xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #ifdef illumos
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #ifndef illumos
44 #include <libproc_compat.h>
45 #endif
46 
47 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
48 
49 /*
50  * We declare this here because (1) we need it and (2) we want to avoid a
51  * dependency on libm in libdtrace.
52  */
53 static long double
54 dt_fabsl(long double x)
55 {
56 	if (x < 0)
57 		return (-x);
58 
59 	return (x);
60 }
61 
62 static int
63 dt_ndigits(long long val)
64 {
65 	int rval = 1;
66 	long long cmp = 10;
67 
68 	if (val < 0) {
69 		val = val == INT64_MIN ? INT64_MAX : -val;
70 		rval++;
71 	}
72 
73 	while (val > cmp && cmp > 0) {
74 		rval++;
75 		cmp *= 10;
76 	}
77 
78 	return (rval < 4 ? 4 : rval);
79 }
80 
81 /*
82  * 128-bit arithmetic functions needed to support the stddev() aggregating
83  * action.
84  */
85 static int
86 dt_gt_128(uint64_t *a, uint64_t *b)
87 {
88 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89 }
90 
91 static int
92 dt_ge_128(uint64_t *a, uint64_t *b)
93 {
94 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95 }
96 
97 static int
98 dt_le_128(uint64_t *a, uint64_t *b)
99 {
100 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101 }
102 
103 /*
104  * Shift the 128-bit value in a by b. If b is positive, shift left.
105  * If b is negative, shift right.
106  */
107 static void
108 dt_shift_128(uint64_t *a, int b)
109 {
110 	uint64_t mask;
111 
112 	if (b == 0)
113 		return;
114 
115 	if (b < 0) {
116 		b = -b;
117 		if (b >= 64) {
118 			a[0] = a[1] >> (b - 64);
119 			a[1] = 0;
120 		} else {
121 			a[0] >>= b;
122 			mask = 1LL << (64 - b);
123 			mask -= 1;
124 			a[0] |= ((a[1] & mask) << (64 - b));
125 			a[1] >>= b;
126 		}
127 	} else {
128 		if (b >= 64) {
129 			a[1] = a[0] << (b - 64);
130 			a[0] = 0;
131 		} else {
132 			a[1] <<= b;
133 			mask = a[0] >> (64 - b);
134 			a[1] |= mask;
135 			a[0] <<= b;
136 		}
137 	}
138 }
139 
140 static int
141 dt_nbits_128(uint64_t *a)
142 {
143 	int nbits = 0;
144 	uint64_t tmp[2];
145 	uint64_t zero[2] = { 0, 0 };
146 
147 	tmp[0] = a[0];
148 	tmp[1] = a[1];
149 
150 	dt_shift_128(tmp, -1);
151 	while (dt_gt_128(tmp, zero)) {
152 		dt_shift_128(tmp, -1);
153 		nbits++;
154 	}
155 
156 	return (nbits);
157 }
158 
159 static void
160 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161 {
162 	uint64_t result[2];
163 
164 	result[0] = minuend[0] - subtrahend[0];
165 	result[1] = minuend[1] - subtrahend[1] -
166 	    (minuend[0] < subtrahend[0] ? 1 : 0);
167 
168 	difference[0] = result[0];
169 	difference[1] = result[1];
170 }
171 
172 static void
173 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174 {
175 	uint64_t result[2];
176 
177 	result[0] = addend1[0] + addend2[0];
178 	result[1] = addend1[1] + addend2[1] +
179 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180 
181 	sum[0] = result[0];
182 	sum[1] = result[1];
183 }
184 
185 /*
186  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187  * use native multiplication on those, and then re-combine into the
188  * resulting 128-bit value.
189  *
190  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191  *     hi1 * hi2 << 64 +
192  *     hi1 * lo2 << 32 +
193  *     hi2 * lo1 << 32 +
194  *     lo1 * lo2
195  */
196 static void
197 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198 {
199 	uint64_t hi1, hi2, lo1, lo2;
200 	uint64_t tmp[2];
201 
202 	hi1 = factor1 >> 32;
203 	hi2 = factor2 >> 32;
204 
205 	lo1 = factor1 & DT_MASK_LO;
206 	lo2 = factor2 & DT_MASK_LO;
207 
208 	product[0] = lo1 * lo2;
209 	product[1] = hi1 * hi2;
210 
211 	tmp[0] = hi1 * lo2;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 
216 	tmp[0] = hi2 * lo1;
217 	tmp[1] = 0;
218 	dt_shift_128(tmp, 32);
219 	dt_add_128(product, tmp, product);
220 }
221 
222 /*
223  * This is long-hand division.
224  *
225  * We initialize subtrahend by shifting divisor left as far as possible. We
226  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227  * subtract and set the appropriate bit in the result.  We then shift
228  * subtrahend right by one bit for the next comparison.
229  */
230 static void
231 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232 {
233 	uint64_t result[2] = { 0, 0 };
234 	uint64_t remainder[2];
235 	uint64_t subtrahend[2];
236 	uint64_t divisor_128[2];
237 	uint64_t mask[2] = { 1, 0 };
238 	int log = 0;
239 
240 	assert(divisor != 0);
241 
242 	divisor_128[0] = divisor;
243 	divisor_128[1] = 0;
244 
245 	remainder[0] = dividend[0];
246 	remainder[1] = dividend[1];
247 
248 	subtrahend[0] = divisor;
249 	subtrahend[1] = 0;
250 
251 	while (divisor > 0) {
252 		log++;
253 		divisor >>= 1;
254 	}
255 
256 	dt_shift_128(subtrahend, 128 - log);
257 	dt_shift_128(mask, 128 - log);
258 
259 	while (dt_ge_128(remainder, divisor_128)) {
260 		if (dt_ge_128(remainder, subtrahend)) {
261 			dt_subtract_128(remainder, subtrahend, remainder);
262 			result[0] |= mask[0];
263 			result[1] |= mask[1];
264 		}
265 
266 		dt_shift_128(subtrahend, -1);
267 		dt_shift_128(mask, -1);
268 	}
269 
270 	quotient[0] = result[0];
271 	quotient[1] = result[1];
272 }
273 
274 /*
275  * This is the long-hand method of calculating a square root.
276  * The algorithm is as follows:
277  *
278  * 1. Group the digits by 2 from the right.
279  * 2. Over the leftmost group, find the largest single-digit number
280  *    whose square is less than that group.
281  * 3. Subtract the result of the previous step (2 or 4, depending) and
282  *    bring down the next two-digit group.
283  * 4. For the result R we have so far, find the largest single-digit number
284  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285  *    (Note that this is doubling R and performing a decimal left-shift by 1
286  *    and searching for the appropriate decimal to fill the one's place.)
287  *    The value x is the next digit in the square root.
288  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289  * dealing with integers, so the above is sufficient.)
290  *
291  * In decimal, the square root of 582,734 would be calculated as so:
292  *
293  *     __7__6__3
294  *    | 58 27 34
295  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296  *      --
297  *       9 27    (Subtract and bring down the next group.)
298  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299  *      -----     the square root)
300  *         51 34 (Subtract and bring down the next group.)
301  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302  *         -----  the square root)
303  *          5 65 (remainder)
304  *
305  * The above algorithm applies similarly in binary, but note that the
306  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308  * preceding difference?
309  *
310  * In binary, the square root of 11011011 would be calculated as so:
311  *
312  *     __1__1__1__0
313  *    | 11 01 10 11
314  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315  *      --
316  *      10 01 10 11
317  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318  *      -----
319  *       1 00 10 11
320  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321  *       -------
322  *          1 01 11
323  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324  *
325  */
326 static uint64_t
327 dt_sqrt_128(uint64_t *square)
328 {
329 	uint64_t result[2] = { 0, 0 };
330 	uint64_t diff[2] = { 0, 0 };
331 	uint64_t one[2] = { 1, 0 };
332 	uint64_t next_pair[2];
333 	uint64_t next_try[2];
334 	uint64_t bit_pairs, pair_shift;
335 	int i;
336 
337 	bit_pairs = dt_nbits_128(square) / 2;
338 	pair_shift = bit_pairs * 2;
339 
340 	for (i = 0; i <= bit_pairs; i++) {
341 		/*
342 		 * Bring down the next pair of bits.
343 		 */
344 		next_pair[0] = square[0];
345 		next_pair[1] = square[1];
346 		dt_shift_128(next_pair, -pair_shift);
347 		next_pair[0] &= 0x3;
348 		next_pair[1] = 0;
349 
350 		dt_shift_128(diff, 2);
351 		dt_add_128(diff, next_pair, diff);
352 
353 		/*
354 		 * next_try = R << 2 + 1
355 		 */
356 		next_try[0] = result[0];
357 		next_try[1] = result[1];
358 		dt_shift_128(next_try, 2);
359 		dt_add_128(next_try, one, next_try);
360 
361 		if (dt_le_128(next_try, diff)) {
362 			dt_subtract_128(diff, next_try, diff);
363 			dt_shift_128(result, 1);
364 			dt_add_128(result, one, result);
365 		} else {
366 			dt_shift_128(result, 1);
367 		}
368 
369 		pair_shift -= 2;
370 	}
371 
372 	assert(result[1] == 0);
373 
374 	return (result[0]);
375 }
376 
377 uint64_t
378 dt_stddev(uint64_t *data, uint64_t normal)
379 {
380 	uint64_t avg_of_squares[2];
381 	uint64_t square_of_avg[2];
382 	int64_t norm_avg;
383 	uint64_t diff[2];
384 
385 	if (data[0] == 0)
386 		return (0);
387 
388 	/*
389 	 * The standard approximation for standard deviation is
390 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391 	 * of the average of the squares minus the square of the average.
392 	 */
393 	dt_divide_128(data + 2, normal, avg_of_squares);
394 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
395 
396 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
397 
398 	if (norm_avg < 0)
399 		norm_avg = -norm_avg;
400 
401 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
402 
403 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
404 
405 	return (dt_sqrt_128(diff));
406 }
407 
408 static int
409 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
410     dtrace_bufdesc_t *buf, size_t offs)
411 {
412 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
413 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
414 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
415 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
416 	const char *str = NULL;
417 	static const char *e_str[2] = { " -> ", " => " };
418 	static const char *r_str[2] = { " <- ", " <= " };
419 	static const char *ent = "entry", *ret = "return";
420 	static int entlen = 0, retlen = 0;
421 	dtrace_epid_t next, id = epd->dtepd_epid;
422 	int rval;
423 
424 	if (entlen == 0) {
425 		assert(retlen == 0);
426 		entlen = strlen(ent);
427 		retlen = strlen(ret);
428 	}
429 
430 	/*
431 	 * If the name of the probe is "entry" or ends with "-entry", we
432 	 * treat it as an entry; if it is "return" or ends with "-return",
433 	 * we treat it as a return.  (This allows application-provided probes
434 	 * like "method-entry" or "function-entry" to participate in flow
435 	 * indentation -- without accidentally misinterpreting popular probe
436 	 * names like "carpentry", "gentry" or "Coventry".)
437 	 */
438 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
439 	    (sub == n || sub[-1] == '-')) {
440 		flow = DTRACEFLOW_ENTRY;
441 		str = e_str[strcmp(p, "syscall") == 0];
442 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
443 	    (sub == n || sub[-1] == '-')) {
444 		flow = DTRACEFLOW_RETURN;
445 		str = r_str[strcmp(p, "syscall") == 0];
446 	}
447 
448 	/*
449 	 * If we're going to indent this, we need to check the ID of our last
450 	 * call.  If we're looking at the same probe ID but a different EPID,
451 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
452 	 * this scheme -- it's a heuristic.)
453 	 */
454 	if (flow == DTRACEFLOW_ENTRY) {
455 		if ((last != DTRACE_EPIDNONE && id != last &&
456 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
457 			flow = DTRACEFLOW_NONE;
458 	}
459 
460 	/*
461 	 * If we're going to unindent this, it's more difficult to see if
462 	 * we don't actually want to unindent it -- we need to look at the
463 	 * _next_ EPID.
464 	 */
465 	if (flow == DTRACEFLOW_RETURN) {
466 		offs += epd->dtepd_size;
467 
468 		do {
469 			if (offs >= buf->dtbd_size)
470 				goto out;
471 
472 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
473 
474 			if (next == DTRACE_EPIDNONE)
475 				offs += sizeof (id);
476 		} while (next == DTRACE_EPIDNONE);
477 
478 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
479 			return (rval);
480 
481 		if (next != id && npd->dtpd_id == pd->dtpd_id)
482 			flow = DTRACEFLOW_NONE;
483 	}
484 
485 out:
486 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
487 		data->dtpda_prefix = str;
488 	} else {
489 		data->dtpda_prefix = "| ";
490 	}
491 
492 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
493 		data->dtpda_indent -= 2;
494 
495 	data->dtpda_flow = flow;
496 
497 	return (0);
498 }
499 
500 static int
501 dt_nullprobe()
502 {
503 	return (DTRACE_CONSUME_THIS);
504 }
505 
506 static int
507 dt_nullrec()
508 {
509 	return (DTRACE_CONSUME_NEXT);
510 }
511 
512 static void
513 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
514 {
515 	long double val = dt_fabsl((long double)datum);
516 
517 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
518 		*total += val;
519 		return;
520 	}
521 
522 	/*
523 	 * If we're zooming in on an aggregation, we want the height of the
524 	 * highest value to be approximately 95% of total bar height -- so we
525 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
526 	 * our highest value.
527 	 */
528 	val *= 1 / DTRACE_AGGZOOM_MAX;
529 
530 	if (*total < val)
531 		*total = val;
532 }
533 
534 static int
535 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
536 {
537 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
538 	    width ? width : 16, width ? "key" : "value",
539 	    "------------- Distribution -------------", "count"));
540 }
541 
542 static int
543 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
544     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
545 {
546 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
547 	int minwidth, maxwidth, i;
548 
549 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
550 
551 	if (action == DTRACEAGG_QUANTIZE) {
552 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
553 			min--;
554 
555 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
556 			max++;
557 
558 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
559 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
560 	} else {
561 		maxwidth = 8;
562 		minwidth = maxwidth - 1;
563 		max++;
564 	}
565 
566 	if (dt_printf(dtp, fp, "\n%*s %*s .",
567 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
568 		return (-1);
569 
570 	for (i = min; i <= max; i++) {
571 		if (dt_printf(dtp, fp, "-") < 0)
572 			return (-1);
573 	}
574 
575 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
576 }
577 
578 /*
579  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
580  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
581  * 3-byte UTF-8 sequences.
582  */
583 #define	DTRACE_AGGUTF8_FULL	0x2588
584 #define	DTRACE_AGGUTF8_BASE	0x258f
585 #define	DTRACE_AGGUTF8_LEVELS	8
586 
587 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
588 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
589 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
590 
591 static int
592 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
593     uint64_t normal, long double total)
594 {
595 	uint_t len = 40, i, whole, partial;
596 	long double f = (dt_fabsl((long double)val) * len) / total;
597 	const char *spaces = "                                        ";
598 
599 	whole = (uint_t)f;
600 	partial = (uint_t)((f - (long double)(uint_t)f) *
601 	    (long double)DTRACE_AGGUTF8_LEVELS);
602 
603 	if (dt_printf(dtp, fp, "|") < 0)
604 		return (-1);
605 
606 	for (i = 0; i < whole; i++) {
607 		if (dt_printf(dtp, fp, "%c%c%c",
608 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
609 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
610 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
611 			return (-1);
612 	}
613 
614 	if (partial != 0) {
615 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
616 
617 		if (dt_printf(dtp, fp, "%c%c%c",
618 		    DTRACE_AGGUTF8_BYTE0(partial),
619 		    DTRACE_AGGUTF8_BYTE1(partial),
620 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
621 			return (-1);
622 
623 		i++;
624 	}
625 
626 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
627 	    (long long)val / normal));
628 }
629 
630 static int
631 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
632     uint64_t normal, long double total, char positives, char negatives)
633 {
634 	long double f;
635 	uint_t depth, len = 40;
636 
637 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
638 	const char *spaces = "                                        ";
639 
640 	assert(strlen(ats) == len && strlen(spaces) == len);
641 	assert(!(total == 0 && (positives || negatives)));
642 	assert(!(val < 0 && !negatives));
643 	assert(!(val > 0 && !positives));
644 	assert(!(val != 0 && total == 0));
645 
646 	if (!negatives) {
647 		if (positives) {
648 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
649 				return (dt_print_quantline_utf8(dtp, fp, val,
650 				    normal, total));
651 			}
652 
653 			f = (dt_fabsl((long double)val) * len) / total;
654 			depth = (uint_t)(f + 0.5);
655 		} else {
656 			depth = 0;
657 		}
658 
659 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
660 		    spaces + depth, (long long)val / normal));
661 	}
662 
663 	if (!positives) {
664 		f = (dt_fabsl((long double)val) * len) / total;
665 		depth = (uint_t)(f + 0.5);
666 
667 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
668 		    ats + len - depth, (long long)val / normal));
669 	}
670 
671 	/*
672 	 * If we're here, we have both positive and negative bucket values.
673 	 * To express this graphically, we're going to generate both positive
674 	 * and negative bars separated by a centerline.  These bars are half
675 	 * the size of normal quantize()/lquantize() bars, so we divide the
676 	 * length in half before calculating the bar length.
677 	 */
678 	len /= 2;
679 	ats = &ats[len];
680 	spaces = &spaces[len];
681 
682 	f = (dt_fabsl((long double)val) * len) / total;
683 	depth = (uint_t)(f + 0.5);
684 
685 	if (val <= 0) {
686 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
687 		    ats + len - depth, len, "", (long long)val / normal));
688 	} else {
689 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
690 		    ats + len - depth, spaces + depth,
691 		    (long long)val / normal));
692 	}
693 }
694 
695 /*
696  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
697  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
698  * aggregation.
699  */
700 #define	DTRACE_AGGPACK_BASE	0x2581
701 #define	DTRACE_AGGPACK_LEVELS	8
702 
703 static int
704 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
705     long double datum, long double total)
706 {
707 	static boolean_t utf8_checked = B_FALSE;
708 	static boolean_t utf8;
709 	char *ascii = "__xxxxXX";
710 	char *neg = "vvvvVV";
711 	unsigned int len;
712 	long double val;
713 
714 	if (!utf8_checked) {
715 		char *term;
716 
717 		/*
718 		 * We want to determine if we can reasonably emit UTF-8 for our
719 		 * packed aggregation.  To do this, we will check for terminals
720 		 * that are known to be primitive to emit UTF-8 on these.
721 		 */
722 		utf8_checked = B_TRUE;
723 
724 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
725 			utf8 = B_FALSE;
726 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
727 			utf8 = B_TRUE;
728 		} else if ((term = getenv("TERM")) != NULL &&
729 		    (strcmp(term, "sun") == 0 ||
730 		    strcmp(term, "sun-color") == 0 ||
731 		    strcmp(term, "dumb") == 0)) {
732 			utf8 = B_FALSE;
733 		} else {
734 			utf8 = B_TRUE;
735 		}
736 	}
737 
738 	if (datum == 0)
739 		return (dt_printf(dtp, fp, " "));
740 
741 	if (datum < 0) {
742 		len = strlen(neg);
743 		val = dt_fabsl(datum * (len - 1)) / total;
744 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
745 	}
746 
747 	if (utf8) {
748 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
749 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
750 
751 		return (dt_printf(dtp, fp, "%c%c%c",
752 		    DTRACE_AGGUTF8_BYTE0(block),
753 		    DTRACE_AGGUTF8_BYTE1(block),
754 		    DTRACE_AGGUTF8_BYTE2(block)));
755 	}
756 
757 	len = strlen(ascii);
758 	val = (datum * (len - 1)) / total;
759 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
760 }
761 
762 int
763 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
764     size_t size, uint64_t normal)
765 {
766 	const int64_t *data = addr;
767 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
768 	long double total = 0;
769 	char positives = 0, negatives = 0;
770 
771 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
772 		return (dt_set_errno(dtp, EDT_DMISMATCH));
773 
774 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
775 		first_bin++;
776 
777 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
778 		/*
779 		 * There isn't any data.  This is possible if the aggregation
780 		 * has been clear()'d or if negative increment values have been
781 		 * used.  Regardless, we'll print the buckets around 0.
782 		 */
783 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
784 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
785 	} else {
786 		if (first_bin > 0)
787 			first_bin--;
788 
789 		while (last_bin > 0 && data[last_bin] == 0)
790 			last_bin--;
791 
792 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
793 			last_bin++;
794 	}
795 
796 	for (i = first_bin; i <= last_bin; i++) {
797 		positives |= (data[i] > 0);
798 		negatives |= (data[i] < 0);
799 		dt_quantize_total(dtp, data[i], &total);
800 	}
801 
802 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
803 		return (-1);
804 
805 	for (i = first_bin; i <= last_bin; i++) {
806 		if (dt_printf(dtp, fp, "%16lld ",
807 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
808 			return (-1);
809 
810 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
811 		    positives, negatives) < 0)
812 			return (-1);
813 	}
814 
815 	return (0);
816 }
817 
818 int
819 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
820     size_t size, const dtrace_aggdata_t *aggdata)
821 {
822 	const int64_t *data = addr;
823 	long double total = 0, count = 0;
824 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
825 	int64_t minval, maxval;
826 
827 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
828 		return (dt_set_errno(dtp, EDT_DMISMATCH));
829 
830 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
831 		min--;
832 
833 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
834 		max++;
835 
836 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
837 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
838 
839 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
840 	    (long long)minval) < 0)
841 		return (-1);
842 
843 	for (i = min; i <= max; i++) {
844 		dt_quantize_total(dtp, data[i], &total);
845 		count += data[i];
846 	}
847 
848 	for (i = min; i <= max; i++) {
849 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
850 			return (-1);
851 	}
852 
853 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
854 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
855 		return (-1);
856 
857 	return (0);
858 }
859 
860 int
861 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
862     size_t size, uint64_t normal)
863 {
864 	const int64_t *data = addr;
865 	int i, first_bin, last_bin, base;
866 	uint64_t arg;
867 	long double total = 0;
868 	uint16_t step, levels;
869 	char positives = 0, negatives = 0;
870 
871 	if (size < sizeof (uint64_t))
872 		return (dt_set_errno(dtp, EDT_DMISMATCH));
873 
874 	arg = *data++;
875 	size -= sizeof (uint64_t);
876 
877 	base = DTRACE_LQUANTIZE_BASE(arg);
878 	step = DTRACE_LQUANTIZE_STEP(arg);
879 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
880 
881 	first_bin = 0;
882 	last_bin = levels + 1;
883 
884 	if (size != sizeof (uint64_t) * (levels + 2))
885 		return (dt_set_errno(dtp, EDT_DMISMATCH));
886 
887 	while (first_bin <= levels + 1 && data[first_bin] == 0)
888 		first_bin++;
889 
890 	if (first_bin > levels + 1) {
891 		first_bin = 0;
892 		last_bin = 2;
893 	} else {
894 		if (first_bin > 0)
895 			first_bin--;
896 
897 		while (last_bin > 0 && data[last_bin] == 0)
898 			last_bin--;
899 
900 		if (last_bin < levels + 1)
901 			last_bin++;
902 	}
903 
904 	for (i = first_bin; i <= last_bin; i++) {
905 		positives |= (data[i] > 0);
906 		negatives |= (data[i] < 0);
907 		dt_quantize_total(dtp, data[i], &total);
908 	}
909 
910 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
911 	    "------------- Distribution -------------", "count") < 0)
912 		return (-1);
913 
914 	for (i = first_bin; i <= last_bin; i++) {
915 		char c[32];
916 		int err;
917 
918 		if (i == 0) {
919 			(void) snprintf(c, sizeof (c), "< %d", base);
920 			err = dt_printf(dtp, fp, "%16s ", c);
921 		} else if (i == levels + 1) {
922 			(void) snprintf(c, sizeof (c), ">= %d",
923 			    base + (levels * step));
924 			err = dt_printf(dtp, fp, "%16s ", c);
925 		} else {
926 			err = dt_printf(dtp, fp, "%16d ",
927 			    base + (i - 1) * step);
928 		}
929 
930 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
931 		    total, positives, negatives) < 0)
932 			return (-1);
933 	}
934 
935 	return (0);
936 }
937 
938 /*ARGSUSED*/
939 int
940 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
941     size_t size, const dtrace_aggdata_t *aggdata)
942 {
943 	const int64_t *data = addr;
944 	long double total = 0, count = 0;
945 	int min, max, base, err;
946 	uint64_t arg;
947 	uint16_t step, levels;
948 	char c[32];
949 	unsigned int i;
950 
951 	if (size < sizeof (uint64_t))
952 		return (dt_set_errno(dtp, EDT_DMISMATCH));
953 
954 	arg = *data++;
955 	size -= sizeof (uint64_t);
956 
957 	base = DTRACE_LQUANTIZE_BASE(arg);
958 	step = DTRACE_LQUANTIZE_STEP(arg);
959 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
960 
961 	if (size != sizeof (uint64_t) * (levels + 2))
962 		return (dt_set_errno(dtp, EDT_DMISMATCH));
963 
964 	min = 0;
965 	max = levels + 1;
966 
967 	if (min == 0) {
968 		(void) snprintf(c, sizeof (c), "< %d", base);
969 		err = dt_printf(dtp, fp, "%8s :", c);
970 	} else {
971 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
972 	}
973 
974 	if (err < 0)
975 		return (-1);
976 
977 	for (i = min; i <= max; i++) {
978 		dt_quantize_total(dtp, data[i], &total);
979 		count += data[i];
980 	}
981 
982 	for (i = min; i <= max; i++) {
983 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
984 			return (-1);
985 	}
986 
987 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
988 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
989 }
990 
991 int
992 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
993     size_t size, uint64_t normal)
994 {
995 	int i, first_bin, last_bin, bin = 1, order, levels;
996 	uint16_t factor, low, high, nsteps;
997 	const int64_t *data = addr;
998 	int64_t value = 1, next, step;
999 	char positives = 0, negatives = 0;
1000 	long double total = 0;
1001 	uint64_t arg;
1002 	char c[32];
1003 
1004 	if (size < sizeof (uint64_t))
1005 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1006 
1007 	arg = *data++;
1008 	size -= sizeof (uint64_t);
1009 
1010 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1011 	low = DTRACE_LLQUANTIZE_LOW(arg);
1012 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1013 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1014 
1015 	/*
1016 	 * We don't expect to be handed invalid llquantize() parameters here,
1017 	 * but sanity check them (to a degree) nonetheless.
1018 	 */
1019 	if (size > INT32_MAX || factor < 2 || low >= high ||
1020 	    nsteps == 0 || factor > nsteps)
1021 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1022 
1023 	levels = (int)size / sizeof (uint64_t);
1024 
1025 	first_bin = 0;
1026 	last_bin = levels - 1;
1027 
1028 	while (first_bin < levels && data[first_bin] == 0)
1029 		first_bin++;
1030 
1031 	if (first_bin == levels) {
1032 		first_bin = 0;
1033 		last_bin = 1;
1034 	} else {
1035 		if (first_bin > 0)
1036 			first_bin--;
1037 
1038 		while (last_bin > 0 && data[last_bin] == 0)
1039 			last_bin--;
1040 
1041 		if (last_bin < levels - 1)
1042 			last_bin++;
1043 	}
1044 
1045 	for (i = first_bin; i <= last_bin; i++) {
1046 		positives |= (data[i] > 0);
1047 		negatives |= (data[i] < 0);
1048 		dt_quantize_total(dtp, data[i], &total);
1049 	}
1050 
1051 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1052 	    "------------- Distribution -------------", "count") < 0)
1053 		return (-1);
1054 
1055 	for (order = 0; order < low; order++)
1056 		value *= factor;
1057 
1058 	next = value * factor;
1059 	step = next > nsteps ? next / nsteps : 1;
1060 
1061 	if (first_bin == 0) {
1062 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1063 
1064 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1065 			return (-1);
1066 
1067 		if (dt_print_quantline(dtp, fp, data[0], normal,
1068 		    total, positives, negatives) < 0)
1069 			return (-1);
1070 	}
1071 
1072 	while (order <= high) {
1073 		if (bin >= first_bin && bin <= last_bin) {
1074 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1075 				return (-1);
1076 
1077 			if (dt_print_quantline(dtp, fp, data[bin],
1078 			    normal, total, positives, negatives) < 0)
1079 				return (-1);
1080 		}
1081 
1082 		assert(value < next);
1083 		bin++;
1084 
1085 		if ((value += step) != next)
1086 			continue;
1087 
1088 		next = value * factor;
1089 		step = next > nsteps ? next / nsteps : 1;
1090 		order++;
1091 	}
1092 
1093 	if (last_bin < bin)
1094 		return (0);
1095 
1096 	assert(last_bin == bin);
1097 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1098 
1099 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1100 		return (-1);
1101 
1102 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1103 	    total, positives, negatives));
1104 }
1105 
1106 /*ARGSUSED*/
1107 static int
1108 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1109     size_t size, uint64_t normal)
1110 {
1111 	/* LINTED - alignment */
1112 	int64_t *data = (int64_t *)addr;
1113 
1114 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1115 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1116 }
1117 
1118 /*ARGSUSED*/
1119 static int
1120 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1121     size_t size, uint64_t normal)
1122 {
1123 	/* LINTED - alignment */
1124 	uint64_t *data = (uint64_t *)addr;
1125 
1126 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1127 	    (unsigned long long) dt_stddev(data, normal) : 0));
1128 }
1129 
1130 /*ARGSUSED*/
1131 static int
1132 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1133     size_t nbytes, int width, int quiet, int forceraw)
1134 {
1135 	/*
1136 	 * If the byte stream is a series of printable characters, followed by
1137 	 * a terminating byte, we print it out as a string.  Otherwise, we
1138 	 * assume that it's something else and just print the bytes.
1139 	 */
1140 	int i, j, margin = 5;
1141 	char *c = (char *)addr;
1142 
1143 	if (nbytes == 0)
1144 		return (0);
1145 
1146 	if (forceraw)
1147 		goto raw;
1148 
1149 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1150 		goto raw;
1151 
1152 	for (i = 0; i < nbytes; i++) {
1153 		/*
1154 		 * We define a "printable character" to be one for which
1155 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1156 		 * or a character which is either backspace or the bell.
1157 		 * Backspace and the bell are regrettably special because
1158 		 * they fail the first two tests -- and yet they are entirely
1159 		 * printable.  These are the only two control characters that
1160 		 * have meaning for the terminal and for which isprint(3C) and
1161 		 * isspace(3C) return 0.
1162 		 */
1163 		if (isprint(c[i]) || isspace(c[i]) ||
1164 		    c[i] == '\b' || c[i] == '\a')
1165 			continue;
1166 
1167 		if (c[i] == '\0' && i > 0) {
1168 			/*
1169 			 * This looks like it might be a string.  Before we
1170 			 * assume that it is indeed a string, check the
1171 			 * remainder of the byte range; if it contains
1172 			 * additional non-nul characters, we'll assume that
1173 			 * it's a binary stream that just happens to look like
1174 			 * a string, and we'll print out the individual bytes.
1175 			 */
1176 			for (j = i + 1; j < nbytes; j++) {
1177 				if (c[j] != '\0')
1178 					break;
1179 			}
1180 
1181 			if (j != nbytes)
1182 				break;
1183 
1184 			if (quiet) {
1185 				return (dt_printf(dtp, fp, "%s", c));
1186 			} else {
1187 				return (dt_printf(dtp, fp, " %s%*s",
1188 				    width < 0 ? " " : "", width, c));
1189 			}
1190 		}
1191 
1192 		break;
1193 	}
1194 
1195 	if (i == nbytes) {
1196 		/*
1197 		 * The byte range is all printable characters, but there is
1198 		 * no trailing nul byte.  We'll assume that it's a string and
1199 		 * print it as such.
1200 		 */
1201 		char *s = alloca(nbytes + 1);
1202 		bcopy(c, s, nbytes);
1203 		s[nbytes] = '\0';
1204 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1205 	}
1206 
1207 raw:
1208 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1209 		return (-1);
1210 
1211 	for (i = 0; i < 16; i++)
1212 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1213 			return (-1);
1214 
1215 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1216 		return (-1);
1217 
1218 
1219 	for (i = 0; i < nbytes; i += 16) {
1220 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1221 			return (-1);
1222 
1223 		for (j = i; j < i + 16 && j < nbytes; j++) {
1224 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1225 				return (-1);
1226 		}
1227 
1228 		while (j++ % 16) {
1229 			if (dt_printf(dtp, fp, "   ") < 0)
1230 				return (-1);
1231 		}
1232 
1233 		if (dt_printf(dtp, fp, "  ") < 0)
1234 			return (-1);
1235 
1236 		for (j = i; j < i + 16 && j < nbytes; j++) {
1237 			if (dt_printf(dtp, fp, "%c",
1238 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1239 				return (-1);
1240 		}
1241 
1242 		if (dt_printf(dtp, fp, "\n") < 0)
1243 			return (-1);
1244 	}
1245 
1246 	return (0);
1247 }
1248 
1249 int
1250 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1251     caddr_t addr, int depth, int size)
1252 {
1253 	dtrace_syminfo_t dts;
1254 	GElf_Sym sym;
1255 	int i, indent;
1256 	char c[PATH_MAX * 2];
1257 	uint64_t pc;
1258 
1259 	if (dt_printf(dtp, fp, "\n") < 0)
1260 		return (-1);
1261 
1262 	if (format == NULL)
1263 		format = "%s";
1264 
1265 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1266 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1267 	else
1268 		indent = _dtrace_stkindent;
1269 
1270 	for (i = 0; i < depth; i++) {
1271 		switch (size) {
1272 		case sizeof (uint32_t):
1273 			/* LINTED - alignment */
1274 			pc = *((uint32_t *)addr);
1275 			break;
1276 
1277 		case sizeof (uint64_t):
1278 			/* LINTED - alignment */
1279 			pc = *((uint64_t *)addr);
1280 			break;
1281 
1282 		default:
1283 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1284 		}
1285 
1286 		if (pc == 0)
1287 			break;
1288 
1289 		addr += size;
1290 
1291 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1292 			return (-1);
1293 
1294 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1295 			if (pc > sym.st_value) {
1296 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1297 				    dts.dts_object, dts.dts_name,
1298 				    (u_longlong_t)(pc - sym.st_value));
1299 			} else {
1300 				(void) snprintf(c, sizeof (c), "%s`%s",
1301 				    dts.dts_object, dts.dts_name);
1302 			}
1303 		} else {
1304 			/*
1305 			 * We'll repeat the lookup, but this time we'll specify
1306 			 * a NULL GElf_Sym -- indicating that we're only
1307 			 * interested in the containing module.
1308 			 */
1309 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1310 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1311 				    dts.dts_object, (u_longlong_t)pc);
1312 			} else {
1313 				(void) snprintf(c, sizeof (c), "0x%llx",
1314 				    (u_longlong_t)pc);
1315 			}
1316 		}
1317 
1318 		if (dt_printf(dtp, fp, format, c) < 0)
1319 			return (-1);
1320 
1321 		if (dt_printf(dtp, fp, "\n") < 0)
1322 			return (-1);
1323 	}
1324 
1325 	return (0);
1326 }
1327 
1328 int
1329 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1330     caddr_t addr, uint64_t arg)
1331 {
1332 	/* LINTED - alignment */
1333 	uint64_t *pc = (uint64_t *)addr;
1334 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1335 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1336 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1337 	const char *str = strsize ? strbase : NULL;
1338 	int err = 0;
1339 
1340 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1341 	struct ps_prochandle *P;
1342 	GElf_Sym sym;
1343 	int i, indent;
1344 	pid_t pid;
1345 
1346 	if (depth == 0)
1347 		return (0);
1348 
1349 	pid = (pid_t)*pc++;
1350 
1351 	if (dt_printf(dtp, fp, "\n") < 0)
1352 		return (-1);
1353 
1354 	if (format == NULL)
1355 		format = "%s";
1356 
1357 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1358 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1359 	else
1360 		indent = _dtrace_stkindent;
1361 
1362 	/*
1363 	 * Ultimately, we need to add an entry point in the library vector for
1364 	 * determining <symbol, offset> from <pid, address>.  For now, if
1365 	 * this is a vector open, we just print the raw address or string.
1366 	 */
1367 	if (dtp->dt_vector == NULL)
1368 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1369 	else
1370 		P = NULL;
1371 
1372 	if (P != NULL)
1373 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1374 
1375 	for (i = 0; i < depth && pc[i] != 0; i++) {
1376 		const prmap_t *map;
1377 
1378 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1379 			break;
1380 
1381 		if (P != NULL && Plookup_by_addr(P, pc[i],
1382 		    name, sizeof (name), &sym) == 0) {
1383 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1384 
1385 			if (pc[i] > sym.st_value) {
1386 				(void) snprintf(c, sizeof (c),
1387 				    "%s`%s+0x%llx", dt_basename(objname), name,
1388 				    (u_longlong_t)(pc[i] - sym.st_value));
1389 			} else {
1390 				(void) snprintf(c, sizeof (c),
1391 				    "%s`%s", dt_basename(objname), name);
1392 			}
1393 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1394 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1395 		    (map->pr_mflags & MA_WRITE)))) {
1396 			/*
1397 			 * If the current string pointer in the string table
1398 			 * does not point to an empty string _and_ the program
1399 			 * counter falls in a writable region, we'll use the
1400 			 * string from the string table instead of the raw
1401 			 * address.  This last condition is necessary because
1402 			 * some (broken) ustack helpers will return a string
1403 			 * even for a program counter that they can't
1404 			 * identify.  If we have a string for a program
1405 			 * counter that falls in a segment that isn't
1406 			 * writable, we assume that we have fallen into this
1407 			 * case and we refuse to use the string.
1408 			 */
1409 			(void) snprintf(c, sizeof (c), "%s", str);
1410 		} else {
1411 			if (P != NULL && Pobjname(P, pc[i], objname,
1412 			    sizeof (objname)) != 0) {
1413 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1414 				    dt_basename(objname), (u_longlong_t)pc[i]);
1415 			} else {
1416 				(void) snprintf(c, sizeof (c), "0x%llx",
1417 				    (u_longlong_t)pc[i]);
1418 			}
1419 		}
1420 
1421 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1422 			break;
1423 
1424 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1425 			break;
1426 
1427 		if (str != NULL && str[0] == '@') {
1428 			/*
1429 			 * If the first character of the string is an "at" sign,
1430 			 * then the string is inferred to be an annotation --
1431 			 * and it is printed out beneath the frame and offset
1432 			 * with brackets.
1433 			 */
1434 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1435 				break;
1436 
1437 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1438 
1439 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1440 				break;
1441 
1442 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1443 				break;
1444 		}
1445 
1446 		if (str != NULL) {
1447 			str += strlen(str) + 1;
1448 			if (str - strbase >= strsize)
1449 				str = NULL;
1450 		}
1451 	}
1452 
1453 	if (P != NULL) {
1454 		dt_proc_unlock(dtp, P);
1455 		dt_proc_release(dtp, P);
1456 	}
1457 
1458 	return (err);
1459 }
1460 
1461 static int
1462 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1463 {
1464 	/* LINTED - alignment */
1465 	uint64_t pid = ((uint64_t *)addr)[0];
1466 	/* LINTED - alignment */
1467 	uint64_t pc = ((uint64_t *)addr)[1];
1468 	const char *format = "  %-50s";
1469 	char *s;
1470 	int n, len = 256;
1471 
1472 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1473 		struct ps_prochandle *P;
1474 
1475 		if ((P = dt_proc_grab(dtp, pid,
1476 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1477 			GElf_Sym sym;
1478 
1479 			dt_proc_lock(dtp, P);
1480 
1481 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1482 				pc = sym.st_value;
1483 
1484 			dt_proc_unlock(dtp, P);
1485 			dt_proc_release(dtp, P);
1486 		}
1487 	}
1488 
1489 	do {
1490 		n = len;
1491 		s = alloca(n);
1492 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1493 
1494 	return (dt_printf(dtp, fp, format, s));
1495 }
1496 
1497 int
1498 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1499 {
1500 	/* LINTED - alignment */
1501 	uint64_t pid = ((uint64_t *)addr)[0];
1502 	/* LINTED - alignment */
1503 	uint64_t pc = ((uint64_t *)addr)[1];
1504 	int err = 0;
1505 
1506 	char objname[PATH_MAX], c[PATH_MAX * 2];
1507 	struct ps_prochandle *P;
1508 
1509 	if (format == NULL)
1510 		format = "  %-50s";
1511 
1512 	/*
1513 	 * See the comment in dt_print_ustack() for the rationale for
1514 	 * printing raw addresses in the vectored case.
1515 	 */
1516 	if (dtp->dt_vector == NULL)
1517 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1518 	else
1519 		P = NULL;
1520 
1521 	if (P != NULL)
1522 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1523 
1524 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1525 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1526 	} else {
1527 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1528 	}
1529 
1530 	err = dt_printf(dtp, fp, format, c);
1531 
1532 	if (P != NULL) {
1533 		dt_proc_unlock(dtp, P);
1534 		dt_proc_release(dtp, P);
1535 	}
1536 
1537 	return (err);
1538 }
1539 
1540 int
1541 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1542 {
1543 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1544 	size_t nbytes = *((uintptr_t *) addr);
1545 
1546 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1547 	    nbytes, 50, quiet, 1));
1548 }
1549 
1550 typedef struct dt_type_cbdata {
1551 	dtrace_hdl_t		*dtp;
1552 	dtrace_typeinfo_t	dtt;
1553 	caddr_t			addr;
1554 	caddr_t			addrend;
1555 	const char		*name;
1556 	int			f_type;
1557 	int			indent;
1558 	int			type_width;
1559 	int			name_width;
1560 	FILE			*fp;
1561 } dt_type_cbdata_t;
1562 
1563 static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1564 
1565 static int
1566 dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1567 {
1568 	dt_type_cbdata_t cbdata;
1569 	dt_type_cbdata_t *cbdatap = arg;
1570 	ssize_t ssz;
1571 
1572 	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1573 		return (0);
1574 
1575 	off /= 8;
1576 
1577 	cbdata = *cbdatap;
1578 	cbdata.name = name;
1579 	cbdata.addr += off;
1580 	cbdata.addrend = cbdata.addr + ssz;
1581 
1582 	return (dt_print_type_data(&cbdata, type));
1583 }
1584 
1585 static int
1586 dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1587 {
1588 	char buf[DT_TYPE_NAMELEN];
1589 	char *p;
1590 	dt_type_cbdata_t *cbdatap = arg;
1591 	size_t sz = strlen(name);
1592 
1593 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1594 
1595 	if ((p = strchr(buf, '[')) != NULL)
1596 		p[-1] = '\0';
1597 	else
1598 		p = "";
1599 
1600 	sz += strlen(p);
1601 
1602 	if (sz > cbdatap->name_width)
1603 		cbdatap->name_width = sz;
1604 
1605 	sz = strlen(buf);
1606 
1607 	if (sz > cbdatap->type_width)
1608 		cbdatap->type_width = sz;
1609 
1610 	return (0);
1611 }
1612 
1613 static int
1614 dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1615 {
1616 	caddr_t addr = cbdatap->addr;
1617 	caddr_t addrend = cbdatap->addrend;
1618 	char buf[DT_TYPE_NAMELEN];
1619 	char *p;
1620 	int cnt = 0;
1621 	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1622 	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1623 
1624 	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1625 
1626 	if ((p = strchr(buf, '[')) != NULL)
1627 		p[-1] = '\0';
1628 	else
1629 		p = "";
1630 
1631 	if (cbdatap->f_type) {
1632 		int type_width = roundup(cbdatap->type_width + 1, 4);
1633 		int name_width = roundup(cbdatap->name_width + 1, 4);
1634 
1635 		name_width -= strlen(cbdatap->name);
1636 
1637 		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1638 	}
1639 
1640 	while (addr < addrend) {
1641 		dt_type_cbdata_t cbdata;
1642 		ctf_arinfo_t arinfo;
1643 		ctf_encoding_t cte;
1644 		uintptr_t *up;
1645 		void *vp = addr;
1646 		cbdata = *cbdatap;
1647 		cbdata.name = "";
1648 		cbdata.addr = addr;
1649 		cbdata.addrend = addr + ssz;
1650 		cbdata.f_type = 0;
1651 		cbdata.indent++;
1652 		cbdata.type_width = 0;
1653 		cbdata.name_width = 0;
1654 
1655 		if (cnt > 0)
1656 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1657 
1658 		switch (kind) {
1659 		case CTF_K_INTEGER:
1660 			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1661 				return (-1);
1662 			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1663 				switch (cte.cte_bits) {
1664 				case 8:
1665 					if (isprint(*((char *) vp)))
1666 						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1667 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1668 					break;
1669 				case 16:
1670 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1671 					break;
1672 				case 32:
1673 					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1674 					break;
1675 				case 64:
1676 					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1677 					break;
1678 				default:
1679 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1680 					break;
1681 				}
1682 			else
1683 				switch (cte.cte_bits) {
1684 				case 8:
1685 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1686 					break;
1687 				case 16:
1688 					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1689 					break;
1690 				case 32:
1691 					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1692 					break;
1693 				case 64:
1694 					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1695 					break;
1696 				default:
1697 					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1698 					break;
1699 				}
1700 			break;
1701 		case CTF_K_FLOAT:
1702 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1703 			break;
1704 		case CTF_K_POINTER:
1705 			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1706 			break;
1707 		case CTF_K_ARRAY:
1708 			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1709 				return (-1);
1710 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1711 			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1712 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1713 			break;
1714 		case CTF_K_FUNCTION:
1715 			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1716 			break;
1717 		case CTF_K_STRUCT:
1718 			cbdata.f_type = 1;
1719 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1720 			    dt_print_type_width, &cbdata) != 0)
1721 				return (-1);
1722 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1723 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1724 			    dt_print_type_member, &cbdata) != 0)
1725 				return (-1);
1726 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1727 			break;
1728 		case CTF_K_UNION:
1729 			cbdata.f_type = 1;
1730 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1731 			    dt_print_type_width, &cbdata) != 0)
1732 				return (-1);
1733 			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1734 			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1735 			    dt_print_type_member, &cbdata) != 0)
1736 				return (-1);
1737 			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1738 			break;
1739 		case CTF_K_ENUM:
1740 			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1741 			break;
1742 		case CTF_K_TYPEDEF:
1743 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1744 			break;
1745 		case CTF_K_VOLATILE:
1746 			if (cbdatap->f_type)
1747 				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1748 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1749 			break;
1750 		case CTF_K_CONST:
1751 			if (cbdatap->f_type)
1752 				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1753 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1754 			break;
1755 		case CTF_K_RESTRICT:
1756 			if (cbdatap->f_type)
1757 				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1758 			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1759 			break;
1760 		default:
1761 			break;
1762 		}
1763 
1764 		addr += ssz;
1765 		cnt++;
1766 	}
1767 
1768 	return (0);
1769 }
1770 
1771 static int
1772 dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1773 {
1774 	caddr_t addrend;
1775 	char *p;
1776 	dtrace_typeinfo_t dtt;
1777 	dt_type_cbdata_t cbdata;
1778 	int num = 0;
1779 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1780 	ssize_t ssz;
1781 
1782 	if (!quiet)
1783 		dt_printf(dtp, fp, "\n");
1784 
1785 	/* Get the total number of bytes of data buffered. */
1786 	size_t nbytes = *((uintptr_t *) addr);
1787 	addr += sizeof(uintptr_t);
1788 
1789 	/*
1790 	 * Get the size of the type so that we can check that it matches
1791 	 * the CTF data we look up and so that we can figure out how many
1792 	 * type elements are buffered.
1793 	 */
1794 	size_t typs = *((uintptr_t *) addr);
1795 	addr += sizeof(uintptr_t);
1796 
1797 	/*
1798 	 * Point to the type string in the buffer. Get it's string
1799 	 * length and round it up to become the offset to the start
1800 	 * of the buffered type data which we would like to be aligned
1801 	 * for easy access.
1802 	 */
1803 	char *strp = (char *) addr;
1804 	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1805 
1806 	/*
1807 	 * The type string might have a format such as 'int [20]'.
1808 	 * Check if there is an array dimension present.
1809 	 */
1810 	if ((p = strchr(strp, '[')) != NULL) {
1811 		/* Strip off the array dimension. */
1812 		*p++ = '\0';
1813 
1814 		for (; *p != '\0' && *p != ']'; p++)
1815 			num = num * 10 + *p - '0';
1816 	} else
1817 		/* No array dimension, so default. */
1818 		num = 1;
1819 
1820 	/* Lookup the CTF type from the type string. */
1821 	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1822 		return (-1);
1823 
1824 	/* Offset the buffer address to the start of the data... */
1825 	addr += offset;
1826 
1827 	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1828 
1829 	if (typs != ssz) {
1830 		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1831 		return (-1);
1832 	}
1833 
1834 	cbdata.dtp = dtp;
1835 	cbdata.dtt = dtt;
1836 	cbdata.name = "";
1837 	cbdata.addr = addr;
1838 	cbdata.addrend = addr + nbytes;
1839 	cbdata.indent = 1;
1840 	cbdata.f_type = 1;
1841 	cbdata.type_width = 0;
1842 	cbdata.name_width = 0;
1843 	cbdata.fp = fp;
1844 
1845 	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1846 }
1847 
1848 static int
1849 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1850 {
1851 	/* LINTED - alignment */
1852 	uint64_t pc = *((uint64_t *)addr);
1853 	dtrace_syminfo_t dts;
1854 	GElf_Sym sym;
1855 	char c[PATH_MAX * 2];
1856 
1857 	if (format == NULL)
1858 		format = "  %-50s";
1859 
1860 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1861 		(void) snprintf(c, sizeof (c), "%s`%s",
1862 		    dts.dts_object, dts.dts_name);
1863 	} else {
1864 		/*
1865 		 * We'll repeat the lookup, but this time we'll specify a
1866 		 * NULL GElf_Sym -- indicating that we're only interested in
1867 		 * the containing module.
1868 		 */
1869 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1870 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1871 			    dts.dts_object, (u_longlong_t)pc);
1872 		} else {
1873 			(void) snprintf(c, sizeof (c), "0x%llx",
1874 			    (u_longlong_t)pc);
1875 		}
1876 	}
1877 
1878 	if (dt_printf(dtp, fp, format, c) < 0)
1879 		return (-1);
1880 
1881 	return (0);
1882 }
1883 
1884 int
1885 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1886 {
1887 	/* LINTED - alignment */
1888 	uint64_t pc = *((uint64_t *)addr);
1889 	dtrace_syminfo_t dts;
1890 	char c[PATH_MAX * 2];
1891 
1892 	if (format == NULL)
1893 		format = "  %-50s";
1894 
1895 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1896 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1897 	} else {
1898 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1899 	}
1900 
1901 	if (dt_printf(dtp, fp, format, c) < 0)
1902 		return (-1);
1903 
1904 	return (0);
1905 }
1906 
1907 typedef struct dt_normal {
1908 	dtrace_aggvarid_t dtnd_id;
1909 	uint64_t dtnd_normal;
1910 } dt_normal_t;
1911 
1912 static int
1913 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1914 {
1915 	dt_normal_t *normal = arg;
1916 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1917 	dtrace_aggvarid_t id = normal->dtnd_id;
1918 
1919 	if (agg->dtagd_nrecs == 0)
1920 		return (DTRACE_AGGWALK_NEXT);
1921 
1922 	if (agg->dtagd_varid != id)
1923 		return (DTRACE_AGGWALK_NEXT);
1924 
1925 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1926 	return (DTRACE_AGGWALK_NORMALIZE);
1927 }
1928 
1929 static int
1930 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1931 {
1932 	dt_normal_t normal;
1933 	caddr_t addr;
1934 
1935 	/*
1936 	 * We (should) have two records:  the aggregation ID followed by the
1937 	 * normalization value.
1938 	 */
1939 	addr = base + rec->dtrd_offset;
1940 
1941 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1942 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1943 
1944 	/* LINTED - alignment */
1945 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1946 	rec++;
1947 
1948 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1949 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1950 
1951 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1952 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1953 
1954 	addr = base + rec->dtrd_offset;
1955 
1956 	switch (rec->dtrd_size) {
1957 	case sizeof (uint64_t):
1958 		/* LINTED - alignment */
1959 		normal.dtnd_normal = *((uint64_t *)addr);
1960 		break;
1961 	case sizeof (uint32_t):
1962 		/* LINTED - alignment */
1963 		normal.dtnd_normal = *((uint32_t *)addr);
1964 		break;
1965 	case sizeof (uint16_t):
1966 		/* LINTED - alignment */
1967 		normal.dtnd_normal = *((uint16_t *)addr);
1968 		break;
1969 	case sizeof (uint8_t):
1970 		normal.dtnd_normal = *((uint8_t *)addr);
1971 		break;
1972 	default:
1973 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1974 	}
1975 
1976 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1977 
1978 	return (0);
1979 }
1980 
1981 static int
1982 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1983 {
1984 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1985 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1986 
1987 	if (agg->dtagd_nrecs == 0)
1988 		return (DTRACE_AGGWALK_NEXT);
1989 
1990 	if (agg->dtagd_varid != id)
1991 		return (DTRACE_AGGWALK_NEXT);
1992 
1993 	return (DTRACE_AGGWALK_DENORMALIZE);
1994 }
1995 
1996 static int
1997 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1998 {
1999 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2000 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
2001 
2002 	if (agg->dtagd_nrecs == 0)
2003 		return (DTRACE_AGGWALK_NEXT);
2004 
2005 	if (agg->dtagd_varid != id)
2006 		return (DTRACE_AGGWALK_NEXT);
2007 
2008 	return (DTRACE_AGGWALK_CLEAR);
2009 }
2010 
2011 typedef struct dt_trunc {
2012 	dtrace_aggvarid_t dttd_id;
2013 	uint64_t dttd_remaining;
2014 } dt_trunc_t;
2015 
2016 static int
2017 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
2018 {
2019 	dt_trunc_t *trunc = arg;
2020 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2021 	dtrace_aggvarid_t id = trunc->dttd_id;
2022 
2023 	if (agg->dtagd_nrecs == 0)
2024 		return (DTRACE_AGGWALK_NEXT);
2025 
2026 	if (agg->dtagd_varid != id)
2027 		return (DTRACE_AGGWALK_NEXT);
2028 
2029 	if (trunc->dttd_remaining == 0)
2030 		return (DTRACE_AGGWALK_REMOVE);
2031 
2032 	trunc->dttd_remaining--;
2033 	return (DTRACE_AGGWALK_NEXT);
2034 }
2035 
2036 static int
2037 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
2038 {
2039 	dt_trunc_t trunc;
2040 	caddr_t addr;
2041 	int64_t remaining;
2042 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
2043 
2044 	/*
2045 	 * We (should) have two records:  the aggregation ID followed by the
2046 	 * number of aggregation entries after which the aggregation is to be
2047 	 * truncated.
2048 	 */
2049 	addr = base + rec->dtrd_offset;
2050 
2051 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
2052 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2053 
2054 	/* LINTED - alignment */
2055 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
2056 	rec++;
2057 
2058 	if (rec->dtrd_action != DTRACEACT_LIBACT)
2059 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2060 
2061 	if (rec->dtrd_arg != DT_ACT_TRUNC)
2062 		return (dt_set_errno(dtp, EDT_BADTRUNC));
2063 
2064 	addr = base + rec->dtrd_offset;
2065 
2066 	switch (rec->dtrd_size) {
2067 	case sizeof (uint64_t):
2068 		/* LINTED - alignment */
2069 		remaining = *((int64_t *)addr);
2070 		break;
2071 	case sizeof (uint32_t):
2072 		/* LINTED - alignment */
2073 		remaining = *((int32_t *)addr);
2074 		break;
2075 	case sizeof (uint16_t):
2076 		/* LINTED - alignment */
2077 		remaining = *((int16_t *)addr);
2078 		break;
2079 	case sizeof (uint8_t):
2080 		remaining = *((int8_t *)addr);
2081 		break;
2082 	default:
2083 		return (dt_set_errno(dtp, EDT_BADNORMAL));
2084 	}
2085 
2086 	if (remaining < 0) {
2087 		func = dtrace_aggregate_walk_valsorted;
2088 		remaining = -remaining;
2089 	} else {
2090 		func = dtrace_aggregate_walk_valrevsorted;
2091 	}
2092 
2093 	assert(remaining >= 0);
2094 	trunc.dttd_remaining = remaining;
2095 
2096 	(void) func(dtp, dt_trunc_agg, &trunc);
2097 
2098 	return (0);
2099 }
2100 
2101 static int
2102 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
2103     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
2104     uint64_t normal, dt_print_aggdata_t *pd)
2105 {
2106 	int err, width;
2107 	dtrace_actkind_t act = rec->dtrd_action;
2108 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
2109 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2110 
2111 	static struct {
2112 		size_t size;
2113 		int width;
2114 		int packedwidth;
2115 	} *fmt, fmttab[] = {
2116 		{ sizeof (uint8_t),	3,	3 },
2117 		{ sizeof (uint16_t),	5,	5 },
2118 		{ sizeof (uint32_t),	8,	8 },
2119 		{ sizeof (uint64_t),	16,	16 },
2120 		{ 0,			-50,	16 }
2121 	};
2122 
2123 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
2124 		dtrace_recdesc_t *r;
2125 
2126 		width = 0;
2127 
2128 		/*
2129 		 * To print our quantization header for either an agghist or
2130 		 * aggpack aggregation, we need to iterate through all of our
2131 		 * of our records to determine their width.
2132 		 */
2133 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
2134 			for (fmt = fmttab; fmt->size &&
2135 			    fmt->size != r->dtrd_size; fmt++)
2136 				continue;
2137 
2138 			width += fmt->packedwidth + 1;
2139 		}
2140 
2141 		if (pd->dtpa_agghist) {
2142 			if (dt_print_quanthdr(dtp, fp, width) < 0)
2143 				return (-1);
2144 		} else {
2145 			if (dt_print_quanthdr_packed(dtp, fp,
2146 			    width, aggdata, r->dtrd_action) < 0)
2147 				return (-1);
2148 		}
2149 
2150 		pd->dtpa_agghisthdr = agg->dtagd_varid;
2151 	}
2152 
2153 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
2154 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
2155 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
2156 		int64_t val;
2157 
2158 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
2159 		val = (long long)*((uint64_t *)addr);
2160 
2161 		if (dt_printf(dtp, fp, " ") < 0)
2162 			return (-1);
2163 
2164 		return (dt_print_quantline(dtp, fp, val, normal,
2165 		    aggdata->dtada_total, positives, negatives));
2166 	}
2167 
2168 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
2169 		switch (act) {
2170 		case DTRACEAGG_QUANTIZE:
2171 			return (dt_print_quantize_packed(dtp,
2172 			    fp, addr, size, aggdata));
2173 		case DTRACEAGG_LQUANTIZE:
2174 			return (dt_print_lquantize_packed(dtp,
2175 			    fp, addr, size, aggdata));
2176 		default:
2177 			break;
2178 		}
2179 	}
2180 
2181 	switch (act) {
2182 	case DTRACEACT_STACK:
2183 		return (dt_print_stack(dtp, fp, NULL, addr,
2184 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
2185 
2186 	case DTRACEACT_USTACK:
2187 	case DTRACEACT_JSTACK:
2188 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
2189 
2190 	case DTRACEACT_USYM:
2191 	case DTRACEACT_UADDR:
2192 		return (dt_print_usym(dtp, fp, addr, act));
2193 
2194 	case DTRACEACT_UMOD:
2195 		return (dt_print_umod(dtp, fp, NULL, addr));
2196 
2197 	case DTRACEACT_SYM:
2198 		return (dt_print_sym(dtp, fp, NULL, addr));
2199 
2200 	case DTRACEACT_MOD:
2201 		return (dt_print_mod(dtp, fp, NULL, addr));
2202 
2203 	case DTRACEAGG_QUANTIZE:
2204 		return (dt_print_quantize(dtp, fp, addr, size, normal));
2205 
2206 	case DTRACEAGG_LQUANTIZE:
2207 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
2208 
2209 	case DTRACEAGG_LLQUANTIZE:
2210 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
2211 
2212 	case DTRACEAGG_AVG:
2213 		return (dt_print_average(dtp, fp, addr, size, normal));
2214 
2215 	case DTRACEAGG_STDDEV:
2216 		return (dt_print_stddev(dtp, fp, addr, size, normal));
2217 
2218 	default:
2219 		break;
2220 	}
2221 
2222 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
2223 		continue;
2224 
2225 	width = packed ? fmt->packedwidth : fmt->width;
2226 
2227 	switch (size) {
2228 	case sizeof (uint64_t):
2229 		err = dt_printf(dtp, fp, " %*lld", width,
2230 		    /* LINTED - alignment */
2231 		    (long long)*((uint64_t *)addr) / normal);
2232 		break;
2233 	case sizeof (uint32_t):
2234 		/* LINTED - alignment */
2235 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
2236 		    (uint32_t)normal);
2237 		break;
2238 	case sizeof (uint16_t):
2239 		/* LINTED - alignment */
2240 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
2241 		    (uint32_t)normal);
2242 		break;
2243 	case sizeof (uint8_t):
2244 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
2245 		    (uint32_t)normal);
2246 		break;
2247 	default:
2248 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
2249 		break;
2250 	}
2251 
2252 	return (err);
2253 }
2254 
2255 int
2256 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
2257 {
2258 	int i, aggact = 0;
2259 	dt_print_aggdata_t *pd = arg;
2260 	const dtrace_aggdata_t *aggdata = aggsdata[0];
2261 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2262 	FILE *fp = pd->dtpa_fp;
2263 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
2264 	dtrace_recdesc_t *rec;
2265 	dtrace_actkind_t act;
2266 	caddr_t addr;
2267 	size_t size;
2268 
2269 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
2270 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
2271 
2272 	/*
2273 	 * Iterate over each record description in the key, printing the traced
2274 	 * data, skipping the first datum (the tuple member created by the
2275 	 * compiler).
2276 	 */
2277 	for (i = 1; i < agg->dtagd_nrecs; i++) {
2278 		rec = &agg->dtagd_rec[i];
2279 		act = rec->dtrd_action;
2280 		addr = aggdata->dtada_data + rec->dtrd_offset;
2281 		size = rec->dtrd_size;
2282 
2283 		if (DTRACEACT_ISAGG(act)) {
2284 			aggact = i;
2285 			break;
2286 		}
2287 
2288 		if (dt_print_datum(dtp, fp, rec, addr,
2289 		    size, aggdata, 1, pd) < 0)
2290 			return (-1);
2291 
2292 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2293 		    DTRACE_BUFDATA_AGGKEY) < 0)
2294 			return (-1);
2295 	}
2296 
2297 	assert(aggact != 0);
2298 
2299 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2300 		uint64_t normal;
2301 
2302 		aggdata = aggsdata[i];
2303 		agg = aggdata->dtada_desc;
2304 		rec = &agg->dtagd_rec[aggact];
2305 		act = rec->dtrd_action;
2306 		addr = aggdata->dtada_data + rec->dtrd_offset;
2307 		size = rec->dtrd_size;
2308 
2309 		assert(DTRACEACT_ISAGG(act));
2310 		normal = aggdata->dtada_normal;
2311 
2312 		if (dt_print_datum(dtp, fp, rec, addr,
2313 		    size, aggdata, normal, pd) < 0)
2314 			return (-1);
2315 
2316 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2317 		    DTRACE_BUFDATA_AGGVAL) < 0)
2318 			return (-1);
2319 
2320 		if (!pd->dtpa_allunprint)
2321 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2322 	}
2323 
2324 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2325 		if (dt_printf(dtp, fp, "\n") < 0)
2326 			return (-1);
2327 	}
2328 
2329 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2330 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2331 		return (-1);
2332 
2333 	return (0);
2334 }
2335 
2336 int
2337 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2338 {
2339 	dt_print_aggdata_t *pd = arg;
2340 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2341 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2342 
2343 	if (pd->dtpa_allunprint) {
2344 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2345 			return (0);
2346 	} else {
2347 		/*
2348 		 * If we're not printing all unprinted aggregations, then the
2349 		 * aggregation variable ID denotes a specific aggregation
2350 		 * variable that we should print -- skip any other aggregations
2351 		 * that we encounter.
2352 		 */
2353 		if (agg->dtagd_nrecs == 0)
2354 			return (0);
2355 
2356 		if (aggvarid != agg->dtagd_varid)
2357 			return (0);
2358 	}
2359 
2360 	return (dt_print_aggs(&aggdata, 1, arg));
2361 }
2362 
2363 int
2364 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2365     const char *option, const char *value)
2366 {
2367 	int len, rval;
2368 	char *msg;
2369 	const char *errstr;
2370 	dtrace_setoptdata_t optdata;
2371 
2372 	bzero(&optdata, sizeof (optdata));
2373 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2374 
2375 	if (dtrace_setopt(dtp, option, value) == 0) {
2376 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2377 		optdata.dtsda_probe = data;
2378 		optdata.dtsda_option = option;
2379 		optdata.dtsda_handle = dtp;
2380 
2381 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2382 			return (rval);
2383 
2384 		return (0);
2385 	}
2386 
2387 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2388 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2389 	msg = alloca(len);
2390 
2391 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2392 	    option, value, errstr);
2393 
2394 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2395 		return (0);
2396 
2397 	return (rval);
2398 }
2399 
2400 static int
2401 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2402     dtrace_bufdesc_t *buf, boolean_t just_one,
2403     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2404 {
2405 	dtrace_epid_t id;
2406 	size_t offs;
2407 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2408 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2409 	int rval, i, n;
2410 	uint64_t tracememsize = 0;
2411 	dtrace_probedata_t data;
2412 	uint64_t drops;
2413 
2414 	bzero(&data, sizeof (data));
2415 	data.dtpda_handle = dtp;
2416 	data.dtpda_cpu = cpu;
2417 	data.dtpda_flow = dtp->dt_flow;
2418 	data.dtpda_indent = dtp->dt_indent;
2419 	data.dtpda_prefix = dtp->dt_prefix;
2420 
2421 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2422 		dtrace_eprobedesc_t *epd;
2423 
2424 		/*
2425 		 * We're guaranteed to have an ID.
2426 		 */
2427 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2428 
2429 		if (id == DTRACE_EPIDNONE) {
2430 			/*
2431 			 * This is filler to assure proper alignment of the
2432 			 * next record; we simply ignore it.
2433 			 */
2434 			offs += sizeof (id);
2435 			continue;
2436 		}
2437 
2438 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2439 		    &data.dtpda_pdesc)) != 0)
2440 			return (rval);
2441 
2442 		epd = data.dtpda_edesc;
2443 		data.dtpda_data = buf->dtbd_data + offs;
2444 
2445 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2446 			rval = dt_handle(dtp, &data);
2447 
2448 			if (rval == DTRACE_CONSUME_NEXT)
2449 				goto nextepid;
2450 
2451 			if (rval == DTRACE_CONSUME_ERROR)
2452 				return (-1);
2453 		}
2454 
2455 		if (flow)
2456 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2457 			    buf, offs);
2458 
2459 		rval = (*efunc)(&data, arg);
2460 
2461 		if (flow) {
2462 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2463 				data.dtpda_indent += 2;
2464 		}
2465 
2466 		if (rval == DTRACE_CONSUME_NEXT)
2467 			goto nextepid;
2468 
2469 		if (rval == DTRACE_CONSUME_ABORT)
2470 			return (dt_set_errno(dtp, EDT_DIRABORT));
2471 
2472 		if (rval != DTRACE_CONSUME_THIS)
2473 			return (dt_set_errno(dtp, EDT_BADRVAL));
2474 
2475 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2476 			caddr_t addr;
2477 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2478 			dtrace_actkind_t act = rec->dtrd_action;
2479 
2480 			data.dtpda_data = buf->dtbd_data + offs +
2481 			    rec->dtrd_offset;
2482 			addr = data.dtpda_data;
2483 
2484 			if (act == DTRACEACT_LIBACT) {
2485 				uint64_t arg = rec->dtrd_arg;
2486 				dtrace_aggvarid_t id;
2487 
2488 				switch (arg) {
2489 				case DT_ACT_CLEAR:
2490 					/* LINTED - alignment */
2491 					id = *((dtrace_aggvarid_t *)addr);
2492 					(void) dtrace_aggregate_walk(dtp,
2493 					    dt_clear_agg, &id);
2494 					continue;
2495 
2496 				case DT_ACT_DENORMALIZE:
2497 					/* LINTED - alignment */
2498 					id = *((dtrace_aggvarid_t *)addr);
2499 					(void) dtrace_aggregate_walk(dtp,
2500 					    dt_denormalize_agg, &id);
2501 					continue;
2502 
2503 				case DT_ACT_FTRUNCATE:
2504 					if (fp == NULL)
2505 						continue;
2506 
2507 					(void) fflush(fp);
2508 					(void) ftruncate(fileno(fp), 0);
2509 					(void) fseeko(fp, 0, SEEK_SET);
2510 					continue;
2511 
2512 				case DT_ACT_NORMALIZE:
2513 					if (i == epd->dtepd_nrecs - 1)
2514 						return (dt_set_errno(dtp,
2515 						    EDT_BADNORMAL));
2516 
2517 					if (dt_normalize(dtp,
2518 					    buf->dtbd_data + offs, rec) != 0)
2519 						return (-1);
2520 
2521 					i++;
2522 					continue;
2523 
2524 				case DT_ACT_SETOPT: {
2525 					uint64_t *opts = dtp->dt_options;
2526 					dtrace_recdesc_t *valrec;
2527 					uint32_t valsize;
2528 					caddr_t val;
2529 					int rv;
2530 
2531 					if (i == epd->dtepd_nrecs - 1) {
2532 						return (dt_set_errno(dtp,
2533 						    EDT_BADSETOPT));
2534 					}
2535 
2536 					valrec = &epd->dtepd_rec[++i];
2537 					valsize = valrec->dtrd_size;
2538 
2539 					if (valrec->dtrd_action != act ||
2540 					    valrec->dtrd_arg != arg) {
2541 						return (dt_set_errno(dtp,
2542 						    EDT_BADSETOPT));
2543 					}
2544 
2545 					if (valsize > sizeof (uint64_t)) {
2546 						val = buf->dtbd_data + offs +
2547 						    valrec->dtrd_offset;
2548 					} else {
2549 						val = "1";
2550 					}
2551 
2552 					rv = dt_setopt(dtp, &data, addr, val);
2553 
2554 					if (rv != 0)
2555 						return (-1);
2556 
2557 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2558 					    DTRACEOPT_UNSET);
2559 					quiet = (opts[DTRACEOPT_QUIET] !=
2560 					    DTRACEOPT_UNSET);
2561 
2562 					continue;
2563 				}
2564 
2565 				case DT_ACT_TRUNC:
2566 					if (i == epd->dtepd_nrecs - 1)
2567 						return (dt_set_errno(dtp,
2568 						    EDT_BADTRUNC));
2569 
2570 					if (dt_trunc(dtp,
2571 					    buf->dtbd_data + offs, rec) != 0)
2572 						return (-1);
2573 
2574 					i++;
2575 					continue;
2576 
2577 				default:
2578 					continue;
2579 				}
2580 			}
2581 
2582 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2583 			    rec->dtrd_size == sizeof (uint64_t)) {
2584 			    	/* LINTED - alignment */
2585 				tracememsize = *((unsigned long long *)addr);
2586 				continue;
2587 			}
2588 
2589 			rval = (*rfunc)(&data, rec, arg);
2590 
2591 			if (rval == DTRACE_CONSUME_NEXT)
2592 				continue;
2593 
2594 			if (rval == DTRACE_CONSUME_ABORT)
2595 				return (dt_set_errno(dtp, EDT_DIRABORT));
2596 
2597 			if (rval != DTRACE_CONSUME_THIS)
2598 				return (dt_set_errno(dtp, EDT_BADRVAL));
2599 
2600 			if (act == DTRACEACT_STACK) {
2601 				int depth = rec->dtrd_arg;
2602 
2603 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2604 				    rec->dtrd_size / depth) < 0)
2605 					return (-1);
2606 				goto nextrec;
2607 			}
2608 
2609 			if (act == DTRACEACT_USTACK ||
2610 			    act == DTRACEACT_JSTACK) {
2611 				if (dt_print_ustack(dtp, fp, NULL,
2612 				    addr, rec->dtrd_arg) < 0)
2613 					return (-1);
2614 				goto nextrec;
2615 			}
2616 
2617 			if (act == DTRACEACT_SYM) {
2618 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2619 					return (-1);
2620 				goto nextrec;
2621 			}
2622 
2623 			if (act == DTRACEACT_MOD) {
2624 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2625 					return (-1);
2626 				goto nextrec;
2627 			}
2628 
2629 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2630 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2631 					return (-1);
2632 				goto nextrec;
2633 			}
2634 
2635 			if (act == DTRACEACT_UMOD) {
2636 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2637 					return (-1);
2638 				goto nextrec;
2639 			}
2640 
2641 			if (act == DTRACEACT_PRINTM) {
2642 				if (dt_print_memory(dtp, fp, addr) < 0)
2643 					return (-1);
2644 				goto nextrec;
2645 			}
2646 
2647 			if (act == DTRACEACT_PRINTT) {
2648 				if (dt_print_type(dtp, fp, addr) < 0)
2649 					return (-1);
2650 				goto nextrec;
2651 			}
2652 
2653 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2654 				void *fmtdata;
2655 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2656 				    const dtrace_probedata_t *,
2657 				    const dtrace_recdesc_t *, uint_t,
2658 				    const void *buf, size_t);
2659 
2660 				if ((fmtdata = dt_format_lookup(dtp,
2661 				    rec->dtrd_format)) == NULL)
2662 					goto nofmt;
2663 
2664 				switch (act) {
2665 				case DTRACEACT_PRINTF:
2666 					func = dtrace_fprintf;
2667 					break;
2668 				case DTRACEACT_PRINTA:
2669 					func = dtrace_fprinta;
2670 					break;
2671 				case DTRACEACT_SYSTEM:
2672 					func = dtrace_system;
2673 					break;
2674 				case DTRACEACT_FREOPEN:
2675 					func = dtrace_freopen;
2676 					break;
2677 				}
2678 
2679 				n = (*func)(dtp, fp, fmtdata, &data,
2680 				    rec, epd->dtepd_nrecs - i,
2681 				    (uchar_t *)buf->dtbd_data + offs,
2682 				    buf->dtbd_size - offs);
2683 
2684 				if (n < 0)
2685 					return (-1); /* errno is set for us */
2686 
2687 				if (n > 0)
2688 					i += n - 1;
2689 				goto nextrec;
2690 			}
2691 
2692 			/*
2693 			 * If this is a DIF expression, and the record has a
2694 			 * format set, this indicates we have a CTF type name
2695 			 * associated with the data and we should try to print
2696 			 * it out by type.
2697 			 */
2698 			if (act == DTRACEACT_DIFEXPR) {
2699 				const char *strdata = dt_strdata_lookup(dtp,
2700 				    rec->dtrd_format);
2701 				if (strdata != NULL) {
2702 					n = dtrace_print(dtp, fp, strdata,
2703 					    addr, rec->dtrd_size);
2704 
2705 					/*
2706 					 * dtrace_print() will return -1 on
2707 					 * error, or return the number of bytes
2708 					 * consumed.  It will return 0 if the
2709 					 * type couldn't be determined, and we
2710 					 * should fall through to the normal
2711 					 * trace method.
2712 					 */
2713 					if (n < 0)
2714 						return (-1);
2715 
2716 					if (n > 0)
2717 						goto nextrec;
2718 				}
2719 			}
2720 
2721 nofmt:
2722 			if (act == DTRACEACT_PRINTA) {
2723 				dt_print_aggdata_t pd;
2724 				dtrace_aggvarid_t *aggvars;
2725 				int j, naggvars = 0;
2726 				size_t size = ((epd->dtepd_nrecs - i) *
2727 				    sizeof (dtrace_aggvarid_t));
2728 
2729 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2730 					return (-1);
2731 
2732 				/*
2733 				 * This might be a printa() with multiple
2734 				 * aggregation variables.  We need to scan
2735 				 * forward through the records until we find
2736 				 * a record from a different statement.
2737 				 */
2738 				for (j = i; j < epd->dtepd_nrecs; j++) {
2739 					dtrace_recdesc_t *nrec;
2740 					caddr_t naddr;
2741 
2742 					nrec = &epd->dtepd_rec[j];
2743 
2744 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2745 						break;
2746 
2747 					if (nrec->dtrd_action != act) {
2748 						return (dt_set_errno(dtp,
2749 						    EDT_BADAGG));
2750 					}
2751 
2752 					naddr = buf->dtbd_data + offs +
2753 					    nrec->dtrd_offset;
2754 
2755 					aggvars[naggvars++] =
2756 					    /* LINTED - alignment */
2757 					    *((dtrace_aggvarid_t *)naddr);
2758 				}
2759 
2760 				i = j - 1;
2761 				bzero(&pd, sizeof (pd));
2762 				pd.dtpa_dtp = dtp;
2763 				pd.dtpa_fp = fp;
2764 
2765 				assert(naggvars >= 1);
2766 
2767 				if (naggvars == 1) {
2768 					pd.dtpa_id = aggvars[0];
2769 					dt_free(dtp, aggvars);
2770 
2771 					if (dt_printf(dtp, fp, "\n") < 0 ||
2772 					    dtrace_aggregate_walk_sorted(dtp,
2773 					    dt_print_agg, &pd) < 0)
2774 						return (-1);
2775 					goto nextrec;
2776 				}
2777 
2778 				if (dt_printf(dtp, fp, "\n") < 0 ||
2779 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2780 				    naggvars, dt_print_aggs, &pd) < 0) {
2781 					dt_free(dtp, aggvars);
2782 					return (-1);
2783 				}
2784 
2785 				dt_free(dtp, aggvars);
2786 				goto nextrec;
2787 			}
2788 
2789 			if (act == DTRACEACT_TRACEMEM) {
2790 				if (tracememsize == 0 ||
2791 				    tracememsize > rec->dtrd_size) {
2792 					tracememsize = rec->dtrd_size;
2793 				}
2794 
2795 				n = dt_print_bytes(dtp, fp, addr,
2796 				    tracememsize, -33, quiet, 1);
2797 
2798 				tracememsize = 0;
2799 
2800 				if (n < 0)
2801 					return (-1);
2802 
2803 				goto nextrec;
2804 			}
2805 
2806 			switch (rec->dtrd_size) {
2807 			case sizeof (uint64_t):
2808 				n = dt_printf(dtp, fp,
2809 				    quiet ? "%lld" : " %16lld",
2810 				    /* LINTED - alignment */
2811 				    *((unsigned long long *)addr));
2812 				break;
2813 			case sizeof (uint32_t):
2814 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2815 				    /* LINTED - alignment */
2816 				    *((uint32_t *)addr));
2817 				break;
2818 			case sizeof (uint16_t):
2819 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2820 				    /* LINTED - alignment */
2821 				    *((uint16_t *)addr));
2822 				break;
2823 			case sizeof (uint8_t):
2824 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2825 				    *((uint8_t *)addr));
2826 				break;
2827 			default:
2828 				n = dt_print_bytes(dtp, fp, addr,
2829 				    rec->dtrd_size, -33, quiet, 0);
2830 				break;
2831 			}
2832 
2833 			if (n < 0)
2834 				return (-1); /* errno is set for us */
2835 
2836 nextrec:
2837 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2838 				return (-1); /* errno is set for us */
2839 		}
2840 
2841 		/*
2842 		 * Call the record callback with a NULL record to indicate
2843 		 * that we're done processing this EPID.
2844 		 */
2845 		rval = (*rfunc)(&data, NULL, arg);
2846 nextepid:
2847 		offs += epd->dtepd_size;
2848 		dtp->dt_last_epid = id;
2849 		if (just_one) {
2850 			buf->dtbd_oldest = offs;
2851 			break;
2852 		}
2853 	}
2854 
2855 	dtp->dt_flow = data.dtpda_flow;
2856 	dtp->dt_indent = data.dtpda_indent;
2857 	dtp->dt_prefix = data.dtpda_prefix;
2858 
2859 	if ((drops = buf->dtbd_drops) == 0)
2860 		return (0);
2861 
2862 	/*
2863 	 * Explicitly zero the drops to prevent us from processing them again.
2864 	 */
2865 	buf->dtbd_drops = 0;
2866 
2867 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2868 }
2869 
2870 /*
2871  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2872  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2873  * only 4-byte aligned.
2874  */
2875 static void
2876 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2877 {
2878 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2879 	if (used < cursize / 2) {
2880 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2881 		char *newdata = dt_alloc(dtp, used + misalign);
2882 		if (newdata == NULL)
2883 			return;
2884 		bzero(newdata, misalign);
2885 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2886 		    newdata + misalign, used);
2887 		dt_free(dtp, buf->dtbd_data);
2888 		buf->dtbd_oldest = misalign;
2889 		buf->dtbd_size = used + misalign;
2890 		buf->dtbd_data = newdata;
2891 	}
2892 }
2893 
2894 /*
2895  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2896  * so that it is.  Note, we need to preserve the alignment of the data at
2897  * dtbd_oldest, which is only 4-byte aligned.
2898  */
2899 static int
2900 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2901 {
2902 	int misalign;
2903 	char *newdata, *ndp;
2904 
2905 	if (buf->dtbd_oldest == 0)
2906 		return (0);
2907 
2908 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2909 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2910 
2911 	if (newdata == NULL)
2912 		return (-1);
2913 
2914 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2915 
2916 	bzero(ndp, misalign);
2917 	ndp += misalign;
2918 
2919 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2920 	    buf->dtbd_size - buf->dtbd_oldest);
2921 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2922 
2923 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2924 
2925 	dt_free(dtp, buf->dtbd_data);
2926 	buf->dtbd_oldest = 0;
2927 	buf->dtbd_data = newdata;
2928 	buf->dtbd_size += misalign;
2929 
2930 	return (0);
2931 }
2932 
2933 static void
2934 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2935 {
2936 	dt_free(dtp, buf->dtbd_data);
2937 	dt_free(dtp, buf);
2938 }
2939 
2940 /*
2941  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2942  * data, or NULL if there is no data for this CPU.
2943  * Returns -1 on failure and sets dt_errno.
2944  */
2945 static int
2946 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2947 {
2948 	dtrace_optval_t size;
2949 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2950 	int error, rval;
2951 
2952 	if (buf == NULL)
2953 		return (-1);
2954 
2955 	(void) dtrace_getopt(dtp, "bufsize", &size);
2956 	buf->dtbd_data = dt_alloc(dtp, size);
2957 	if (buf->dtbd_data == NULL) {
2958 		dt_free(dtp, buf);
2959 		return (-1);
2960 	}
2961 	buf->dtbd_size = size;
2962 	buf->dtbd_cpu = cpu;
2963 
2964 #ifdef illumos
2965 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2966 #else
2967 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2968 #endif
2969 		/*
2970 		 * If we failed with ENOENT, it may be because the
2971 		 * CPU was unconfigured -- this is okay.  Any other
2972 		 * error, however, is unexpected.
2973 		 */
2974 		if (errno == ENOENT) {
2975 			*bufp = NULL;
2976 			rval = 0;
2977 		} else
2978 			rval = dt_set_errno(dtp, errno);
2979 
2980 		dt_put_buf(dtp, buf);
2981 		return (rval);
2982 	}
2983 
2984 	error = dt_unring_buf(dtp, buf);
2985 	if (error != 0) {
2986 		dt_put_buf(dtp, buf);
2987 		return (error);
2988 	}
2989 	dt_realloc_buf(dtp, buf, size);
2990 
2991 	*bufp = buf;
2992 	return (0);
2993 }
2994 
2995 typedef struct dt_begin {
2996 	dtrace_consume_probe_f *dtbgn_probefunc;
2997 	dtrace_consume_rec_f *dtbgn_recfunc;
2998 	void *dtbgn_arg;
2999 	dtrace_handle_err_f *dtbgn_errhdlr;
3000 	void *dtbgn_errarg;
3001 	int dtbgn_beginonly;
3002 } dt_begin_t;
3003 
3004 static int
3005 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
3006 {
3007 	dt_begin_t *begin = arg;
3008 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
3009 
3010 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3011 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3012 
3013 	if (begin->dtbgn_beginonly) {
3014 		if (!(r1 && r2))
3015 			return (DTRACE_CONSUME_NEXT);
3016 	} else {
3017 		if (r1 && r2)
3018 			return (DTRACE_CONSUME_NEXT);
3019 	}
3020 
3021 	/*
3022 	 * We have a record that we're interested in.  Now call the underlying
3023 	 * probe function...
3024 	 */
3025 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
3026 }
3027 
3028 static int
3029 dt_consume_begin_record(const dtrace_probedata_t *data,
3030     const dtrace_recdesc_t *rec, void *arg)
3031 {
3032 	dt_begin_t *begin = arg;
3033 
3034 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
3035 }
3036 
3037 static int
3038 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
3039 {
3040 	dt_begin_t *begin = (dt_begin_t *)arg;
3041 	dtrace_probedesc_t *pd = data->dteda_pdesc;
3042 
3043 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3044 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3045 
3046 	if (begin->dtbgn_beginonly) {
3047 		if (!(r1 && r2))
3048 			return (DTRACE_HANDLE_OK);
3049 	} else {
3050 		if (r1 && r2)
3051 			return (DTRACE_HANDLE_OK);
3052 	}
3053 
3054 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
3055 }
3056 
3057 static int
3058 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
3059     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3060 {
3061 	/*
3062 	 * There's this idea that the BEGIN probe should be processed before
3063 	 * everything else, and that the END probe should be processed after
3064 	 * anything else.  In the common case, this is pretty easy to deal
3065 	 * with.  However, a situation may arise where the BEGIN enabling and
3066 	 * END enabling are on the same CPU, and some enabling in the middle
3067 	 * occurred on a different CPU.  To deal with this (blech!) we need to
3068 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
3069 	 * then set it aside.  We will then process every other CPU, and then
3070 	 * we'll return to the BEGIN CPU and process the rest of the data
3071 	 * (which will inevitably include the END probe, if any).  Making this
3072 	 * even more complicated (!) is the library's ERROR enabling.  Because
3073 	 * this enabling is processed before we even get into the consume call
3074 	 * back, any ERROR firing would result in the library's ERROR enabling
3075 	 * being processed twice -- once in our first pass (for BEGIN probes),
3076 	 * and again in our second pass (for everything but BEGIN probes).  To
3077 	 * deal with this, we interpose on the ERROR handler to assure that we
3078 	 * only process ERROR enablings induced by BEGIN enablings in the
3079 	 * first pass, and that we only process ERROR enablings _not_ induced
3080 	 * by BEGIN enablings in the second pass.
3081 	 */
3082 
3083 	dt_begin_t begin;
3084 	processorid_t cpu = dtp->dt_beganon;
3085 	int rval, i;
3086 	static int max_ncpus;
3087 	dtrace_bufdesc_t *buf;
3088 
3089 	dtp->dt_beganon = -1;
3090 
3091 	if (dt_get_buf(dtp, cpu, &buf) != 0)
3092 		return (-1);
3093 	if (buf == NULL)
3094 		return (0);
3095 
3096 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
3097 		/*
3098 		 * This is the simple case.  We're either not stopped, or if
3099 		 * we are, we actually processed any END probes on another
3100 		 * CPU.  We can simply consume this buffer and return.
3101 		 */
3102 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3103 		    pf, rf, arg);
3104 		dt_put_buf(dtp, buf);
3105 		return (rval);
3106 	}
3107 
3108 	begin.dtbgn_probefunc = pf;
3109 	begin.dtbgn_recfunc = rf;
3110 	begin.dtbgn_arg = arg;
3111 	begin.dtbgn_beginonly = 1;
3112 
3113 	/*
3114 	 * We need to interpose on the ERROR handler to be sure that we
3115 	 * only process ERRORs induced by BEGIN.
3116 	 */
3117 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
3118 	begin.dtbgn_errarg = dtp->dt_errarg;
3119 	dtp->dt_errhdlr = dt_consume_begin_error;
3120 	dtp->dt_errarg = &begin;
3121 
3122 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3123 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3124 
3125 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3126 	dtp->dt_errarg = begin.dtbgn_errarg;
3127 
3128 	if (rval != 0) {
3129 		dt_put_buf(dtp, buf);
3130 		return (rval);
3131 	}
3132 
3133 	if (max_ncpus == 0)
3134 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3135 
3136 	for (i = 0; i < max_ncpus; i++) {
3137 		dtrace_bufdesc_t *nbuf;
3138 		if (i == cpu)
3139 			continue;
3140 
3141 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
3142 			dt_put_buf(dtp, buf);
3143 			return (-1);
3144 		}
3145 		if (nbuf == NULL)
3146 			continue;
3147 
3148 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
3149 		    pf, rf, arg);
3150 		dt_put_buf(dtp, nbuf);
3151 		if (rval != 0) {
3152 			dt_put_buf(dtp, buf);
3153 			return (rval);
3154 		}
3155 	}
3156 
3157 	/*
3158 	 * Okay -- we're done with the other buffers.  Now we want to
3159 	 * reconsume the first buffer -- but this time we're looking for
3160 	 * everything _but_ BEGIN.  And of course, in order to only consume
3161 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
3162 	 * ERROR interposition function...
3163 	 */
3164 	begin.dtbgn_beginonly = 0;
3165 
3166 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
3167 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
3168 	dtp->dt_errhdlr = dt_consume_begin_error;
3169 	dtp->dt_errarg = &begin;
3170 
3171 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3172 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3173 
3174 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3175 	dtp->dt_errarg = begin.dtbgn_errarg;
3176 
3177 	return (rval);
3178 }
3179 
3180 /* ARGSUSED */
3181 static uint64_t
3182 dt_buf_oldest(void *elem, void *arg)
3183 {
3184 	dtrace_bufdesc_t *buf = elem;
3185 	size_t offs = buf->dtbd_oldest;
3186 
3187 	while (offs < buf->dtbd_size) {
3188 		dtrace_rechdr_t *dtrh =
3189 		    /* LINTED - alignment */
3190 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
3191 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
3192 			offs += sizeof (dtrace_epid_t);
3193 		} else {
3194 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
3195 		}
3196 	}
3197 
3198 	/* There are no records left; use the time the buffer was retrieved. */
3199 	return (buf->dtbd_timestamp);
3200 }
3201 
3202 int
3203 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
3204     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3205 {
3206 	dtrace_optval_t size;
3207 	static int max_ncpus;
3208 	int i, rval;
3209 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
3210 	hrtime_t now = gethrtime();
3211 
3212 	if (dtp->dt_lastswitch != 0) {
3213 		if (now - dtp->dt_lastswitch < interval)
3214 			return (0);
3215 
3216 		dtp->dt_lastswitch += interval;
3217 	} else {
3218 		dtp->dt_lastswitch = now;
3219 	}
3220 
3221 	if (!dtp->dt_active)
3222 		return (dt_set_errno(dtp, EINVAL));
3223 
3224 	if (max_ncpus == 0)
3225 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3226 
3227 	if (pf == NULL)
3228 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
3229 
3230 	if (rf == NULL)
3231 		rf = (dtrace_consume_rec_f *)dt_nullrec;
3232 
3233 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
3234 		/*
3235 		 * The output will not be in the order it was traced.  Rather,
3236 		 * we will consume all of the data from each CPU's buffer in
3237 		 * turn.  We apply special handling for the records from BEGIN
3238 		 * and END probes so that they are consumed first and last,
3239 		 * respectively.
3240 		 *
3241 		 * If we have just begun, we want to first process the CPU that
3242 		 * executed the BEGIN probe (if any).
3243 		 */
3244 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
3245 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
3246 			return (rval);
3247 
3248 		for (i = 0; i < max_ncpus; i++) {
3249 			dtrace_bufdesc_t *buf;
3250 
3251 			/*
3252 			 * If we have stopped, we want to process the CPU on
3253 			 * which the END probe was processed only _after_ we
3254 			 * have processed everything else.
3255 			 */
3256 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
3257 				continue;
3258 
3259 			if (dt_get_buf(dtp, i, &buf) != 0)
3260 				return (-1);
3261 			if (buf == NULL)
3262 				continue;
3263 
3264 			dtp->dt_flow = 0;
3265 			dtp->dt_indent = 0;
3266 			dtp->dt_prefix = NULL;
3267 			rval = dt_consume_cpu(dtp, fp, i,
3268 			    buf, B_FALSE, pf, rf, arg);
3269 			dt_put_buf(dtp, buf);
3270 			if (rval != 0)
3271 				return (rval);
3272 		}
3273 		if (dtp->dt_stopped) {
3274 			dtrace_bufdesc_t *buf;
3275 
3276 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
3277 				return (-1);
3278 			if (buf == NULL)
3279 				return (0);
3280 
3281 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
3282 			    buf, B_FALSE, pf, rf, arg);
3283 			dt_put_buf(dtp, buf);
3284 			return (rval);
3285 		}
3286 	} else {
3287 		/*
3288 		 * The output will be in the order it was traced (or for
3289 		 * speculations, when it was committed).  We retrieve a buffer
3290 		 * from each CPU and put it into a priority queue, which sorts
3291 		 * based on the first entry in the buffer.  This is sufficient
3292 		 * because entries within a buffer are already sorted.
3293 		 *
3294 		 * We then consume records one at a time, always consuming the
3295 		 * oldest record, as determined by the priority queue.  When
3296 		 * we reach the end of the time covered by these buffers,
3297 		 * we need to stop and retrieve more records on the next pass.
3298 		 * The kernel tells us the time covered by each buffer, in
3299 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
3300 		 * time covered by all buffers, as subsequently retrieved
3301 		 * buffers will cover to a more recent time.
3302 		 */
3303 
3304 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3305 		uint64_t first_timestamp = 0;
3306 		uint_t cookie = 0;
3307 		dtrace_bufdesc_t *buf;
3308 
3309 		bzero(drops, max_ncpus * sizeof (uint64_t));
3310 
3311 		if (dtp->dt_bufq == NULL) {
3312 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3313 			    dt_buf_oldest, NULL);
3314 			if (dtp->dt_bufq == NULL) /* ENOMEM */
3315 				return (-1);
3316 		}
3317 
3318 		/* Retrieve data from each CPU. */
3319 		(void) dtrace_getopt(dtp, "bufsize", &size);
3320 		for (i = 0; i < max_ncpus; i++) {
3321 			dtrace_bufdesc_t *buf;
3322 
3323 			if (dt_get_buf(dtp, i, &buf) != 0)
3324 				return (-1);
3325 			if (buf != NULL) {
3326 				if (first_timestamp == 0)
3327 					first_timestamp = buf->dtbd_timestamp;
3328 				assert(buf->dtbd_timestamp >= first_timestamp);
3329 
3330 				dt_pq_insert(dtp->dt_bufq, buf);
3331 				drops[i] = buf->dtbd_drops;
3332 				buf->dtbd_drops = 0;
3333 			}
3334 		}
3335 
3336 		/* Consume records. */
3337 		for (;;) {
3338 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3339 			uint64_t timestamp;
3340 
3341 			if (buf == NULL)
3342 				break;
3343 
3344 			timestamp = dt_buf_oldest(buf, dtp);
3345 			assert(timestamp >= dtp->dt_last_timestamp);
3346 			dtp->dt_last_timestamp = timestamp;
3347 
3348 			if (timestamp == buf->dtbd_timestamp) {
3349 				/*
3350 				 * We've reached the end of the time covered
3351 				 * by this buffer.  If this is the oldest
3352 				 * buffer, we must do another pass
3353 				 * to retrieve more data.
3354 				 */
3355 				dt_put_buf(dtp, buf);
3356 				if (timestamp == first_timestamp &&
3357 				    !dtp->dt_stopped)
3358 					break;
3359 				continue;
3360 			}
3361 
3362 			if ((rval = dt_consume_cpu(dtp, fp,
3363 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3364 				return (rval);
3365 			dt_pq_insert(dtp->dt_bufq, buf);
3366 		}
3367 
3368 		/* Consume drops. */
3369 		for (i = 0; i < max_ncpus; i++) {
3370 			if (drops[i] != 0) {
3371 				int error = dt_handle_cpudrop(dtp, i,
3372 				    DTRACEDROP_PRINCIPAL, drops[i]);
3373 				if (error != 0)
3374 					return (error);
3375 			}
3376 		}
3377 
3378 		/*
3379 		 * Reduce memory usage by re-allocating smaller buffers
3380 		 * for the "remnants".
3381 		 */
3382 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3383 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3384 	}
3385 
3386 	return (0);
3387 }
3388