xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdlib.h>
27 #include <strings.h>
28 #include <errno.h>
29 #include <unistd.h>
30 #include <limits.h>
31 #include <assert.h>
32 #include <ctype.h>
33 #if defined(sun)
34 #include <alloca.h>
35 #endif
36 #include <dt_impl.h>
37 #if !defined(sun)
38 #include <libproc_compat.h>
39 #endif
40 
41 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
42 
43 /*
44  * We declare this here because (1) we need it and (2) we want to avoid a
45  * dependency on libm in libdtrace.
46  */
47 static long double
48 dt_fabsl(long double x)
49 {
50 	if (x < 0)
51 		return (-x);
52 
53 	return (x);
54 }
55 
56 /*
57  * 128-bit arithmetic functions needed to support the stddev() aggregating
58  * action.
59  */
60 static int
61 dt_gt_128(uint64_t *a, uint64_t *b)
62 {
63 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
64 }
65 
66 static int
67 dt_ge_128(uint64_t *a, uint64_t *b)
68 {
69 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
70 }
71 
72 static int
73 dt_le_128(uint64_t *a, uint64_t *b)
74 {
75 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
76 }
77 
78 /*
79  * Shift the 128-bit value in a by b. If b is positive, shift left.
80  * If b is negative, shift right.
81  */
82 static void
83 dt_shift_128(uint64_t *a, int b)
84 {
85 	uint64_t mask;
86 
87 	if (b == 0)
88 		return;
89 
90 	if (b < 0) {
91 		b = -b;
92 		if (b >= 64) {
93 			a[0] = a[1] >> (b - 64);
94 			a[1] = 0;
95 		} else {
96 			a[0] >>= b;
97 			mask = 1LL << (64 - b);
98 			mask -= 1;
99 			a[0] |= ((a[1] & mask) << (64 - b));
100 			a[1] >>= b;
101 		}
102 	} else {
103 		if (b >= 64) {
104 			a[1] = a[0] << (b - 64);
105 			a[0] = 0;
106 		} else {
107 			a[1] <<= b;
108 			mask = a[0] >> (64 - b);
109 			a[1] |= mask;
110 			a[0] <<= b;
111 		}
112 	}
113 }
114 
115 static int
116 dt_nbits_128(uint64_t *a)
117 {
118 	int nbits = 0;
119 	uint64_t tmp[2];
120 	uint64_t zero[2] = { 0, 0 };
121 
122 	tmp[0] = a[0];
123 	tmp[1] = a[1];
124 
125 	dt_shift_128(tmp, -1);
126 	while (dt_gt_128(tmp, zero)) {
127 		dt_shift_128(tmp, -1);
128 		nbits++;
129 	}
130 
131 	return (nbits);
132 }
133 
134 static void
135 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
136 {
137 	uint64_t result[2];
138 
139 	result[0] = minuend[0] - subtrahend[0];
140 	result[1] = minuend[1] - subtrahend[1] -
141 	    (minuend[0] < subtrahend[0] ? 1 : 0);
142 
143 	difference[0] = result[0];
144 	difference[1] = result[1];
145 }
146 
147 static void
148 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
149 {
150 	uint64_t result[2];
151 
152 	result[0] = addend1[0] + addend2[0];
153 	result[1] = addend1[1] + addend2[1] +
154 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
155 
156 	sum[0] = result[0];
157 	sum[1] = result[1];
158 }
159 
160 /*
161  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
162  * use native multiplication on those, and then re-combine into the
163  * resulting 128-bit value.
164  *
165  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
166  *     hi1 * hi2 << 64 +
167  *     hi1 * lo2 << 32 +
168  *     hi2 * lo1 << 32 +
169  *     lo1 * lo2
170  */
171 static void
172 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
173 {
174 	uint64_t hi1, hi2, lo1, lo2;
175 	uint64_t tmp[2];
176 
177 	hi1 = factor1 >> 32;
178 	hi2 = factor2 >> 32;
179 
180 	lo1 = factor1 & DT_MASK_LO;
181 	lo2 = factor2 & DT_MASK_LO;
182 
183 	product[0] = lo1 * lo2;
184 	product[1] = hi1 * hi2;
185 
186 	tmp[0] = hi1 * lo2;
187 	tmp[1] = 0;
188 	dt_shift_128(tmp, 32);
189 	dt_add_128(product, tmp, product);
190 
191 	tmp[0] = hi2 * lo1;
192 	tmp[1] = 0;
193 	dt_shift_128(tmp, 32);
194 	dt_add_128(product, tmp, product);
195 }
196 
197 /*
198  * This is long-hand division.
199  *
200  * We initialize subtrahend by shifting divisor left as far as possible. We
201  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
202  * subtract and set the appropriate bit in the result.  We then shift
203  * subtrahend right by one bit for the next comparison.
204  */
205 static void
206 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
207 {
208 	uint64_t result[2] = { 0, 0 };
209 	uint64_t remainder[2];
210 	uint64_t subtrahend[2];
211 	uint64_t divisor_128[2];
212 	uint64_t mask[2] = { 1, 0 };
213 	int log = 0;
214 
215 	assert(divisor != 0);
216 
217 	divisor_128[0] = divisor;
218 	divisor_128[1] = 0;
219 
220 	remainder[0] = dividend[0];
221 	remainder[1] = dividend[1];
222 
223 	subtrahend[0] = divisor;
224 	subtrahend[1] = 0;
225 
226 	while (divisor > 0) {
227 		log++;
228 		divisor >>= 1;
229 	}
230 
231 	dt_shift_128(subtrahend, 128 - log);
232 	dt_shift_128(mask, 128 - log);
233 
234 	while (dt_ge_128(remainder, divisor_128)) {
235 		if (dt_ge_128(remainder, subtrahend)) {
236 			dt_subtract_128(remainder, subtrahend, remainder);
237 			result[0] |= mask[0];
238 			result[1] |= mask[1];
239 		}
240 
241 		dt_shift_128(subtrahend, -1);
242 		dt_shift_128(mask, -1);
243 	}
244 
245 	quotient[0] = result[0];
246 	quotient[1] = result[1];
247 }
248 
249 /*
250  * This is the long-hand method of calculating a square root.
251  * The algorithm is as follows:
252  *
253  * 1. Group the digits by 2 from the right.
254  * 2. Over the leftmost group, find the largest single-digit number
255  *    whose square is less than that group.
256  * 3. Subtract the result of the previous step (2 or 4, depending) and
257  *    bring down the next two-digit group.
258  * 4. For the result R we have so far, find the largest single-digit number
259  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
260  *    (Note that this is doubling R and performing a decimal left-shift by 1
261  *    and searching for the appropriate decimal to fill the one's place.)
262  *    The value x is the next digit in the square root.
263  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
264  * dealing with integers, so the above is sufficient.)
265  *
266  * In decimal, the square root of 582,734 would be calculated as so:
267  *
268  *     __7__6__3
269  *    | 58 27 34
270  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
271  *      --
272  *       9 27    (Subtract and bring down the next group.)
273  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
274  *      -----     the square root)
275  *         51 34 (Subtract and bring down the next group.)
276  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
277  *         -----  the square root)
278  *          5 65 (remainder)
279  *
280  * The above algorithm applies similarly in binary, but note that the
281  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
282  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
283  * preceding difference?
284  *
285  * In binary, the square root of 11011011 would be calculated as so:
286  *
287  *     __1__1__1__0
288  *    | 11 01 10 11
289  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
290  *      --
291  *      10 01 10 11
292  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
293  *      -----
294  *       1 00 10 11
295  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
296  *       -------
297  *          1 01 11
298  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
299  *
300  */
301 static uint64_t
302 dt_sqrt_128(uint64_t *square)
303 {
304 	uint64_t result[2] = { 0, 0 };
305 	uint64_t diff[2] = { 0, 0 };
306 	uint64_t one[2] = { 1, 0 };
307 	uint64_t next_pair[2];
308 	uint64_t next_try[2];
309 	uint64_t bit_pairs, pair_shift;
310 	int i;
311 
312 	bit_pairs = dt_nbits_128(square) / 2;
313 	pair_shift = bit_pairs * 2;
314 
315 	for (i = 0; i <= bit_pairs; i++) {
316 		/*
317 		 * Bring down the next pair of bits.
318 		 */
319 		next_pair[0] = square[0];
320 		next_pair[1] = square[1];
321 		dt_shift_128(next_pair, -pair_shift);
322 		next_pair[0] &= 0x3;
323 		next_pair[1] = 0;
324 
325 		dt_shift_128(diff, 2);
326 		dt_add_128(diff, next_pair, diff);
327 
328 		/*
329 		 * next_try = R << 2 + 1
330 		 */
331 		next_try[0] = result[0];
332 		next_try[1] = result[1];
333 		dt_shift_128(next_try, 2);
334 		dt_add_128(next_try, one, next_try);
335 
336 		if (dt_le_128(next_try, diff)) {
337 			dt_subtract_128(diff, next_try, diff);
338 			dt_shift_128(result, 1);
339 			dt_add_128(result, one, result);
340 		} else {
341 			dt_shift_128(result, 1);
342 		}
343 
344 		pair_shift -= 2;
345 	}
346 
347 	assert(result[1] == 0);
348 
349 	return (result[0]);
350 }
351 
352 uint64_t
353 dt_stddev(uint64_t *data, uint64_t normal)
354 {
355 	uint64_t avg_of_squares[2];
356 	uint64_t square_of_avg[2];
357 	int64_t norm_avg;
358 	uint64_t diff[2];
359 
360 	/*
361 	 * The standard approximation for standard deviation is
362 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
363 	 * of the average of the squares minus the square of the average.
364 	 */
365 	dt_divide_128(data + 2, normal, avg_of_squares);
366 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
367 
368 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
369 
370 	if (norm_avg < 0)
371 		norm_avg = -norm_avg;
372 
373 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
374 
375 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
376 
377 	return (dt_sqrt_128(diff));
378 }
379 
380 static int
381 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
382     dtrace_bufdesc_t *buf, size_t offs)
383 {
384 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
385 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
386 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
387 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
388 	const char *str = NULL;
389 	static const char *e_str[2] = { " -> ", " => " };
390 	static const char *r_str[2] = { " <- ", " <= " };
391 	static const char *ent = "entry", *ret = "return";
392 	static int entlen = 0, retlen = 0;
393 	dtrace_epid_t next, id = epd->dtepd_epid;
394 	int rval;
395 
396 	if (entlen == 0) {
397 		assert(retlen == 0);
398 		entlen = strlen(ent);
399 		retlen = strlen(ret);
400 	}
401 
402 	/*
403 	 * If the name of the probe is "entry" or ends with "-entry", we
404 	 * treat it as an entry; if it is "return" or ends with "-return",
405 	 * we treat it as a return.  (This allows application-provided probes
406 	 * like "method-entry" or "function-entry" to participate in flow
407 	 * indentation -- without accidentally misinterpreting popular probe
408 	 * names like "carpentry", "gentry" or "Coventry".)
409 	 */
410 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
411 	    (sub == n || sub[-1] == '-')) {
412 		flow = DTRACEFLOW_ENTRY;
413 		str = e_str[strcmp(p, "syscall") == 0];
414 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
415 	    (sub == n || sub[-1] == '-')) {
416 		flow = DTRACEFLOW_RETURN;
417 		str = r_str[strcmp(p, "syscall") == 0];
418 	}
419 
420 	/*
421 	 * If we're going to indent this, we need to check the ID of our last
422 	 * call.  If we're looking at the same probe ID but a different EPID,
423 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
424 	 * this scheme -- it's a heuristic.)
425 	 */
426 	if (flow == DTRACEFLOW_ENTRY) {
427 		if ((last != DTRACE_EPIDNONE && id != last &&
428 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
429 			flow = DTRACEFLOW_NONE;
430 	}
431 
432 	/*
433 	 * If we're going to unindent this, it's more difficult to see if
434 	 * we don't actually want to unindent it -- we need to look at the
435 	 * _next_ EPID.
436 	 */
437 	if (flow == DTRACEFLOW_RETURN) {
438 		offs += epd->dtepd_size;
439 
440 		do {
441 			if (offs >= buf->dtbd_size) {
442 				/*
443 				 * We're at the end -- maybe.  If the oldest
444 				 * record is non-zero, we need to wrap.
445 				 */
446 				if (buf->dtbd_oldest != 0) {
447 					offs = 0;
448 				} else {
449 					goto out;
450 				}
451 			}
452 
453 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
454 
455 			if (next == DTRACE_EPIDNONE)
456 				offs += sizeof (id);
457 		} while (next == DTRACE_EPIDNONE);
458 
459 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
460 			return (rval);
461 
462 		if (next != id && npd->dtpd_id == pd->dtpd_id)
463 			flow = DTRACEFLOW_NONE;
464 	}
465 
466 out:
467 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
468 		data->dtpda_prefix = str;
469 	} else {
470 		data->dtpda_prefix = "| ";
471 	}
472 
473 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
474 		data->dtpda_indent -= 2;
475 
476 	data->dtpda_flow = flow;
477 
478 	return (0);
479 }
480 
481 static int
482 dt_nullprobe()
483 {
484 	return (DTRACE_CONSUME_THIS);
485 }
486 
487 static int
488 dt_nullrec()
489 {
490 	return (DTRACE_CONSUME_NEXT);
491 }
492 
493 int
494 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
495     uint64_t normal, long double total, char positives, char negatives)
496 {
497 	long double f;
498 	uint_t depth, len = 40;
499 
500 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
501 	const char *spaces = "                                        ";
502 
503 	assert(strlen(ats) == len && strlen(spaces) == len);
504 	assert(!(total == 0 && (positives || negatives)));
505 	assert(!(val < 0 && !negatives));
506 	assert(!(val > 0 && !positives));
507 	assert(!(val != 0 && total == 0));
508 
509 	if (!negatives) {
510 		if (positives) {
511 			f = (dt_fabsl((long double)val) * len) / total;
512 			depth = (uint_t)(f + 0.5);
513 		} else {
514 			depth = 0;
515 		}
516 
517 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
518 		    spaces + depth, (long long)val / normal));
519 	}
520 
521 	if (!positives) {
522 		f = (dt_fabsl((long double)val) * len) / total;
523 		depth = (uint_t)(f + 0.5);
524 
525 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
526 		    ats + len - depth, (long long)val / normal));
527 	}
528 
529 	/*
530 	 * If we're here, we have both positive and negative bucket values.
531 	 * To express this graphically, we're going to generate both positive
532 	 * and negative bars separated by a centerline.  These bars are half
533 	 * the size of normal quantize()/lquantize() bars, so we divide the
534 	 * length in half before calculating the bar length.
535 	 */
536 	len /= 2;
537 	ats = &ats[len];
538 	spaces = &spaces[len];
539 
540 	f = (dt_fabsl((long double)val) * len) / total;
541 	depth = (uint_t)(f + 0.5);
542 
543 	if (val <= 0) {
544 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
545 		    ats + len - depth, len, "", (long long)val / normal));
546 	} else {
547 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
548 		    ats + len - depth, spaces + depth,
549 		    (long long)val / normal));
550 	}
551 }
552 
553 int
554 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
555     size_t size, uint64_t normal)
556 {
557 	const int64_t *data = addr;
558 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
559 	long double total = 0;
560 	char positives = 0, negatives = 0;
561 
562 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
563 		return (dt_set_errno(dtp, EDT_DMISMATCH));
564 
565 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
566 		first_bin++;
567 
568 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
569 		/*
570 		 * There isn't any data.  This is possible if (and only if)
571 		 * negative increment values have been used.  In this case,
572 		 * we'll print the buckets around 0.
573 		 */
574 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
575 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
576 	} else {
577 		if (first_bin > 0)
578 			first_bin--;
579 
580 		while (last_bin > 0 && data[last_bin] == 0)
581 			last_bin--;
582 
583 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
584 			last_bin++;
585 	}
586 
587 	for (i = first_bin; i <= last_bin; i++) {
588 		positives |= (data[i] > 0);
589 		negatives |= (data[i] < 0);
590 		total += dt_fabsl((long double)data[i]);
591 	}
592 
593 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
594 	    "------------- Distribution -------------", "count") < 0)
595 		return (-1);
596 
597 	for (i = first_bin; i <= last_bin; i++) {
598 		if (dt_printf(dtp, fp, "%16lld ",
599 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
600 			return (-1);
601 
602 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
603 		    positives, negatives) < 0)
604 			return (-1);
605 	}
606 
607 	return (0);
608 }
609 
610 int
611 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
612     size_t size, uint64_t normal)
613 {
614 	const int64_t *data = addr;
615 	int i, first_bin, last_bin, base;
616 	uint64_t arg;
617 	long double total = 0;
618 	uint16_t step, levels;
619 	char positives = 0, negatives = 0;
620 
621 	if (size < sizeof (uint64_t))
622 		return (dt_set_errno(dtp, EDT_DMISMATCH));
623 
624 	arg = *data++;
625 	size -= sizeof (uint64_t);
626 
627 	base = DTRACE_LQUANTIZE_BASE(arg);
628 	step = DTRACE_LQUANTIZE_STEP(arg);
629 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
630 
631 	first_bin = 0;
632 	last_bin = levels + 1;
633 
634 	if (size != sizeof (uint64_t) * (levels + 2))
635 		return (dt_set_errno(dtp, EDT_DMISMATCH));
636 
637 	while (first_bin <= levels + 1 && data[first_bin] == 0)
638 		first_bin++;
639 
640 	if (first_bin > levels + 1) {
641 		first_bin = 0;
642 		last_bin = 2;
643 	} else {
644 		if (first_bin > 0)
645 			first_bin--;
646 
647 		while (last_bin > 0 && data[last_bin] == 0)
648 			last_bin--;
649 
650 		if (last_bin < levels + 1)
651 			last_bin++;
652 	}
653 
654 	for (i = first_bin; i <= last_bin; i++) {
655 		positives |= (data[i] > 0);
656 		negatives |= (data[i] < 0);
657 		total += dt_fabsl((long double)data[i]);
658 	}
659 
660 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
661 	    "------------- Distribution -------------", "count") < 0)
662 		return (-1);
663 
664 	for (i = first_bin; i <= last_bin; i++) {
665 		char c[32];
666 		int err;
667 
668 		if (i == 0) {
669 			(void) snprintf(c, sizeof (c), "< %d",
670 			    base / (uint32_t)normal);
671 			err = dt_printf(dtp, fp, "%16s ", c);
672 		} else if (i == levels + 1) {
673 			(void) snprintf(c, sizeof (c), ">= %d",
674 			    base + (levels * step));
675 			err = dt_printf(dtp, fp, "%16s ", c);
676 		} else {
677 			err = dt_printf(dtp, fp, "%16d ",
678 			    base + (i - 1) * step);
679 		}
680 
681 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
682 		    total, positives, negatives) < 0)
683 			return (-1);
684 	}
685 
686 	return (0);
687 }
688 
689 /*ARGSUSED*/
690 static int
691 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
692     size_t size, uint64_t normal)
693 {
694 	/* LINTED - alignment */
695 	int64_t *data = (int64_t *)addr;
696 
697 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
698 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
699 }
700 
701 /*ARGSUSED*/
702 static int
703 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
704     size_t size, uint64_t normal)
705 {
706 	/* LINTED - alignment */
707 	uint64_t *data = (uint64_t *)addr;
708 
709 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
710 	    (unsigned long long) dt_stddev(data, normal) : 0));
711 }
712 
713 /*ARGSUSED*/
714 int
715 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
716     size_t nbytes, int width, int quiet, int raw)
717 {
718 	/*
719 	 * If the byte stream is a series of printable characters, followed by
720 	 * a terminating byte, we print it out as a string.  Otherwise, we
721 	 * assume that it's something else and just print the bytes.
722 	 */
723 	int i, j, margin = 5;
724 	char *c = (char *)addr;
725 
726 	if (nbytes == 0)
727 		return (0);
728 
729 	if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
730 		goto raw;
731 
732 	for (i = 0; i < nbytes; i++) {
733 		/*
734 		 * We define a "printable character" to be one for which
735 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
736 		 * or a character which is either backspace or the bell.
737 		 * Backspace and the bell are regrettably special because
738 		 * they fail the first two tests -- and yet they are entirely
739 		 * printable.  These are the only two control characters that
740 		 * have meaning for the terminal and for which isprint(3C) and
741 		 * isspace(3C) return 0.
742 		 */
743 		if (isprint(c[i]) || isspace(c[i]) ||
744 		    c[i] == '\b' || c[i] == '\a')
745 			continue;
746 
747 		if (c[i] == '\0' && i > 0) {
748 			/*
749 			 * This looks like it might be a string.  Before we
750 			 * assume that it is indeed a string, check the
751 			 * remainder of the byte range; if it contains
752 			 * additional non-nul characters, we'll assume that
753 			 * it's a binary stream that just happens to look like
754 			 * a string, and we'll print out the individual bytes.
755 			 */
756 			for (j = i + 1; j < nbytes; j++) {
757 				if (c[j] != '\0')
758 					break;
759 			}
760 
761 			if (j != nbytes)
762 				break;
763 
764 			if (quiet)
765 				return (dt_printf(dtp, fp, "%s", c));
766 			else
767 				return (dt_printf(dtp, fp, "  %-*s", width, c));
768 		}
769 
770 		break;
771 	}
772 
773 	if (i == nbytes) {
774 		/*
775 		 * The byte range is all printable characters, but there is
776 		 * no trailing nul byte.  We'll assume that it's a string and
777 		 * print it as such.
778 		 */
779 		char *s = alloca(nbytes + 1);
780 		bcopy(c, s, nbytes);
781 		s[nbytes] = '\0';
782 		return (dt_printf(dtp, fp, "  %-*s", width, s));
783 	}
784 
785 raw:
786 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
787 		return (-1);
788 
789 	for (i = 0; i < 16; i++)
790 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
791 			return (-1);
792 
793 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
794 		return (-1);
795 
796 
797 	for (i = 0; i < nbytes; i += 16) {
798 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
799 			return (-1);
800 
801 		for (j = i; j < i + 16 && j < nbytes; j++) {
802 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
803 				return (-1);
804 		}
805 
806 		while (j++ % 16) {
807 			if (dt_printf(dtp, fp, "   ") < 0)
808 				return (-1);
809 		}
810 
811 		if (dt_printf(dtp, fp, "  ") < 0)
812 			return (-1);
813 
814 		for (j = i; j < i + 16 && j < nbytes; j++) {
815 			if (dt_printf(dtp, fp, "%c",
816 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
817 				return (-1);
818 		}
819 
820 		if (dt_printf(dtp, fp, "\n") < 0)
821 			return (-1);
822 	}
823 
824 	return (0);
825 }
826 
827 int
828 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
829     caddr_t addr, int depth, int size)
830 {
831 	dtrace_syminfo_t dts;
832 	GElf_Sym sym;
833 	int i, indent;
834 	char c[PATH_MAX * 2];
835 	uint64_t pc;
836 
837 	if (dt_printf(dtp, fp, "\n") < 0)
838 		return (-1);
839 
840 	if (format == NULL)
841 		format = "%s";
842 
843 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
844 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
845 	else
846 		indent = _dtrace_stkindent;
847 
848 	for (i = 0; i < depth; i++) {
849 		switch (size) {
850 		case sizeof (uint32_t):
851 			/* LINTED - alignment */
852 			pc = *((uint32_t *)addr);
853 			break;
854 
855 		case sizeof (uint64_t):
856 			/* LINTED - alignment */
857 			pc = *((uint64_t *)addr);
858 			break;
859 
860 		default:
861 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
862 		}
863 
864 		if (pc == 0)
865 			break;
866 
867 		addr += size;
868 
869 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
870 			return (-1);
871 
872 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
873 			if (pc > sym.st_value) {
874 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
875 				    dts.dts_object, dts.dts_name,
876 				    pc - sym.st_value);
877 			} else {
878 				(void) snprintf(c, sizeof (c), "%s`%s",
879 				    dts.dts_object, dts.dts_name);
880 			}
881 		} else {
882 			/*
883 			 * We'll repeat the lookup, but this time we'll specify
884 			 * a NULL GElf_Sym -- indicating that we're only
885 			 * interested in the containing module.
886 			 */
887 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
888 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
889 				    dts.dts_object, pc);
890 			} else {
891 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
892 			}
893 		}
894 
895 		if (dt_printf(dtp, fp, format, c) < 0)
896 			return (-1);
897 
898 		if (dt_printf(dtp, fp, "\n") < 0)
899 			return (-1);
900 	}
901 
902 	return (0);
903 }
904 
905 int
906 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
907     caddr_t addr, uint64_t arg)
908 {
909 	/* LINTED - alignment */
910 	uint64_t *pc = (uint64_t *)addr;
911 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
912 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
913 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
914 	const char *str = strsize ? strbase : NULL;
915 	int err = 0;
916 
917 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
918 	struct ps_prochandle *P;
919 	GElf_Sym sym;
920 	int i, indent;
921 	pid_t pid;
922 
923 	if (depth == 0)
924 		return (0);
925 
926 	pid = (pid_t)*pc++;
927 
928 	if (dt_printf(dtp, fp, "\n") < 0)
929 		return (-1);
930 
931 	if (format == NULL)
932 		format = "%s";
933 
934 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
935 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
936 	else
937 		indent = _dtrace_stkindent;
938 
939 	/*
940 	 * Ultimately, we need to add an entry point in the library vector for
941 	 * determining <symbol, offset> from <pid, address>.  For now, if
942 	 * this is a vector open, we just print the raw address or string.
943 	 */
944 	if (dtp->dt_vector == NULL)
945 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
946 	else
947 		P = NULL;
948 
949 	if (P != NULL)
950 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
951 
952 	for (i = 0; i < depth && pc[i] != 0; i++) {
953 		const prmap_t *map;
954 
955 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
956 			break;
957 
958 		if (P != NULL && Plookup_by_addr(P, pc[i],
959 		    name, sizeof (name), &sym) == 0) {
960 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
961 
962 			if (pc[i] > sym.st_value) {
963 				(void) snprintf(c, sizeof (c),
964 				    "%s`%s+0x%llx", dt_basename(objname), name,
965 				    (u_longlong_t)(pc[i] - sym.st_value));
966 			} else {
967 				(void) snprintf(c, sizeof (c),
968 				    "%s`%s", dt_basename(objname), name);
969 			}
970 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
971 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
972 		    (map->pr_mflags & MA_WRITE)))) {
973 			/*
974 			 * If the current string pointer in the string table
975 			 * does not point to an empty string _and_ the program
976 			 * counter falls in a writable region, we'll use the
977 			 * string from the string table instead of the raw
978 			 * address.  This last condition is necessary because
979 			 * some (broken) ustack helpers will return a string
980 			 * even for a program counter that they can't
981 			 * identify.  If we have a string for a program
982 			 * counter that falls in a segment that isn't
983 			 * writable, we assume that we have fallen into this
984 			 * case and we refuse to use the string.
985 			 */
986 			(void) snprintf(c, sizeof (c), "%s", str);
987 		} else {
988 			if (P != NULL && Pobjname(P, pc[i], objname,
989 			    sizeof (objname)) != 0) {
990 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
991 				    dt_basename(objname), (u_longlong_t)pc[i]);
992 			} else {
993 				(void) snprintf(c, sizeof (c), "0x%llx",
994 				    (u_longlong_t)pc[i]);
995 			}
996 		}
997 
998 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
999 			break;
1000 
1001 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1002 			break;
1003 
1004 		if (str != NULL && str[0] == '@') {
1005 			/*
1006 			 * If the first character of the string is an "at" sign,
1007 			 * then the string is inferred to be an annotation --
1008 			 * and it is printed out beneath the frame and offset
1009 			 * with brackets.
1010 			 */
1011 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1012 				break;
1013 
1014 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1015 
1016 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1017 				break;
1018 
1019 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1020 				break;
1021 		}
1022 
1023 		if (str != NULL) {
1024 			str += strlen(str) + 1;
1025 			if (str - strbase >= strsize)
1026 				str = NULL;
1027 		}
1028 	}
1029 
1030 	if (P != NULL) {
1031 		dt_proc_unlock(dtp, P);
1032 		dt_proc_release(dtp, P);
1033 	}
1034 
1035 	return (err);
1036 }
1037 
1038 static int
1039 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1040 {
1041 	/* LINTED - alignment */
1042 	uint64_t pid = ((uint64_t *)addr)[0];
1043 	/* LINTED - alignment */
1044 	uint64_t pc = ((uint64_t *)addr)[1];
1045 	const char *format = "  %-50s";
1046 	char *s;
1047 	int n, len = 256;
1048 
1049 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1050 		struct ps_prochandle *P;
1051 
1052 		if ((P = dt_proc_grab(dtp, pid,
1053 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1054 			GElf_Sym sym;
1055 
1056 			dt_proc_lock(dtp, P);
1057 
1058 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1059 				pc = sym.st_value;
1060 
1061 			dt_proc_unlock(dtp, P);
1062 			dt_proc_release(dtp, P);
1063 		}
1064 	}
1065 
1066 	do {
1067 		n = len;
1068 		s = alloca(n);
1069 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1070 
1071 	return (dt_printf(dtp, fp, format, s));
1072 }
1073 
1074 int
1075 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1076 {
1077 	/* LINTED - alignment */
1078 	uint64_t pid = ((uint64_t *)addr)[0];
1079 	/* LINTED - alignment */
1080 	uint64_t pc = ((uint64_t *)addr)[1];
1081 	int err = 0;
1082 
1083 	char objname[PATH_MAX], c[PATH_MAX * 2];
1084 	struct ps_prochandle *P;
1085 
1086 	if (format == NULL)
1087 		format = "  %-50s";
1088 
1089 	/*
1090 	 * See the comment in dt_print_ustack() for the rationale for
1091 	 * printing raw addresses in the vectored case.
1092 	 */
1093 	if (dtp->dt_vector == NULL)
1094 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1095 	else
1096 		P = NULL;
1097 
1098 	if (P != NULL)
1099 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1100 
1101 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1102 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1103 	} else {
1104 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1105 	}
1106 
1107 	err = dt_printf(dtp, fp, format, c);
1108 
1109 	if (P != NULL) {
1110 		dt_proc_unlock(dtp, P);
1111 		dt_proc_release(dtp, P);
1112 	}
1113 
1114 	return (err);
1115 }
1116 
1117 int
1118 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1119 {
1120 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1121 	size_t nbytes = *((uintptr_t *) addr);
1122 
1123 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1124 	    nbytes, 50, quiet, 1));
1125 }
1126 
1127 typedef struct dt_type_cbdata {
1128 	dtrace_hdl_t		*dtp;
1129 	dtrace_typeinfo_t	dtt;
1130 	caddr_t			addr;
1131 	caddr_t			addrend;
1132 	const char		*name;
1133 	int			f_type;
1134 	int			indent;
1135 	int			type_width;
1136 	int			name_width;
1137 	FILE			*fp;
1138 } dt_type_cbdata_t;
1139 
1140 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1141 
1142 static int
1143 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1144 {
1145 	dt_type_cbdata_t cbdata;
1146 	dt_type_cbdata_t *cbdatap = arg;
1147 	ssize_t ssz;
1148 
1149 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1150 		return (0);
1151 
1152 	off /= 8;
1153 
1154 	cbdata = *cbdatap;
1155 	cbdata.name = name;
1156 	cbdata.addr += off;
1157 	cbdata.addrend = cbdata.addr + ssz;
1158 
1159 	return (dt_print_type_data(&cbdata, type));
1160 }
1161 
1162 static int
1163 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1164 {
1165 	char buf[DT_TYPE_NAMELEN];
1166 	char *p;
1167 	dt_type_cbdata_t *cbdatap = arg;
1168 	size_t sz = strlen(name);
1169 
1170 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1171 
1172 	if ((p = strchr(buf, '[')) != NULL)
1173 		p[-1] = '\0';
1174 	else
1175 		p = "";
1176 
1177 	sz += strlen(p);
1178 
1179 	if (sz > cbdatap->name_width)
1180 		cbdatap->name_width = sz;
1181 
1182 	sz = strlen(buf);
1183 
1184 	if (sz > cbdatap->type_width)
1185 		cbdatap->type_width = sz;
1186 
1187 	return (0);
1188 }
1189 
1190 static int
1191 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1192 {
1193 	caddr_t addr = cbdatap->addr;
1194 	caddr_t addrend = cbdatap->addrend;
1195 	char buf[DT_TYPE_NAMELEN];
1196 	char *p;
1197 	int cnt = 0;
1198 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1199 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1200 
1201 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1202 
1203 	if ((p = strchr(buf, '[')) != NULL)
1204 		p[-1] = '\0';
1205 	else
1206 		p = "";
1207 
1208 	if (cbdatap->f_type) {
1209 		int type_width = roundup(cbdatap->type_width + 1, 4);
1210 		int name_width = roundup(cbdatap->name_width + 1, 4);
1211 
1212 		name_width -= strlen(cbdatap->name);
1213 
1214 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1215 	}
1216 
1217 	while (addr < addrend) {
1218 		dt_type_cbdata_t cbdata;
1219 		ctf_arinfo_t arinfo;
1220 		ctf_encoding_t cte;
1221 		uintptr_t *up;
1222 		void *vp = addr;
1223 		cbdata = *cbdatap;
1224 		cbdata.name = "";
1225 		cbdata.addr = addr;
1226 		cbdata.addrend = addr + ssz;
1227 		cbdata.f_type = 0;
1228 		cbdata.indent++;
1229 		cbdata.type_width = 0;
1230 		cbdata.name_width = 0;
1231 
1232 		if (cnt > 0)
1233 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1234 
1235 		switch (kind) {
1236 		case CTF_K_INTEGER:
1237 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1238 				return (-1);
1239 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1240 				switch (cte.cte_bits) {
1241 				case 8:
1242 					if (isprint(*((char *) vp)))
1243 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1244 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1245 					break;
1246 				case 16:
1247 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1248 					break;
1249 				case 32:
1250 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1251 					break;
1252 				case 64:
1253 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1254 					break;
1255 				default:
1256 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1257 					break;
1258 				}
1259 			else
1260 				switch (cte.cte_bits) {
1261 				case 8:
1262 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1263 					break;
1264 				case 16:
1265 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1266 					break;
1267 				case 32:
1268 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1269 					break;
1270 				case 64:
1271 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1272 					break;
1273 				default:
1274 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1275 					break;
1276 				}
1277 			break;
1278 		case CTF_K_FLOAT:
1279 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1280 			break;
1281 		case CTF_K_POINTER:
1282 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1283 			break;
1284 		case CTF_K_ARRAY:
1285 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1286 				return (-1);
1287 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1288 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1289 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1290 			break;
1291 		case CTF_K_FUNCTION:
1292 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1293 			break;
1294 		case CTF_K_STRUCT:
1295 			cbdata.f_type = 1;
1296 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1297 			    dt_print_type_width, &cbdata) != 0)
1298 				return (-1);
1299 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1300 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1301 			    dt_print_type_member, &cbdata) != 0)
1302 				return (-1);
1303 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1304 			break;
1305 		case CTF_K_UNION:
1306 			cbdata.f_type = 1;
1307 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1308 			    dt_print_type_width, &cbdata) != 0)
1309 				return (-1);
1310 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1311 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1312 			    dt_print_type_member, &cbdata) != 0)
1313 				return (-1);
1314 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1315 			break;
1316 		case CTF_K_ENUM:
1317 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1318 			break;
1319 		case CTF_K_TYPEDEF:
1320 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1321 			break;
1322 		case CTF_K_VOLATILE:
1323 			if (cbdatap->f_type)
1324 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1325 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1326 			break;
1327 		case CTF_K_CONST:
1328 			if (cbdatap->f_type)
1329 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1330 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1331 			break;
1332 		case CTF_K_RESTRICT:
1333 			if (cbdatap->f_type)
1334 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1335 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1336 			break;
1337 		default:
1338 			break;
1339 		}
1340 
1341 		addr += ssz;
1342 		cnt++;
1343 	}
1344 
1345 	return (0);
1346 }
1347 
1348 static int
1349 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1350 {
1351 	caddr_t addrend;
1352 	char *p;
1353 	dtrace_typeinfo_t dtt;
1354 	dt_type_cbdata_t cbdata;
1355 	int num = 0;
1356 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1357 	ssize_t ssz;
1358 
1359 	if (!quiet)
1360 		dt_printf(dtp, fp, "\n");
1361 
1362 	/* Get the total number of bytes of data buffered. */
1363 	size_t nbytes = *((uintptr_t *) addr);
1364 	addr += sizeof(uintptr_t);
1365 
1366 	/*
1367 	 * Get the size of the type so that we can check that it matches
1368 	 * the CTF data we look up and so that we can figure out how many
1369 	 * type elements are buffered.
1370 	 */
1371 	size_t typs = *((uintptr_t *) addr);
1372 	addr += sizeof(uintptr_t);
1373 
1374 	/*
1375 	 * Point to the type string in the buffer. Get it's string
1376 	 * length and round it up to become the offset to the start
1377 	 * of the buffered type data which we would like to be aligned
1378 	 * for easy access.
1379 	 */
1380 	char *strp = (char *) addr;
1381 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1382 
1383 	/*
1384 	 * The type string might have a format such as 'int [20]'.
1385 	 * Check if there is an array dimension present.
1386 	 */
1387 	if ((p = strchr(strp, '[')) != NULL) {
1388 		/* Strip off the array dimension. */
1389 		*p++ = '\0';
1390 
1391 		for (; *p != '\0' && *p != ']'; p++)
1392 			num = num * 10 + *p - '0';
1393 	} else
1394 		/* No array dimension, so default. */
1395 		num = 1;
1396 
1397 	/* Lookup the CTF type from the type string. */
1398 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1399 		return (-1);
1400 
1401 	/* Offset the buffer address to the start of the data... */
1402 	addr += offset;
1403 
1404 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1405 
1406 	if (typs != ssz) {
1407 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1408 		return (-1);
1409 	}
1410 
1411 	cbdata.dtp = dtp;
1412 	cbdata.dtt = dtt;
1413 	cbdata.name = "";
1414 	cbdata.addr = addr;
1415 	cbdata.addrend = addr + nbytes;
1416 	cbdata.indent = 1;
1417 	cbdata.f_type = 1;
1418 	cbdata.type_width = 0;
1419 	cbdata.name_width = 0;
1420 	cbdata.fp = fp;
1421 
1422 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1423 }
1424 
1425 static int
1426 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1427 {
1428 	/* LINTED - alignment */
1429 	uint64_t pc = *((uint64_t *)addr);
1430 	dtrace_syminfo_t dts;
1431 	GElf_Sym sym;
1432 	char c[PATH_MAX * 2];
1433 
1434 	if (format == NULL)
1435 		format = "  %-50s";
1436 
1437 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1438 		(void) snprintf(c, sizeof (c), "%s`%s",
1439 		    dts.dts_object, dts.dts_name);
1440 	} else {
1441 		/*
1442 		 * We'll repeat the lookup, but this time we'll specify a
1443 		 * NULL GElf_Sym -- indicating that we're only interested in
1444 		 * the containing module.
1445 		 */
1446 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1447 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1448 			    dts.dts_object, (u_longlong_t)pc);
1449 		} else {
1450 			(void) snprintf(c, sizeof (c), "0x%llx",
1451 			    (u_longlong_t)pc);
1452 		}
1453 	}
1454 
1455 	if (dt_printf(dtp, fp, format, c) < 0)
1456 		return (-1);
1457 
1458 	return (0);
1459 }
1460 
1461 int
1462 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1463 {
1464 	/* LINTED - alignment */
1465 	uint64_t pc = *((uint64_t *)addr);
1466 	dtrace_syminfo_t dts;
1467 	char c[PATH_MAX * 2];
1468 
1469 	if (format == NULL)
1470 		format = "  %-50s";
1471 
1472 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1473 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1474 	} else {
1475 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1476 	}
1477 
1478 	if (dt_printf(dtp, fp, format, c) < 0)
1479 		return (-1);
1480 
1481 	return (0);
1482 }
1483 
1484 typedef struct dt_normal {
1485 	dtrace_aggvarid_t dtnd_id;
1486 	uint64_t dtnd_normal;
1487 } dt_normal_t;
1488 
1489 static int
1490 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1491 {
1492 	dt_normal_t *normal = arg;
1493 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1494 	dtrace_aggvarid_t id = normal->dtnd_id;
1495 
1496 	if (agg->dtagd_nrecs == 0)
1497 		return (DTRACE_AGGWALK_NEXT);
1498 
1499 	if (agg->dtagd_varid != id)
1500 		return (DTRACE_AGGWALK_NEXT);
1501 
1502 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1503 	return (DTRACE_AGGWALK_NORMALIZE);
1504 }
1505 
1506 static int
1507 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1508 {
1509 	dt_normal_t normal;
1510 	caddr_t addr;
1511 
1512 	/*
1513 	 * We (should) have two records:  the aggregation ID followed by the
1514 	 * normalization value.
1515 	 */
1516 	addr = base + rec->dtrd_offset;
1517 
1518 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1519 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1520 
1521 	/* LINTED - alignment */
1522 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1523 	rec++;
1524 
1525 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1526 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1527 
1528 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1529 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1530 
1531 	addr = base + rec->dtrd_offset;
1532 
1533 	switch (rec->dtrd_size) {
1534 	case sizeof (uint64_t):
1535 		/* LINTED - alignment */
1536 		normal.dtnd_normal = *((uint64_t *)addr);
1537 		break;
1538 	case sizeof (uint32_t):
1539 		/* LINTED - alignment */
1540 		normal.dtnd_normal = *((uint32_t *)addr);
1541 		break;
1542 	case sizeof (uint16_t):
1543 		/* LINTED - alignment */
1544 		normal.dtnd_normal = *((uint16_t *)addr);
1545 		break;
1546 	case sizeof (uint8_t):
1547 		normal.dtnd_normal = *((uint8_t *)addr);
1548 		break;
1549 	default:
1550 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1551 	}
1552 
1553 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1554 
1555 	return (0);
1556 }
1557 
1558 static int
1559 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1560 {
1561 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1562 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1563 
1564 	if (agg->dtagd_nrecs == 0)
1565 		return (DTRACE_AGGWALK_NEXT);
1566 
1567 	if (agg->dtagd_varid != id)
1568 		return (DTRACE_AGGWALK_NEXT);
1569 
1570 	return (DTRACE_AGGWALK_DENORMALIZE);
1571 }
1572 
1573 static int
1574 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1575 {
1576 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1577 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1578 
1579 	if (agg->dtagd_nrecs == 0)
1580 		return (DTRACE_AGGWALK_NEXT);
1581 
1582 	if (agg->dtagd_varid != id)
1583 		return (DTRACE_AGGWALK_NEXT);
1584 
1585 	return (DTRACE_AGGWALK_CLEAR);
1586 }
1587 
1588 typedef struct dt_trunc {
1589 	dtrace_aggvarid_t dttd_id;
1590 	uint64_t dttd_remaining;
1591 } dt_trunc_t;
1592 
1593 static int
1594 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1595 {
1596 	dt_trunc_t *trunc = arg;
1597 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1598 	dtrace_aggvarid_t id = trunc->dttd_id;
1599 
1600 	if (agg->dtagd_nrecs == 0)
1601 		return (DTRACE_AGGWALK_NEXT);
1602 
1603 	if (agg->dtagd_varid != id)
1604 		return (DTRACE_AGGWALK_NEXT);
1605 
1606 	if (trunc->dttd_remaining == 0)
1607 		return (DTRACE_AGGWALK_REMOVE);
1608 
1609 	trunc->dttd_remaining--;
1610 	return (DTRACE_AGGWALK_NEXT);
1611 }
1612 
1613 static int
1614 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1615 {
1616 	dt_trunc_t trunc;
1617 	caddr_t addr;
1618 	int64_t remaining;
1619 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1620 
1621 	/*
1622 	 * We (should) have two records:  the aggregation ID followed by the
1623 	 * number of aggregation entries after which the aggregation is to be
1624 	 * truncated.
1625 	 */
1626 	addr = base + rec->dtrd_offset;
1627 
1628 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1629 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1630 
1631 	/* LINTED - alignment */
1632 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1633 	rec++;
1634 
1635 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1636 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1637 
1638 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1639 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1640 
1641 	addr = base + rec->dtrd_offset;
1642 
1643 	switch (rec->dtrd_size) {
1644 	case sizeof (uint64_t):
1645 		/* LINTED - alignment */
1646 		remaining = *((int64_t *)addr);
1647 		break;
1648 	case sizeof (uint32_t):
1649 		/* LINTED - alignment */
1650 		remaining = *((int32_t *)addr);
1651 		break;
1652 	case sizeof (uint16_t):
1653 		/* LINTED - alignment */
1654 		remaining = *((int16_t *)addr);
1655 		break;
1656 	case sizeof (uint8_t):
1657 		remaining = *((int8_t *)addr);
1658 		break;
1659 	default:
1660 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1661 	}
1662 
1663 	if (remaining < 0) {
1664 		func = dtrace_aggregate_walk_valsorted;
1665 		remaining = -remaining;
1666 	} else {
1667 		func = dtrace_aggregate_walk_valrevsorted;
1668 	}
1669 
1670 	assert(remaining >= 0);
1671 	trunc.dttd_remaining = remaining;
1672 
1673 	(void) func(dtp, dt_trunc_agg, &trunc);
1674 
1675 	return (0);
1676 }
1677 
1678 static int
1679 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1680     caddr_t addr, size_t size, uint64_t normal)
1681 {
1682 	int err;
1683 	dtrace_actkind_t act = rec->dtrd_action;
1684 
1685 	switch (act) {
1686 	case DTRACEACT_STACK:
1687 		return (dt_print_stack(dtp, fp, NULL, addr,
1688 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1689 
1690 	case DTRACEACT_USTACK:
1691 	case DTRACEACT_JSTACK:
1692 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1693 
1694 	case DTRACEACT_USYM:
1695 	case DTRACEACT_UADDR:
1696 		return (dt_print_usym(dtp, fp, addr, act));
1697 
1698 	case DTRACEACT_UMOD:
1699 		return (dt_print_umod(dtp, fp, NULL, addr));
1700 
1701 	case DTRACEACT_SYM:
1702 		return (dt_print_sym(dtp, fp, NULL, addr));
1703 
1704 	case DTRACEACT_MOD:
1705 		return (dt_print_mod(dtp, fp, NULL, addr));
1706 
1707 	case DTRACEAGG_QUANTIZE:
1708 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1709 
1710 	case DTRACEAGG_LQUANTIZE:
1711 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1712 
1713 	case DTRACEAGG_AVG:
1714 		return (dt_print_average(dtp, fp, addr, size, normal));
1715 
1716 	case DTRACEAGG_STDDEV:
1717 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1718 
1719 	default:
1720 		break;
1721 	}
1722 
1723 	switch (size) {
1724 	case sizeof (uint64_t):
1725 		err = dt_printf(dtp, fp, " %16lld",
1726 		    /* LINTED - alignment */
1727 		    (long long)*((uint64_t *)addr) / normal);
1728 		break;
1729 	case sizeof (uint32_t):
1730 		/* LINTED - alignment */
1731 		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1732 		    (uint32_t)normal);
1733 		break;
1734 	case sizeof (uint16_t):
1735 		/* LINTED - alignment */
1736 		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1737 		    (uint32_t)normal);
1738 		break;
1739 	case sizeof (uint8_t):
1740 		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1741 		    (uint32_t)normal);
1742 		break;
1743 	default:
1744 		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1745 		break;
1746 	}
1747 
1748 	return (err);
1749 }
1750 
1751 int
1752 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1753 {
1754 	int i, aggact = 0;
1755 	dt_print_aggdata_t *pd = arg;
1756 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1757 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1758 	FILE *fp = pd->dtpa_fp;
1759 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1760 	dtrace_recdesc_t *rec;
1761 	dtrace_actkind_t act;
1762 	caddr_t addr;
1763 	size_t size;
1764 
1765 	/*
1766 	 * Iterate over each record description in the key, printing the traced
1767 	 * data, skipping the first datum (the tuple member created by the
1768 	 * compiler).
1769 	 */
1770 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1771 		rec = &agg->dtagd_rec[i];
1772 		act = rec->dtrd_action;
1773 		addr = aggdata->dtada_data + rec->dtrd_offset;
1774 		size = rec->dtrd_size;
1775 
1776 		if (DTRACEACT_ISAGG(act)) {
1777 			aggact = i;
1778 			break;
1779 		}
1780 
1781 		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1782 			return (-1);
1783 
1784 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1785 		    DTRACE_BUFDATA_AGGKEY) < 0)
1786 			return (-1);
1787 	}
1788 
1789 	assert(aggact != 0);
1790 
1791 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1792 		uint64_t normal;
1793 
1794 		aggdata = aggsdata[i];
1795 		agg = aggdata->dtada_desc;
1796 		rec = &agg->dtagd_rec[aggact];
1797 		act = rec->dtrd_action;
1798 		addr = aggdata->dtada_data + rec->dtrd_offset;
1799 		size = rec->dtrd_size;
1800 
1801 		assert(DTRACEACT_ISAGG(act));
1802 		normal = aggdata->dtada_normal;
1803 
1804 		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1805 			return (-1);
1806 
1807 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1808 		    DTRACE_BUFDATA_AGGVAL) < 0)
1809 			return (-1);
1810 
1811 		if (!pd->dtpa_allunprint)
1812 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1813 	}
1814 
1815 	if (dt_printf(dtp, fp, "\n") < 0)
1816 		return (-1);
1817 
1818 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1819 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1820 		return (-1);
1821 
1822 	return (0);
1823 }
1824 
1825 int
1826 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1827 {
1828 	dt_print_aggdata_t *pd = arg;
1829 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1830 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1831 
1832 	if (pd->dtpa_allunprint) {
1833 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1834 			return (0);
1835 	} else {
1836 		/*
1837 		 * If we're not printing all unprinted aggregations, then the
1838 		 * aggregation variable ID denotes a specific aggregation
1839 		 * variable that we should print -- skip any other aggregations
1840 		 * that we encounter.
1841 		 */
1842 		if (agg->dtagd_nrecs == 0)
1843 			return (0);
1844 
1845 		if (aggvarid != agg->dtagd_varid)
1846 			return (0);
1847 	}
1848 
1849 	return (dt_print_aggs(&aggdata, 1, arg));
1850 }
1851 
1852 int
1853 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1854     const char *option, const char *value)
1855 {
1856 	int len, rval;
1857 	char *msg;
1858 	const char *errstr;
1859 	dtrace_setoptdata_t optdata;
1860 
1861 	bzero(&optdata, sizeof (optdata));
1862 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1863 
1864 	if (dtrace_setopt(dtp, option, value) == 0) {
1865 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1866 		optdata.dtsda_probe = data;
1867 		optdata.dtsda_option = option;
1868 		optdata.dtsda_handle = dtp;
1869 
1870 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1871 			return (rval);
1872 
1873 		return (0);
1874 	}
1875 
1876 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1877 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1878 	msg = alloca(len);
1879 
1880 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1881 	    option, value, errstr);
1882 
1883 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1884 		return (0);
1885 
1886 	return (rval);
1887 }
1888 
1889 static int
1890 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1891     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1892 {
1893 	dtrace_epid_t id;
1894 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1895 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1896 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1897 	int rval, i, n;
1898 	dtrace_epid_t last = DTRACE_EPIDNONE;
1899 	dtrace_probedata_t data;
1900 	uint64_t drops;
1901 	caddr_t addr;
1902 
1903 	bzero(&data, sizeof (data));
1904 	data.dtpda_handle = dtp;
1905 	data.dtpda_cpu = cpu;
1906 
1907 again:
1908 	for (offs = start; offs < end; ) {
1909 		dtrace_eprobedesc_t *epd;
1910 
1911 		/*
1912 		 * We're guaranteed to have an ID.
1913 		 */
1914 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1915 
1916 		if (id == DTRACE_EPIDNONE) {
1917 			/*
1918 			 * This is filler to assure proper alignment of the
1919 			 * next record; we simply ignore it.
1920 			 */
1921 			offs += sizeof (id);
1922 			continue;
1923 		}
1924 
1925 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1926 		    &data.dtpda_pdesc)) != 0)
1927 			return (rval);
1928 
1929 		epd = data.dtpda_edesc;
1930 		data.dtpda_data = buf->dtbd_data + offs;
1931 
1932 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1933 			rval = dt_handle(dtp, &data);
1934 
1935 			if (rval == DTRACE_CONSUME_NEXT)
1936 				goto nextepid;
1937 
1938 			if (rval == DTRACE_CONSUME_ERROR)
1939 				return (-1);
1940 		}
1941 
1942 		if (flow)
1943 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1944 
1945 		rval = (*efunc)(&data, arg);
1946 
1947 		if (flow) {
1948 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1949 				data.dtpda_indent += 2;
1950 		}
1951 
1952 		if (rval == DTRACE_CONSUME_NEXT)
1953 			goto nextepid;
1954 
1955 		if (rval == DTRACE_CONSUME_ABORT)
1956 			return (dt_set_errno(dtp, EDT_DIRABORT));
1957 
1958 		if (rval != DTRACE_CONSUME_THIS)
1959 			return (dt_set_errno(dtp, EDT_BADRVAL));
1960 
1961 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1962 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1963 			dtrace_actkind_t act = rec->dtrd_action;
1964 
1965 			data.dtpda_data = buf->dtbd_data + offs +
1966 			    rec->dtrd_offset;
1967 			addr = data.dtpda_data;
1968 
1969 			if (act == DTRACEACT_LIBACT) {
1970 				uint64_t arg = rec->dtrd_arg;
1971 				dtrace_aggvarid_t id;
1972 
1973 				switch (arg) {
1974 				case DT_ACT_CLEAR:
1975 					/* LINTED - alignment */
1976 					id = *((dtrace_aggvarid_t *)addr);
1977 					(void) dtrace_aggregate_walk(dtp,
1978 					    dt_clear_agg, &id);
1979 					continue;
1980 
1981 				case DT_ACT_DENORMALIZE:
1982 					/* LINTED - alignment */
1983 					id = *((dtrace_aggvarid_t *)addr);
1984 					(void) dtrace_aggregate_walk(dtp,
1985 					    dt_denormalize_agg, &id);
1986 					continue;
1987 
1988 				case DT_ACT_FTRUNCATE:
1989 					if (fp == NULL)
1990 						continue;
1991 
1992 					(void) fflush(fp);
1993 					(void) ftruncate(fileno(fp), 0);
1994 					(void) fseeko(fp, 0, SEEK_SET);
1995 					continue;
1996 
1997 				case DT_ACT_NORMALIZE:
1998 					if (i == epd->dtepd_nrecs - 1)
1999 						return (dt_set_errno(dtp,
2000 						    EDT_BADNORMAL));
2001 
2002 					if (dt_normalize(dtp,
2003 					    buf->dtbd_data + offs, rec) != 0)
2004 						return (-1);
2005 
2006 					i++;
2007 					continue;
2008 
2009 				case DT_ACT_SETOPT: {
2010 					uint64_t *opts = dtp->dt_options;
2011 					dtrace_recdesc_t *valrec;
2012 					uint32_t valsize;
2013 					caddr_t val;
2014 					int rv;
2015 
2016 					if (i == epd->dtepd_nrecs - 1) {
2017 						return (dt_set_errno(dtp,
2018 						    EDT_BADSETOPT));
2019 					}
2020 
2021 					valrec = &epd->dtepd_rec[++i];
2022 					valsize = valrec->dtrd_size;
2023 
2024 					if (valrec->dtrd_action != act ||
2025 					    valrec->dtrd_arg != arg) {
2026 						return (dt_set_errno(dtp,
2027 						    EDT_BADSETOPT));
2028 					}
2029 
2030 					if (valsize > sizeof (uint64_t)) {
2031 						val = buf->dtbd_data + offs +
2032 						    valrec->dtrd_offset;
2033 					} else {
2034 						val = "1";
2035 					}
2036 
2037 					rv = dt_setopt(dtp, &data, addr, val);
2038 
2039 					if (rv != 0)
2040 						return (-1);
2041 
2042 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2043 					    DTRACEOPT_UNSET);
2044 					quiet = (opts[DTRACEOPT_QUIET] !=
2045 					    DTRACEOPT_UNSET);
2046 
2047 					continue;
2048 				}
2049 
2050 				case DT_ACT_TRUNC:
2051 					if (i == epd->dtepd_nrecs - 1)
2052 						return (dt_set_errno(dtp,
2053 						    EDT_BADTRUNC));
2054 
2055 					if (dt_trunc(dtp,
2056 					    buf->dtbd_data + offs, rec) != 0)
2057 						return (-1);
2058 
2059 					i++;
2060 					continue;
2061 
2062 				default:
2063 					continue;
2064 				}
2065 			}
2066 
2067 			rval = (*rfunc)(&data, rec, arg);
2068 
2069 			if (rval == DTRACE_CONSUME_NEXT)
2070 				continue;
2071 
2072 			if (rval == DTRACE_CONSUME_ABORT)
2073 				return (dt_set_errno(dtp, EDT_DIRABORT));
2074 
2075 			if (rval != DTRACE_CONSUME_THIS)
2076 				return (dt_set_errno(dtp, EDT_BADRVAL));
2077 
2078 			if (act == DTRACEACT_STACK) {
2079 				int depth = rec->dtrd_arg;
2080 
2081 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2082 				    rec->dtrd_size / depth) < 0)
2083 					return (-1);
2084 				goto nextrec;
2085 			}
2086 
2087 			if (act == DTRACEACT_USTACK ||
2088 			    act == DTRACEACT_JSTACK) {
2089 				if (dt_print_ustack(dtp, fp, NULL,
2090 				    addr, rec->dtrd_arg) < 0)
2091 					return (-1);
2092 				goto nextrec;
2093 			}
2094 
2095 			if (act == DTRACEACT_SYM) {
2096 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2097 					return (-1);
2098 				goto nextrec;
2099 			}
2100 
2101 			if (act == DTRACEACT_MOD) {
2102 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2103 					return (-1);
2104 				goto nextrec;
2105 			}
2106 
2107 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2108 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2109 					return (-1);
2110 				goto nextrec;
2111 			}
2112 
2113 			if (act == DTRACEACT_UMOD) {
2114 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2115 					return (-1);
2116 				goto nextrec;
2117 			}
2118 
2119 			if (act == DTRACEACT_PRINTM) {
2120 				if (dt_print_memory(dtp, fp, addr) < 0)
2121 					return (-1);
2122 				goto nextrec;
2123 			}
2124 
2125 			if (act == DTRACEACT_PRINTT) {
2126 				if (dt_print_type(dtp, fp, addr) < 0)
2127 					return (-1);
2128 				goto nextrec;
2129 			}
2130 
2131 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2132 				void *fmtdata;
2133 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2134 				    const dtrace_probedata_t *,
2135 				    const dtrace_recdesc_t *, uint_t,
2136 				    const void *buf, size_t);
2137 
2138 				if ((fmtdata = dt_format_lookup(dtp,
2139 				    rec->dtrd_format)) == NULL)
2140 					goto nofmt;
2141 
2142 				switch (act) {
2143 				case DTRACEACT_PRINTF:
2144 					func = dtrace_fprintf;
2145 					break;
2146 				case DTRACEACT_PRINTA:
2147 					func = dtrace_fprinta;
2148 					break;
2149 				case DTRACEACT_SYSTEM:
2150 					func = dtrace_system;
2151 					break;
2152 				case DTRACEACT_FREOPEN:
2153 					func = dtrace_freopen;
2154 					break;
2155 				}
2156 
2157 				n = (*func)(dtp, fp, fmtdata, &data,
2158 				    rec, epd->dtepd_nrecs - i,
2159 				    (uchar_t *)buf->dtbd_data + offs,
2160 				    buf->dtbd_size - offs);
2161 
2162 				if (n < 0)
2163 					return (-1); /* errno is set for us */
2164 
2165 				if (n > 0)
2166 					i += n - 1;
2167 				goto nextrec;
2168 			}
2169 
2170 nofmt:
2171 			if (act == DTRACEACT_PRINTA) {
2172 				dt_print_aggdata_t pd;
2173 				dtrace_aggvarid_t *aggvars;
2174 				int j, naggvars = 0;
2175 				size_t size = ((epd->dtepd_nrecs - i) *
2176 				    sizeof (dtrace_aggvarid_t));
2177 
2178 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2179 					return (-1);
2180 
2181 				/*
2182 				 * This might be a printa() with multiple
2183 				 * aggregation variables.  We need to scan
2184 				 * forward through the records until we find
2185 				 * a record from a different statement.
2186 				 */
2187 				for (j = i; j < epd->dtepd_nrecs; j++) {
2188 					dtrace_recdesc_t *nrec;
2189 					caddr_t naddr;
2190 
2191 					nrec = &epd->dtepd_rec[j];
2192 
2193 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2194 						break;
2195 
2196 					if (nrec->dtrd_action != act) {
2197 						return (dt_set_errno(dtp,
2198 						    EDT_BADAGG));
2199 					}
2200 
2201 					naddr = buf->dtbd_data + offs +
2202 					    nrec->dtrd_offset;
2203 
2204 					aggvars[naggvars++] =
2205 					    /* LINTED - alignment */
2206 					    *((dtrace_aggvarid_t *)naddr);
2207 				}
2208 
2209 				i = j - 1;
2210 				bzero(&pd, sizeof (pd));
2211 				pd.dtpa_dtp = dtp;
2212 				pd.dtpa_fp = fp;
2213 
2214 				assert(naggvars >= 1);
2215 
2216 				if (naggvars == 1) {
2217 					pd.dtpa_id = aggvars[0];
2218 					dt_free(dtp, aggvars);
2219 
2220 					if (dt_printf(dtp, fp, "\n") < 0 ||
2221 					    dtrace_aggregate_walk_sorted(dtp,
2222 					    dt_print_agg, &pd) < 0)
2223 						return (-1);
2224 					goto nextrec;
2225 				}
2226 
2227 				if (dt_printf(dtp, fp, "\n") < 0 ||
2228 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2229 				    naggvars, dt_print_aggs, &pd) < 0) {
2230 					dt_free(dtp, aggvars);
2231 					return (-1);
2232 				}
2233 
2234 				dt_free(dtp, aggvars);
2235 				goto nextrec;
2236 			}
2237 
2238 			switch (rec->dtrd_size) {
2239 			case sizeof (uint64_t):
2240 				n = dt_printf(dtp, fp,
2241 				    quiet ? "%lld" : " %16lld",
2242 				    /* LINTED - alignment */
2243 				    *((unsigned long long *)addr));
2244 				break;
2245 			case sizeof (uint32_t):
2246 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2247 				    /* LINTED - alignment */
2248 				    *((uint32_t *)addr));
2249 				break;
2250 			case sizeof (uint16_t):
2251 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2252 				    /* LINTED - alignment */
2253 				    *((uint16_t *)addr));
2254 				break;
2255 			case sizeof (uint8_t):
2256 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2257 				    *((uint8_t *)addr));
2258 				break;
2259 			default:
2260 				n = dt_print_bytes(dtp, fp, addr,
2261 				    rec->dtrd_size, 33, quiet, 0);
2262 				break;
2263 			}
2264 
2265 			if (n < 0)
2266 				return (-1); /* errno is set for us */
2267 
2268 nextrec:
2269 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2270 				return (-1); /* errno is set for us */
2271 		}
2272 
2273 		/*
2274 		 * Call the record callback with a NULL record to indicate
2275 		 * that we're done processing this EPID.
2276 		 */
2277 		rval = (*rfunc)(&data, NULL, arg);
2278 nextepid:
2279 		offs += epd->dtepd_size;
2280 		last = id;
2281 	}
2282 
2283 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2284 		end = buf->dtbd_oldest;
2285 		start = 0;
2286 		goto again;
2287 	}
2288 
2289 	if ((drops = buf->dtbd_drops) == 0)
2290 		return (0);
2291 
2292 	/*
2293 	 * Explicitly zero the drops to prevent us from processing them again.
2294 	 */
2295 	buf->dtbd_drops = 0;
2296 
2297 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2298 }
2299 
2300 typedef struct dt_begin {
2301 	dtrace_consume_probe_f *dtbgn_probefunc;
2302 	dtrace_consume_rec_f *dtbgn_recfunc;
2303 	void *dtbgn_arg;
2304 	dtrace_handle_err_f *dtbgn_errhdlr;
2305 	void *dtbgn_errarg;
2306 	int dtbgn_beginonly;
2307 } dt_begin_t;
2308 
2309 static int
2310 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2311 {
2312 	dt_begin_t *begin = (dt_begin_t *)arg;
2313 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2314 
2315 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2316 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2317 
2318 	if (begin->dtbgn_beginonly) {
2319 		if (!(r1 && r2))
2320 			return (DTRACE_CONSUME_NEXT);
2321 	} else {
2322 		if (r1 && r2)
2323 			return (DTRACE_CONSUME_NEXT);
2324 	}
2325 
2326 	/*
2327 	 * We have a record that we're interested in.  Now call the underlying
2328 	 * probe function...
2329 	 */
2330 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2331 }
2332 
2333 static int
2334 dt_consume_begin_record(const dtrace_probedata_t *data,
2335     const dtrace_recdesc_t *rec, void *arg)
2336 {
2337 	dt_begin_t *begin = (dt_begin_t *)arg;
2338 
2339 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2340 }
2341 
2342 static int
2343 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2344 {
2345 	dt_begin_t *begin = (dt_begin_t *)arg;
2346 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2347 
2348 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2349 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2350 
2351 	if (begin->dtbgn_beginonly) {
2352 		if (!(r1 && r2))
2353 			return (DTRACE_HANDLE_OK);
2354 	} else {
2355 		if (r1 && r2)
2356 			return (DTRACE_HANDLE_OK);
2357 	}
2358 
2359 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2360 }
2361 
2362 static int
2363 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2364     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2365 {
2366 	/*
2367 	 * There's this idea that the BEGIN probe should be processed before
2368 	 * everything else, and that the END probe should be processed after
2369 	 * anything else.  In the common case, this is pretty easy to deal
2370 	 * with.  However, a situation may arise where the BEGIN enabling and
2371 	 * END enabling are on the same CPU, and some enabling in the middle
2372 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2373 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2374 	 * then set it aside.  We will then process every other CPU, and then
2375 	 * we'll return to the BEGIN CPU and process the rest of the data
2376 	 * (which will inevitably include the END probe, if any).  Making this
2377 	 * even more complicated (!) is the library's ERROR enabling.  Because
2378 	 * this enabling is processed before we even get into the consume call
2379 	 * back, any ERROR firing would result in the library's ERROR enabling
2380 	 * being processed twice -- once in our first pass (for BEGIN probes),
2381 	 * and again in our second pass (for everything but BEGIN probes).  To
2382 	 * deal with this, we interpose on the ERROR handler to assure that we
2383 	 * only process ERROR enablings induced by BEGIN enablings in the
2384 	 * first pass, and that we only process ERROR enablings _not_ induced
2385 	 * by BEGIN enablings in the second pass.
2386 	 */
2387 	dt_begin_t begin;
2388 	processorid_t cpu = dtp->dt_beganon;
2389 	dtrace_bufdesc_t nbuf;
2390 #if !defined(sun)
2391 	dtrace_bufdesc_t *pbuf;
2392 #endif
2393 	int rval, i;
2394 	static int max_ncpus;
2395 	dtrace_optval_t size;
2396 
2397 	dtp->dt_beganon = -1;
2398 
2399 #if defined(sun)
2400 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2401 #else
2402 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2403 #endif
2404 		/*
2405 		 * We really don't expect this to fail, but it is at least
2406 		 * technically possible for this to fail with ENOENT.  In this
2407 		 * case, we just drive on...
2408 		 */
2409 		if (errno == ENOENT)
2410 			return (0);
2411 
2412 		return (dt_set_errno(dtp, errno));
2413 	}
2414 
2415 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2416 		/*
2417 		 * This is the simple case.  We're either not stopped, or if
2418 		 * we are, we actually processed any END probes on another
2419 		 * CPU.  We can simply consume this buffer and return.
2420 		 */
2421 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2422 	}
2423 
2424 	begin.dtbgn_probefunc = pf;
2425 	begin.dtbgn_recfunc = rf;
2426 	begin.dtbgn_arg = arg;
2427 	begin.dtbgn_beginonly = 1;
2428 
2429 	/*
2430 	 * We need to interpose on the ERROR handler to be sure that we
2431 	 * only process ERRORs induced by BEGIN.
2432 	 */
2433 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2434 	begin.dtbgn_errarg = dtp->dt_errarg;
2435 	dtp->dt_errhdlr = dt_consume_begin_error;
2436 	dtp->dt_errarg = &begin;
2437 
2438 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2439 	    dt_consume_begin_record, &begin);
2440 
2441 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2442 	dtp->dt_errarg = begin.dtbgn_errarg;
2443 
2444 	if (rval != 0)
2445 		return (rval);
2446 
2447 	/*
2448 	 * Now allocate a new buffer.  We'll use this to deal with every other
2449 	 * CPU.
2450 	 */
2451 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2452 	(void) dtrace_getopt(dtp, "bufsize", &size);
2453 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2454 		return (dt_set_errno(dtp, EDT_NOMEM));
2455 
2456 	if (max_ncpus == 0)
2457 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2458 
2459 	for (i = 0; i < max_ncpus; i++) {
2460 		nbuf.dtbd_cpu = i;
2461 
2462 		if (i == cpu)
2463 			continue;
2464 
2465 #if defined(sun)
2466 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2467 #else
2468 		pbuf = &nbuf;
2469 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2470 #endif
2471 			/*
2472 			 * If we failed with ENOENT, it may be because the
2473 			 * CPU was unconfigured -- this is okay.  Any other
2474 			 * error, however, is unexpected.
2475 			 */
2476 			if (errno == ENOENT)
2477 				continue;
2478 
2479 			free(nbuf.dtbd_data);
2480 
2481 			return (dt_set_errno(dtp, errno));
2482 		}
2483 
2484 		if ((rval = dt_consume_cpu(dtp, fp,
2485 		    i, &nbuf, pf, rf, arg)) != 0) {
2486 			free(nbuf.dtbd_data);
2487 			return (rval);
2488 		}
2489 	}
2490 
2491 	free(nbuf.dtbd_data);
2492 
2493 	/*
2494 	 * Okay -- we're done with the other buffers.  Now we want to
2495 	 * reconsume the first buffer -- but this time we're looking for
2496 	 * everything _but_ BEGIN.  And of course, in order to only consume
2497 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2498 	 * ERROR interposition function...
2499 	 */
2500 	begin.dtbgn_beginonly = 0;
2501 
2502 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2503 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2504 	dtp->dt_errhdlr = dt_consume_begin_error;
2505 	dtp->dt_errarg = &begin;
2506 
2507 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2508 	    dt_consume_begin_record, &begin);
2509 
2510 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2511 	dtp->dt_errarg = begin.dtbgn_errarg;
2512 
2513 	return (rval);
2514 }
2515 
2516 int
2517 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2518     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2519 {
2520 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2521 	dtrace_optval_t size;
2522 	static int max_ncpus;
2523 	int i, rval;
2524 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2525 	hrtime_t now = gethrtime();
2526 
2527 	if (dtp->dt_lastswitch != 0) {
2528 		if (now - dtp->dt_lastswitch < interval)
2529 			return (0);
2530 
2531 		dtp->dt_lastswitch += interval;
2532 	} else {
2533 		dtp->dt_lastswitch = now;
2534 	}
2535 
2536 	if (!dtp->dt_active)
2537 		return (dt_set_errno(dtp, EINVAL));
2538 
2539 	if (max_ncpus == 0)
2540 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2541 
2542 	if (pf == NULL)
2543 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2544 
2545 	if (rf == NULL)
2546 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2547 
2548 	if (buf->dtbd_data == NULL) {
2549 		(void) dtrace_getopt(dtp, "bufsize", &size);
2550 		if ((buf->dtbd_data = malloc(size)) == NULL)
2551 			return (dt_set_errno(dtp, EDT_NOMEM));
2552 
2553 		buf->dtbd_size = size;
2554 	}
2555 
2556 	/*
2557 	 * If we have just begun, we want to first process the CPU that
2558 	 * executed the BEGIN probe (if any).
2559 	 */
2560 	if (dtp->dt_active && dtp->dt_beganon != -1) {
2561 		buf->dtbd_cpu = dtp->dt_beganon;
2562 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2563 			return (rval);
2564 	}
2565 
2566 	for (i = 0; i < max_ncpus; i++) {
2567 		buf->dtbd_cpu = i;
2568 
2569 		/*
2570 		 * If we have stopped, we want to process the CPU on which the
2571 		 * END probe was processed only _after_ we have processed
2572 		 * everything else.
2573 		 */
2574 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2575 			continue;
2576 
2577 #if defined(sun)
2578 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2579 #else
2580 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2581 #endif
2582 			/*
2583 			 * If we failed with ENOENT, it may be because the
2584 			 * CPU was unconfigured -- this is okay.  Any other
2585 			 * error, however, is unexpected.
2586 			 */
2587 			if (errno == ENOENT)
2588 				continue;
2589 
2590 			return (dt_set_errno(dtp, errno));
2591 		}
2592 
2593 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2594 			return (rval);
2595 	}
2596 
2597 	if (!dtp->dt_stopped)
2598 		return (0);
2599 
2600 	buf->dtbd_cpu = dtp->dt_endedon;
2601 
2602 #if defined(sun)
2603 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2604 #else
2605 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2606 #endif
2607 		/*
2608 		 * This _really_ shouldn't fail, but it is strictly speaking
2609 		 * possible for this to return ENOENT if the CPU that called
2610 		 * the END enabling somehow managed to become unconfigured.
2611 		 * It's unclear how the user can possibly expect anything
2612 		 * rational to happen in this case -- the state has been thrown
2613 		 * out along with the unconfigured CPU -- so we'll just drive
2614 		 * on...
2615 		 */
2616 		if (errno == ENOENT)
2617 			return (0);
2618 
2619 		return (dt_set_errno(dtp, errno));
2620 	}
2621 
2622 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2623 }
2624