xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #if defined(sun)
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #if !defined(sun)
44 #include <libproc_compat.h>
45 #endif
46 
47 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
48 
49 /*
50  * We declare this here because (1) we need it and (2) we want to avoid a
51  * dependency on libm in libdtrace.
52  */
53 static long double
54 dt_fabsl(long double x)
55 {
56 	if (x < 0)
57 		return (-x);
58 
59 	return (x);
60 }
61 
62 static int
63 dt_ndigits(long long val)
64 {
65 	int rval = 1;
66 	long long cmp = 10;
67 
68 	if (val < 0) {
69 		val = val == INT64_MIN ? INT64_MAX : -val;
70 		rval++;
71 	}
72 
73 	while (val > cmp && cmp > 0) {
74 		rval++;
75 		cmp *= 10;
76 	}
77 
78 	return (rval < 4 ? 4 : rval);
79 }
80 
81 /*
82  * 128-bit arithmetic functions needed to support the stddev() aggregating
83  * action.
84  */
85 static int
86 dt_gt_128(uint64_t *a, uint64_t *b)
87 {
88 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89 }
90 
91 static int
92 dt_ge_128(uint64_t *a, uint64_t *b)
93 {
94 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95 }
96 
97 static int
98 dt_le_128(uint64_t *a, uint64_t *b)
99 {
100 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101 }
102 
103 /*
104  * Shift the 128-bit value in a by b. If b is positive, shift left.
105  * If b is negative, shift right.
106  */
107 static void
108 dt_shift_128(uint64_t *a, int b)
109 {
110 	uint64_t mask;
111 
112 	if (b == 0)
113 		return;
114 
115 	if (b < 0) {
116 		b = -b;
117 		if (b >= 64) {
118 			a[0] = a[1] >> (b - 64);
119 			a[1] = 0;
120 		} else {
121 			a[0] >>= b;
122 			mask = 1LL << (64 - b);
123 			mask -= 1;
124 			a[0] |= ((a[1] & mask) << (64 - b));
125 			a[1] >>= b;
126 		}
127 	} else {
128 		if (b >= 64) {
129 			a[1] = a[0] << (b - 64);
130 			a[0] = 0;
131 		} else {
132 			a[1] <<= b;
133 			mask = a[0] >> (64 - b);
134 			a[1] |= mask;
135 			a[0] <<= b;
136 		}
137 	}
138 }
139 
140 static int
141 dt_nbits_128(uint64_t *a)
142 {
143 	int nbits = 0;
144 	uint64_t tmp[2];
145 	uint64_t zero[2] = { 0, 0 };
146 
147 	tmp[0] = a[0];
148 	tmp[1] = a[1];
149 
150 	dt_shift_128(tmp, -1);
151 	while (dt_gt_128(tmp, zero)) {
152 		dt_shift_128(tmp, -1);
153 		nbits++;
154 	}
155 
156 	return (nbits);
157 }
158 
159 static void
160 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161 {
162 	uint64_t result[2];
163 
164 	result[0] = minuend[0] - subtrahend[0];
165 	result[1] = minuend[1] - subtrahend[1] -
166 	    (minuend[0] < subtrahend[0] ? 1 : 0);
167 
168 	difference[0] = result[0];
169 	difference[1] = result[1];
170 }
171 
172 static void
173 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174 {
175 	uint64_t result[2];
176 
177 	result[0] = addend1[0] + addend2[0];
178 	result[1] = addend1[1] + addend2[1] +
179 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180 
181 	sum[0] = result[0];
182 	sum[1] = result[1];
183 }
184 
185 /*
186  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187  * use native multiplication on those, and then re-combine into the
188  * resulting 128-bit value.
189  *
190  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191  *     hi1 * hi2 << 64 +
192  *     hi1 * lo2 << 32 +
193  *     hi2 * lo1 << 32 +
194  *     lo1 * lo2
195  */
196 static void
197 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198 {
199 	uint64_t hi1, hi2, lo1, lo2;
200 	uint64_t tmp[2];
201 
202 	hi1 = factor1 >> 32;
203 	hi2 = factor2 >> 32;
204 
205 	lo1 = factor1 & DT_MASK_LO;
206 	lo2 = factor2 & DT_MASK_LO;
207 
208 	product[0] = lo1 * lo2;
209 	product[1] = hi1 * hi2;
210 
211 	tmp[0] = hi1 * lo2;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 
216 	tmp[0] = hi2 * lo1;
217 	tmp[1] = 0;
218 	dt_shift_128(tmp, 32);
219 	dt_add_128(product, tmp, product);
220 }
221 
222 /*
223  * This is long-hand division.
224  *
225  * We initialize subtrahend by shifting divisor left as far as possible. We
226  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227  * subtract and set the appropriate bit in the result.  We then shift
228  * subtrahend right by one bit for the next comparison.
229  */
230 static void
231 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232 {
233 	uint64_t result[2] = { 0, 0 };
234 	uint64_t remainder[2];
235 	uint64_t subtrahend[2];
236 	uint64_t divisor_128[2];
237 	uint64_t mask[2] = { 1, 0 };
238 	int log = 0;
239 
240 	assert(divisor != 0);
241 
242 	divisor_128[0] = divisor;
243 	divisor_128[1] = 0;
244 
245 	remainder[0] = dividend[0];
246 	remainder[1] = dividend[1];
247 
248 	subtrahend[0] = divisor;
249 	subtrahend[1] = 0;
250 
251 	while (divisor > 0) {
252 		log++;
253 		divisor >>= 1;
254 	}
255 
256 	dt_shift_128(subtrahend, 128 - log);
257 	dt_shift_128(mask, 128 - log);
258 
259 	while (dt_ge_128(remainder, divisor_128)) {
260 		if (dt_ge_128(remainder, subtrahend)) {
261 			dt_subtract_128(remainder, subtrahend, remainder);
262 			result[0] |= mask[0];
263 			result[1] |= mask[1];
264 		}
265 
266 		dt_shift_128(subtrahend, -1);
267 		dt_shift_128(mask, -1);
268 	}
269 
270 	quotient[0] = result[0];
271 	quotient[1] = result[1];
272 }
273 
274 /*
275  * This is the long-hand method of calculating a square root.
276  * The algorithm is as follows:
277  *
278  * 1. Group the digits by 2 from the right.
279  * 2. Over the leftmost group, find the largest single-digit number
280  *    whose square is less than that group.
281  * 3. Subtract the result of the previous step (2 or 4, depending) and
282  *    bring down the next two-digit group.
283  * 4. For the result R we have so far, find the largest single-digit number
284  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285  *    (Note that this is doubling R and performing a decimal left-shift by 1
286  *    and searching for the appropriate decimal to fill the one's place.)
287  *    The value x is the next digit in the square root.
288  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289  * dealing with integers, so the above is sufficient.)
290  *
291  * In decimal, the square root of 582,734 would be calculated as so:
292  *
293  *     __7__6__3
294  *    | 58 27 34
295  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296  *      --
297  *       9 27    (Subtract and bring down the next group.)
298  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299  *      -----     the square root)
300  *         51 34 (Subtract and bring down the next group.)
301  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302  *         -----  the square root)
303  *          5 65 (remainder)
304  *
305  * The above algorithm applies similarly in binary, but note that the
306  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308  * preceding difference?
309  *
310  * In binary, the square root of 11011011 would be calculated as so:
311  *
312  *     __1__1__1__0
313  *    | 11 01 10 11
314  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315  *      --
316  *      10 01 10 11
317  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318  *      -----
319  *       1 00 10 11
320  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321  *       -------
322  *          1 01 11
323  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324  *
325  */
326 static uint64_t
327 dt_sqrt_128(uint64_t *square)
328 {
329 	uint64_t result[2] = { 0, 0 };
330 	uint64_t diff[2] = { 0, 0 };
331 	uint64_t one[2] = { 1, 0 };
332 	uint64_t next_pair[2];
333 	uint64_t next_try[2];
334 	uint64_t bit_pairs, pair_shift;
335 	int i;
336 
337 	bit_pairs = dt_nbits_128(square) / 2;
338 	pair_shift = bit_pairs * 2;
339 
340 	for (i = 0; i <= bit_pairs; i++) {
341 		/*
342 		 * Bring down the next pair of bits.
343 		 */
344 		next_pair[0] = square[0];
345 		next_pair[1] = square[1];
346 		dt_shift_128(next_pair, -pair_shift);
347 		next_pair[0] &= 0x3;
348 		next_pair[1] = 0;
349 
350 		dt_shift_128(diff, 2);
351 		dt_add_128(diff, next_pair, diff);
352 
353 		/*
354 		 * next_try = R << 2 + 1
355 		 */
356 		next_try[0] = result[0];
357 		next_try[1] = result[1];
358 		dt_shift_128(next_try, 2);
359 		dt_add_128(next_try, one, next_try);
360 
361 		if (dt_le_128(next_try, diff)) {
362 			dt_subtract_128(diff, next_try, diff);
363 			dt_shift_128(result, 1);
364 			dt_add_128(result, one, result);
365 		} else {
366 			dt_shift_128(result, 1);
367 		}
368 
369 		pair_shift -= 2;
370 	}
371 
372 	assert(result[1] == 0);
373 
374 	return (result[0]);
375 }
376 
377 uint64_t
378 dt_stddev(uint64_t *data, uint64_t normal)
379 {
380 	uint64_t avg_of_squares[2];
381 	uint64_t square_of_avg[2];
382 	int64_t norm_avg;
383 	uint64_t diff[2];
384 
385 	/*
386 	 * The standard approximation for standard deviation is
387 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
388 	 * of the average of the squares minus the square of the average.
389 	 */
390 	dt_divide_128(data + 2, normal, avg_of_squares);
391 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
392 
393 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
394 
395 	if (norm_avg < 0)
396 		norm_avg = -norm_avg;
397 
398 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
399 
400 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
401 
402 	return (dt_sqrt_128(diff));
403 }
404 
405 static int
406 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
407     dtrace_bufdesc_t *buf, size_t offs)
408 {
409 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
410 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
411 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
412 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
413 	const char *str = NULL;
414 	static const char *e_str[2] = { " -> ", " => " };
415 	static const char *r_str[2] = { " <- ", " <= " };
416 	static const char *ent = "entry", *ret = "return";
417 	static int entlen = 0, retlen = 0;
418 	dtrace_epid_t next, id = epd->dtepd_epid;
419 	int rval;
420 
421 	if (entlen == 0) {
422 		assert(retlen == 0);
423 		entlen = strlen(ent);
424 		retlen = strlen(ret);
425 	}
426 
427 	/*
428 	 * If the name of the probe is "entry" or ends with "-entry", we
429 	 * treat it as an entry; if it is "return" or ends with "-return",
430 	 * we treat it as a return.  (This allows application-provided probes
431 	 * like "method-entry" or "function-entry" to participate in flow
432 	 * indentation -- without accidentally misinterpreting popular probe
433 	 * names like "carpentry", "gentry" or "Coventry".)
434 	 */
435 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
436 	    (sub == n || sub[-1] == '-')) {
437 		flow = DTRACEFLOW_ENTRY;
438 		str = e_str[strcmp(p, "syscall") == 0];
439 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
440 	    (sub == n || sub[-1] == '-')) {
441 		flow = DTRACEFLOW_RETURN;
442 		str = r_str[strcmp(p, "syscall") == 0];
443 	}
444 
445 	/*
446 	 * If we're going to indent this, we need to check the ID of our last
447 	 * call.  If we're looking at the same probe ID but a different EPID,
448 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
449 	 * this scheme -- it's a heuristic.)
450 	 */
451 	if (flow == DTRACEFLOW_ENTRY) {
452 		if ((last != DTRACE_EPIDNONE && id != last &&
453 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
454 			flow = DTRACEFLOW_NONE;
455 	}
456 
457 	/*
458 	 * If we're going to unindent this, it's more difficult to see if
459 	 * we don't actually want to unindent it -- we need to look at the
460 	 * _next_ EPID.
461 	 */
462 	if (flow == DTRACEFLOW_RETURN) {
463 		offs += epd->dtepd_size;
464 
465 		do {
466 			if (offs >= buf->dtbd_size)
467 				goto out;
468 
469 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
470 
471 			if (next == DTRACE_EPIDNONE)
472 				offs += sizeof (id);
473 		} while (next == DTRACE_EPIDNONE);
474 
475 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
476 			return (rval);
477 
478 		if (next != id && npd->dtpd_id == pd->dtpd_id)
479 			flow = DTRACEFLOW_NONE;
480 	}
481 
482 out:
483 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
484 		data->dtpda_prefix = str;
485 	} else {
486 		data->dtpda_prefix = "| ";
487 	}
488 
489 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
490 		data->dtpda_indent -= 2;
491 
492 	data->dtpda_flow = flow;
493 
494 	return (0);
495 }
496 
497 static int
498 dt_nullprobe()
499 {
500 	return (DTRACE_CONSUME_THIS);
501 }
502 
503 static int
504 dt_nullrec()
505 {
506 	return (DTRACE_CONSUME_NEXT);
507 }
508 
509 static void
510 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
511 {
512 	long double val = dt_fabsl((long double)datum);
513 
514 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
515 		*total += val;
516 		return;
517 	}
518 
519 	/*
520 	 * If we're zooming in on an aggregation, we want the height of the
521 	 * highest value to be approximately 95% of total bar height -- so we
522 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
523 	 * our highest value.
524 	 */
525 	val *= 1 / DTRACE_AGGZOOM_MAX;
526 
527 	if (*total < val)
528 		*total = val;
529 }
530 
531 static int
532 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
533 {
534 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
535 	    width ? width : 16, width ? "key" : "value",
536 	    "------------- Distribution -------------", "count"));
537 }
538 
539 static int
540 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
541     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
542 {
543 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
544 	int minwidth, maxwidth, i;
545 
546 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
547 
548 	if (action == DTRACEAGG_QUANTIZE) {
549 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
550 			min--;
551 
552 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
553 			max++;
554 
555 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
556 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
557 	} else {
558 		maxwidth = 8;
559 		minwidth = maxwidth - 1;
560 		max++;
561 	}
562 
563 	if (dt_printf(dtp, fp, "\n%*s %*s .",
564 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
565 		return (-1);
566 
567 	for (i = min; i <= max; i++) {
568 		if (dt_printf(dtp, fp, "-") < 0)
569 			return (-1);
570 	}
571 
572 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
573 }
574 
575 /*
576  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
577  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
578  * 3-byte UTF-8 sequences.
579  */
580 #define	DTRACE_AGGUTF8_FULL	0x2588
581 #define	DTRACE_AGGUTF8_BASE	0x258f
582 #define	DTRACE_AGGUTF8_LEVELS	8
583 
584 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
585 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
586 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
587 
588 static int
589 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
590     uint64_t normal, long double total)
591 {
592 	uint_t len = 40, i, whole, partial;
593 	long double f = (dt_fabsl((long double)val) * len) / total;
594 	const char *spaces = "                                        ";
595 
596 	whole = (uint_t)f;
597 	partial = (uint_t)((f - (long double)(uint_t)f) *
598 	    (long double)DTRACE_AGGUTF8_LEVELS);
599 
600 	if (dt_printf(dtp, fp, "|") < 0)
601 		return (-1);
602 
603 	for (i = 0; i < whole; i++) {
604 		if (dt_printf(dtp, fp, "%c%c%c",
605 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
606 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
607 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
608 			return (-1);
609 	}
610 
611 	if (partial != 0) {
612 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
613 
614 		if (dt_printf(dtp, fp, "%c%c%c",
615 		    DTRACE_AGGUTF8_BYTE0(partial),
616 		    DTRACE_AGGUTF8_BYTE1(partial),
617 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
618 			return (-1);
619 
620 		i++;
621 	}
622 
623 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
624 	    (long long)val / normal));
625 }
626 
627 static int
628 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
629     uint64_t normal, long double total, char positives, char negatives)
630 {
631 	long double f;
632 	uint_t depth, len = 40;
633 
634 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
635 	const char *spaces = "                                        ";
636 
637 	assert(strlen(ats) == len && strlen(spaces) == len);
638 	assert(!(total == 0 && (positives || negatives)));
639 	assert(!(val < 0 && !negatives));
640 	assert(!(val > 0 && !positives));
641 	assert(!(val != 0 && total == 0));
642 
643 	if (!negatives) {
644 		if (positives) {
645 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
646 				return (dt_print_quantline_utf8(dtp, fp, val,
647 				    normal, total));
648 			}
649 
650 			f = (dt_fabsl((long double)val) * len) / total;
651 			depth = (uint_t)(f + 0.5);
652 		} else {
653 			depth = 0;
654 		}
655 
656 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
657 		    spaces + depth, (long long)val / normal));
658 	}
659 
660 	if (!positives) {
661 		f = (dt_fabsl((long double)val) * len) / total;
662 		depth = (uint_t)(f + 0.5);
663 
664 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
665 		    ats + len - depth, (long long)val / normal));
666 	}
667 
668 	/*
669 	 * If we're here, we have both positive and negative bucket values.
670 	 * To express this graphically, we're going to generate both positive
671 	 * and negative bars separated by a centerline.  These bars are half
672 	 * the size of normal quantize()/lquantize() bars, so we divide the
673 	 * length in half before calculating the bar length.
674 	 */
675 	len /= 2;
676 	ats = &ats[len];
677 	spaces = &spaces[len];
678 
679 	f = (dt_fabsl((long double)val) * len) / total;
680 	depth = (uint_t)(f + 0.5);
681 
682 	if (val <= 0) {
683 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
684 		    ats + len - depth, len, "", (long long)val / normal));
685 	} else {
686 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
687 		    ats + len - depth, spaces + depth,
688 		    (long long)val / normal));
689 	}
690 }
691 
692 /*
693  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
694  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
695  * aggregation.
696  */
697 #define	DTRACE_AGGPACK_BASE	0x2581
698 #define	DTRACE_AGGPACK_LEVELS	8
699 
700 static int
701 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
702     long double datum, long double total)
703 {
704 	static boolean_t utf8_checked = B_FALSE;
705 	static boolean_t utf8;
706 	char *ascii = "__xxxxXX";
707 	char *neg = "vvvvVV";
708 	unsigned int len;
709 	long double val;
710 
711 	if (!utf8_checked) {
712 		char *term;
713 
714 		/*
715 		 * We want to determine if we can reasonably emit UTF-8 for our
716 		 * packed aggregation.  To do this, we will check for terminals
717 		 * that are known to be primitive to emit UTF-8 on these.
718 		 */
719 		utf8_checked = B_TRUE;
720 
721 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
722 			utf8 = B_FALSE;
723 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
724 			utf8 = B_TRUE;
725 		} else if ((term = getenv("TERM")) != NULL &&
726 		    (strcmp(term, "sun") == 0 ||
727 		    strcmp(term, "sun-color") == 0) ||
728 		    strcmp(term, "dumb") == 0) {
729 			utf8 = B_FALSE;
730 		} else {
731 			utf8 = B_TRUE;
732 		}
733 	}
734 
735 	if (datum == 0)
736 		return (dt_printf(dtp, fp, " "));
737 
738 	if (datum < 0) {
739 		len = strlen(neg);
740 		val = dt_fabsl(datum * (len - 1)) / total;
741 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
742 	}
743 
744 	if (utf8) {
745 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
746 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
747 
748 		return (dt_printf(dtp, fp, "%c%c%c",
749 		    DTRACE_AGGUTF8_BYTE0(block),
750 		    DTRACE_AGGUTF8_BYTE1(block),
751 		    DTRACE_AGGUTF8_BYTE2(block)));
752 	}
753 
754 	len = strlen(ascii);
755 	val = (datum * (len - 1)) / total;
756 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
757 }
758 
759 int
760 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
761     size_t size, uint64_t normal)
762 {
763 	const int64_t *data = addr;
764 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
765 	long double total = 0;
766 	char positives = 0, negatives = 0;
767 
768 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
769 		return (dt_set_errno(dtp, EDT_DMISMATCH));
770 
771 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
772 		first_bin++;
773 
774 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
775 		/*
776 		 * There isn't any data.  This is possible if the aggregation
777 		 * has been clear()'d or if negative increment values have been
778 		 * used.  Regardless, we'll print the buckets around 0.
779 		 */
780 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
781 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
782 	} else {
783 		if (first_bin > 0)
784 			first_bin--;
785 
786 		while (last_bin > 0 && data[last_bin] == 0)
787 			last_bin--;
788 
789 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
790 			last_bin++;
791 	}
792 
793 	for (i = first_bin; i <= last_bin; i++) {
794 		positives |= (data[i] > 0);
795 		negatives |= (data[i] < 0);
796 		dt_quantize_total(dtp, data[i], &total);
797 	}
798 
799 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
800 		return (-1);
801 
802 	for (i = first_bin; i <= last_bin; i++) {
803 		if (dt_printf(dtp, fp, "%16lld ",
804 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
805 			return (-1);
806 
807 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
808 		    positives, negatives) < 0)
809 			return (-1);
810 	}
811 
812 	return (0);
813 }
814 
815 int
816 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
817     size_t size, const dtrace_aggdata_t *aggdata)
818 {
819 	const int64_t *data = addr;
820 	long double total = 0, count = 0;
821 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
822 	int64_t minval, maxval;
823 
824 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
825 		return (dt_set_errno(dtp, EDT_DMISMATCH));
826 
827 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
828 		min--;
829 
830 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
831 		max++;
832 
833 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
834 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
835 
836 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
837 	    (long long)minval) < 0)
838 		return (-1);
839 
840 	for (i = min; i <= max; i++) {
841 		dt_quantize_total(dtp, data[i], &total);
842 		count += data[i];
843 	}
844 
845 	for (i = min; i <= max; i++) {
846 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
847 			return (-1);
848 	}
849 
850 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
851 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
852 		return (-1);
853 
854 	return (0);
855 }
856 
857 int
858 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
859     size_t size, uint64_t normal)
860 {
861 	const int64_t *data = addr;
862 	int i, first_bin, last_bin, base;
863 	uint64_t arg;
864 	long double total = 0;
865 	uint16_t step, levels;
866 	char positives = 0, negatives = 0;
867 
868 	if (size < sizeof (uint64_t))
869 		return (dt_set_errno(dtp, EDT_DMISMATCH));
870 
871 	arg = *data++;
872 	size -= sizeof (uint64_t);
873 
874 	base = DTRACE_LQUANTIZE_BASE(arg);
875 	step = DTRACE_LQUANTIZE_STEP(arg);
876 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
877 
878 	first_bin = 0;
879 	last_bin = levels + 1;
880 
881 	if (size != sizeof (uint64_t) * (levels + 2))
882 		return (dt_set_errno(dtp, EDT_DMISMATCH));
883 
884 	while (first_bin <= levels + 1 && data[first_bin] == 0)
885 		first_bin++;
886 
887 	if (first_bin > levels + 1) {
888 		first_bin = 0;
889 		last_bin = 2;
890 	} else {
891 		if (first_bin > 0)
892 			first_bin--;
893 
894 		while (last_bin > 0 && data[last_bin] == 0)
895 			last_bin--;
896 
897 		if (last_bin < levels + 1)
898 			last_bin++;
899 	}
900 
901 	for (i = first_bin; i <= last_bin; i++) {
902 		positives |= (data[i] > 0);
903 		negatives |= (data[i] < 0);
904 		dt_quantize_total(dtp, data[i], &total);
905 	}
906 
907 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
908 	    "------------- Distribution -------------", "count") < 0)
909 		return (-1);
910 
911 	for (i = first_bin; i <= last_bin; i++) {
912 		char c[32];
913 		int err;
914 
915 		if (i == 0) {
916 			(void) snprintf(c, sizeof (c), "< %d", base);
917 			err = dt_printf(dtp, fp, "%16s ", c);
918 		} else if (i == levels + 1) {
919 			(void) snprintf(c, sizeof (c), ">= %d",
920 			    base + (levels * step));
921 			err = dt_printf(dtp, fp, "%16s ", c);
922 		} else {
923 			err = dt_printf(dtp, fp, "%16d ",
924 			    base + (i - 1) * step);
925 		}
926 
927 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
928 		    total, positives, negatives) < 0)
929 			return (-1);
930 	}
931 
932 	return (0);
933 }
934 
935 /*ARGSUSED*/
936 int
937 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
938     size_t size, const dtrace_aggdata_t *aggdata)
939 {
940 	const int64_t *data = addr;
941 	long double total = 0, count = 0;
942 	int min, max, base, err;
943 	uint64_t arg;
944 	uint16_t step, levels;
945 	char c[32];
946 	unsigned int i;
947 
948 	if (size < sizeof (uint64_t))
949 		return (dt_set_errno(dtp, EDT_DMISMATCH));
950 
951 	arg = *data++;
952 	size -= sizeof (uint64_t);
953 
954 	base = DTRACE_LQUANTIZE_BASE(arg);
955 	step = DTRACE_LQUANTIZE_STEP(arg);
956 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
957 
958 	if (size != sizeof (uint64_t) * (levels + 2))
959 		return (dt_set_errno(dtp, EDT_DMISMATCH));
960 
961 	min = 0;
962 	max = levels + 1;
963 
964 	if (min == 0) {
965 		(void) snprintf(c, sizeof (c), "< %d", base);
966 		err = dt_printf(dtp, fp, "%8s :", c);
967 	} else {
968 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
969 	}
970 
971 	if (err < 0)
972 		return (-1);
973 
974 	for (i = min; i <= max; i++) {
975 		dt_quantize_total(dtp, data[i], &total);
976 		count += data[i];
977 	}
978 
979 	for (i = min; i <= max; i++) {
980 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
981 			return (-1);
982 	}
983 
984 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
985 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
986 }
987 
988 int
989 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
990     size_t size, uint64_t normal)
991 {
992 	int i, first_bin, last_bin, bin = 1, order, levels;
993 	uint16_t factor, low, high, nsteps;
994 	const int64_t *data = addr;
995 	int64_t value = 1, next, step;
996 	char positives = 0, negatives = 0;
997 	long double total = 0;
998 	uint64_t arg;
999 	char c[32];
1000 
1001 	if (size < sizeof (uint64_t))
1002 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1003 
1004 	arg = *data++;
1005 	size -= sizeof (uint64_t);
1006 
1007 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1008 	low = DTRACE_LLQUANTIZE_LOW(arg);
1009 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1010 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1011 
1012 	/*
1013 	 * We don't expect to be handed invalid llquantize() parameters here,
1014 	 * but sanity check them (to a degree) nonetheless.
1015 	 */
1016 	if (size > INT32_MAX || factor < 2 || low >= high ||
1017 	    nsteps == 0 || factor > nsteps)
1018 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1019 
1020 	levels = (int)size / sizeof (uint64_t);
1021 
1022 	first_bin = 0;
1023 	last_bin = levels - 1;
1024 
1025 	while (first_bin < levels && data[first_bin] == 0)
1026 		first_bin++;
1027 
1028 	if (first_bin == levels) {
1029 		first_bin = 0;
1030 		last_bin = 1;
1031 	} else {
1032 		if (first_bin > 0)
1033 			first_bin--;
1034 
1035 		while (last_bin > 0 && data[last_bin] == 0)
1036 			last_bin--;
1037 
1038 		if (last_bin < levels - 1)
1039 			last_bin++;
1040 	}
1041 
1042 	for (i = first_bin; i <= last_bin; i++) {
1043 		positives |= (data[i] > 0);
1044 		negatives |= (data[i] < 0);
1045 		dt_quantize_total(dtp, data[i], &total);
1046 	}
1047 
1048 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1049 	    "------------- Distribution -------------", "count") < 0)
1050 		return (-1);
1051 
1052 	for (order = 0; order < low; order++)
1053 		value *= factor;
1054 
1055 	next = value * factor;
1056 	step = next > nsteps ? next / nsteps : 1;
1057 
1058 	if (first_bin == 0) {
1059 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1060 
1061 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1062 			return (-1);
1063 
1064 		if (dt_print_quantline(dtp, fp, data[0], normal,
1065 		    total, positives, negatives) < 0)
1066 			return (-1);
1067 	}
1068 
1069 	while (order <= high) {
1070 		if (bin >= first_bin && bin <= last_bin) {
1071 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1072 				return (-1);
1073 
1074 			if (dt_print_quantline(dtp, fp, data[bin],
1075 			    normal, total, positives, negatives) < 0)
1076 				return (-1);
1077 		}
1078 
1079 		assert(value < next);
1080 		bin++;
1081 
1082 		if ((value += step) != next)
1083 			continue;
1084 
1085 		next = value * factor;
1086 		step = next > nsteps ? next / nsteps : 1;
1087 		order++;
1088 	}
1089 
1090 	if (last_bin < bin)
1091 		return (0);
1092 
1093 	assert(last_bin == bin);
1094 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1095 
1096 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1097 		return (-1);
1098 
1099 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1100 	    total, positives, negatives));
1101 }
1102 
1103 /*ARGSUSED*/
1104 static int
1105 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1106     size_t size, uint64_t normal)
1107 {
1108 	/* LINTED - alignment */
1109 	int64_t *data = (int64_t *)addr;
1110 
1111 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1112 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1113 }
1114 
1115 /*ARGSUSED*/
1116 static int
1117 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1118     size_t size, uint64_t normal)
1119 {
1120 	/* LINTED - alignment */
1121 	uint64_t *data = (uint64_t *)addr;
1122 
1123 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1124 	    (unsigned long long) dt_stddev(data, normal) : 0));
1125 }
1126 
1127 /*ARGSUSED*/
1128 static int
1129 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1130     size_t nbytes, int width, int quiet, int forceraw)
1131 {
1132 	/*
1133 	 * If the byte stream is a series of printable characters, followed by
1134 	 * a terminating byte, we print it out as a string.  Otherwise, we
1135 	 * assume that it's something else and just print the bytes.
1136 	 */
1137 	int i, j, margin = 5;
1138 	char *c = (char *)addr;
1139 
1140 	if (nbytes == 0)
1141 		return (0);
1142 
1143 	if (forceraw)
1144 		goto raw;
1145 
1146 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1147 		goto raw;
1148 
1149 	for (i = 0; i < nbytes; i++) {
1150 		/*
1151 		 * We define a "printable character" to be one for which
1152 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1153 		 * or a character which is either backspace or the bell.
1154 		 * Backspace and the bell are regrettably special because
1155 		 * they fail the first two tests -- and yet they are entirely
1156 		 * printable.  These are the only two control characters that
1157 		 * have meaning for the terminal and for which isprint(3C) and
1158 		 * isspace(3C) return 0.
1159 		 */
1160 		if (isprint(c[i]) || isspace(c[i]) ||
1161 		    c[i] == '\b' || c[i] == '\a')
1162 			continue;
1163 
1164 		if (c[i] == '\0' && i > 0) {
1165 			/*
1166 			 * This looks like it might be a string.  Before we
1167 			 * assume that it is indeed a string, check the
1168 			 * remainder of the byte range; if it contains
1169 			 * additional non-nul characters, we'll assume that
1170 			 * it's a binary stream that just happens to look like
1171 			 * a string, and we'll print out the individual bytes.
1172 			 */
1173 			for (j = i + 1; j < nbytes; j++) {
1174 				if (c[j] != '\0')
1175 					break;
1176 			}
1177 
1178 			if (j != nbytes)
1179 				break;
1180 
1181 			if (quiet) {
1182 				return (dt_printf(dtp, fp, "%s", c));
1183 			} else {
1184 				return (dt_printf(dtp, fp, " %s%*s",
1185 				    width < 0 ? " " : "", width, c));
1186 			}
1187 		}
1188 
1189 		break;
1190 	}
1191 
1192 	if (i == nbytes) {
1193 		/*
1194 		 * The byte range is all printable characters, but there is
1195 		 * no trailing nul byte.  We'll assume that it's a string and
1196 		 * print it as such.
1197 		 */
1198 		char *s = alloca(nbytes + 1);
1199 		bcopy(c, s, nbytes);
1200 		s[nbytes] = '\0';
1201 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1202 	}
1203 
1204 raw:
1205 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1206 		return (-1);
1207 
1208 	for (i = 0; i < 16; i++)
1209 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1210 			return (-1);
1211 
1212 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1213 		return (-1);
1214 
1215 
1216 	for (i = 0; i < nbytes; i += 16) {
1217 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1218 			return (-1);
1219 
1220 		for (j = i; j < i + 16 && j < nbytes; j++) {
1221 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1222 				return (-1);
1223 		}
1224 
1225 		while (j++ % 16) {
1226 			if (dt_printf(dtp, fp, "   ") < 0)
1227 				return (-1);
1228 		}
1229 
1230 		if (dt_printf(dtp, fp, "  ") < 0)
1231 			return (-1);
1232 
1233 		for (j = i; j < i + 16 && j < nbytes; j++) {
1234 			if (dt_printf(dtp, fp, "%c",
1235 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1236 				return (-1);
1237 		}
1238 
1239 		if (dt_printf(dtp, fp, "\n") < 0)
1240 			return (-1);
1241 	}
1242 
1243 	return (0);
1244 }
1245 
1246 int
1247 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1248     caddr_t addr, int depth, int size)
1249 {
1250 	dtrace_syminfo_t dts;
1251 	GElf_Sym sym;
1252 	int i, indent;
1253 	char c[PATH_MAX * 2];
1254 	uint64_t pc;
1255 
1256 	if (dt_printf(dtp, fp, "\n") < 0)
1257 		return (-1);
1258 
1259 	if (format == NULL)
1260 		format = "%s";
1261 
1262 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1263 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1264 	else
1265 		indent = _dtrace_stkindent;
1266 
1267 	for (i = 0; i < depth; i++) {
1268 		switch (size) {
1269 		case sizeof (uint32_t):
1270 			/* LINTED - alignment */
1271 			pc = *((uint32_t *)addr);
1272 			break;
1273 
1274 		case sizeof (uint64_t):
1275 			/* LINTED - alignment */
1276 			pc = *((uint64_t *)addr);
1277 			break;
1278 
1279 		default:
1280 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1281 		}
1282 
1283 		if (pc == 0)
1284 			break;
1285 
1286 		addr += size;
1287 
1288 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1289 			return (-1);
1290 
1291 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1292 			if (pc > sym.st_value) {
1293 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1294 				    dts.dts_object, dts.dts_name,
1295 				    (u_longlong_t)(pc - sym.st_value));
1296 			} else {
1297 				(void) snprintf(c, sizeof (c), "%s`%s",
1298 				    dts.dts_object, dts.dts_name);
1299 			}
1300 		} else {
1301 			/*
1302 			 * We'll repeat the lookup, but this time we'll specify
1303 			 * a NULL GElf_Sym -- indicating that we're only
1304 			 * interested in the containing module.
1305 			 */
1306 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1307 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1308 				    dts.dts_object, (u_longlong_t)pc);
1309 			} else {
1310 				(void) snprintf(c, sizeof (c), "0x%llx",
1311 				    (u_longlong_t)pc);
1312 			}
1313 		}
1314 
1315 		if (dt_printf(dtp, fp, format, c) < 0)
1316 			return (-1);
1317 
1318 		if (dt_printf(dtp, fp, "\n") < 0)
1319 			return (-1);
1320 	}
1321 
1322 	return (0);
1323 }
1324 
1325 int
1326 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1327     caddr_t addr, uint64_t arg)
1328 {
1329 	/* LINTED - alignment */
1330 	uint64_t *pc = (uint64_t *)addr;
1331 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1332 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1333 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1334 	const char *str = strsize ? strbase : NULL;
1335 	int err = 0;
1336 
1337 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1338 	struct ps_prochandle *P;
1339 	GElf_Sym sym;
1340 	int i, indent;
1341 	pid_t pid;
1342 
1343 	if (depth == 0)
1344 		return (0);
1345 
1346 	pid = (pid_t)*pc++;
1347 
1348 	if (dt_printf(dtp, fp, "\n") < 0)
1349 		return (-1);
1350 
1351 	if (format == NULL)
1352 		format = "%s";
1353 
1354 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1355 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1356 	else
1357 		indent = _dtrace_stkindent;
1358 
1359 	/*
1360 	 * Ultimately, we need to add an entry point in the library vector for
1361 	 * determining <symbol, offset> from <pid, address>.  For now, if
1362 	 * this is a vector open, we just print the raw address or string.
1363 	 */
1364 	if (dtp->dt_vector == NULL)
1365 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1366 	else
1367 		P = NULL;
1368 
1369 	if (P != NULL)
1370 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1371 
1372 	for (i = 0; i < depth && pc[i] != 0; i++) {
1373 		const prmap_t *map;
1374 
1375 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1376 			break;
1377 
1378 		if (P != NULL && Plookup_by_addr(P, pc[i],
1379 		    name, sizeof (name), &sym) == 0) {
1380 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1381 
1382 			if (pc[i] > sym.st_value) {
1383 				(void) snprintf(c, sizeof (c),
1384 				    "%s`%s+0x%llx", dt_basename(objname), name,
1385 				    (u_longlong_t)(pc[i] - sym.st_value));
1386 			} else {
1387 				(void) snprintf(c, sizeof (c),
1388 				    "%s`%s", dt_basename(objname), name);
1389 			}
1390 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1391 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1392 		    (map->pr_mflags & MA_WRITE)))) {
1393 			/*
1394 			 * If the current string pointer in the string table
1395 			 * does not point to an empty string _and_ the program
1396 			 * counter falls in a writable region, we'll use the
1397 			 * string from the string table instead of the raw
1398 			 * address.  This last condition is necessary because
1399 			 * some (broken) ustack helpers will return a string
1400 			 * even for a program counter that they can't
1401 			 * identify.  If we have a string for a program
1402 			 * counter that falls in a segment that isn't
1403 			 * writable, we assume that we have fallen into this
1404 			 * case and we refuse to use the string.
1405 			 */
1406 			(void) snprintf(c, sizeof (c), "%s", str);
1407 		} else {
1408 			if (P != NULL && Pobjname(P, pc[i], objname,
1409 			    sizeof (objname)) != 0) {
1410 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1411 				    dt_basename(objname), (u_longlong_t)pc[i]);
1412 			} else {
1413 				(void) snprintf(c, sizeof (c), "0x%llx",
1414 				    (u_longlong_t)pc[i]);
1415 			}
1416 		}
1417 
1418 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1419 			break;
1420 
1421 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1422 			break;
1423 
1424 		if (str != NULL && str[0] == '@') {
1425 			/*
1426 			 * If the first character of the string is an "at" sign,
1427 			 * then the string is inferred to be an annotation --
1428 			 * and it is printed out beneath the frame and offset
1429 			 * with brackets.
1430 			 */
1431 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1432 				break;
1433 
1434 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1435 
1436 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1437 				break;
1438 
1439 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1440 				break;
1441 		}
1442 
1443 		if (str != NULL) {
1444 			str += strlen(str) + 1;
1445 			if (str - strbase >= strsize)
1446 				str = NULL;
1447 		}
1448 	}
1449 
1450 	if (P != NULL) {
1451 		dt_proc_unlock(dtp, P);
1452 		dt_proc_release(dtp, P);
1453 	}
1454 
1455 	return (err);
1456 }
1457 
1458 static int
1459 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1460 {
1461 	/* LINTED - alignment */
1462 	uint64_t pid = ((uint64_t *)addr)[0];
1463 	/* LINTED - alignment */
1464 	uint64_t pc = ((uint64_t *)addr)[1];
1465 	const char *format = "  %-50s";
1466 	char *s;
1467 	int n, len = 256;
1468 
1469 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1470 		struct ps_prochandle *P;
1471 
1472 		if ((P = dt_proc_grab(dtp, pid,
1473 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1474 			GElf_Sym sym;
1475 
1476 			dt_proc_lock(dtp, P);
1477 
1478 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1479 				pc = sym.st_value;
1480 
1481 			dt_proc_unlock(dtp, P);
1482 			dt_proc_release(dtp, P);
1483 		}
1484 	}
1485 
1486 	do {
1487 		n = len;
1488 		s = alloca(n);
1489 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1490 
1491 	return (dt_printf(dtp, fp, format, s));
1492 }
1493 
1494 int
1495 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1496 {
1497 	/* LINTED - alignment */
1498 	uint64_t pid = ((uint64_t *)addr)[0];
1499 	/* LINTED - alignment */
1500 	uint64_t pc = ((uint64_t *)addr)[1];
1501 	int err = 0;
1502 
1503 	char objname[PATH_MAX], c[PATH_MAX * 2];
1504 	struct ps_prochandle *P;
1505 
1506 	if (format == NULL)
1507 		format = "  %-50s";
1508 
1509 	/*
1510 	 * See the comment in dt_print_ustack() for the rationale for
1511 	 * printing raw addresses in the vectored case.
1512 	 */
1513 	if (dtp->dt_vector == NULL)
1514 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1515 	else
1516 		P = NULL;
1517 
1518 	if (P != NULL)
1519 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1520 
1521 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1522 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1523 	} else {
1524 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1525 	}
1526 
1527 	err = dt_printf(dtp, fp, format, c);
1528 
1529 	if (P != NULL) {
1530 		dt_proc_unlock(dtp, P);
1531 		dt_proc_release(dtp, P);
1532 	}
1533 
1534 	return (err);
1535 }
1536 
1537 int
1538 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1539 {
1540 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1541 	size_t nbytes = *((uintptr_t *) addr);
1542 
1543 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1544 	    nbytes, 50, quiet, 1));
1545 }
1546 
1547 typedef struct dt_type_cbdata {
1548 	dtrace_hdl_t		*dtp;
1549 	dtrace_typeinfo_t	dtt;
1550 	caddr_t			addr;
1551 	caddr_t			addrend;
1552 	const char		*name;
1553 	int			f_type;
1554 	int			indent;
1555 	int			type_width;
1556 	int			name_width;
1557 	FILE			*fp;
1558 } dt_type_cbdata_t;
1559 
1560 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1561 
1562 static int
1563 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1564 {
1565 	dt_type_cbdata_t cbdata;
1566 	dt_type_cbdata_t *cbdatap = arg;
1567 	ssize_t ssz;
1568 
1569 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1570 		return (0);
1571 
1572 	off /= 8;
1573 
1574 	cbdata = *cbdatap;
1575 	cbdata.name = name;
1576 	cbdata.addr += off;
1577 	cbdata.addrend = cbdata.addr + ssz;
1578 
1579 	return (dt_print_type_data(&cbdata, type));
1580 }
1581 
1582 static int
1583 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1584 {
1585 	char buf[DT_TYPE_NAMELEN];
1586 	char *p;
1587 	dt_type_cbdata_t *cbdatap = arg;
1588 	size_t sz = strlen(name);
1589 
1590 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1591 
1592 	if ((p = strchr(buf, '[')) != NULL)
1593 		p[-1] = '\0';
1594 	else
1595 		p = "";
1596 
1597 	sz += strlen(p);
1598 
1599 	if (sz > cbdatap->name_width)
1600 		cbdatap->name_width = sz;
1601 
1602 	sz = strlen(buf);
1603 
1604 	if (sz > cbdatap->type_width)
1605 		cbdatap->type_width = sz;
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1612 {
1613 	caddr_t addr = cbdatap->addr;
1614 	caddr_t addrend = cbdatap->addrend;
1615 	char buf[DT_TYPE_NAMELEN];
1616 	char *p;
1617 	int cnt = 0;
1618 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1619 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1620 
1621 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1622 
1623 	if ((p = strchr(buf, '[')) != NULL)
1624 		p[-1] = '\0';
1625 	else
1626 		p = "";
1627 
1628 	if (cbdatap->f_type) {
1629 		int type_width = roundup(cbdatap->type_width + 1, 4);
1630 		int name_width = roundup(cbdatap->name_width + 1, 4);
1631 
1632 		name_width -= strlen(cbdatap->name);
1633 
1634 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1635 	}
1636 
1637 	while (addr < addrend) {
1638 		dt_type_cbdata_t cbdata;
1639 		ctf_arinfo_t arinfo;
1640 		ctf_encoding_t cte;
1641 		uintptr_t *up;
1642 		void *vp = addr;
1643 		cbdata = *cbdatap;
1644 		cbdata.name = "";
1645 		cbdata.addr = addr;
1646 		cbdata.addrend = addr + ssz;
1647 		cbdata.f_type = 0;
1648 		cbdata.indent++;
1649 		cbdata.type_width = 0;
1650 		cbdata.name_width = 0;
1651 
1652 		if (cnt > 0)
1653 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1654 
1655 		switch (kind) {
1656 		case CTF_K_INTEGER:
1657 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1658 				return (-1);
1659 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1660 				switch (cte.cte_bits) {
1661 				case 8:
1662 					if (isprint(*((char *) vp)))
1663 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1664 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1665 					break;
1666 				case 16:
1667 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1668 					break;
1669 				case 32:
1670 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1671 					break;
1672 				case 64:
1673 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1674 					break;
1675 				default:
1676 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1677 					break;
1678 				}
1679 			else
1680 				switch (cte.cte_bits) {
1681 				case 8:
1682 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1683 					break;
1684 				case 16:
1685 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1686 					break;
1687 				case 32:
1688 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1689 					break;
1690 				case 64:
1691 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1692 					break;
1693 				default:
1694 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1695 					break;
1696 				}
1697 			break;
1698 		case CTF_K_FLOAT:
1699 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1700 			break;
1701 		case CTF_K_POINTER:
1702 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1703 			break;
1704 		case CTF_K_ARRAY:
1705 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1706 				return (-1);
1707 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1708 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1709 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1710 			break;
1711 		case CTF_K_FUNCTION:
1712 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1713 			break;
1714 		case CTF_K_STRUCT:
1715 			cbdata.f_type = 1;
1716 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1717 			    dt_print_type_width, &cbdata) != 0)
1718 				return (-1);
1719 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1720 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1721 			    dt_print_type_member, &cbdata) != 0)
1722 				return (-1);
1723 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1724 			break;
1725 		case CTF_K_UNION:
1726 			cbdata.f_type = 1;
1727 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1728 			    dt_print_type_width, &cbdata) != 0)
1729 				return (-1);
1730 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1731 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1732 			    dt_print_type_member, &cbdata) != 0)
1733 				return (-1);
1734 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1735 			break;
1736 		case CTF_K_ENUM:
1737 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1738 			break;
1739 		case CTF_K_TYPEDEF:
1740 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1741 			break;
1742 		case CTF_K_VOLATILE:
1743 			if (cbdatap->f_type)
1744 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1745 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1746 			break;
1747 		case CTF_K_CONST:
1748 			if (cbdatap->f_type)
1749 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1750 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1751 			break;
1752 		case CTF_K_RESTRICT:
1753 			if (cbdatap->f_type)
1754 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1755 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1756 			break;
1757 		default:
1758 			break;
1759 		}
1760 
1761 		addr += ssz;
1762 		cnt++;
1763 	}
1764 
1765 	return (0);
1766 }
1767 
1768 static int
1769 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1770 {
1771 	caddr_t addrend;
1772 	char *p;
1773 	dtrace_typeinfo_t dtt;
1774 	dt_type_cbdata_t cbdata;
1775 	int num = 0;
1776 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1777 	ssize_t ssz;
1778 
1779 	if (!quiet)
1780 		dt_printf(dtp, fp, "\n");
1781 
1782 	/* Get the total number of bytes of data buffered. */
1783 	size_t nbytes = *((uintptr_t *) addr);
1784 	addr += sizeof(uintptr_t);
1785 
1786 	/*
1787 	 * Get the size of the type so that we can check that it matches
1788 	 * the CTF data we look up and so that we can figure out how many
1789 	 * type elements are buffered.
1790 	 */
1791 	size_t typs = *((uintptr_t *) addr);
1792 	addr += sizeof(uintptr_t);
1793 
1794 	/*
1795 	 * Point to the type string in the buffer. Get it's string
1796 	 * length and round it up to become the offset to the start
1797 	 * of the buffered type data which we would like to be aligned
1798 	 * for easy access.
1799 	 */
1800 	char *strp = (char *) addr;
1801 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1802 
1803 	/*
1804 	 * The type string might have a format such as 'int [20]'.
1805 	 * Check if there is an array dimension present.
1806 	 */
1807 	if ((p = strchr(strp, '[')) != NULL) {
1808 		/* Strip off the array dimension. */
1809 		*p++ = '\0';
1810 
1811 		for (; *p != '\0' && *p != ']'; p++)
1812 			num = num * 10 + *p - '0';
1813 	} else
1814 		/* No array dimension, so default. */
1815 		num = 1;
1816 
1817 	/* Lookup the CTF type from the type string. */
1818 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1819 		return (-1);
1820 
1821 	/* Offset the buffer address to the start of the data... */
1822 	addr += offset;
1823 
1824 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1825 
1826 	if (typs != ssz) {
1827 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1828 		return (-1);
1829 	}
1830 
1831 	cbdata.dtp = dtp;
1832 	cbdata.dtt = dtt;
1833 	cbdata.name = "";
1834 	cbdata.addr = addr;
1835 	cbdata.addrend = addr + nbytes;
1836 	cbdata.indent = 1;
1837 	cbdata.f_type = 1;
1838 	cbdata.type_width = 0;
1839 	cbdata.name_width = 0;
1840 	cbdata.fp = fp;
1841 
1842 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1843 }
1844 
1845 static int
1846 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1847 {
1848 	/* LINTED - alignment */
1849 	uint64_t pc = *((uint64_t *)addr);
1850 	dtrace_syminfo_t dts;
1851 	GElf_Sym sym;
1852 	char c[PATH_MAX * 2];
1853 
1854 	if (format == NULL)
1855 		format = "  %-50s";
1856 
1857 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1858 		(void) snprintf(c, sizeof (c), "%s`%s",
1859 		    dts.dts_object, dts.dts_name);
1860 	} else {
1861 		/*
1862 		 * We'll repeat the lookup, but this time we'll specify a
1863 		 * NULL GElf_Sym -- indicating that we're only interested in
1864 		 * the containing module.
1865 		 */
1866 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1867 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1868 			    dts.dts_object, (u_longlong_t)pc);
1869 		} else {
1870 			(void) snprintf(c, sizeof (c), "0x%llx",
1871 			    (u_longlong_t)pc);
1872 		}
1873 	}
1874 
1875 	if (dt_printf(dtp, fp, format, c) < 0)
1876 		return (-1);
1877 
1878 	return (0);
1879 }
1880 
1881 int
1882 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1883 {
1884 	/* LINTED - alignment */
1885 	uint64_t pc = *((uint64_t *)addr);
1886 	dtrace_syminfo_t dts;
1887 	char c[PATH_MAX * 2];
1888 
1889 	if (format == NULL)
1890 		format = "  %-50s";
1891 
1892 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1893 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1894 	} else {
1895 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1896 	}
1897 
1898 	if (dt_printf(dtp, fp, format, c) < 0)
1899 		return (-1);
1900 
1901 	return (0);
1902 }
1903 
1904 typedef struct dt_normal {
1905 	dtrace_aggvarid_t dtnd_id;
1906 	uint64_t dtnd_normal;
1907 } dt_normal_t;
1908 
1909 static int
1910 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1911 {
1912 	dt_normal_t *normal = arg;
1913 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1914 	dtrace_aggvarid_t id = normal->dtnd_id;
1915 
1916 	if (agg->dtagd_nrecs == 0)
1917 		return (DTRACE_AGGWALK_NEXT);
1918 
1919 	if (agg->dtagd_varid != id)
1920 		return (DTRACE_AGGWALK_NEXT);
1921 
1922 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1923 	return (DTRACE_AGGWALK_NORMALIZE);
1924 }
1925 
1926 static int
1927 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1928 {
1929 	dt_normal_t normal;
1930 	caddr_t addr;
1931 
1932 	/*
1933 	 * We (should) have two records:  the aggregation ID followed by the
1934 	 * normalization value.
1935 	 */
1936 	addr = base + rec->dtrd_offset;
1937 
1938 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1939 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1940 
1941 	/* LINTED - alignment */
1942 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1943 	rec++;
1944 
1945 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1946 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1947 
1948 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1949 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1950 
1951 	addr = base + rec->dtrd_offset;
1952 
1953 	switch (rec->dtrd_size) {
1954 	case sizeof (uint64_t):
1955 		/* LINTED - alignment */
1956 		normal.dtnd_normal = *((uint64_t *)addr);
1957 		break;
1958 	case sizeof (uint32_t):
1959 		/* LINTED - alignment */
1960 		normal.dtnd_normal = *((uint32_t *)addr);
1961 		break;
1962 	case sizeof (uint16_t):
1963 		/* LINTED - alignment */
1964 		normal.dtnd_normal = *((uint16_t *)addr);
1965 		break;
1966 	case sizeof (uint8_t):
1967 		normal.dtnd_normal = *((uint8_t *)addr);
1968 		break;
1969 	default:
1970 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1971 	}
1972 
1973 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1974 
1975 	return (0);
1976 }
1977 
1978 static int
1979 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1980 {
1981 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1982 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1983 
1984 	if (agg->dtagd_nrecs == 0)
1985 		return (DTRACE_AGGWALK_NEXT);
1986 
1987 	if (agg->dtagd_varid != id)
1988 		return (DTRACE_AGGWALK_NEXT);
1989 
1990 	return (DTRACE_AGGWALK_DENORMALIZE);
1991 }
1992 
1993 static int
1994 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1995 {
1996 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1997 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1998 
1999 	if (agg->dtagd_nrecs == 0)
2000 		return (DTRACE_AGGWALK_NEXT);
2001 
2002 	if (agg->dtagd_varid != id)
2003 		return (DTRACE_AGGWALK_NEXT);
2004 
2005 	return (DTRACE_AGGWALK_CLEAR);
2006 }
2007 
2008 typedef struct dt_trunc {
2009 	dtrace_aggvarid_t dttd_id;
2010 	uint64_t dttd_remaining;
2011 } dt_trunc_t;
2012 
2013 static int
2014 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
2015 {
2016 	dt_trunc_t *trunc = arg;
2017 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2018 	dtrace_aggvarid_t id = trunc->dttd_id;
2019 
2020 	if (agg->dtagd_nrecs == 0)
2021 		return (DTRACE_AGGWALK_NEXT);
2022 
2023 	if (agg->dtagd_varid != id)
2024 		return (DTRACE_AGGWALK_NEXT);
2025 
2026 	if (trunc->dttd_remaining == 0)
2027 		return (DTRACE_AGGWALK_REMOVE);
2028 
2029 	trunc->dttd_remaining--;
2030 	return (DTRACE_AGGWALK_NEXT);
2031 }
2032 
2033 static int
2034 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
2035 {
2036 	dt_trunc_t trunc;
2037 	caddr_t addr;
2038 	int64_t remaining;
2039 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
2040 
2041 	/*
2042 	 * We (should) have two records:  the aggregation ID followed by the
2043 	 * number of aggregation entries after which the aggregation is to be
2044 	 * truncated.
2045 	 */
2046 	addr = base + rec->dtrd_offset;
2047 
2048 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
2049 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2050 
2051 	/* LINTED - alignment */
2052 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
2053 	rec++;
2054 
2055 	if (rec->dtrd_action != DTRACEACT_LIBACT)
2056 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2057 
2058 	if (rec->dtrd_arg != DT_ACT_TRUNC)
2059 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2060 
2061 	addr = base + rec->dtrd_offset;
2062 
2063 	switch (rec->dtrd_size) {
2064 	case sizeof (uint64_t):
2065 		/* LINTED - alignment */
2066 		remaining = *((int64_t *)addr);
2067 		break;
2068 	case sizeof (uint32_t):
2069 		/* LINTED - alignment */
2070 		remaining = *((int32_t *)addr);
2071 		break;
2072 	case sizeof (uint16_t):
2073 		/* LINTED - alignment */
2074 		remaining = *((int16_t *)addr);
2075 		break;
2076 	case sizeof (uint8_t):
2077 		remaining = *((int8_t *)addr);
2078 		break;
2079 	default:
2080 		return (dt_set_errno(dtp, EDT_BADNORMAL));
2081 	}
2082 
2083 	if (remaining < 0) {
2084 		func = dtrace_aggregate_walk_valsorted;
2085 		remaining = -remaining;
2086 	} else {
2087 		func = dtrace_aggregate_walk_valrevsorted;
2088 	}
2089 
2090 	assert(remaining >= 0);
2091 	trunc.dttd_remaining = remaining;
2092 
2093 	(void) func(dtp, dt_trunc_agg, &trunc);
2094 
2095 	return (0);
2096 }
2097 
2098 static int
2099 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
2100     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
2101     uint64_t normal, dt_print_aggdata_t *pd)
2102 {
2103 	int err, width;
2104 	dtrace_actkind_t act = rec->dtrd_action;
2105 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
2106 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2107 
2108 	static struct {
2109 		size_t size;
2110 		int width;
2111 		int packedwidth;
2112 	} *fmt, fmttab[] = {
2113 		{ sizeof (uint8_t),	3,	3 },
2114 		{ sizeof (uint16_t),	5,	5 },
2115 		{ sizeof (uint32_t),	8,	8 },
2116 		{ sizeof (uint64_t),	16,	16 },
2117 		{ 0,			-50,	16 }
2118 	};
2119 
2120 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
2121 		dtrace_recdesc_t *r;
2122 
2123 		width = 0;
2124 
2125 		/*
2126 		 * To print our quantization header for either an agghist or
2127 		 * aggpack aggregation, we need to iterate through all of our
2128 		 * of our records to determine their width.
2129 		 */
2130 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
2131 			for (fmt = fmttab; fmt->size &&
2132 			    fmt->size != r->dtrd_size; fmt++)
2133 				continue;
2134 
2135 			width += fmt->packedwidth + 1;
2136 		}
2137 
2138 		if (pd->dtpa_agghist) {
2139 			if (dt_print_quanthdr(dtp, fp, width) < 0)
2140 				return (-1);
2141 		} else {
2142 			if (dt_print_quanthdr_packed(dtp, fp,
2143 			    width, aggdata, r->dtrd_action) < 0)
2144 				return (-1);
2145 		}
2146 
2147 		pd->dtpa_agghisthdr = agg->dtagd_varid;
2148 	}
2149 
2150 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
2151 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
2152 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
2153 		int64_t val;
2154 
2155 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
2156 		val = (long long)*((uint64_t *)addr);
2157 
2158 		if (dt_printf(dtp, fp, " ") < 0)
2159 			return (-1);
2160 
2161 		return (dt_print_quantline(dtp, fp, val, normal,
2162 		    aggdata->dtada_total, positives, negatives));
2163 	}
2164 
2165 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
2166 		switch (act) {
2167 		case DTRACEAGG_QUANTIZE:
2168 			return (dt_print_quantize_packed(dtp,
2169 			    fp, addr, size, aggdata));
2170 		case DTRACEAGG_LQUANTIZE:
2171 			return (dt_print_lquantize_packed(dtp,
2172 			    fp, addr, size, aggdata));
2173 		default:
2174 			break;
2175 		}
2176 	}
2177 
2178 	switch (act) {
2179 	case DTRACEACT_STACK:
2180 		return (dt_print_stack(dtp, fp, NULL, addr,
2181 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
2182 
2183 	case DTRACEACT_USTACK:
2184 	case DTRACEACT_JSTACK:
2185 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
2186 
2187 	case DTRACEACT_USYM:
2188 	case DTRACEACT_UADDR:
2189 		return (dt_print_usym(dtp, fp, addr, act));
2190 
2191 	case DTRACEACT_UMOD:
2192 		return (dt_print_umod(dtp, fp, NULL, addr));
2193 
2194 	case DTRACEACT_SYM:
2195 		return (dt_print_sym(dtp, fp, NULL, addr));
2196 
2197 	case DTRACEACT_MOD:
2198 		return (dt_print_mod(dtp, fp, NULL, addr));
2199 
2200 	case DTRACEAGG_QUANTIZE:
2201 		return (dt_print_quantize(dtp, fp, addr, size, normal));
2202 
2203 	case DTRACEAGG_LQUANTIZE:
2204 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
2205 
2206 	case DTRACEAGG_LLQUANTIZE:
2207 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
2208 
2209 	case DTRACEAGG_AVG:
2210 		return (dt_print_average(dtp, fp, addr, size, normal));
2211 
2212 	case DTRACEAGG_STDDEV:
2213 		return (dt_print_stddev(dtp, fp, addr, size, normal));
2214 
2215 	default:
2216 		break;
2217 	}
2218 
2219 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
2220 		continue;
2221 
2222 	width = packed ? fmt->packedwidth : fmt->width;
2223 
2224 	switch (size) {
2225 	case sizeof (uint64_t):
2226 		err = dt_printf(dtp, fp, " %*lld", width,
2227 		    /* LINTED - alignment */
2228 		    (long long)*((uint64_t *)addr) / normal);
2229 		break;
2230 	case sizeof (uint32_t):
2231 		/* LINTED - alignment */
2232 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
2233 		    (uint32_t)normal);
2234 		break;
2235 	case sizeof (uint16_t):
2236 		/* LINTED - alignment */
2237 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
2238 		    (uint32_t)normal);
2239 		break;
2240 	case sizeof (uint8_t):
2241 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
2242 		    (uint32_t)normal);
2243 		break;
2244 	default:
2245 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
2246 		break;
2247 	}
2248 
2249 	return (err);
2250 }
2251 
2252 int
2253 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
2254 {
2255 	int i, aggact = 0;
2256 	dt_print_aggdata_t *pd = arg;
2257 	const dtrace_aggdata_t *aggdata = aggsdata[0];
2258 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2259 	FILE *fp = pd->dtpa_fp;
2260 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
2261 	dtrace_recdesc_t *rec;
2262 	dtrace_actkind_t act;
2263 	caddr_t addr;
2264 	size_t size;
2265 
2266 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
2267 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
2268 
2269 	/*
2270 	 * Iterate over each record description in the key, printing the traced
2271 	 * data, skipping the first datum (the tuple member created by the
2272 	 * compiler).
2273 	 */
2274 	for (i = 1; i < agg->dtagd_nrecs; i++) {
2275 		rec = &agg->dtagd_rec[i];
2276 		act = rec->dtrd_action;
2277 		addr = aggdata->dtada_data + rec->dtrd_offset;
2278 		size = rec->dtrd_size;
2279 
2280 		if (DTRACEACT_ISAGG(act)) {
2281 			aggact = i;
2282 			break;
2283 		}
2284 
2285 		if (dt_print_datum(dtp, fp, rec, addr,
2286 		    size, aggdata, 1, pd) < 0)
2287 			return (-1);
2288 
2289 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2290 		    DTRACE_BUFDATA_AGGKEY) < 0)
2291 			return (-1);
2292 	}
2293 
2294 	assert(aggact != 0);
2295 
2296 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2297 		uint64_t normal;
2298 
2299 		aggdata = aggsdata[i];
2300 		agg = aggdata->dtada_desc;
2301 		rec = &agg->dtagd_rec[aggact];
2302 		act = rec->dtrd_action;
2303 		addr = aggdata->dtada_data + rec->dtrd_offset;
2304 		size = rec->dtrd_size;
2305 
2306 		assert(DTRACEACT_ISAGG(act));
2307 		normal = aggdata->dtada_normal;
2308 
2309 		if (dt_print_datum(dtp, fp, rec, addr,
2310 		    size, aggdata, normal, pd) < 0)
2311 			return (-1);
2312 
2313 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2314 		    DTRACE_BUFDATA_AGGVAL) < 0)
2315 			return (-1);
2316 
2317 		if (!pd->dtpa_allunprint)
2318 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2319 	}
2320 
2321 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2322 		if (dt_printf(dtp, fp, "\n") < 0)
2323 			return (-1);
2324 	}
2325 
2326 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2327 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2328 		return (-1);
2329 
2330 	return (0);
2331 }
2332 
2333 int
2334 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2335 {
2336 	dt_print_aggdata_t *pd = arg;
2337 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2338 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2339 
2340 	if (pd->dtpa_allunprint) {
2341 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2342 			return (0);
2343 	} else {
2344 		/*
2345 		 * If we're not printing all unprinted aggregations, then the
2346 		 * aggregation variable ID denotes a specific aggregation
2347 		 * variable that we should print -- skip any other aggregations
2348 		 * that we encounter.
2349 		 */
2350 		if (agg->dtagd_nrecs == 0)
2351 			return (0);
2352 
2353 		if (aggvarid != agg->dtagd_varid)
2354 			return (0);
2355 	}
2356 
2357 	return (dt_print_aggs(&aggdata, 1, arg));
2358 }
2359 
2360 int
2361 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2362     const char *option, const char *value)
2363 {
2364 	int len, rval;
2365 	char *msg;
2366 	const char *errstr;
2367 	dtrace_setoptdata_t optdata;
2368 
2369 	bzero(&optdata, sizeof (optdata));
2370 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2371 
2372 	if (dtrace_setopt(dtp, option, value) == 0) {
2373 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2374 		optdata.dtsda_probe = data;
2375 		optdata.dtsda_option = option;
2376 		optdata.dtsda_handle = dtp;
2377 
2378 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2379 			return (rval);
2380 
2381 		return (0);
2382 	}
2383 
2384 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2385 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2386 	msg = alloca(len);
2387 
2388 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2389 	    option, value, errstr);
2390 
2391 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2392 		return (0);
2393 
2394 	return (rval);
2395 }
2396 
2397 static int
2398 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2399     dtrace_bufdesc_t *buf, boolean_t just_one,
2400     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2401 {
2402 	dtrace_epid_t id;
2403 	size_t offs;
2404 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2405 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2406 	int rval, i, n;
2407 	uint64_t tracememsize = 0;
2408 	dtrace_probedata_t data;
2409 	uint64_t drops;
2410 
2411 	bzero(&data, sizeof (data));
2412 	data.dtpda_handle = dtp;
2413 	data.dtpda_cpu = cpu;
2414 	data.dtpda_flow = dtp->dt_flow;
2415 	data.dtpda_indent = dtp->dt_indent;
2416 	data.dtpda_prefix = dtp->dt_prefix;
2417 
2418 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2419 		dtrace_eprobedesc_t *epd;
2420 
2421 		/*
2422 		 * We're guaranteed to have an ID.
2423 		 */
2424 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2425 
2426 		if (id == DTRACE_EPIDNONE) {
2427 			/*
2428 			 * This is filler to assure proper alignment of the
2429 			 * next record; we simply ignore it.
2430 			 */
2431 			offs += sizeof (id);
2432 			continue;
2433 		}
2434 
2435 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2436 		    &data.dtpda_pdesc)) != 0)
2437 			return (rval);
2438 
2439 		epd = data.dtpda_edesc;
2440 		data.dtpda_data = buf->dtbd_data + offs;
2441 
2442 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2443 			rval = dt_handle(dtp, &data);
2444 
2445 			if (rval == DTRACE_CONSUME_NEXT)
2446 				goto nextepid;
2447 
2448 			if (rval == DTRACE_CONSUME_ERROR)
2449 				return (-1);
2450 		}
2451 
2452 		if (flow)
2453 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2454 			    buf, offs);
2455 
2456 		rval = (*efunc)(&data, arg);
2457 
2458 		if (flow) {
2459 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2460 				data.dtpda_indent += 2;
2461 		}
2462 
2463 		if (rval == DTRACE_CONSUME_NEXT)
2464 			goto nextepid;
2465 
2466 		if (rval == DTRACE_CONSUME_ABORT)
2467 			return (dt_set_errno(dtp, EDT_DIRABORT));
2468 
2469 		if (rval != DTRACE_CONSUME_THIS)
2470 			return (dt_set_errno(dtp, EDT_BADRVAL));
2471 
2472 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2473 			caddr_t addr;
2474 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2475 			dtrace_actkind_t act = rec->dtrd_action;
2476 
2477 			data.dtpda_data = buf->dtbd_data + offs +
2478 			    rec->dtrd_offset;
2479 			addr = data.dtpda_data;
2480 
2481 			if (act == DTRACEACT_LIBACT) {
2482 				uint64_t arg = rec->dtrd_arg;
2483 				dtrace_aggvarid_t id;
2484 
2485 				switch (arg) {
2486 				case DT_ACT_CLEAR:
2487 					/* LINTED - alignment */
2488 					id = *((dtrace_aggvarid_t *)addr);
2489 					(void) dtrace_aggregate_walk(dtp,
2490 					    dt_clear_agg, &id);
2491 					continue;
2492 
2493 				case DT_ACT_DENORMALIZE:
2494 					/* LINTED - alignment */
2495 					id = *((dtrace_aggvarid_t *)addr);
2496 					(void) dtrace_aggregate_walk(dtp,
2497 					    dt_denormalize_agg, &id);
2498 					continue;
2499 
2500 				case DT_ACT_FTRUNCATE:
2501 					if (fp == NULL)
2502 						continue;
2503 
2504 					(void) fflush(fp);
2505 					(void) ftruncate(fileno(fp), 0);
2506 					(void) fseeko(fp, 0, SEEK_SET);
2507 					continue;
2508 
2509 				case DT_ACT_NORMALIZE:
2510 					if (i == epd->dtepd_nrecs - 1)
2511 						return (dt_set_errno(dtp,
2512 						    EDT_BADNORMAL));
2513 
2514 					if (dt_normalize(dtp,
2515 					    buf->dtbd_data + offs, rec) != 0)
2516 						return (-1);
2517 
2518 					i++;
2519 					continue;
2520 
2521 				case DT_ACT_SETOPT: {
2522 					uint64_t *opts = dtp->dt_options;
2523 					dtrace_recdesc_t *valrec;
2524 					uint32_t valsize;
2525 					caddr_t val;
2526 					int rv;
2527 
2528 					if (i == epd->dtepd_nrecs - 1) {
2529 						return (dt_set_errno(dtp,
2530 						    EDT_BADSETOPT));
2531 					}
2532 
2533 					valrec = &epd->dtepd_rec[++i];
2534 					valsize = valrec->dtrd_size;
2535 
2536 					if (valrec->dtrd_action != act ||
2537 					    valrec->dtrd_arg != arg) {
2538 						return (dt_set_errno(dtp,
2539 						    EDT_BADSETOPT));
2540 					}
2541 
2542 					if (valsize > sizeof (uint64_t)) {
2543 						val = buf->dtbd_data + offs +
2544 						    valrec->dtrd_offset;
2545 					} else {
2546 						val = "1";
2547 					}
2548 
2549 					rv = dt_setopt(dtp, &data, addr, val);
2550 
2551 					if (rv != 0)
2552 						return (-1);
2553 
2554 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2555 					    DTRACEOPT_UNSET);
2556 					quiet = (opts[DTRACEOPT_QUIET] !=
2557 					    DTRACEOPT_UNSET);
2558 
2559 					continue;
2560 				}
2561 
2562 				case DT_ACT_TRUNC:
2563 					if (i == epd->dtepd_nrecs - 1)
2564 						return (dt_set_errno(dtp,
2565 						    EDT_BADTRUNC));
2566 
2567 					if (dt_trunc(dtp,
2568 					    buf->dtbd_data + offs, rec) != 0)
2569 						return (-1);
2570 
2571 					i++;
2572 					continue;
2573 
2574 				default:
2575 					continue;
2576 				}
2577 			}
2578 
2579 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2580 			    rec->dtrd_size == sizeof (uint64_t)) {
2581 			    	/* LINTED - alignment */
2582 				tracememsize = *((unsigned long long *)addr);
2583 				continue;
2584 			}
2585 
2586 			rval = (*rfunc)(&data, rec, arg);
2587 
2588 			if (rval == DTRACE_CONSUME_NEXT)
2589 				continue;
2590 
2591 			if (rval == DTRACE_CONSUME_ABORT)
2592 				return (dt_set_errno(dtp, EDT_DIRABORT));
2593 
2594 			if (rval != DTRACE_CONSUME_THIS)
2595 				return (dt_set_errno(dtp, EDT_BADRVAL));
2596 
2597 			if (act == DTRACEACT_STACK) {
2598 				int depth = rec->dtrd_arg;
2599 
2600 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2601 				    rec->dtrd_size / depth) < 0)
2602 					return (-1);
2603 				goto nextrec;
2604 			}
2605 
2606 			if (act == DTRACEACT_USTACK ||
2607 			    act == DTRACEACT_JSTACK) {
2608 				if (dt_print_ustack(dtp, fp, NULL,
2609 				    addr, rec->dtrd_arg) < 0)
2610 					return (-1);
2611 				goto nextrec;
2612 			}
2613 
2614 			if (act == DTRACEACT_SYM) {
2615 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2616 					return (-1);
2617 				goto nextrec;
2618 			}
2619 
2620 			if (act == DTRACEACT_MOD) {
2621 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2622 					return (-1);
2623 				goto nextrec;
2624 			}
2625 
2626 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2627 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2628 					return (-1);
2629 				goto nextrec;
2630 			}
2631 
2632 			if (act == DTRACEACT_UMOD) {
2633 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2634 					return (-1);
2635 				goto nextrec;
2636 			}
2637 
2638 			if (act == DTRACEACT_PRINTM) {
2639 				if (dt_print_memory(dtp, fp, addr) < 0)
2640 					return (-1);
2641 				goto nextrec;
2642 			}
2643 
2644 			if (act == DTRACEACT_PRINTT) {
2645 				if (dt_print_type(dtp, fp, addr) < 0)
2646 					return (-1);
2647 				goto nextrec;
2648 			}
2649 
2650 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2651 				void *fmtdata;
2652 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2653 				    const dtrace_probedata_t *,
2654 				    const dtrace_recdesc_t *, uint_t,
2655 				    const void *buf, size_t);
2656 
2657 				if ((fmtdata = dt_format_lookup(dtp,
2658 				    rec->dtrd_format)) == NULL)
2659 					goto nofmt;
2660 
2661 				switch (act) {
2662 				case DTRACEACT_PRINTF:
2663 					func = dtrace_fprintf;
2664 					break;
2665 				case DTRACEACT_PRINTA:
2666 					func = dtrace_fprinta;
2667 					break;
2668 				case DTRACEACT_SYSTEM:
2669 					func = dtrace_system;
2670 					break;
2671 				case DTRACEACT_FREOPEN:
2672 					func = dtrace_freopen;
2673 					break;
2674 				}
2675 
2676 				n = (*func)(dtp, fp, fmtdata, &data,
2677 				    rec, epd->dtepd_nrecs - i,
2678 				    (uchar_t *)buf->dtbd_data + offs,
2679 				    buf->dtbd_size - offs);
2680 
2681 				if (n < 0)
2682 					return (-1); /* errno is set for us */
2683 
2684 				if (n > 0)
2685 					i += n - 1;
2686 				goto nextrec;
2687 			}
2688 
2689 			/*
2690 			 * If this is a DIF expression, and the record has a
2691 			 * format set, this indicates we have a CTF type name
2692 			 * associated with the data and we should try to print
2693 			 * it out by type.
2694 			 */
2695 			if (act == DTRACEACT_DIFEXPR) {
2696 				const char *strdata = dt_strdata_lookup(dtp,
2697 				    rec->dtrd_format);
2698 				if (strdata != NULL) {
2699 					n = dtrace_print(dtp, fp, strdata,
2700 					    addr, rec->dtrd_size);
2701 
2702 					/*
2703 					 * dtrace_print() will return -1 on
2704 					 * error, or return the number of bytes
2705 					 * consumed.  It will return 0 if the
2706 					 * type couldn't be determined, and we
2707 					 * should fall through to the normal
2708 					 * trace method.
2709 					 */
2710 					if (n < 0)
2711 						return (-1);
2712 
2713 					if (n > 0)
2714 						goto nextrec;
2715 				}
2716 			}
2717 
2718 nofmt:
2719 			if (act == DTRACEACT_PRINTA) {
2720 				dt_print_aggdata_t pd;
2721 				dtrace_aggvarid_t *aggvars;
2722 				int j, naggvars = 0;
2723 				size_t size = ((epd->dtepd_nrecs - i) *
2724 				    sizeof (dtrace_aggvarid_t));
2725 
2726 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2727 					return (-1);
2728 
2729 				/*
2730 				 * This might be a printa() with multiple
2731 				 * aggregation variables.  We need to scan
2732 				 * forward through the records until we find
2733 				 * a record from a different statement.
2734 				 */
2735 				for (j = i; j < epd->dtepd_nrecs; j++) {
2736 					dtrace_recdesc_t *nrec;
2737 					caddr_t naddr;
2738 
2739 					nrec = &epd->dtepd_rec[j];
2740 
2741 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2742 						break;
2743 
2744 					if (nrec->dtrd_action != act) {
2745 						return (dt_set_errno(dtp,
2746 						    EDT_BADAGG));
2747 					}
2748 
2749 					naddr = buf->dtbd_data + offs +
2750 					    nrec->dtrd_offset;
2751 
2752 					aggvars[naggvars++] =
2753 					    /* LINTED - alignment */
2754 					    *((dtrace_aggvarid_t *)naddr);
2755 				}
2756 
2757 				i = j - 1;
2758 				bzero(&pd, sizeof (pd));
2759 				pd.dtpa_dtp = dtp;
2760 				pd.dtpa_fp = fp;
2761 
2762 				assert(naggvars >= 1);
2763 
2764 				if (naggvars == 1) {
2765 					pd.dtpa_id = aggvars[0];
2766 					dt_free(dtp, aggvars);
2767 
2768 					if (dt_printf(dtp, fp, "\n") < 0 ||
2769 					    dtrace_aggregate_walk_sorted(dtp,
2770 					    dt_print_agg, &pd) < 0)
2771 						return (-1);
2772 					goto nextrec;
2773 				}
2774 
2775 				if (dt_printf(dtp, fp, "\n") < 0 ||
2776 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2777 				    naggvars, dt_print_aggs, &pd) < 0) {
2778 					dt_free(dtp, aggvars);
2779 					return (-1);
2780 				}
2781 
2782 				dt_free(dtp, aggvars);
2783 				goto nextrec;
2784 			}
2785 
2786 			if (act == DTRACEACT_TRACEMEM) {
2787 				if (tracememsize == 0 ||
2788 				    tracememsize > rec->dtrd_size) {
2789 					tracememsize = rec->dtrd_size;
2790 				}
2791 
2792 				n = dt_print_bytes(dtp, fp, addr,
2793 				    tracememsize, -33, quiet, 1);
2794 
2795 				tracememsize = 0;
2796 
2797 				if (n < 0)
2798 					return (-1);
2799 
2800 				goto nextrec;
2801 			}
2802 
2803 			switch (rec->dtrd_size) {
2804 			case sizeof (uint64_t):
2805 				n = dt_printf(dtp, fp,
2806 				    quiet ? "%lld" : " %16lld",
2807 				    /* LINTED - alignment */
2808 				    *((unsigned long long *)addr));
2809 				break;
2810 			case sizeof (uint32_t):
2811 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2812 				    /* LINTED - alignment */
2813 				    *((uint32_t *)addr));
2814 				break;
2815 			case sizeof (uint16_t):
2816 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2817 				    /* LINTED - alignment */
2818 				    *((uint16_t *)addr));
2819 				break;
2820 			case sizeof (uint8_t):
2821 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2822 				    *((uint8_t *)addr));
2823 				break;
2824 			default:
2825 				n = dt_print_bytes(dtp, fp, addr,
2826 				    rec->dtrd_size, -33, quiet, 0);
2827 				break;
2828 			}
2829 
2830 			if (n < 0)
2831 				return (-1); /* errno is set for us */
2832 
2833 nextrec:
2834 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2835 				return (-1); /* errno is set for us */
2836 		}
2837 
2838 		/*
2839 		 * Call the record callback with a NULL record to indicate
2840 		 * that we're done processing this EPID.
2841 		 */
2842 		rval = (*rfunc)(&data, NULL, arg);
2843 nextepid:
2844 		offs += epd->dtepd_size;
2845 		dtp->dt_last_epid = id;
2846 		if (just_one) {
2847 			buf->dtbd_oldest = offs;
2848 			break;
2849 		}
2850 	}
2851 
2852 	dtp->dt_flow = data.dtpda_flow;
2853 	dtp->dt_indent = data.dtpda_indent;
2854 	dtp->dt_prefix = data.dtpda_prefix;
2855 
2856 	if ((drops = buf->dtbd_drops) == 0)
2857 		return (0);
2858 
2859 	/*
2860 	 * Explicitly zero the drops to prevent us from processing them again.
2861 	 */
2862 	buf->dtbd_drops = 0;
2863 
2864 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2865 }
2866 
2867 /*
2868  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2869  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2870  * only 4-byte aligned.
2871  */
2872 static void
2873 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2874 {
2875 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2876 	if (used < cursize / 2) {
2877 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2878 		char *newdata = dt_alloc(dtp, used + misalign);
2879 		if (newdata == NULL)
2880 			return;
2881 		bzero(newdata, misalign);
2882 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2883 		    newdata + misalign, used);
2884 		dt_free(dtp, buf->dtbd_data);
2885 		buf->dtbd_oldest = misalign;
2886 		buf->dtbd_size = used + misalign;
2887 		buf->dtbd_data = newdata;
2888 	}
2889 }
2890 
2891 /*
2892  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2893  * so that it is.  Note, we need to preserve the alignment of the data at
2894  * dtbd_oldest, which is only 4-byte aligned.
2895  */
2896 static int
2897 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2898 {
2899 	int misalign;
2900 	char *newdata, *ndp;
2901 
2902 	if (buf->dtbd_oldest == 0)
2903 		return (0);
2904 
2905 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2906 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2907 
2908 	if (newdata == NULL)
2909 		return (-1);
2910 
2911 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2912 
2913 	bzero(ndp, misalign);
2914 	ndp += misalign;
2915 
2916 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2917 	    buf->dtbd_size - buf->dtbd_oldest);
2918 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2919 
2920 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2921 
2922 	dt_free(dtp, buf->dtbd_data);
2923 	buf->dtbd_oldest = 0;
2924 	buf->dtbd_data = newdata;
2925 	buf->dtbd_size += misalign;
2926 
2927 	return (0);
2928 }
2929 
2930 static void
2931 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2932 {
2933 	dt_free(dtp, buf->dtbd_data);
2934 	dt_free(dtp, buf);
2935 }
2936 
2937 /*
2938  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2939  * data, or NULL if there is no data for this CPU.
2940  * Returns -1 on failure and sets dt_errno.
2941  */
2942 static int
2943 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2944 {
2945 	dtrace_optval_t size;
2946 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2947 	int error, rval;
2948 
2949 	if (buf == NULL)
2950 		return (-1);
2951 
2952 	(void) dtrace_getopt(dtp, "bufsize", &size);
2953 	buf->dtbd_data = dt_alloc(dtp, size);
2954 	if (buf->dtbd_data == NULL) {
2955 		dt_free(dtp, buf);
2956 		return (-1);
2957 	}
2958 	buf->dtbd_size = size;
2959 	buf->dtbd_cpu = cpu;
2960 
2961 #if defined(sun)
2962 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2963 #else
2964 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2965 #endif
2966 		/*
2967 		 * If we failed with ENOENT, it may be because the
2968 		 * CPU was unconfigured -- this is okay.  Any other
2969 		 * error, however, is unexpected.
2970 		 */
2971 		if (errno == ENOENT) {
2972 			*bufp = NULL;
2973 			rval = 0;
2974 		} else
2975 			rval = dt_set_errno(dtp, errno);
2976 
2977 		dt_put_buf(dtp, buf);
2978 		return (rval);
2979 	}
2980 
2981 	error = dt_unring_buf(dtp, buf);
2982 	if (error != 0) {
2983 		dt_put_buf(dtp, buf);
2984 		return (error);
2985 	}
2986 	dt_realloc_buf(dtp, buf, size);
2987 
2988 	*bufp = buf;
2989 	return (0);
2990 }
2991 
2992 typedef struct dt_begin {
2993 	dtrace_consume_probe_f *dtbgn_probefunc;
2994 	dtrace_consume_rec_f *dtbgn_recfunc;
2995 	void *dtbgn_arg;
2996 	dtrace_handle_err_f *dtbgn_errhdlr;
2997 	void *dtbgn_errarg;
2998 	int dtbgn_beginonly;
2999 } dt_begin_t;
3000 
3001 static int
3002 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
3003 {
3004 	dt_begin_t *begin = arg;
3005 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
3006 
3007 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3008 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3009 
3010 	if (begin->dtbgn_beginonly) {
3011 		if (!(r1 && r2))
3012 			return (DTRACE_CONSUME_NEXT);
3013 	} else {
3014 		if (r1 && r2)
3015 			return (DTRACE_CONSUME_NEXT);
3016 	}
3017 
3018 	/*
3019 	 * We have a record that we're interested in.  Now call the underlying
3020 	 * probe function...
3021 	 */
3022 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
3023 }
3024 
3025 static int
3026 dt_consume_begin_record(const dtrace_probedata_t *data,
3027     const dtrace_recdesc_t *rec, void *arg)
3028 {
3029 	dt_begin_t *begin = arg;
3030 
3031 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
3032 }
3033 
3034 static int
3035 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
3036 {
3037 	dt_begin_t *begin = (dt_begin_t *)arg;
3038 	dtrace_probedesc_t *pd = data->dteda_pdesc;
3039 
3040 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3041 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3042 
3043 	if (begin->dtbgn_beginonly) {
3044 		if (!(r1 && r2))
3045 			return (DTRACE_HANDLE_OK);
3046 	} else {
3047 		if (r1 && r2)
3048 			return (DTRACE_HANDLE_OK);
3049 	}
3050 
3051 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
3052 }
3053 
3054 static int
3055 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
3056     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3057 {
3058 	/*
3059 	 * There's this idea that the BEGIN probe should be processed before
3060 	 * everything else, and that the END probe should be processed after
3061 	 * anything else.  In the common case, this is pretty easy to deal
3062 	 * with.  However, a situation may arise where the BEGIN enabling and
3063 	 * END enabling are on the same CPU, and some enabling in the middle
3064 	 * occurred on a different CPU.  To deal with this (blech!) we need to
3065 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
3066 	 * then set it aside.  We will then process every other CPU, and then
3067 	 * we'll return to the BEGIN CPU and process the rest of the data
3068 	 * (which will inevitably include the END probe, if any).  Making this
3069 	 * even more complicated (!) is the library's ERROR enabling.  Because
3070 	 * this enabling is processed before we even get into the consume call
3071 	 * back, any ERROR firing would result in the library's ERROR enabling
3072 	 * being processed twice -- once in our first pass (for BEGIN probes),
3073 	 * and again in our second pass (for everything but BEGIN probes).  To
3074 	 * deal with this, we interpose on the ERROR handler to assure that we
3075 	 * only process ERROR enablings induced by BEGIN enablings in the
3076 	 * first pass, and that we only process ERROR enablings _not_ induced
3077 	 * by BEGIN enablings in the second pass.
3078 	 */
3079 
3080 	dt_begin_t begin;
3081 	processorid_t cpu = dtp->dt_beganon;
3082 	int rval, i;
3083 	static int max_ncpus;
3084 	dtrace_bufdesc_t *buf;
3085 
3086 	dtp->dt_beganon = -1;
3087 
3088 	if (dt_get_buf(dtp, cpu, &buf) != 0)
3089 		return (-1);
3090 	if (buf == NULL)
3091 		return (0);
3092 
3093 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
3094 		/*
3095 		 * This is the simple case.  We're either not stopped, or if
3096 		 * we are, we actually processed any END probes on another
3097 		 * CPU.  We can simply consume this buffer and return.
3098 		 */
3099 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3100 		    pf, rf, arg);
3101 		dt_put_buf(dtp, buf);
3102 		return (rval);
3103 	}
3104 
3105 	begin.dtbgn_probefunc = pf;
3106 	begin.dtbgn_recfunc = rf;
3107 	begin.dtbgn_arg = arg;
3108 	begin.dtbgn_beginonly = 1;
3109 
3110 	/*
3111 	 * We need to interpose on the ERROR handler to be sure that we
3112 	 * only process ERRORs induced by BEGIN.
3113 	 */
3114 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
3115 	begin.dtbgn_errarg = dtp->dt_errarg;
3116 	dtp->dt_errhdlr = dt_consume_begin_error;
3117 	dtp->dt_errarg = &begin;
3118 
3119 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3120 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3121 
3122 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3123 	dtp->dt_errarg = begin.dtbgn_errarg;
3124 
3125 	if (rval != 0) {
3126 		dt_put_buf(dtp, buf);
3127 		return (rval);
3128 	}
3129 
3130 	if (max_ncpus == 0)
3131 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3132 
3133 	for (i = 0; i < max_ncpus; i++) {
3134 		dtrace_bufdesc_t *nbuf;
3135 		if (i == cpu)
3136 			continue;
3137 
3138 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
3139 			dt_put_buf(dtp, buf);
3140 			return (-1);
3141 		}
3142 		if (nbuf == NULL)
3143 			continue;
3144 
3145 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
3146 		    pf, rf, arg);
3147 		dt_put_buf(dtp, nbuf);
3148 		if (rval != 0) {
3149 			dt_put_buf(dtp, buf);
3150 			return (rval);
3151 		}
3152 	}
3153 
3154 	/*
3155 	 * Okay -- we're done with the other buffers.  Now we want to
3156 	 * reconsume the first buffer -- but this time we're looking for
3157 	 * everything _but_ BEGIN.  And of course, in order to only consume
3158 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
3159 	 * ERROR interposition function...
3160 	 */
3161 	begin.dtbgn_beginonly = 0;
3162 
3163 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
3164 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
3165 	dtp->dt_errhdlr = dt_consume_begin_error;
3166 	dtp->dt_errarg = &begin;
3167 
3168 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3169 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3170 
3171 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3172 	dtp->dt_errarg = begin.dtbgn_errarg;
3173 
3174 	return (rval);
3175 }
3176 
3177 /* ARGSUSED */
3178 static uint64_t
3179 dt_buf_oldest(void *elem, void *arg)
3180 {
3181 	dtrace_bufdesc_t *buf = elem;
3182 	size_t offs = buf->dtbd_oldest;
3183 
3184 	while (offs < buf->dtbd_size) {
3185 		dtrace_rechdr_t *dtrh =
3186 		    /* LINTED - alignment */
3187 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
3188 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
3189 			offs += sizeof (dtrace_epid_t);
3190 		} else {
3191 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
3192 		}
3193 	}
3194 
3195 	/* There are no records left; use the time the buffer was retrieved. */
3196 	return (buf->dtbd_timestamp);
3197 }
3198 
3199 int
3200 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
3201     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3202 {
3203 	dtrace_optval_t size;
3204 	static int max_ncpus;
3205 	int i, rval;
3206 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
3207 	hrtime_t now = gethrtime();
3208 
3209 	if (dtp->dt_lastswitch != 0) {
3210 		if (now - dtp->dt_lastswitch < interval)
3211 			return (0);
3212 
3213 		dtp->dt_lastswitch += interval;
3214 	} else {
3215 		dtp->dt_lastswitch = now;
3216 	}
3217 
3218 	if (!dtp->dt_active)
3219 		return (dt_set_errno(dtp, EINVAL));
3220 
3221 	if (max_ncpus == 0)
3222 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3223 
3224 	if (pf == NULL)
3225 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
3226 
3227 	if (rf == NULL)
3228 		rf = (dtrace_consume_rec_f *)dt_nullrec;
3229 
3230 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
3231 		/*
3232 		 * The output will not be in the order it was traced.  Rather,
3233 		 * we will consume all of the data from each CPU's buffer in
3234 		 * turn.  We apply special handling for the records from BEGIN
3235 		 * and END probes so that they are consumed first and last,
3236 		 * respectively.
3237 		 *
3238 		 * If we have just begun, we want to first process the CPU that
3239 		 * executed the BEGIN probe (if any).
3240 		 */
3241 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
3242 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
3243 			return (rval);
3244 
3245 		for (i = 0; i < max_ncpus; i++) {
3246 			dtrace_bufdesc_t *buf;
3247 
3248 			/*
3249 			 * If we have stopped, we want to process the CPU on
3250 			 * which the END probe was processed only _after_ we
3251 			 * have processed everything else.
3252 			 */
3253 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
3254 				continue;
3255 
3256 			if (dt_get_buf(dtp, i, &buf) != 0)
3257 				return (-1);
3258 			if (buf == NULL)
3259 				continue;
3260 
3261 			dtp->dt_flow = 0;
3262 			dtp->dt_indent = 0;
3263 			dtp->dt_prefix = NULL;
3264 			rval = dt_consume_cpu(dtp, fp, i,
3265 			    buf, B_FALSE, pf, rf, arg);
3266 			dt_put_buf(dtp, buf);
3267 			if (rval != 0)
3268 				return (rval);
3269 		}
3270 		if (dtp->dt_stopped) {
3271 			dtrace_bufdesc_t *buf;
3272 
3273 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
3274 				return (-1);
3275 			if (buf == NULL)
3276 				return (0);
3277 
3278 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
3279 			    buf, B_FALSE, pf, rf, arg);
3280 			dt_put_buf(dtp, buf);
3281 			return (rval);
3282 		}
3283 	} else {
3284 		/*
3285 		 * The output will be in the order it was traced (or for
3286 		 * speculations, when it was committed).  We retrieve a buffer
3287 		 * from each CPU and put it into a priority queue, which sorts
3288 		 * based on the first entry in the buffer.  This is sufficient
3289 		 * because entries within a buffer are already sorted.
3290 		 *
3291 		 * We then consume records one at a time, always consuming the
3292 		 * oldest record, as determined by the priority queue.  When
3293 		 * we reach the end of the time covered by these buffers,
3294 		 * we need to stop and retrieve more records on the next pass.
3295 		 * The kernel tells us the time covered by each buffer, in
3296 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
3297 		 * time covered by all buffers, as subsequently retrieved
3298 		 * buffers will cover to a more recent time.
3299 		 */
3300 
3301 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3302 		uint64_t first_timestamp = 0;
3303 		uint_t cookie = 0;
3304 		dtrace_bufdesc_t *buf;
3305 
3306 		bzero(drops, max_ncpus * sizeof (uint64_t));
3307 
3308 		if (dtp->dt_bufq == NULL) {
3309 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3310 			    dt_buf_oldest, NULL);
3311 			if (dtp->dt_bufq == NULL) /* ENOMEM */
3312 				return (-1);
3313 		}
3314 
3315 		/* Retrieve data from each CPU. */
3316 		(void) dtrace_getopt(dtp, "bufsize", &size);
3317 		for (i = 0; i < max_ncpus; i++) {
3318 			dtrace_bufdesc_t *buf;
3319 
3320 			if (dt_get_buf(dtp, i, &buf) != 0)
3321 				return (-1);
3322 			if (buf != NULL) {
3323 				if (first_timestamp == 0)
3324 					first_timestamp = buf->dtbd_timestamp;
3325 				assert(buf->dtbd_timestamp >= first_timestamp);
3326 
3327 				dt_pq_insert(dtp->dt_bufq, buf);
3328 				drops[i] = buf->dtbd_drops;
3329 				buf->dtbd_drops = 0;
3330 			}
3331 		}
3332 
3333 		/* Consume records. */
3334 		for (;;) {
3335 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3336 			uint64_t timestamp;
3337 
3338 			if (buf == NULL)
3339 				break;
3340 
3341 			timestamp = dt_buf_oldest(buf, dtp);
3342 			assert(timestamp >= dtp->dt_last_timestamp);
3343 			dtp->dt_last_timestamp = timestamp;
3344 
3345 			if (timestamp == buf->dtbd_timestamp) {
3346 				/*
3347 				 * We've reached the end of the time covered
3348 				 * by this buffer.  If this is the oldest
3349 				 * buffer, we must do another pass
3350 				 * to retrieve more data.
3351 				 */
3352 				dt_put_buf(dtp, buf);
3353 				if (timestamp == first_timestamp &&
3354 				    !dtp->dt_stopped)
3355 					break;
3356 				continue;
3357 			}
3358 
3359 			if ((rval = dt_consume_cpu(dtp, fp,
3360 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3361 				return (rval);
3362 			dt_pq_insert(dtp->dt_bufq, buf);
3363 		}
3364 
3365 		/* Consume drops. */
3366 		for (i = 0; i < max_ncpus; i++) {
3367 			if (drops[i] != 0) {
3368 				int error = dt_handle_cpudrop(dtp, i,
3369 				    DTRACEDROP_PRINCIPAL, drops[i]);
3370 				if (error != 0)
3371 					return (error);
3372 			}
3373 		}
3374 
3375 		/*
3376 		 * Reduce memory usage by re-allocating smaller buffers
3377 		 * for the "remnants".
3378 		 */
3379 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3380 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3381 	}
3382 
3383 	return (0);
3384 }
3385