xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision 94e3ee44c3581ff37c5e01b5ffe5eb16d30079a7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdlib.h>
27 #include <strings.h>
28 #include <errno.h>
29 #include <unistd.h>
30 #include <limits.h>
31 #include <assert.h>
32 #include <ctype.h>
33 #if defined(sun)
34 #include <alloca.h>
35 #endif
36 #include <dt_impl.h>
37 #if !defined(sun)
38 #include <libproc_compat.h>
39 #endif
40 
41 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
42 
43 /*
44  * We declare this here because (1) we need it and (2) we want to avoid a
45  * dependency on libm in libdtrace.
46  */
47 static long double
48 dt_fabsl(long double x)
49 {
50 	if (x < 0)
51 		return (-x);
52 
53 	return (x);
54 }
55 
56 /*
57  * 128-bit arithmetic functions needed to support the stddev() aggregating
58  * action.
59  */
60 static int
61 dt_gt_128(uint64_t *a, uint64_t *b)
62 {
63 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
64 }
65 
66 static int
67 dt_ge_128(uint64_t *a, uint64_t *b)
68 {
69 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
70 }
71 
72 static int
73 dt_le_128(uint64_t *a, uint64_t *b)
74 {
75 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
76 }
77 
78 /*
79  * Shift the 128-bit value in a by b. If b is positive, shift left.
80  * If b is negative, shift right.
81  */
82 static void
83 dt_shift_128(uint64_t *a, int b)
84 {
85 	uint64_t mask;
86 
87 	if (b == 0)
88 		return;
89 
90 	if (b < 0) {
91 		b = -b;
92 		if (b >= 64) {
93 			a[0] = a[1] >> (b - 64);
94 			a[1] = 0;
95 		} else {
96 			a[0] >>= b;
97 			mask = 1LL << (64 - b);
98 			mask -= 1;
99 			a[0] |= ((a[1] & mask) << (64 - b));
100 			a[1] >>= b;
101 		}
102 	} else {
103 		if (b >= 64) {
104 			a[1] = a[0] << (b - 64);
105 			a[0] = 0;
106 		} else {
107 			a[1] <<= b;
108 			mask = a[0] >> (64 - b);
109 			a[1] |= mask;
110 			a[0] <<= b;
111 		}
112 	}
113 }
114 
115 static int
116 dt_nbits_128(uint64_t *a)
117 {
118 	int nbits = 0;
119 	uint64_t tmp[2];
120 	uint64_t zero[2] = { 0, 0 };
121 
122 	tmp[0] = a[0];
123 	tmp[1] = a[1];
124 
125 	dt_shift_128(tmp, -1);
126 	while (dt_gt_128(tmp, zero)) {
127 		dt_shift_128(tmp, -1);
128 		nbits++;
129 	}
130 
131 	return (nbits);
132 }
133 
134 static void
135 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
136 {
137 	uint64_t result[2];
138 
139 	result[0] = minuend[0] - subtrahend[0];
140 	result[1] = minuend[1] - subtrahend[1] -
141 	    (minuend[0] < subtrahend[0] ? 1 : 0);
142 
143 	difference[0] = result[0];
144 	difference[1] = result[1];
145 }
146 
147 static void
148 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
149 {
150 	uint64_t result[2];
151 
152 	result[0] = addend1[0] + addend2[0];
153 	result[1] = addend1[1] + addend2[1] +
154 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
155 
156 	sum[0] = result[0];
157 	sum[1] = result[1];
158 }
159 
160 /*
161  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
162  * use native multiplication on those, and then re-combine into the
163  * resulting 128-bit value.
164  *
165  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
166  *     hi1 * hi2 << 64 +
167  *     hi1 * lo2 << 32 +
168  *     hi2 * lo1 << 32 +
169  *     lo1 * lo2
170  */
171 static void
172 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
173 {
174 	uint64_t hi1, hi2, lo1, lo2;
175 	uint64_t tmp[2];
176 
177 	hi1 = factor1 >> 32;
178 	hi2 = factor2 >> 32;
179 
180 	lo1 = factor1 & DT_MASK_LO;
181 	lo2 = factor2 & DT_MASK_LO;
182 
183 	product[0] = lo1 * lo2;
184 	product[1] = hi1 * hi2;
185 
186 	tmp[0] = hi1 * lo2;
187 	tmp[1] = 0;
188 	dt_shift_128(tmp, 32);
189 	dt_add_128(product, tmp, product);
190 
191 	tmp[0] = hi2 * lo1;
192 	tmp[1] = 0;
193 	dt_shift_128(tmp, 32);
194 	dt_add_128(product, tmp, product);
195 }
196 
197 /*
198  * This is long-hand division.
199  *
200  * We initialize subtrahend by shifting divisor left as far as possible. We
201  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
202  * subtract and set the appropriate bit in the result.  We then shift
203  * subtrahend right by one bit for the next comparison.
204  */
205 static void
206 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
207 {
208 	uint64_t result[2] = { 0, 0 };
209 	uint64_t remainder[2];
210 	uint64_t subtrahend[2];
211 	uint64_t divisor_128[2];
212 	uint64_t mask[2] = { 1, 0 };
213 	int log = 0;
214 
215 	assert(divisor != 0);
216 
217 	divisor_128[0] = divisor;
218 	divisor_128[1] = 0;
219 
220 	remainder[0] = dividend[0];
221 	remainder[1] = dividend[1];
222 
223 	subtrahend[0] = divisor;
224 	subtrahend[1] = 0;
225 
226 	while (divisor > 0) {
227 		log++;
228 		divisor >>= 1;
229 	}
230 
231 	dt_shift_128(subtrahend, 128 - log);
232 	dt_shift_128(mask, 128 - log);
233 
234 	while (dt_ge_128(remainder, divisor_128)) {
235 		if (dt_ge_128(remainder, subtrahend)) {
236 			dt_subtract_128(remainder, subtrahend, remainder);
237 			result[0] |= mask[0];
238 			result[1] |= mask[1];
239 		}
240 
241 		dt_shift_128(subtrahend, -1);
242 		dt_shift_128(mask, -1);
243 	}
244 
245 	quotient[0] = result[0];
246 	quotient[1] = result[1];
247 }
248 
249 /*
250  * This is the long-hand method of calculating a square root.
251  * The algorithm is as follows:
252  *
253  * 1. Group the digits by 2 from the right.
254  * 2. Over the leftmost group, find the largest single-digit number
255  *    whose square is less than that group.
256  * 3. Subtract the result of the previous step (2 or 4, depending) and
257  *    bring down the next two-digit group.
258  * 4. For the result R we have so far, find the largest single-digit number
259  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
260  *    (Note that this is doubling R and performing a decimal left-shift by 1
261  *    and searching for the appropriate decimal to fill the one's place.)
262  *    The value x is the next digit in the square root.
263  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
264  * dealing with integers, so the above is sufficient.)
265  *
266  * In decimal, the square root of 582,734 would be calculated as so:
267  *
268  *     __7__6__3
269  *    | 58 27 34
270  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
271  *      --
272  *       9 27    (Subtract and bring down the next group.)
273  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
274  *      -----     the square root)
275  *         51 34 (Subtract and bring down the next group.)
276  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
277  *         -----  the square root)
278  *          5 65 (remainder)
279  *
280  * The above algorithm applies similarly in binary, but note that the
281  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
282  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
283  * preceding difference?
284  *
285  * In binary, the square root of 11011011 would be calculated as so:
286  *
287  *     __1__1__1__0
288  *    | 11 01 10 11
289  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
290  *      --
291  *      10 01 10 11
292  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
293  *      -----
294  *       1 00 10 11
295  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
296  *       -------
297  *          1 01 11
298  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
299  *
300  */
301 static uint64_t
302 dt_sqrt_128(uint64_t *square)
303 {
304 	uint64_t result[2] = { 0, 0 };
305 	uint64_t diff[2] = { 0, 0 };
306 	uint64_t one[2] = { 1, 0 };
307 	uint64_t next_pair[2];
308 	uint64_t next_try[2];
309 	uint64_t bit_pairs, pair_shift;
310 	int i;
311 
312 	bit_pairs = dt_nbits_128(square) / 2;
313 	pair_shift = bit_pairs * 2;
314 
315 	for (i = 0; i <= bit_pairs; i++) {
316 		/*
317 		 * Bring down the next pair of bits.
318 		 */
319 		next_pair[0] = square[0];
320 		next_pair[1] = square[1];
321 		dt_shift_128(next_pair, -pair_shift);
322 		next_pair[0] &= 0x3;
323 		next_pair[1] = 0;
324 
325 		dt_shift_128(diff, 2);
326 		dt_add_128(diff, next_pair, diff);
327 
328 		/*
329 		 * next_try = R << 2 + 1
330 		 */
331 		next_try[0] = result[0];
332 		next_try[1] = result[1];
333 		dt_shift_128(next_try, 2);
334 		dt_add_128(next_try, one, next_try);
335 
336 		if (dt_le_128(next_try, diff)) {
337 			dt_subtract_128(diff, next_try, diff);
338 			dt_shift_128(result, 1);
339 			dt_add_128(result, one, result);
340 		} else {
341 			dt_shift_128(result, 1);
342 		}
343 
344 		pair_shift -= 2;
345 	}
346 
347 	assert(result[1] == 0);
348 
349 	return (result[0]);
350 }
351 
352 uint64_t
353 dt_stddev(uint64_t *data, uint64_t normal)
354 {
355 	uint64_t avg_of_squares[2];
356 	uint64_t square_of_avg[2];
357 	int64_t norm_avg;
358 	uint64_t diff[2];
359 
360 	/*
361 	 * The standard approximation for standard deviation is
362 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
363 	 * of the average of the squares minus the square of the average.
364 	 */
365 	dt_divide_128(data + 2, normal, avg_of_squares);
366 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
367 
368 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
369 
370 	if (norm_avg < 0)
371 		norm_avg = -norm_avg;
372 
373 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
374 
375 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
376 
377 	return (dt_sqrt_128(diff));
378 }
379 
380 static int
381 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
382     dtrace_bufdesc_t *buf, size_t offs)
383 {
384 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
385 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
386 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
387 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
388 	const char *str = NULL;
389 	static const char *e_str[2] = { " -> ", " => " };
390 	static const char *r_str[2] = { " <- ", " <= " };
391 	static const char *ent = "entry", *ret = "return";
392 	static int entlen = 0, retlen = 0;
393 	dtrace_epid_t next, id = epd->dtepd_epid;
394 	int rval;
395 
396 	if (entlen == 0) {
397 		assert(retlen == 0);
398 		entlen = strlen(ent);
399 		retlen = strlen(ret);
400 	}
401 
402 	/*
403 	 * If the name of the probe is "entry" or ends with "-entry", we
404 	 * treat it as an entry; if it is "return" or ends with "-return",
405 	 * we treat it as a return.  (This allows application-provided probes
406 	 * like "method-entry" or "function-entry" to participate in flow
407 	 * indentation -- without accidentally misinterpreting popular probe
408 	 * names like "carpentry", "gentry" or "Coventry".)
409 	 */
410 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
411 	    (sub == n || sub[-1] == '-')) {
412 		flow = DTRACEFLOW_ENTRY;
413 		str = e_str[strcmp(p, "syscall") == 0];
414 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
415 	    (sub == n || sub[-1] == '-')) {
416 		flow = DTRACEFLOW_RETURN;
417 		str = r_str[strcmp(p, "syscall") == 0];
418 	}
419 
420 	/*
421 	 * If we're going to indent this, we need to check the ID of our last
422 	 * call.  If we're looking at the same probe ID but a different EPID,
423 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
424 	 * this scheme -- it's a heuristic.)
425 	 */
426 	if (flow == DTRACEFLOW_ENTRY) {
427 		if ((last != DTRACE_EPIDNONE && id != last &&
428 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
429 			flow = DTRACEFLOW_NONE;
430 	}
431 
432 	/*
433 	 * If we're going to unindent this, it's more difficult to see if
434 	 * we don't actually want to unindent it -- we need to look at the
435 	 * _next_ EPID.
436 	 */
437 	if (flow == DTRACEFLOW_RETURN) {
438 		offs += epd->dtepd_size;
439 
440 		do {
441 			if (offs >= buf->dtbd_size) {
442 				/*
443 				 * We're at the end -- maybe.  If the oldest
444 				 * record is non-zero, we need to wrap.
445 				 */
446 				if (buf->dtbd_oldest != 0) {
447 					offs = 0;
448 				} else {
449 					goto out;
450 				}
451 			}
452 
453 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
454 
455 			if (next == DTRACE_EPIDNONE)
456 				offs += sizeof (id);
457 		} while (next == DTRACE_EPIDNONE);
458 
459 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
460 			return (rval);
461 
462 		if (next != id && npd->dtpd_id == pd->dtpd_id)
463 			flow = DTRACEFLOW_NONE;
464 	}
465 
466 out:
467 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
468 		data->dtpda_prefix = str;
469 	} else {
470 		data->dtpda_prefix = "| ";
471 	}
472 
473 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
474 		data->dtpda_indent -= 2;
475 
476 	data->dtpda_flow = flow;
477 
478 	return (0);
479 }
480 
481 static int
482 dt_nullprobe()
483 {
484 	return (DTRACE_CONSUME_THIS);
485 }
486 
487 static int
488 dt_nullrec()
489 {
490 	return (DTRACE_CONSUME_NEXT);
491 }
492 
493 int
494 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
495     uint64_t normal, long double total, char positives, char negatives)
496 {
497 	long double f;
498 	uint_t depth, len = 40;
499 
500 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
501 	const char *spaces = "                                        ";
502 
503 	assert(strlen(ats) == len && strlen(spaces) == len);
504 	assert(!(total == 0 && (positives || negatives)));
505 	assert(!(val < 0 && !negatives));
506 	assert(!(val > 0 && !positives));
507 	assert(!(val != 0 && total == 0));
508 
509 	if (!negatives) {
510 		if (positives) {
511 			f = (dt_fabsl((long double)val) * len) / total;
512 			depth = (uint_t)(f + 0.5);
513 		} else {
514 			depth = 0;
515 		}
516 
517 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
518 		    spaces + depth, (long long)val / normal));
519 	}
520 
521 	if (!positives) {
522 		f = (dt_fabsl((long double)val) * len) / total;
523 		depth = (uint_t)(f + 0.5);
524 
525 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
526 		    ats + len - depth, (long long)val / normal));
527 	}
528 
529 	/*
530 	 * If we're here, we have both positive and negative bucket values.
531 	 * To express this graphically, we're going to generate both positive
532 	 * and negative bars separated by a centerline.  These bars are half
533 	 * the size of normal quantize()/lquantize() bars, so we divide the
534 	 * length in half before calculating the bar length.
535 	 */
536 	len /= 2;
537 	ats = &ats[len];
538 	spaces = &spaces[len];
539 
540 	f = (dt_fabsl((long double)val) * len) / total;
541 	depth = (uint_t)(f + 0.5);
542 
543 	if (val <= 0) {
544 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
545 		    ats + len - depth, len, "", (long long)val / normal));
546 	} else {
547 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
548 		    ats + len - depth, spaces + depth,
549 		    (long long)val / normal));
550 	}
551 }
552 
553 int
554 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
555     size_t size, uint64_t normal)
556 {
557 	const int64_t *data = addr;
558 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
559 	long double total = 0;
560 	char positives = 0, negatives = 0;
561 
562 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
563 		return (dt_set_errno(dtp, EDT_DMISMATCH));
564 
565 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
566 		first_bin++;
567 
568 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
569 		/*
570 		 * There isn't any data.  This is possible if (and only if)
571 		 * negative increment values have been used.  In this case,
572 		 * we'll print the buckets around 0.
573 		 */
574 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
575 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
576 	} else {
577 		if (first_bin > 0)
578 			first_bin--;
579 
580 		while (last_bin > 0 && data[last_bin] == 0)
581 			last_bin--;
582 
583 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
584 			last_bin++;
585 	}
586 
587 	for (i = first_bin; i <= last_bin; i++) {
588 		positives |= (data[i] > 0);
589 		negatives |= (data[i] < 0);
590 		total += dt_fabsl((long double)data[i]);
591 	}
592 
593 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
594 	    "------------- Distribution -------------", "count") < 0)
595 		return (-1);
596 
597 	for (i = first_bin; i <= last_bin; i++) {
598 		if (dt_printf(dtp, fp, "%16lld ",
599 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
600 			return (-1);
601 
602 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
603 		    positives, negatives) < 0)
604 			return (-1);
605 	}
606 
607 	return (0);
608 }
609 
610 int
611 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
612     size_t size, uint64_t normal)
613 {
614 	const int64_t *data = addr;
615 	int i, first_bin, last_bin, base;
616 	uint64_t arg;
617 	long double total = 0;
618 	uint16_t step, levels;
619 	char positives = 0, negatives = 0;
620 
621 	if (size < sizeof (uint64_t))
622 		return (dt_set_errno(dtp, EDT_DMISMATCH));
623 
624 	arg = *data++;
625 	size -= sizeof (uint64_t);
626 
627 	base = DTRACE_LQUANTIZE_BASE(arg);
628 	step = DTRACE_LQUANTIZE_STEP(arg);
629 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
630 
631 	first_bin = 0;
632 	last_bin = levels + 1;
633 
634 	if (size != sizeof (uint64_t) * (levels + 2))
635 		return (dt_set_errno(dtp, EDT_DMISMATCH));
636 
637 	while (first_bin <= levels + 1 && data[first_bin] == 0)
638 		first_bin++;
639 
640 	if (first_bin > levels + 1) {
641 		first_bin = 0;
642 		last_bin = 2;
643 	} else {
644 		if (first_bin > 0)
645 			first_bin--;
646 
647 		while (last_bin > 0 && data[last_bin] == 0)
648 			last_bin--;
649 
650 		if (last_bin < levels + 1)
651 			last_bin++;
652 	}
653 
654 	for (i = first_bin; i <= last_bin; i++) {
655 		positives |= (data[i] > 0);
656 		negatives |= (data[i] < 0);
657 		total += dt_fabsl((long double)data[i]);
658 	}
659 
660 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
661 	    "------------- Distribution -------------", "count") < 0)
662 		return (-1);
663 
664 	for (i = first_bin; i <= last_bin; i++) {
665 		char c[32];
666 		int err;
667 
668 		if (i == 0) {
669 			(void) snprintf(c, sizeof (c), "< %d",
670 			    base / (uint32_t)normal);
671 			err = dt_printf(dtp, fp, "%16s ", c);
672 		} else if (i == levels + 1) {
673 			(void) snprintf(c, sizeof (c), ">= %d",
674 			    base + (levels * step));
675 			err = dt_printf(dtp, fp, "%16s ", c);
676 		} else {
677 			err = dt_printf(dtp, fp, "%16d ",
678 			    base + (i - 1) * step);
679 		}
680 
681 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
682 		    total, positives, negatives) < 0)
683 			return (-1);
684 	}
685 
686 	return (0);
687 }
688 
689 /*ARGSUSED*/
690 static int
691 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
692     size_t size, uint64_t normal)
693 {
694 	/* LINTED - alignment */
695 	int64_t *data = (int64_t *)addr;
696 
697 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
698 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
699 }
700 
701 /*ARGSUSED*/
702 static int
703 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
704     size_t size, uint64_t normal)
705 {
706 	/* LINTED - alignment */
707 	uint64_t *data = (uint64_t *)addr;
708 
709 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
710 	    (unsigned long long) dt_stddev(data, normal) : 0));
711 }
712 
713 /*ARGSUSED*/
714 int
715 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
716     size_t nbytes, int width, int quiet, int raw)
717 {
718 	/*
719 	 * If the byte stream is a series of printable characters, followed by
720 	 * a terminating byte, we print it out as a string.  Otherwise, we
721 	 * assume that it's something else and just print the bytes.
722 	 */
723 	int i, j, margin = 5;
724 	char *c = (char *)addr;
725 
726 	if (nbytes == 0)
727 		return (0);
728 
729 	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
730 		goto raw;
731 
732 	for (i = 0; i < nbytes; i++) {
733 		/*
734 		 * We define a "printable character" to be one for which
735 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
736 		 * or a character which is either backspace or the bell.
737 		 * Backspace and the bell are regrettably special because
738 		 * they fail the first two tests -- and yet they are entirely
739 		 * printable.  These are the only two control characters that
740 		 * have meaning for the terminal and for which isprint(3C) and
741 		 * isspace(3C) return 0.
742 		 */
743 		if (isprint(c[i]) || isspace(c[i]) ||
744 		    c[i] == '\b' || c[i] == '\a')
745 			continue;
746 
747 		if (c[i] == '\0' && i > 0) {
748 			/*
749 			 * This looks like it might be a string.  Before we
750 			 * assume that it is indeed a string, check the
751 			 * remainder of the byte range; if it contains
752 			 * additional non-nul characters, we'll assume that
753 			 * it's a binary stream that just happens to look like
754 			 * a string, and we'll print out the individual bytes.
755 			 */
756 			for (j = i + 1; j < nbytes; j++) {
757 				if (c[j] != '\0')
758 					break;
759 			}
760 
761 			if (j != nbytes)
762 				break;
763 
764 			if (quiet)
765 				return (dt_printf(dtp, fp, "%s", c));
766 			else
767 				return (dt_printf(dtp, fp, "  %-*s", width, c));
768 		}
769 
770 		break;
771 	}
772 
773 	if (i == nbytes) {
774 		/*
775 		 * The byte range is all printable characters, but there is
776 		 * no trailing nul byte.  We'll assume that it's a string and
777 		 * print it as such.
778 		 */
779 		char *s = alloca(nbytes + 1);
780 		bcopy(c, s, nbytes);
781 		s[nbytes] = '\0';
782 		return (dt_printf(dtp, fp, "  %-*s", width, s));
783 	}
784 
785 raw:
786 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
787 		return (-1);
788 
789 	for (i = 0; i < 16; i++)
790 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
791 			return (-1);
792 
793 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
794 		return (-1);
795 
796 
797 	for (i = 0; i < nbytes; i += 16) {
798 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
799 			return (-1);
800 
801 		for (j = i; j < i + 16 && j < nbytes; j++) {
802 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
803 				return (-1);
804 		}
805 
806 		while (j++ % 16) {
807 			if (dt_printf(dtp, fp, "   ") < 0)
808 				return (-1);
809 		}
810 
811 		if (dt_printf(dtp, fp, "  ") < 0)
812 			return (-1);
813 
814 		for (j = i; j < i + 16 && j < nbytes; j++) {
815 			if (dt_printf(dtp, fp, "%c",
816 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
817 				return (-1);
818 		}
819 
820 		if (dt_printf(dtp, fp, "\n") < 0)
821 			return (-1);
822 	}
823 
824 	return (0);
825 }
826 
827 int
828 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
829     caddr_t addr, int depth, int size)
830 {
831 	dtrace_syminfo_t dts;
832 	GElf_Sym sym;
833 	int i, indent;
834 	char c[PATH_MAX * 2];
835 	uint64_t pc;
836 
837 	if (dt_printf(dtp, fp, "\n") < 0)
838 		return (-1);
839 
840 	if (format == NULL)
841 		format = "%s";
842 
843 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
844 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
845 	else
846 		indent = _dtrace_stkindent;
847 
848 	for (i = 0; i < depth; i++) {
849 		switch (size) {
850 		case sizeof (uint32_t):
851 			/* LINTED - alignment */
852 			pc = *((uint32_t *)addr);
853 			break;
854 
855 		case sizeof (uint64_t):
856 			/* LINTED - alignment */
857 			pc = *((uint64_t *)addr);
858 			break;
859 
860 		default:
861 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
862 		}
863 
864 		if (pc == 0)
865 			break;
866 
867 		addr += size;
868 
869 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
870 			return (-1);
871 
872 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
873 			if (pc > sym.st_value) {
874 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
875 				    dts.dts_object, dts.dts_name,
876 				    (u_longlong_t)(pc - sym.st_value));
877 			} else {
878 				(void) snprintf(c, sizeof (c), "%s`%s",
879 				    dts.dts_object, dts.dts_name);
880 			}
881 		} else {
882 			/*
883 			 * We'll repeat the lookup, but this time we'll specify
884 			 * a NULL GElf_Sym -- indicating that we're only
885 			 * interested in the containing module.
886 			 */
887 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
888 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
889 				    dts.dts_object, (u_longlong_t)pc);
890 			} else {
891 				(void) snprintf(c, sizeof (c), "0x%llx",
892 				    (u_longlong_t)pc);
893 			}
894 		}
895 
896 		if (dt_printf(dtp, fp, format, c) < 0)
897 			return (-1);
898 
899 		if (dt_printf(dtp, fp, "\n") < 0)
900 			return (-1);
901 	}
902 
903 	return (0);
904 }
905 
906 int
907 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
908     caddr_t addr, uint64_t arg)
909 {
910 	/* LINTED - alignment */
911 	uint64_t *pc = (uint64_t *)addr;
912 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
913 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
914 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
915 	const char *str = strsize ? strbase : NULL;
916 	int err = 0;
917 
918 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
919 	struct ps_prochandle *P;
920 	GElf_Sym sym;
921 	int i, indent;
922 	pid_t pid;
923 
924 	if (depth == 0)
925 		return (0);
926 
927 	pid = (pid_t)*pc++;
928 
929 	if (dt_printf(dtp, fp, "\n") < 0)
930 		return (-1);
931 
932 	if (format == NULL)
933 		format = "%s";
934 
935 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
936 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
937 	else
938 		indent = _dtrace_stkindent;
939 
940 	/*
941 	 * Ultimately, we need to add an entry point in the library vector for
942 	 * determining <symbol, offset> from <pid, address>.  For now, if
943 	 * this is a vector open, we just print the raw address or string.
944 	 */
945 	if (dtp->dt_vector == NULL)
946 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
947 	else
948 		P = NULL;
949 
950 	if (P != NULL)
951 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
952 
953 	for (i = 0; i < depth && pc[i] != 0; i++) {
954 		const prmap_t *map;
955 
956 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
957 			break;
958 
959 		if (P != NULL && Plookup_by_addr(P, pc[i],
960 		    name, sizeof (name), &sym) == 0) {
961 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
962 
963 			if (pc[i] > sym.st_value) {
964 				(void) snprintf(c, sizeof (c),
965 				    "%s`%s+0x%llx", dt_basename(objname), name,
966 				    (u_longlong_t)(pc[i] - sym.st_value));
967 			} else {
968 				(void) snprintf(c, sizeof (c),
969 				    "%s`%s", dt_basename(objname), name);
970 			}
971 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
972 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
973 		    (map->pr_mflags & MA_WRITE)))) {
974 			/*
975 			 * If the current string pointer in the string table
976 			 * does not point to an empty string _and_ the program
977 			 * counter falls in a writable region, we'll use the
978 			 * string from the string table instead of the raw
979 			 * address.  This last condition is necessary because
980 			 * some (broken) ustack helpers will return a string
981 			 * even for a program counter that they can't
982 			 * identify.  If we have a string for a program
983 			 * counter that falls in a segment that isn't
984 			 * writable, we assume that we have fallen into this
985 			 * case and we refuse to use the string.
986 			 */
987 			(void) snprintf(c, sizeof (c), "%s", str);
988 		} else {
989 			if (P != NULL && Pobjname(P, pc[i], objname,
990 			    sizeof (objname)) != 0) {
991 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
992 				    dt_basename(objname), (u_longlong_t)pc[i]);
993 			} else {
994 				(void) snprintf(c, sizeof (c), "0x%llx",
995 				    (u_longlong_t)pc[i]);
996 			}
997 		}
998 
999 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1000 			break;
1001 
1002 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1003 			break;
1004 
1005 		if (str != NULL && str[0] == '@') {
1006 			/*
1007 			 * If the first character of the string is an "at" sign,
1008 			 * then the string is inferred to be an annotation --
1009 			 * and it is printed out beneath the frame and offset
1010 			 * with brackets.
1011 			 */
1012 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1013 				break;
1014 
1015 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1016 
1017 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1018 				break;
1019 
1020 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1021 				break;
1022 		}
1023 
1024 		if (str != NULL) {
1025 			str += strlen(str) + 1;
1026 			if (str - strbase >= strsize)
1027 				str = NULL;
1028 		}
1029 	}
1030 
1031 	if (P != NULL) {
1032 		dt_proc_unlock(dtp, P);
1033 		dt_proc_release(dtp, P);
1034 	}
1035 
1036 	return (err);
1037 }
1038 
1039 static int
1040 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1041 {
1042 	/* LINTED - alignment */
1043 	uint64_t pid = ((uint64_t *)addr)[0];
1044 	/* LINTED - alignment */
1045 	uint64_t pc = ((uint64_t *)addr)[1];
1046 	const char *format = "  %-50s";
1047 	char *s;
1048 	int n, len = 256;
1049 
1050 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1051 		struct ps_prochandle *P;
1052 
1053 		if ((P = dt_proc_grab(dtp, pid,
1054 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1055 			GElf_Sym sym;
1056 
1057 			dt_proc_lock(dtp, P);
1058 
1059 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1060 				pc = sym.st_value;
1061 
1062 			dt_proc_unlock(dtp, P);
1063 			dt_proc_release(dtp, P);
1064 		}
1065 	}
1066 
1067 	do {
1068 		n = len;
1069 		s = alloca(n);
1070 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1071 
1072 	return (dt_printf(dtp, fp, format, s));
1073 }
1074 
1075 int
1076 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1077 {
1078 	/* LINTED - alignment */
1079 	uint64_t pid = ((uint64_t *)addr)[0];
1080 	/* LINTED - alignment */
1081 	uint64_t pc = ((uint64_t *)addr)[1];
1082 	int err = 0;
1083 
1084 	char objname[PATH_MAX], c[PATH_MAX * 2];
1085 	struct ps_prochandle *P;
1086 
1087 	if (format == NULL)
1088 		format = "  %-50s";
1089 
1090 	/*
1091 	 * See the comment in dt_print_ustack() for the rationale for
1092 	 * printing raw addresses in the vectored case.
1093 	 */
1094 	if (dtp->dt_vector == NULL)
1095 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1096 	else
1097 		P = NULL;
1098 
1099 	if (P != NULL)
1100 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1101 
1102 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1103 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1104 	} else {
1105 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1106 	}
1107 
1108 	err = dt_printf(dtp, fp, format, c);
1109 
1110 	if (P != NULL) {
1111 		dt_proc_unlock(dtp, P);
1112 		dt_proc_release(dtp, P);
1113 	}
1114 
1115 	return (err);
1116 }
1117 
1118 int
1119 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1120 {
1121 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1122 	size_t nbytes = *((uintptr_t *) addr);
1123 
1124 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1125 	    nbytes, 50, quiet, 1));
1126 }
1127 
1128 typedef struct dt_type_cbdata {
1129 	dtrace_hdl_t		*dtp;
1130 	dtrace_typeinfo_t	dtt;
1131 	caddr_t			addr;
1132 	caddr_t			addrend;
1133 	const char		*name;
1134 	int			f_type;
1135 	int			indent;
1136 	int			type_width;
1137 	int			name_width;
1138 	FILE			*fp;
1139 } dt_type_cbdata_t;
1140 
1141 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1142 
1143 static int
1144 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1145 {
1146 	dt_type_cbdata_t cbdata;
1147 	dt_type_cbdata_t *cbdatap = arg;
1148 	ssize_t ssz;
1149 
1150 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1151 		return (0);
1152 
1153 	off /= 8;
1154 
1155 	cbdata = *cbdatap;
1156 	cbdata.name = name;
1157 	cbdata.addr += off;
1158 	cbdata.addrend = cbdata.addr + ssz;
1159 
1160 	return (dt_print_type_data(&cbdata, type));
1161 }
1162 
1163 static int
1164 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1165 {
1166 	char buf[DT_TYPE_NAMELEN];
1167 	char *p;
1168 	dt_type_cbdata_t *cbdatap = arg;
1169 	size_t sz = strlen(name);
1170 
1171 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1172 
1173 	if ((p = strchr(buf, '[')) != NULL)
1174 		p[-1] = '\0';
1175 	else
1176 		p = "";
1177 
1178 	sz += strlen(p);
1179 
1180 	if (sz > cbdatap->name_width)
1181 		cbdatap->name_width = sz;
1182 
1183 	sz = strlen(buf);
1184 
1185 	if (sz > cbdatap->type_width)
1186 		cbdatap->type_width = sz;
1187 
1188 	return (0);
1189 }
1190 
1191 static int
1192 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1193 {
1194 	caddr_t addr = cbdatap->addr;
1195 	caddr_t addrend = cbdatap->addrend;
1196 	char buf[DT_TYPE_NAMELEN];
1197 	char *p;
1198 	int cnt = 0;
1199 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1200 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1201 
1202 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1203 
1204 	if ((p = strchr(buf, '[')) != NULL)
1205 		p[-1] = '\0';
1206 	else
1207 		p = "";
1208 
1209 	if (cbdatap->f_type) {
1210 		int type_width = roundup(cbdatap->type_width + 1, 4);
1211 		int name_width = roundup(cbdatap->name_width + 1, 4);
1212 
1213 		name_width -= strlen(cbdatap->name);
1214 
1215 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1216 	}
1217 
1218 	while (addr < addrend) {
1219 		dt_type_cbdata_t cbdata;
1220 		ctf_arinfo_t arinfo;
1221 		ctf_encoding_t cte;
1222 		uintptr_t *up;
1223 		void *vp = addr;
1224 		cbdata = *cbdatap;
1225 		cbdata.name = "";
1226 		cbdata.addr = addr;
1227 		cbdata.addrend = addr + ssz;
1228 		cbdata.f_type = 0;
1229 		cbdata.indent++;
1230 		cbdata.type_width = 0;
1231 		cbdata.name_width = 0;
1232 
1233 		if (cnt > 0)
1234 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1235 
1236 		switch (kind) {
1237 		case CTF_K_INTEGER:
1238 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1239 				return (-1);
1240 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1241 				switch (cte.cte_bits) {
1242 				case 8:
1243 					if (isprint(*((char *) vp)))
1244 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1245 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1246 					break;
1247 				case 16:
1248 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1249 					break;
1250 				case 32:
1251 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1252 					break;
1253 				case 64:
1254 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1255 					break;
1256 				default:
1257 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1258 					break;
1259 				}
1260 			else
1261 				switch (cte.cte_bits) {
1262 				case 8:
1263 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1264 					break;
1265 				case 16:
1266 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1267 					break;
1268 				case 32:
1269 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1270 					break;
1271 				case 64:
1272 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1273 					break;
1274 				default:
1275 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1276 					break;
1277 				}
1278 			break;
1279 		case CTF_K_FLOAT:
1280 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1281 			break;
1282 		case CTF_K_POINTER:
1283 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1284 			break;
1285 		case CTF_K_ARRAY:
1286 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1287 				return (-1);
1288 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1289 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1290 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1291 			break;
1292 		case CTF_K_FUNCTION:
1293 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1294 			break;
1295 		case CTF_K_STRUCT:
1296 			cbdata.f_type = 1;
1297 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1298 			    dt_print_type_width, &cbdata) != 0)
1299 				return (-1);
1300 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1301 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1302 			    dt_print_type_member, &cbdata) != 0)
1303 				return (-1);
1304 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1305 			break;
1306 		case CTF_K_UNION:
1307 			cbdata.f_type = 1;
1308 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1309 			    dt_print_type_width, &cbdata) != 0)
1310 				return (-1);
1311 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1312 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1313 			    dt_print_type_member, &cbdata) != 0)
1314 				return (-1);
1315 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1316 			break;
1317 		case CTF_K_ENUM:
1318 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1319 			break;
1320 		case CTF_K_TYPEDEF:
1321 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1322 			break;
1323 		case CTF_K_VOLATILE:
1324 			if (cbdatap->f_type)
1325 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1326 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1327 			break;
1328 		case CTF_K_CONST:
1329 			if (cbdatap->f_type)
1330 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1331 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1332 			break;
1333 		case CTF_K_RESTRICT:
1334 			if (cbdatap->f_type)
1335 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1336 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1337 			break;
1338 		default:
1339 			break;
1340 		}
1341 
1342 		addr += ssz;
1343 		cnt++;
1344 	}
1345 
1346 	return (0);
1347 }
1348 
1349 static int
1350 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1351 {
1352 	caddr_t addrend;
1353 	char *p;
1354 	dtrace_typeinfo_t dtt;
1355 	dt_type_cbdata_t cbdata;
1356 	int num = 0;
1357 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1358 	ssize_t ssz;
1359 
1360 	if (!quiet)
1361 		dt_printf(dtp, fp, "\n");
1362 
1363 	/* Get the total number of bytes of data buffered. */
1364 	size_t nbytes = *((uintptr_t *) addr);
1365 	addr += sizeof(uintptr_t);
1366 
1367 	/*
1368 	 * Get the size of the type so that we can check that it matches
1369 	 * the CTF data we look up and so that we can figure out how many
1370 	 * type elements are buffered.
1371 	 */
1372 	size_t typs = *((uintptr_t *) addr);
1373 	addr += sizeof(uintptr_t);
1374 
1375 	/*
1376 	 * Point to the type string in the buffer. Get it's string
1377 	 * length and round it up to become the offset to the start
1378 	 * of the buffered type data which we would like to be aligned
1379 	 * for easy access.
1380 	 */
1381 	char *strp = (char *) addr;
1382 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1383 
1384 	/*
1385 	 * The type string might have a format such as 'int [20]'.
1386 	 * Check if there is an array dimension present.
1387 	 */
1388 	if ((p = strchr(strp, '[')) != NULL) {
1389 		/* Strip off the array dimension. */
1390 		*p++ = '\0';
1391 
1392 		for (; *p != '\0' && *p != ']'; p++)
1393 			num = num * 10 + *p - '0';
1394 	} else
1395 		/* No array dimension, so default. */
1396 		num = 1;
1397 
1398 	/* Lookup the CTF type from the type string. */
1399 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1400 		return (-1);
1401 
1402 	/* Offset the buffer address to the start of the data... */
1403 	addr += offset;
1404 
1405 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1406 
1407 	if (typs != ssz) {
1408 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1409 		return (-1);
1410 	}
1411 
1412 	cbdata.dtp = dtp;
1413 	cbdata.dtt = dtt;
1414 	cbdata.name = "";
1415 	cbdata.addr = addr;
1416 	cbdata.addrend = addr + nbytes;
1417 	cbdata.indent = 1;
1418 	cbdata.f_type = 1;
1419 	cbdata.type_width = 0;
1420 	cbdata.name_width = 0;
1421 	cbdata.fp = fp;
1422 
1423 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1424 }
1425 
1426 static int
1427 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1428 {
1429 	/* LINTED - alignment */
1430 	uint64_t pc = *((uint64_t *)addr);
1431 	dtrace_syminfo_t dts;
1432 	GElf_Sym sym;
1433 	char c[PATH_MAX * 2];
1434 
1435 	if (format == NULL)
1436 		format = "  %-50s";
1437 
1438 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1439 		(void) snprintf(c, sizeof (c), "%s`%s",
1440 		    dts.dts_object, dts.dts_name);
1441 	} else {
1442 		/*
1443 		 * We'll repeat the lookup, but this time we'll specify a
1444 		 * NULL GElf_Sym -- indicating that we're only interested in
1445 		 * the containing module.
1446 		 */
1447 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1448 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1449 			    dts.dts_object, (u_longlong_t)pc);
1450 		} else {
1451 			(void) snprintf(c, sizeof (c), "0x%llx",
1452 			    (u_longlong_t)pc);
1453 		}
1454 	}
1455 
1456 	if (dt_printf(dtp, fp, format, c) < 0)
1457 		return (-1);
1458 
1459 	return (0);
1460 }
1461 
1462 int
1463 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1464 {
1465 	/* LINTED - alignment */
1466 	uint64_t pc = *((uint64_t *)addr);
1467 	dtrace_syminfo_t dts;
1468 	char c[PATH_MAX * 2];
1469 
1470 	if (format == NULL)
1471 		format = "  %-50s";
1472 
1473 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1474 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1475 	} else {
1476 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1477 	}
1478 
1479 	if (dt_printf(dtp, fp, format, c) < 0)
1480 		return (-1);
1481 
1482 	return (0);
1483 }
1484 
1485 typedef struct dt_normal {
1486 	dtrace_aggvarid_t dtnd_id;
1487 	uint64_t dtnd_normal;
1488 } dt_normal_t;
1489 
1490 static int
1491 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1492 {
1493 	dt_normal_t *normal = arg;
1494 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1495 	dtrace_aggvarid_t id = normal->dtnd_id;
1496 
1497 	if (agg->dtagd_nrecs == 0)
1498 		return (DTRACE_AGGWALK_NEXT);
1499 
1500 	if (agg->dtagd_varid != id)
1501 		return (DTRACE_AGGWALK_NEXT);
1502 
1503 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1504 	return (DTRACE_AGGWALK_NORMALIZE);
1505 }
1506 
1507 static int
1508 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1509 {
1510 	dt_normal_t normal;
1511 	caddr_t addr;
1512 
1513 	/*
1514 	 * We (should) have two records:  the aggregation ID followed by the
1515 	 * normalization value.
1516 	 */
1517 	addr = base + rec->dtrd_offset;
1518 
1519 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1520 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1521 
1522 	/* LINTED - alignment */
1523 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1524 	rec++;
1525 
1526 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1527 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1528 
1529 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1530 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1531 
1532 	addr = base + rec->dtrd_offset;
1533 
1534 	switch (rec->dtrd_size) {
1535 	case sizeof (uint64_t):
1536 		/* LINTED - alignment */
1537 		normal.dtnd_normal = *((uint64_t *)addr);
1538 		break;
1539 	case sizeof (uint32_t):
1540 		/* LINTED - alignment */
1541 		normal.dtnd_normal = *((uint32_t *)addr);
1542 		break;
1543 	case sizeof (uint16_t):
1544 		/* LINTED - alignment */
1545 		normal.dtnd_normal = *((uint16_t *)addr);
1546 		break;
1547 	case sizeof (uint8_t):
1548 		normal.dtnd_normal = *((uint8_t *)addr);
1549 		break;
1550 	default:
1551 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1552 	}
1553 
1554 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1555 
1556 	return (0);
1557 }
1558 
1559 static int
1560 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1561 {
1562 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1563 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1564 
1565 	if (agg->dtagd_nrecs == 0)
1566 		return (DTRACE_AGGWALK_NEXT);
1567 
1568 	if (agg->dtagd_varid != id)
1569 		return (DTRACE_AGGWALK_NEXT);
1570 
1571 	return (DTRACE_AGGWALK_DENORMALIZE);
1572 }
1573 
1574 static int
1575 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1576 {
1577 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1578 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1579 
1580 	if (agg->dtagd_nrecs == 0)
1581 		return (DTRACE_AGGWALK_NEXT);
1582 
1583 	if (agg->dtagd_varid != id)
1584 		return (DTRACE_AGGWALK_NEXT);
1585 
1586 	return (DTRACE_AGGWALK_CLEAR);
1587 }
1588 
1589 typedef struct dt_trunc {
1590 	dtrace_aggvarid_t dttd_id;
1591 	uint64_t dttd_remaining;
1592 } dt_trunc_t;
1593 
1594 static int
1595 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1596 {
1597 	dt_trunc_t *trunc = arg;
1598 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1599 	dtrace_aggvarid_t id = trunc->dttd_id;
1600 
1601 	if (agg->dtagd_nrecs == 0)
1602 		return (DTRACE_AGGWALK_NEXT);
1603 
1604 	if (agg->dtagd_varid != id)
1605 		return (DTRACE_AGGWALK_NEXT);
1606 
1607 	if (trunc->dttd_remaining == 0)
1608 		return (DTRACE_AGGWALK_REMOVE);
1609 
1610 	trunc->dttd_remaining--;
1611 	return (DTRACE_AGGWALK_NEXT);
1612 }
1613 
1614 static int
1615 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1616 {
1617 	dt_trunc_t trunc;
1618 	caddr_t addr;
1619 	int64_t remaining;
1620 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1621 
1622 	/*
1623 	 * We (should) have two records:  the aggregation ID followed by the
1624 	 * number of aggregation entries after which the aggregation is to be
1625 	 * truncated.
1626 	 */
1627 	addr = base + rec->dtrd_offset;
1628 
1629 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1630 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1631 
1632 	/* LINTED - alignment */
1633 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1634 	rec++;
1635 
1636 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1637 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1638 
1639 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1640 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1641 
1642 	addr = base + rec->dtrd_offset;
1643 
1644 	switch (rec->dtrd_size) {
1645 	case sizeof (uint64_t):
1646 		/* LINTED - alignment */
1647 		remaining = *((int64_t *)addr);
1648 		break;
1649 	case sizeof (uint32_t):
1650 		/* LINTED - alignment */
1651 		remaining = *((int32_t *)addr);
1652 		break;
1653 	case sizeof (uint16_t):
1654 		/* LINTED - alignment */
1655 		remaining = *((int16_t *)addr);
1656 		break;
1657 	case sizeof (uint8_t):
1658 		remaining = *((int8_t *)addr);
1659 		break;
1660 	default:
1661 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1662 	}
1663 
1664 	if (remaining < 0) {
1665 		func = dtrace_aggregate_walk_valsorted;
1666 		remaining = -remaining;
1667 	} else {
1668 		func = dtrace_aggregate_walk_valrevsorted;
1669 	}
1670 
1671 	assert(remaining >= 0);
1672 	trunc.dttd_remaining = remaining;
1673 
1674 	(void) func(dtp, dt_trunc_agg, &trunc);
1675 
1676 	return (0);
1677 }
1678 
1679 static int
1680 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1681     caddr_t addr, size_t size, uint64_t normal)
1682 {
1683 	int err;
1684 	dtrace_actkind_t act = rec->dtrd_action;
1685 
1686 	switch (act) {
1687 	case DTRACEACT_STACK:
1688 		return (dt_print_stack(dtp, fp, NULL, addr,
1689 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1690 
1691 	case DTRACEACT_USTACK:
1692 	case DTRACEACT_JSTACK:
1693 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1694 
1695 	case DTRACEACT_USYM:
1696 	case DTRACEACT_UADDR:
1697 		return (dt_print_usym(dtp, fp, addr, act));
1698 
1699 	case DTRACEACT_UMOD:
1700 		return (dt_print_umod(dtp, fp, NULL, addr));
1701 
1702 	case DTRACEACT_SYM:
1703 		return (dt_print_sym(dtp, fp, NULL, addr));
1704 
1705 	case DTRACEACT_MOD:
1706 		return (dt_print_mod(dtp, fp, NULL, addr));
1707 
1708 	case DTRACEAGG_QUANTIZE:
1709 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1710 
1711 	case DTRACEAGG_LQUANTIZE:
1712 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1713 
1714 	case DTRACEAGG_AVG:
1715 		return (dt_print_average(dtp, fp, addr, size, normal));
1716 
1717 	case DTRACEAGG_STDDEV:
1718 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1719 
1720 	default:
1721 		break;
1722 	}
1723 
1724 	switch (size) {
1725 	case sizeof (uint64_t):
1726 		err = dt_printf(dtp, fp, " %16lld",
1727 		    /* LINTED - alignment */
1728 		    (long long)*((uint64_t *)addr) / normal);
1729 		break;
1730 	case sizeof (uint32_t):
1731 		/* LINTED - alignment */
1732 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1733 		    (uint32_t)normal);
1734 		break;
1735 	case sizeof (uint16_t):
1736 		/* LINTED - alignment */
1737 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1738 		    (uint32_t)normal);
1739 		break;
1740 	case sizeof (uint8_t):
1741 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1742 		    (uint32_t)normal);
1743 		break;
1744 	default:
1745 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1746 		break;
1747 	}
1748 
1749 	return (err);
1750 }
1751 
1752 int
1753 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1754 {
1755 	int i, aggact = 0;
1756 	dt_print_aggdata_t *pd = arg;
1757 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1758 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1759 	FILE *fp = pd->dtpa_fp;
1760 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1761 	dtrace_recdesc_t *rec;
1762 	dtrace_actkind_t act;
1763 	caddr_t addr;
1764 	size_t size;
1765 
1766 	/*
1767 	 * Iterate over each record description in the key, printing the traced
1768 	 * data, skipping the first datum (the tuple member created by the
1769 	 * compiler).
1770 	 */
1771 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1772 		rec = &agg->dtagd_rec[i];
1773 		act = rec->dtrd_action;
1774 		addr = aggdata->dtada_data + rec->dtrd_offset;
1775 		size = rec->dtrd_size;
1776 
1777 		if (DTRACEACT_ISAGG(act)) {
1778 			aggact = i;
1779 			break;
1780 		}
1781 
1782 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1783 			return (-1);
1784 
1785 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1786 		    DTRACE_BUFDATA_AGGKEY) < 0)
1787 			return (-1);
1788 	}
1789 
1790 	assert(aggact != 0);
1791 
1792 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1793 		uint64_t normal;
1794 
1795 		aggdata = aggsdata[i];
1796 		agg = aggdata->dtada_desc;
1797 		rec = &agg->dtagd_rec[aggact];
1798 		act = rec->dtrd_action;
1799 		addr = aggdata->dtada_data + rec->dtrd_offset;
1800 		size = rec->dtrd_size;
1801 
1802 		assert(DTRACEACT_ISAGG(act));
1803 		normal = aggdata->dtada_normal;
1804 
1805 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1806 			return (-1);
1807 
1808 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1809 		    DTRACE_BUFDATA_AGGVAL) < 0)
1810 			return (-1);
1811 
1812 		if (!pd->dtpa_allunprint)
1813 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1814 	}
1815 
1816 	if (dt_printf(dtp, fp, "\n") < 0)
1817 		return (-1);
1818 
1819 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1820 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1821 		return (-1);
1822 
1823 	return (0);
1824 }
1825 
1826 int
1827 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1828 {
1829 	dt_print_aggdata_t *pd = arg;
1830 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1831 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1832 
1833 	if (pd->dtpa_allunprint) {
1834 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1835 			return (0);
1836 	} else {
1837 		/*
1838 		 * If we're not printing all unprinted aggregations, then the
1839 		 * aggregation variable ID denotes a specific aggregation
1840 		 * variable that we should print -- skip any other aggregations
1841 		 * that we encounter.
1842 		 */
1843 		if (agg->dtagd_nrecs == 0)
1844 			return (0);
1845 
1846 		if (aggvarid != agg->dtagd_varid)
1847 			return (0);
1848 	}
1849 
1850 	return (dt_print_aggs(&aggdata, 1, arg));
1851 }
1852 
1853 int
1854 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1855     const char *option, const char *value)
1856 {
1857 	int len, rval;
1858 	char *msg;
1859 	const char *errstr;
1860 	dtrace_setoptdata_t optdata;
1861 
1862 	bzero(&optdata, sizeof (optdata));
1863 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1864 
1865 	if (dtrace_setopt(dtp, option, value) == 0) {
1866 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1867 		optdata.dtsda_probe = data;
1868 		optdata.dtsda_option = option;
1869 		optdata.dtsda_handle = dtp;
1870 
1871 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1872 			return (rval);
1873 
1874 		return (0);
1875 	}
1876 
1877 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1878 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1879 	msg = alloca(len);
1880 
1881 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1882 	    option, value, errstr);
1883 
1884 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1885 		return (0);
1886 
1887 	return (rval);
1888 }
1889 
1890 static int
1891 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1892     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1893 {
1894 	dtrace_epid_t id;
1895 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1896 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1897 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1898 	int rval, i, n;
1899 	dtrace_epid_t last = DTRACE_EPIDNONE;
1900 	dtrace_probedata_t data;
1901 	uint64_t drops;
1902 	caddr_t addr;
1903 
1904 	bzero(&data, sizeof (data));
1905 	data.dtpda_handle = dtp;
1906 	data.dtpda_cpu = cpu;
1907 
1908 again:
1909 	for (offs = start; offs < end; ) {
1910 		dtrace_eprobedesc_t *epd;
1911 
1912 		/*
1913 		 * We're guaranteed to have an ID.
1914 		 */
1915 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1916 
1917 		if (id == DTRACE_EPIDNONE) {
1918 			/*
1919 			 * This is filler to assure proper alignment of the
1920 			 * next record; we simply ignore it.
1921 			 */
1922 			offs += sizeof (id);
1923 			continue;
1924 		}
1925 
1926 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1927 		    &data.dtpda_pdesc)) != 0)
1928 			return (rval);
1929 
1930 		epd = data.dtpda_edesc;
1931 		data.dtpda_data = buf->dtbd_data + offs;
1932 
1933 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1934 			rval = dt_handle(dtp, &data);
1935 
1936 			if (rval == DTRACE_CONSUME_NEXT)
1937 				goto nextepid;
1938 
1939 			if (rval == DTRACE_CONSUME_ERROR)
1940 				return (-1);
1941 		}
1942 
1943 		if (flow)
1944 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1945 
1946 		rval = (*efunc)(&data, arg);
1947 
1948 		if (flow) {
1949 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1950 				data.dtpda_indent += 2;
1951 		}
1952 
1953 		if (rval == DTRACE_CONSUME_NEXT)
1954 			goto nextepid;
1955 
1956 		if (rval == DTRACE_CONSUME_ABORT)
1957 			return (dt_set_errno(dtp, EDT_DIRABORT));
1958 
1959 		if (rval != DTRACE_CONSUME_THIS)
1960 			return (dt_set_errno(dtp, EDT_BADRVAL));
1961 
1962 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1963 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1964 			dtrace_actkind_t act = rec->dtrd_action;
1965 
1966 			data.dtpda_data = buf->dtbd_data + offs +
1967 			    rec->dtrd_offset;
1968 			addr = data.dtpda_data;
1969 
1970 			if (act == DTRACEACT_LIBACT) {
1971 				uint64_t arg = rec->dtrd_arg;
1972 				dtrace_aggvarid_t id;
1973 
1974 				switch (arg) {
1975 				case DT_ACT_CLEAR:
1976 					/* LINTED - alignment */
1977 					id = *((dtrace_aggvarid_t *)addr);
1978 					(void) dtrace_aggregate_walk(dtp,
1979 					    dt_clear_agg, &id);
1980 					continue;
1981 
1982 				case DT_ACT_DENORMALIZE:
1983 					/* LINTED - alignment */
1984 					id = *((dtrace_aggvarid_t *)addr);
1985 					(void) dtrace_aggregate_walk(dtp,
1986 					    dt_denormalize_agg, &id);
1987 					continue;
1988 
1989 				case DT_ACT_FTRUNCATE:
1990 					if (fp == NULL)
1991 						continue;
1992 
1993 					(void) fflush(fp);
1994 					(void) ftruncate(fileno(fp), 0);
1995 					(void) fseeko(fp, 0, SEEK_SET);
1996 					continue;
1997 
1998 				case DT_ACT_NORMALIZE:
1999 					if (i == epd->dtepd_nrecs - 1)
2000 						return (dt_set_errno(dtp,
2001 						    EDT_BADNORMAL));
2002 
2003 					if (dt_normalize(dtp,
2004 					    buf->dtbd_data + offs, rec) != 0)
2005 						return (-1);
2006 
2007 					i++;
2008 					continue;
2009 
2010 				case DT_ACT_SETOPT: {
2011 					uint64_t *opts = dtp->dt_options;
2012 					dtrace_recdesc_t *valrec;
2013 					uint32_t valsize;
2014 					caddr_t val;
2015 					int rv;
2016 
2017 					if (i == epd->dtepd_nrecs - 1) {
2018 						return (dt_set_errno(dtp,
2019 						    EDT_BADSETOPT));
2020 					}
2021 
2022 					valrec = &epd->dtepd_rec[++i];
2023 					valsize = valrec->dtrd_size;
2024 
2025 					if (valrec->dtrd_action != act ||
2026 					    valrec->dtrd_arg != arg) {
2027 						return (dt_set_errno(dtp,
2028 						    EDT_BADSETOPT));
2029 					}
2030 
2031 					if (valsize > sizeof (uint64_t)) {
2032 						val = buf->dtbd_data + offs +
2033 						    valrec->dtrd_offset;
2034 					} else {
2035 						val = "1";
2036 					}
2037 
2038 					rv = dt_setopt(dtp, &data, addr, val);
2039 
2040 					if (rv != 0)
2041 						return (-1);
2042 
2043 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2044 					    DTRACEOPT_UNSET);
2045 					quiet = (opts[DTRACEOPT_QUIET] !=
2046 					    DTRACEOPT_UNSET);
2047 
2048 					continue;
2049 				}
2050 
2051 				case DT_ACT_TRUNC:
2052 					if (i == epd->dtepd_nrecs - 1)
2053 						return (dt_set_errno(dtp,
2054 						    EDT_BADTRUNC));
2055 
2056 					if (dt_trunc(dtp,
2057 					    buf->dtbd_data + offs, rec) != 0)
2058 						return (-1);
2059 
2060 					i++;
2061 					continue;
2062 
2063 				default:
2064 					continue;
2065 				}
2066 			}
2067 
2068 			rval = (*rfunc)(&data, rec, arg);
2069 
2070 			if (rval == DTRACE_CONSUME_NEXT)
2071 				continue;
2072 
2073 			if (rval == DTRACE_CONSUME_ABORT)
2074 				return (dt_set_errno(dtp, EDT_DIRABORT));
2075 
2076 			if (rval != DTRACE_CONSUME_THIS)
2077 				return (dt_set_errno(dtp, EDT_BADRVAL));
2078 
2079 			if (act == DTRACEACT_STACK) {
2080 				int depth = rec->dtrd_arg;
2081 
2082 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2083 				    rec->dtrd_size / depth) < 0)
2084 					return (-1);
2085 				goto nextrec;
2086 			}
2087 
2088 			if (act == DTRACEACT_USTACK ||
2089 			    act == DTRACEACT_JSTACK) {
2090 				if (dt_print_ustack(dtp, fp, NULL,
2091 				    addr, rec->dtrd_arg) < 0)
2092 					return (-1);
2093 				goto nextrec;
2094 			}
2095 
2096 			if (act == DTRACEACT_SYM) {
2097 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2098 					return (-1);
2099 				goto nextrec;
2100 			}
2101 
2102 			if (act == DTRACEACT_MOD) {
2103 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2104 					return (-1);
2105 				goto nextrec;
2106 			}
2107 
2108 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2109 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2110 					return (-1);
2111 				goto nextrec;
2112 			}
2113 
2114 			if (act == DTRACEACT_UMOD) {
2115 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2116 					return (-1);
2117 				goto nextrec;
2118 			}
2119 
2120 			if (act == DTRACEACT_PRINTM) {
2121 				if (dt_print_memory(dtp, fp, addr) < 0)
2122 					return (-1);
2123 				goto nextrec;
2124 			}
2125 
2126 			if (act == DTRACEACT_PRINTT) {
2127 				if (dt_print_type(dtp, fp, addr) < 0)
2128 					return (-1);
2129 				goto nextrec;
2130 			}
2131 
2132 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2133 				void *fmtdata;
2134 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2135 				    const dtrace_probedata_t *,
2136 				    const dtrace_recdesc_t *, uint_t,
2137 				    const void *buf, size_t);
2138 
2139 				if ((fmtdata = dt_format_lookup(dtp,
2140 				    rec->dtrd_format)) == NULL)
2141 					goto nofmt;
2142 
2143 				switch (act) {
2144 				case DTRACEACT_PRINTF:
2145 					func = dtrace_fprintf;
2146 					break;
2147 				case DTRACEACT_PRINTA:
2148 					func = dtrace_fprinta;
2149 					break;
2150 				case DTRACEACT_SYSTEM:
2151 					func = dtrace_system;
2152 					break;
2153 				case DTRACEACT_FREOPEN:
2154 					func = dtrace_freopen;
2155 					break;
2156 				}
2157 
2158 				n = (*func)(dtp, fp, fmtdata, &data,
2159 				    rec, epd->dtepd_nrecs - i,
2160 				    (uchar_t *)buf->dtbd_data + offs,
2161 				    buf->dtbd_size - offs);
2162 
2163 				if (n < 0)
2164 					return (-1); /* errno is set for us */
2165 
2166 				if (n > 0)
2167 					i += n - 1;
2168 				goto nextrec;
2169 			}
2170 
2171 nofmt:
2172 			if (act == DTRACEACT_PRINTA) {
2173 				dt_print_aggdata_t pd;
2174 				dtrace_aggvarid_t *aggvars;
2175 				int j, naggvars = 0;
2176 				size_t size = ((epd->dtepd_nrecs - i) *
2177 				    sizeof (dtrace_aggvarid_t));
2178 
2179 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2180 					return (-1);
2181 
2182 				/*
2183 				 * This might be a printa() with multiple
2184 				 * aggregation variables.  We need to scan
2185 				 * forward through the records until we find
2186 				 * a record from a different statement.
2187 				 */
2188 				for (j = i; j < epd->dtepd_nrecs; j++) {
2189 					dtrace_recdesc_t *nrec;
2190 					caddr_t naddr;
2191 
2192 					nrec = &epd->dtepd_rec[j];
2193 
2194 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2195 						break;
2196 
2197 					if (nrec->dtrd_action != act) {
2198 						return (dt_set_errno(dtp,
2199 						    EDT_BADAGG));
2200 					}
2201 
2202 					naddr = buf->dtbd_data + offs +
2203 					    nrec->dtrd_offset;
2204 
2205 					aggvars[naggvars++] =
2206 					    /* LINTED - alignment */
2207 					    *((dtrace_aggvarid_t *)naddr);
2208 				}
2209 
2210 				i = j - 1;
2211 				bzero(&pd, sizeof (pd));
2212 				pd.dtpa_dtp = dtp;
2213 				pd.dtpa_fp = fp;
2214 
2215 				assert(naggvars >= 1);
2216 
2217 				if (naggvars == 1) {
2218 					pd.dtpa_id = aggvars[0];
2219 					dt_free(dtp, aggvars);
2220 
2221 					if (dt_printf(dtp, fp, "\n") < 0 ||
2222 					    dtrace_aggregate_walk_sorted(dtp,
2223 					    dt_print_agg, &pd) < 0)
2224 						return (-1);
2225 					goto nextrec;
2226 				}
2227 
2228 				if (dt_printf(dtp, fp, "\n") < 0 ||
2229 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2230 				    naggvars, dt_print_aggs, &pd) < 0) {
2231 					dt_free(dtp, aggvars);
2232 					return (-1);
2233 				}
2234 
2235 				dt_free(dtp, aggvars);
2236 				goto nextrec;
2237 			}
2238 
2239 			switch (rec->dtrd_size) {
2240 			case sizeof (uint64_t):
2241 				n = dt_printf(dtp, fp,
2242 				    quiet ? "%lld" : " %16lld",
2243 				    /* LINTED - alignment */
2244 				    *((unsigned long long *)addr));
2245 				break;
2246 			case sizeof (uint32_t):
2247 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2248 				    /* LINTED - alignment */
2249 				    *((uint32_t *)addr));
2250 				break;
2251 			case sizeof (uint16_t):
2252 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2253 				    /* LINTED - alignment */
2254 				    *((uint16_t *)addr));
2255 				break;
2256 			case sizeof (uint8_t):
2257 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2258 				    *((uint8_t *)addr));
2259 				break;
2260 			default:
2261 				n = dt_print_bytes(dtp, fp, addr,
2262 				    rec->dtrd_size, 33, quiet, 0);
2263 				break;
2264 			}
2265 
2266 			if (n < 0)
2267 				return (-1); /* errno is set for us */
2268 
2269 nextrec:
2270 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2271 				return (-1); /* errno is set for us */
2272 		}
2273 
2274 		/*
2275 		 * Call the record callback with a NULL record to indicate
2276 		 * that we're done processing this EPID.
2277 		 */
2278 		rval = (*rfunc)(&data, NULL, arg);
2279 nextepid:
2280 		offs += epd->dtepd_size;
2281 		last = id;
2282 	}
2283 
2284 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2285 		end = buf->dtbd_oldest;
2286 		start = 0;
2287 		goto again;
2288 	}
2289 
2290 	if ((drops = buf->dtbd_drops) == 0)
2291 		return (0);
2292 
2293 	/*
2294 	 * Explicitly zero the drops to prevent us from processing them again.
2295 	 */
2296 	buf->dtbd_drops = 0;
2297 
2298 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2299 }
2300 
2301 typedef struct dt_begin {
2302 	dtrace_consume_probe_f *dtbgn_probefunc;
2303 	dtrace_consume_rec_f *dtbgn_recfunc;
2304 	void *dtbgn_arg;
2305 	dtrace_handle_err_f *dtbgn_errhdlr;
2306 	void *dtbgn_errarg;
2307 	int dtbgn_beginonly;
2308 } dt_begin_t;
2309 
2310 static int
2311 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2312 {
2313 	dt_begin_t *begin = (dt_begin_t *)arg;
2314 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2315 
2316 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2317 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2318 
2319 	if (begin->dtbgn_beginonly) {
2320 		if (!(r1 && r2))
2321 			return (DTRACE_CONSUME_NEXT);
2322 	} else {
2323 		if (r1 && r2)
2324 			return (DTRACE_CONSUME_NEXT);
2325 	}
2326 
2327 	/*
2328 	 * We have a record that we're interested in.  Now call the underlying
2329 	 * probe function...
2330 	 */
2331 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2332 }
2333 
2334 static int
2335 dt_consume_begin_record(const dtrace_probedata_t *data,
2336     const dtrace_recdesc_t *rec, void *arg)
2337 {
2338 	dt_begin_t *begin = (dt_begin_t *)arg;
2339 
2340 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2341 }
2342 
2343 static int
2344 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2345 {
2346 	dt_begin_t *begin = (dt_begin_t *)arg;
2347 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2348 
2349 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2350 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2351 
2352 	if (begin->dtbgn_beginonly) {
2353 		if (!(r1 && r2))
2354 			return (DTRACE_HANDLE_OK);
2355 	} else {
2356 		if (r1 && r2)
2357 			return (DTRACE_HANDLE_OK);
2358 	}
2359 
2360 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2361 }
2362 
2363 static int
2364 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2365     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2366 {
2367 	/*
2368 	 * There's this idea that the BEGIN probe should be processed before
2369 	 * everything else, and that the END probe should be processed after
2370 	 * anything else.  In the common case, this is pretty easy to deal
2371 	 * with.  However, a situation may arise where the BEGIN enabling and
2372 	 * END enabling are on the same CPU, and some enabling in the middle
2373 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2374 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2375 	 * then set it aside.  We will then process every other CPU, and then
2376 	 * we'll return to the BEGIN CPU and process the rest of the data
2377 	 * (which will inevitably include the END probe, if any).  Making this
2378 	 * even more complicated (!) is the library's ERROR enabling.  Because
2379 	 * this enabling is processed before we even get into the consume call
2380 	 * back, any ERROR firing would result in the library's ERROR enabling
2381 	 * being processed twice -- once in our first pass (for BEGIN probes),
2382 	 * and again in our second pass (for everything but BEGIN probes).  To
2383 	 * deal with this, we interpose on the ERROR handler to assure that we
2384 	 * only process ERROR enablings induced by BEGIN enablings in the
2385 	 * first pass, and that we only process ERROR enablings _not_ induced
2386 	 * by BEGIN enablings in the second pass.
2387 	 */
2388 	dt_begin_t begin;
2389 	processorid_t cpu = dtp->dt_beganon;
2390 	dtrace_bufdesc_t nbuf;
2391 #if !defined(sun)
2392 	dtrace_bufdesc_t *pbuf;
2393 #endif
2394 	int rval, i;
2395 	static int max_ncpus;
2396 	dtrace_optval_t size;
2397 
2398 	dtp->dt_beganon = -1;
2399 
2400 #if defined(sun)
2401 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2402 #else
2403 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2404 #endif
2405 		/*
2406 		 * We really don't expect this to fail, but it is at least
2407 		 * technically possible for this to fail with ENOENT.  In this
2408 		 * case, we just drive on...
2409 		 */
2410 		if (errno == ENOENT)
2411 			return (0);
2412 
2413 		return (dt_set_errno(dtp, errno));
2414 	}
2415 
2416 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2417 		/*
2418 		 * This is the simple case.  We're either not stopped, or if
2419 		 * we are, we actually processed any END probes on another
2420 		 * CPU.  We can simply consume this buffer and return.
2421 		 */
2422 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2423 	}
2424 
2425 	begin.dtbgn_probefunc = pf;
2426 	begin.dtbgn_recfunc = rf;
2427 	begin.dtbgn_arg = arg;
2428 	begin.dtbgn_beginonly = 1;
2429 
2430 	/*
2431 	 * We need to interpose on the ERROR handler to be sure that we
2432 	 * only process ERRORs induced by BEGIN.
2433 	 */
2434 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2435 	begin.dtbgn_errarg = dtp->dt_errarg;
2436 	dtp->dt_errhdlr = dt_consume_begin_error;
2437 	dtp->dt_errarg = &begin;
2438 
2439 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2440 	    dt_consume_begin_record, &begin);
2441 
2442 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2443 	dtp->dt_errarg = begin.dtbgn_errarg;
2444 
2445 	if (rval != 0)
2446 		return (rval);
2447 
2448 	/*
2449 	 * Now allocate a new buffer.  We'll use this to deal with every other
2450 	 * CPU.
2451 	 */
2452 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2453 	(void) dtrace_getopt(dtp, "bufsize", &size);
2454 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2455 		return (dt_set_errno(dtp, EDT_NOMEM));
2456 
2457 	if (max_ncpus == 0)
2458 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2459 
2460 	for (i = 0; i < max_ncpus; i++) {
2461 		nbuf.dtbd_cpu = i;
2462 
2463 		if (i == cpu)
2464 			continue;
2465 
2466 #if defined(sun)
2467 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2468 #else
2469 		pbuf = &nbuf;
2470 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2471 #endif
2472 			/*
2473 			 * If we failed with ENOENT, it may be because the
2474 			 * CPU was unconfigured -- this is okay.  Any other
2475 			 * error, however, is unexpected.
2476 			 */
2477 			if (errno == ENOENT)
2478 				continue;
2479 
2480 			free(nbuf.dtbd_data);
2481 
2482 			return (dt_set_errno(dtp, errno));
2483 		}
2484 
2485 		if ((rval = dt_consume_cpu(dtp, fp,
2486 		    i, &nbuf, pf, rf, arg)) != 0) {
2487 			free(nbuf.dtbd_data);
2488 			return (rval);
2489 		}
2490 	}
2491 
2492 	free(nbuf.dtbd_data);
2493 
2494 	/*
2495 	 * Okay -- we're done with the other buffers.  Now we want to
2496 	 * reconsume the first buffer -- but this time we're looking for
2497 	 * everything _but_ BEGIN.  And of course, in order to only consume
2498 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2499 	 * ERROR interposition function...
2500 	 */
2501 	begin.dtbgn_beginonly = 0;
2502 
2503 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2504 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2505 	dtp->dt_errhdlr = dt_consume_begin_error;
2506 	dtp->dt_errarg = &begin;
2507 
2508 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2509 	    dt_consume_begin_record, &begin);
2510 
2511 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2512 	dtp->dt_errarg = begin.dtbgn_errarg;
2513 
2514 	return (rval);
2515 }
2516 
2517 int
2518 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2519     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2520 {
2521 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2522 	dtrace_optval_t size;
2523 	static int max_ncpus;
2524 	int i, rval;
2525 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2526 	hrtime_t now = gethrtime();
2527 
2528 	if (dtp->dt_lastswitch != 0) {
2529 		if (now - dtp->dt_lastswitch < interval)
2530 			return (0);
2531 
2532 		dtp->dt_lastswitch += interval;
2533 	} else {
2534 		dtp->dt_lastswitch = now;
2535 	}
2536 
2537 	if (!dtp->dt_active)
2538 		return (dt_set_errno(dtp, EINVAL));
2539 
2540 	if (max_ncpus == 0)
2541 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2542 
2543 	if (pf == NULL)
2544 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2545 
2546 	if (rf == NULL)
2547 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2548 
2549 	if (buf->dtbd_data == NULL) {
2550 		(void) dtrace_getopt(dtp, "bufsize", &size);
2551 		if ((buf->dtbd_data = malloc(size)) == NULL)
2552 			return (dt_set_errno(dtp, EDT_NOMEM));
2553 
2554 		buf->dtbd_size = size;
2555 	}
2556 
2557 	/*
2558 	 * If we have just begun, we want to first process the CPU that
2559 	 * executed the BEGIN probe (if any).
2560 	 */
2561 	if (dtp->dt_active && dtp->dt_beganon != -1) {
2562 		buf->dtbd_cpu = dtp->dt_beganon;
2563 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2564 			return (rval);
2565 	}
2566 
2567 	for (i = 0; i < max_ncpus; i++) {
2568 		buf->dtbd_cpu = i;
2569 
2570 		/*
2571 		 * If we have stopped, we want to process the CPU on which the
2572 		 * END probe was processed only _after_ we have processed
2573 		 * everything else.
2574 		 */
2575 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2576 			continue;
2577 
2578 #if defined(sun)
2579 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2580 #else
2581 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2582 #endif
2583 			/*
2584 			 * If we failed with ENOENT, it may be because the
2585 			 * CPU was unconfigured -- this is okay.  Any other
2586 			 * error, however, is unexpected.
2587 			 */
2588 			if (errno == ENOENT)
2589 				continue;
2590 
2591 			return (dt_set_errno(dtp, errno));
2592 		}
2593 
2594 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2595 			return (rval);
2596 	}
2597 
2598 	if (!dtp->dt_stopped)
2599 		return (0);
2600 
2601 	buf->dtbd_cpu = dtp->dt_endedon;
2602 
2603 #if defined(sun)
2604 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2605 #else
2606 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2607 #endif
2608 		/*
2609 		 * This _really_ shouldn't fail, but it is strictly speaking
2610 		 * possible for this to return ENOENT if the CPU that called
2611 		 * the END enabling somehow managed to become unconfigured.
2612 		 * It's unclear how the user can possibly expect anything
2613 		 * rational to happen in this case -- the state has been thrown
2614 		 * out along with the unconfigured CPU -- so we'll just drive
2615 		 * on...
2616 		 */
2617 		if (errno == ENOENT)
2618 			return (0);
2619 
2620 		return (dt_set_errno(dtp, errno));
2621 	}
2622 
2623 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2624 }
2625