevent us from processing them again.
2472 	 */
2473 	buf->dtbd_drops = 0;
2474 
2475 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2476 }
2477 
2478 /*
2479  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2480  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2481  * only 4-byte aligned.
2482  */
2483 static void
2484 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2485 {
2486 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2487 	if (used < cursize / 2) {
2488 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2489 		char *newdata = dt_alloc(dtp, used + misalign);
2490 		if (newdata == NULL)
2491 			return;
2492 		bzero(newdata, misalign);
2493 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2494 		    newdata + misalign, used);
2495 		dt_free(dtp, buf->dtbd_data);
2496 		buf->dtbd_oldest = misalign;
2497 		buf->dtbd_size = used + misalign;
2498 		buf->dtbd_data = newdata;
2499 	}
2500 }
2501 
2502 /*
2503  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2504  * so that it is.  Note, we need to preserve the alignment of the data at
2505  * dtbd_oldest, which is only 4-byte aligned.
2506  */
2507 static int
2508 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2509 {
2510 	int misalign;
2511 	char *newdata, *ndp;
2512 
2513 	if (buf->dtbd_oldest == 0)
2514 		return (0);
2515 
2516 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2517 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2518 
2519 	if (newdata == NULL)
2520 		return (-1);
2521 
2522 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2523 
2524 	bzero(ndp, misalign);
2525 	ndp += misalign;
2526 
2527 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2528 	    buf->dtbd_size - buf->dtbd_oldest);
2529 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2530 
2531 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2532 
2533 	dt_free(dtp, buf->dtbd_data);
2534 	buf->dtbd_oldest = 0;
2535 	buf->dtbd_data = newdata;
2536 	buf->dtbd_size += misalign;
2537 
2538 	return (0);
2539 }
2540 
2541 static void
2542 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2543 {
2544 	dt_free(dtp, buf->dtbd_data);
2545 	dt_free(dtp, buf);
2546 }
2547 
2548 /*
2549  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2550  * data, or NULL if there is no data for this CPU.
2551  * Returns -1 on failure and sets dt_errno.
2552  */
2553 static int
2554 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2555 {
2556 	dtrace_optval_t size;
2557 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2558 	int error;
2559 
2560 	if (buf == NULL)
2561 		return (-1);
2562 
2563 	(void) dtrace_getopt(dtp, "bufsize", &size);
2564 	buf->dtbd_data = dt_alloc(dtp, size);
2565 	if (buf->dtbd_data == NULL) {
2566 		dt_free(dtp, buf);
2567 		return (-1);
2568 	}
2569 	buf->dtbd_size = size;
2570 	buf->dtbd_cpu = cpu;
2571 
2572 #if defined(sun)
2573 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2574 #else
2575 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2576 #endif
2577 		dt_put_buf(dtp, buf);
2578 		/*
2579 		 * If we failed with ENOENT, it may be because the
2580 		 * CPU was unconfigured -- this is okay.  Any other
2581 		 * error, however, is unexpected.
2582 		 */
2583 		if (errno == ENOENT) {
2584 			*bufp = NULL;
2585 			return (0);
2586 		}
2587 
2588 		return (dt_set_errno(dtp, errno));
2589 	}
2590 
2591 	error = dt_unring_buf(dtp, buf);
2592 	if (error != 0) {
2593 		dt_put_buf(dtp, buf);
2594 		return (error);
2595 	}
2596 	dt_realloc_buf(dtp, buf, size);
2597 
2598 	*bufp = buf;
2599 	return (0);
2600 }
2601 
2602 typedef struct dt_begin {
2603 	dtrace_consume_probe_f *dtbgn_probefunc;
2604 	dtrace_consume_rec_f *dtbgn_recfunc;
2605 	void *dtbgn_arg;
2606 	dtrace_handle_err_f *dtbgn_errhdlr;
2607 	void *dtbgn_errarg;
2608 	int dtbgn_beginonly;
2609 } dt_begin_t;
2610 
2611 static int
2612 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2613 {
2614 	dt_begin_t *begin = arg;
2615 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2616 
2617 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2618 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2619 
2620 	if (begin->dtbgn_beginonly) {
2621 		if (!(r1 && r2))
2622 			return (DTRACE_CONSUME_NEXT);
2623 	} else {
2624 		if (r1 && r2)
2625 			return (DTRACE_CONSUME_NEXT);
2626 	}
2627 
2628 	/*
2629 	 * We have a record that we're interested in.  Now call the underlying
2630 	 * probe function...
2631 	 */
2632 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2633 }
2634 
2635 static int
2636 dt_consume_begin_record(const dtrace_probedata_t *data,
2637     const dtrace_recdesc_t *rec, void *arg)
2638 {
2639 	dt_begin_t *begin = arg;
2640 
2641 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2642 }
2643 
2644 static int
2645 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2646 {
2647 	dt_begin_t *begin = (dt_begin_t *)arg;
2648 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2649 
2650 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2651 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2652 
2653 	if (begin->dtbgn_beginonly) {
2654 		if (!(r1 && r2))
2655 			return (DTRACE_HANDLE_OK);
2656 	} else {
2657 		if (r1 && r2)
2658 			return (DTRACE_HANDLE_OK);
2659 	}
2660 
2661 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2662 }
2663 
2664 static int
2665 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2666     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2667 {
2668 	/*
2669 	 * There's this idea that the BEGIN probe should be processed before
2670 	 * everything else, and that the END probe should be processed after
2671 	 * anything else.  In the common case, this is pretty easy to deal
2672 	 * with.  However, a situation may arise where the BEGIN enabling and
2673 	 * END enabling are on the same CPU, and some enabling in the middle
2674 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2675 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2676 	 * then set it aside.  We will then process every other CPU, and then
2677 	 * we'll return to the BEGIN CPU and process the rest of the data
2678 	 * (which will inevitably include the END probe, if any).  Making this
2679 	 * even more complicated (!) is the library's ERROR enabling.  Because
2680 	 * this enabling is processed before we even get into the consume call
2681 	 * back, any ERROR firing would result in the library's ERROR enabling
2682 	 * being processed twice -- once in our first pass (for BEGIN probes),
2683 	 * and again in our second pass (for everything but BEGIN probes).  To
2684 	 * deal with this, we interpose on the ERROR handler to assure that we
2685 	 * only process ERROR enablings induced by BEGIN enablings in the
2686 	 * first pass, and that we only process ERROR enablings _not_ induced
2687 	 * by BEGIN enablings in the second pass.
2688 	 */
2689 
2690 	dt_begin_t begin;
2691 	processorid_t cpu = dtp->dt_beganon;
2692 	int rval, i;
2693 	static int max_ncpus;
2694 	dtrace_bufdesc_t *buf;
2695 
2696 	dtp->dt_beganon = -1;
2697 
2698 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2699 		return (-1);
2700 	if (buf == NULL)
2701 		return (0);
2702 
2703 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2704 		/*
2705 		 * This is the simple case.  We're either not stopped, or if
2706 		 * we are, we actually processed any END probes on another
2707 		 * CPU.  We can simply consume this buffer and return.
2708 		 */
2709 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2710 		    pf, rf, arg);
2711 		dt_put_buf(dtp, buf);
2712 		return (rval);
2713 	}
2714 
2715 	begin.dtbgn_probefunc = pf;
2716 	begin.dtbgn_recfunc = rf;
2717 	begin.dtbgn_arg = arg;
2718 	begin.dtbgn_beginonly = 1;
2719 
2720 	/*
2721 	 * We need to interpose on the ERROR handler to be sure that we
2722 	 * only process ERRORs induced by BEGIN.
2723 	 */
2724 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2725 	begin.dtbgn_errarg = dtp->dt_errarg;
2726 	dtp->dt_errhdlr = dt_consume_begin_error;
2727 	dtp->dt_errarg = &begin;
2728 
2729 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2730 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2731 
2732 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2733 	dtp->dt_errarg = begin.dtbgn_errarg;
2734 
2735 	if (rval != 0) {
2736 		dt_put_buf(dtp, buf);
2737 		return (rval);
2738 	}
2739 
2740 	if (max_ncpus == 0)
2741 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2742 
2743 	for (i = 0; i < max_ncpus; i++) {
2744 		dtrace_bufdesc_t *nbuf;
2745 		if (i == cpu)
2746 			continue;
2747 
2748 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2749 			dt_put_buf(dtp, buf);
2750 			return (-1);
2751 		}
2752 		if (nbuf == NULL)
2753 			continue;
2754 
2755 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2756 		    pf, rf, arg);
2757 		dt_put_buf(dtp, nbuf);
2758 		if (rval != 0) {
2759 			dt_put_buf(dtp, buf);
2760 			return (rval);
2761 		}
2762 	}
2763 
2764 	/*
2765 	 * Okay -- we're done with the other buffers.  Now we want to
2766 	 * reconsume the first buffer -- but this time we're looking for
2767 	 * everything _but_ BEGIN.  And of course, in order to only consume
2768 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2769 	 * ERROR interposition function...
2770 	 */
2771 	begin.dtbgn_beginonly = 0;
2772 
2773 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2774 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2775 	dtp->dt_errhdlr = dt_consume_begin_error;
2776 	dtp->dt_errarg = &begin;
2777 
2778 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2779 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2780 
2781 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2782 	dtp->dt_errarg = begin.dtbgn_errarg;
2783 
2784 	return (rval);
2785 }
2786 
2787 /* ARGSUSED */
2788 static uint64_t
2789 dt_buf_oldest(void *elem, void *arg)
2790 {
2791 	dtrace_bufdesc_t *buf = elem;
2792 	size_t offs = buf->dtbd_oldest;
2793 
2794 	while (offs < buf->dtbd_size) {
2795 		dtrace_rechdr_t *dtrh =
2796 		    /* LINTED - alignment */
2797 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2798 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2799 			offs += sizeof (dtrace_epid_t);
2800 		} else {
2801 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2802 		}
2803 	}
2804 
2805 	/* There are no records left; use the time the buffer was retrieved. */
2806 	return (buf->dtbd_timestamp);
2807 }
2808 
2809 int
2810 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2811     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2812 {
2813 	dtrace_optval_t size;
2814 	static int max_ncpus;
2815 	int i, rval;
2816 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2817 	hrtime_t now = gethrtime();
2818 
2819 	if (dtp->dt_lastswitch != 0) {
2820 		if (now - dtp->dt_lastswitch < interval)
2821 			return (0);
2822 
2823 		dtp->dt_lastswitch += interval;
2824 	} else {
2825 		dtp->dt_lastswitch = now;
2826 	}
2827 
2828 	if (!dtp->dt_active)
2829 		return (dt_set_errno(dtp, EINVAL));
2830 
2831 	if (max_ncpus == 0)
2832 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2833 
2834 	if (pf == NULL)
2835 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2836 
2837 	if (rf == NULL)
2838 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2839 
2840 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2841 		/*
2842 		 * The output will not be in the order it was traced.  Rather,
2843 		 * we will consume all of the data from each CPU's buffer in
2844 		 * turn.  We apply special handling for the records from BEGIN
2845 		 * and END probes so that they are consumed first and last,
2846 		 * respectively.
2847 		 *
2848 		 * If we have just begun, we want to first process the CPU that
2849 		 * executed the BEGIN probe (if any).
2850 		 */
2851 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2852 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2853 			return (rval);
2854 
2855 		for (i = 0; i < max_ncpus; i++) {
2856 			dtrace_bufdesc_t *buf;
2857 
2858 			/*
2859 			 * If we have stopped, we want to process the CPU on
2860 			 * which the END probe was processed only _after_ we
2861 			 * have processed everything else.
2862 			 */
2863 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2864 				continue;
2865 
2866 			if (dt_get_buf(dtp, i, &buf) != 0)
2867 				return (-1);
2868 			if (buf == NULL)
2869 				continue;
2870 
2871 			dtp->dt_flow = 0;
2872 			dtp->dt_indent = 0;
2873 			dtp->dt_prefix = NULL;
2874 			rval = dt_consume_cpu(dtp, fp, i,
2875 			    buf, B_FALSE, pf, rf, arg);
2876 			dt_put_buf(dtp, buf);
2877 			if (rval != 0)
2878 				return (rval);
2879 		}
2880 		if (dtp->dt_stopped) {
2881 			dtrace_bufdesc_t *buf;
2882 
2883 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2884 				return (-1);
2885 			if (buf == NULL)
2886 				return (0);
2887 
2888 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2889 			    buf, B_FALSE, pf, rf, arg);
2890 			dt_put_buf(dtp, buf);
2891 			return (rval);
2892 		}
2893 	} else {
2894 		/*
2895 		 * The output will be in the order it was traced (or for
2896 		 * speculations, when it was committed).  We retrieve a buffer
2897 		 * from each CPU and put it into a priority queue, which sorts
2898 		 * based on the first entry in the buffer.  This is sufficient
2899 		 * because entries within a buffer are already sorted.
2900 		 *
2901 		 * We then consume records one at a time, always consuming the
2902 		 * oldest record, as determined by the priority queue.  When
2903 		 * we reach the end of the time covered by these buffers,
2904 		 * we need to stop and retrieve more records on the next pass.
2905 		 * The kernel tells us the time covered by each buffer, in
2906 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2907 		 * time covered by all buffers, as subsequently retrieved
2908 		 * buffers will cover to a more recent time.
2909 		 */
2910 
2911 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2912 		uint64_t first_timestamp = 0;
2913 		uint_t cookie = 0;
2914 		dtrace_bufdesc_t *buf;
2915 
2916 		bzero(drops, max_ncpus * sizeof (uint64_t));
2917 
2918 		if (dtp->dt_bufq == NULL) {
2919 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2920 			    dt_buf_oldest, NULL);
2921 			if (dtp->dt_bufq == NULL) /* ENOMEM */
2922 				return (-1);
2923 		}
2924 
2925 		/* Retrieve data from each CPU. */
2926 		(void) dtrace_getopt(dtp, "bufsize", &size);
2927 		for (i = 0; i < max_ncpus; i++) {
2928 			dtrace_bufdesc_t *buf;
2929 
2930 			if (dt_get_buf(dtp, i, &buf) != 0)
2931 				return (-1);
2932 			if (buf != NULL) {
2933 				if (first_timestamp == 0)
2934 					first_timestamp = buf->dtbd_timestamp;
2935 				assert(buf->dtbd_timestamp >= first_timestamp);
2936 
2937 				dt_pq_insert(dtp->dt_bufq, buf);
2938 				drops[i] = buf->dtbd_drops;
2939 				buf->dtbd_drops = 0;
2940 			}
2941 		}
2942 
2943 		/* Consume records. */
2944 		for (;;) {
2945 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
2946 			uint64_t timestamp;
2947 
2948 			if (buf == NULL)
2949 				break;
2950 
2951 			timestamp = dt_buf_oldest(buf, dtp);
2952 			/* XXX: assert(timestamp >= dtp->dt_last_timestamp); */
2953 			dtp->dt_last_timestamp = timestamp;
2954 
2955 			if (timestamp == buf->dtbd_timestamp) {
2956 				/*
2957 				 * We've reached the end of the time covered
2958 				 * by this buffer.  If this is the oldest
2959 				 * buffer, we must do another pass
2960 				 * to retrieve more data.
2961 				 */
2962 				dt_put_buf(dtp, buf);
2963 				if (timestamp == first_timestamp &&
2964 				    !dtp->dt_stopped)
2965 					break;
2966 				continue;
2967 			}
2968 
2969 			if ((rval = dt_consume_cpu(dtp, fp,
2970 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
2971 				return (rval);
2972 			dt_pq_insert(dtp->dt_bufq, buf);
2973 		}
2974 
2975 		/* Consume drops. */
2976 		for (i = 0; i < max_ncpus; i++) {
2977 			if (drops[i] != 0) {
2978 				int error = dt_handle_cpudrop(dtp, i,
2979 				    DTRACEDROP_PRINCIPAL, drops[i]);
2980 				if (error != 0)
2981 					return (error);
2982 			}
2983 		}
2984 
2985 		/*
2986 		 * Reduce memory usage by re-allocating smaller buffers
2987 		 * for the "remnants".
2988 		 */
2989 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
2990 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
2991 	}
2992 
2993 	return (0);
2994 }
2995