xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_consume.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #ifdef illumos
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #ifndef illumos
44 #include <libproc_compat.h>
45 #endif
46 
47 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
48 
49 /*
50  * We declare this here because (1) we need it and (2) we want to avoid a
51  * dependency on libm in libdtrace.
52  */
53 static long double
54 dt_fabsl(long double x)
55 {
56 	if (x < 0)
57 		return (-x);
58 
59 	return (x);
60 }
61 
62 static int
63 dt_ndigits(long long val)
64 {
65 	int rval = 1;
66 	long long cmp = 10;
67 
68 	if (val < 0) {
69 		val = val == INT64_MIN ? INT64_MAX : -val;
70 		rval++;
71 	}
72 
73 	while (val > cmp && cmp > 0) {
74 		rval++;
75 		cmp *= 10;
76 	}
77 
78 	return (rval < 4 ? 4 : rval);
79 }
80 
81 /*
82  * 128-bit arithmetic functions needed to support the stddev() aggregating
83  * action.
84  */
85 static int
86 dt_gt_128(uint64_t *a, uint64_t *b)
87 {
88 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89 }
90 
91 static int
92 dt_ge_128(uint64_t *a, uint64_t *b)
93 {
94 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95 }
96 
97 static int
98 dt_le_128(uint64_t *a, uint64_t *b)
99 {
100 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101 }
102 
103 /*
104  * Shift the 128-bit value in a by b. If b is positive, shift left.
105  * If b is negative, shift right.
106  */
107 static void
108 dt_shift_128(uint64_t *a, int b)
109 {
110 	uint64_t mask;
111 
112 	if (b == 0)
113 		return;
114 
115 	if (b < 0) {
116 		b = -b;
117 		if (b >= 64) {
118 			a[0] = a[1] >> (b - 64);
119 			a[1] = 0;
120 		} else {
121 			a[0] >>= b;
122 			mask = 1LL << (64 - b);
123 			mask -= 1;
124 			a[0] |= ((a[1] & mask) << (64 - b));
125 			a[1] >>= b;
126 		}
127 	} else {
128 		if (b >= 64) {
129 			a[1] = a[0] << (b - 64);
130 			a[0] = 0;
131 		} else {
132 			a[1] <<= b;
133 			mask = a[0] >> (64 - b);
134 			a[1] |= mask;
135 			a[0] <<= b;
136 		}
137 	}
138 }
139 
140 static int
141 dt_nbits_128(uint64_t *a)
142 {
143 	int nbits = 0;
144 	uint64_t tmp[2];
145 	uint64_t zero[2] = { 0, 0 };
146 
147 	tmp[0] = a[0];
148 	tmp[1] = a[1];
149 
150 	dt_shift_128(tmp, -1);
151 	while (dt_gt_128(tmp, zero)) {
152 		dt_shift_128(tmp, -1);
153 		nbits++;
154 	}
155 
156 	return (nbits);
157 }
158 
159 static void
160 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161 {
162 	uint64_t result[2];
163 
164 	result[0] = minuend[0] - subtrahend[0];
165 	result[1] = minuend[1] - subtrahend[1] -
166 	    (minuend[0] < subtrahend[0] ? 1 : 0);
167 
168 	difference[0] = result[0];
169 	difference[1] = result[1];
170 }
171 
172 static void
173 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174 {
175 	uint64_t result[2];
176 
177 	result[0] = addend1[0] + addend2[0];
178 	result[1] = addend1[1] + addend2[1] +
179 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180 
181 	sum[0] = result[0];
182 	sum[1] = result[1];
183 }
184 
185 /*
186  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187  * use native multiplication on those, and then re-combine into the
188  * resulting 128-bit value.
189  *
190  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191  *     hi1 * hi2 << 64 +
192  *     hi1 * lo2 << 32 +
193  *     hi2 * lo1 << 32 +
194  *     lo1 * lo2
195  */
196 static void
197 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198 {
199 	uint64_t hi1, hi2, lo1, lo2;
200 	uint64_t tmp[2];
201 
202 	hi1 = factor1 >> 32;
203 	hi2 = factor2 >> 32;
204 
205 	lo1 = factor1 & DT_MASK_LO;
206 	lo2 = factor2 & DT_MASK_LO;
207 
208 	product[0] = lo1 * lo2;
209 	product[1] = hi1 * hi2;
210 
211 	tmp[0] = hi1 * lo2;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 
216 	tmp[0] = hi2 * lo1;
217 	tmp[1] = 0;
218 	dt_shift_128(tmp, 32);
219 	dt_add_128(product, tmp, product);
220 }
221 
222 /*
223  * This is long-hand division.
224  *
225  * We initialize subtrahend by shifting divisor left as far as possible. We
226  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227  * subtract and set the appropriate bit in the result.  We then shift
228  * subtrahend right by one bit for the next comparison.
229  */
230 static void
231 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232 {
233 	uint64_t result[2] = { 0, 0 };
234 	uint64_t remainder[2];
235 	uint64_t subtrahend[2];
236 	uint64_t divisor_128[2];
237 	uint64_t mask[2] = { 1, 0 };
238 	int log = 0;
239 
240 	assert(divisor != 0);
241 
242 	divisor_128[0] = divisor;
243 	divisor_128[1] = 0;
244 
245 	remainder[0] = dividend[0];
246 	remainder[1] = dividend[1];
247 
248 	subtrahend[0] = divisor;
249 	subtrahend[1] = 0;
250 
251 	while (divisor > 0) {
252 		log++;
253 		divisor >>= 1;
254 	}
255 
256 	dt_shift_128(subtrahend, 128 - log);
257 	dt_shift_128(mask, 128 - log);
258 
259 	while (dt_ge_128(remainder, divisor_128)) {
260 		if (dt_ge_128(remainder, subtrahend)) {
261 			dt_subtract_128(remainder, subtrahend, remainder);
262 			result[0] |= mask[0];
263 			result[1] |= mask[1];
264 		}
265 
266 		dt_shift_128(subtrahend, -1);
267 		dt_shift_128(mask, -1);
268 	}
269 
270 	quotient[0] = result[0];
271 	quotient[1] = result[1];
272 }
273 
274 /*
275  * This is the long-hand method of calculating a square root.
276  * The algorithm is as follows:
277  *
278  * 1. Group the digits by 2 from the right.
279  * 2. Over the leftmost group, find the largest single-digit number
280  *    whose square is less than that group.
281  * 3. Subtract the result of the previous step (2 or 4, depending) and
282  *    bring down the next two-digit group.
283  * 4. For the result R we have so far, find the largest single-digit number
284  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285  *    (Note that this is doubling R and performing a decimal left-shift by 1
286  *    and searching for the appropriate decimal to fill the one's place.)
287  *    The value x is the next digit in the square root.
288  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289  * dealing with integers, so the above is sufficient.)
290  *
291  * In decimal, the square root of 582,734 would be calculated as so:
292  *
293  *     __7__6__3
294  *    | 58 27 34
295  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296  *      --
297  *       9 27    (Subtract and bring down the next group.)
298  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299  *      -----     the square root)
300  *         51 34 (Subtract and bring down the next group.)
301  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302  *         -----  the square root)
303  *          5 65 (remainder)
304  *
305  * The above algorithm applies similarly in binary, but note that the
306  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308  * preceding difference?
309  *
310  * In binary, the square root of 11011011 would be calculated as so:
311  *
312  *     __1__1__1__0
313  *    | 11 01 10 11
314  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315  *      --
316  *      10 01 10 11
317  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318  *      -----
319  *       1 00 10 11
320  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321  *       -------
322  *          1 01 11
323  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324  *
325  */
326 static uint64_t
327 dt_sqrt_128(uint64_t *square)
328 {
329 	uint64_t result[2] = { 0, 0 };
330 	uint64_t diff[2] = { 0, 0 };
331 	uint64_t one[2] = { 1, 0 };
332 	uint64_t next_pair[2];
333 	uint64_t next_try[2];
334 	uint64_t bit_pairs, pair_shift;
335 	int i;
336 
337 	bit_pairs = dt_nbits_128(square) / 2;
338 	pair_shift = bit_pairs * 2;
339 
340 	for (i = 0; i <= bit_pairs; i++) {
341 		/*
342 		 * Bring down the next pair of bits.
343 		 */
344 		next_pair[0] = square[0];
345 		next_pair[1] = square[1];
346 		dt_shift_128(next_pair, -pair_shift);
347 		next_pair[0] &= 0x3;
348 		next_pair[1] = 0;
349 
350 		dt_shift_128(diff, 2);
351 		dt_add_128(diff, next_pair, diff);
352 
353 		/*
354 		 * next_try = R << 2 + 1
355 		 */
356 		next_try[0] = result[0];
357 		next_try[1] = result[1];
358 		dt_shift_128(next_try, 2);
359 		dt_add_128(next_try, one, next_try);
360 
361 		if (dt_le_128(next_try, diff)) {
362 			dt_subtract_128(diff, next_try, diff);
363 			dt_shift_128(result, 1);
364 			dt_add_128(result, one, result);
365 		} else {
366 			dt_shift_128(result, 1);
367 		}
368 
369 		pair_shift -= 2;
370 	}
371 
372 	assert(result[1] == 0);
373 
374 	return (result[0]);
375 }
376 
377 uint64_t
378 dt_stddev(uint64_t *data, uint64_t normal)
379 {
380 	uint64_t avg_of_squares[2];
381 	uint64_t square_of_avg[2];
382 	int64_t norm_avg;
383 	uint64_t diff[2];
384 
385 	if (data[0] == 0)
386 		return (0);
387 
388 	/*
389 	 * The standard approximation for standard deviation is
390 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391 	 * of the average of the squares minus the square of the average.
392 	 */
393 	dt_divide_128(data + 2, normal, avg_of_squares);
394 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
395 
396 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
397 
398 	if (norm_avg < 0)
399 		norm_avg = -norm_avg;
400 
401 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
402 
403 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
404 
405 	return (dt_sqrt_128(diff));
406 }
407 
408 static int
409 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
410     dtrace_bufdesc_t *buf, size_t offs)
411 {
412 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
413 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
414 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
415 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
416 	const char *str = NULL;
417 	static const char *e_str[2] = { " -> ", " => " };
418 	static const char *r_str[2] = { " <- ", " <= " };
419 	static const char *ent = "entry", *ret = "return";
420 	static int entlen = 0, retlen = 0;
421 	dtrace_epid_t next, id = epd->dtepd_epid;
422 	int rval;
423 
424 	if (entlen == 0) {
425 		assert(retlen == 0);
426 		entlen = strlen(ent);
427 		retlen = strlen(ret);
428 	}
429 
430 	/*
431 	 * If the name of the probe is "entry" or ends with "-entry", we
432 	 * treat it as an entry; if it is "return" or ends with "-return",
433 	 * we treat it as a return.  (This allows application-provided probes
434 	 * like "method-entry" or "function-entry" to participate in flow
435 	 * indentation -- without accidentally misinterpreting popular probe
436 	 * names like "carpentry", "gentry" or "Coventry".)
437 	 */
438 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
439 	    (sub == n || sub[-1] == '-')) {
440 		flow = DTRACEFLOW_ENTRY;
441 		str = e_str[strcmp(p, "syscall") == 0];
442 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
443 	    (sub == n || sub[-1] == '-')) {
444 		flow = DTRACEFLOW_RETURN;
445 		str = r_str[strcmp(p, "syscall") == 0];
446 	}
447 
448 	/*
449 	 * If we're going to indent this, we need to check the ID of our last
450 	 * call.  If we're looking at the same probe ID but a different EPID,
451 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
452 	 * this scheme -- it's a heuristic.)
453 	 */
454 	if (flow == DTRACEFLOW_ENTRY) {
455 		if ((last != DTRACE_EPIDNONE && id != last &&
456 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
457 			flow = DTRACEFLOW_NONE;
458 	}
459 
460 	/*
461 	 * If we're going to unindent this, it's more difficult to see if
462 	 * we don't actually want to unindent it -- we need to look at the
463 	 * _next_ EPID.
464 	 */
465 	if (flow == DTRACEFLOW_RETURN) {
466 		offs += epd->dtepd_size;
467 
468 		do {
469 			if (offs >= buf->dtbd_size)
470 				goto out;
471 
472 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
473 
474 			if (next == DTRACE_EPIDNONE)
475 				offs += sizeof (id);
476 		} while (next == DTRACE_EPIDNONE);
477 
478 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
479 			return (rval);
480 
481 		if (next != id && npd->dtpd_id == pd->dtpd_id)
482 			flow = DTRACEFLOW_NONE;
483 	}
484 
485 out:
486 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
487 		data->dtpda_prefix = str;
488 	} else {
489 		data->dtpda_prefix = "| ";
490 	}
491 
492 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
493 		data->dtpda_indent -= 2;
494 
495 	data->dtpda_flow = flow;
496 
497 	return (0);
498 }
499 
500 static int
501 dt_nullprobe()
502 {
503 	return (DTRACE_CONSUME_THIS);
504 }
505 
506 static int
507 dt_nullrec()
508 {
509 	return (DTRACE_CONSUME_NEXT);
510 }
511 
512 static void
513 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
514 {
515 	long double val = dt_fabsl((long double)datum);
516 
517 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
518 		*total += val;
519 		return;
520 	}
521 
522 	/*
523 	 * If we're zooming in on an aggregation, we want the height of the
524 	 * highest value to be approximately 95% of total bar height -- so we
525 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
526 	 * our highest value.
527 	 */
528 	val *= 1 / DTRACE_AGGZOOM_MAX;
529 
530 	if (*total < val)
531 		*total = val;
532 }
533 
534 static int
535 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
536 {
537 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
538 	    width ? width : 16, width ? "key" : "value",
539 	    "------------- Distribution -------------", "count"));
540 }
541 
542 static int
543 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
544     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
545 {
546 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
547 	int minwidth, maxwidth, i;
548 
549 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
550 
551 	if (action == DTRACEAGG_QUANTIZE) {
552 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
553 			min--;
554 
555 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
556 			max++;
557 
558 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
559 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
560 	} else {
561 		maxwidth = 8;
562 		minwidth = maxwidth - 1;
563 		max++;
564 	}
565 
566 	if (dt_printf(dtp, fp, "\n%*s %*s .",
567 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
568 		return (-1);
569 
570 	for (i = min; i <= max; i++) {
571 		if (dt_printf(dtp, fp, "-") < 0)
572 			return (-1);
573 	}
574 
575 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
576 }
577 
578 /*
579  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
580  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
581  * 3-byte UTF-8 sequences.
582  */
583 #define	DTRACE_AGGUTF8_FULL	0x2588
584 #define	DTRACE_AGGUTF8_BASE	0x258f
585 #define	DTRACE_AGGUTF8_LEVELS	8
586 
587 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
588 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
589 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
590 
591 static int
592 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
593     uint64_t normal, long double total)
594 {
595 	uint_t len = 40, i, whole, partial;
596 	long double f = (dt_fabsl((long double)val) * len) / total;
597 	const char *spaces = "                                        ";
598 
599 	whole = (uint_t)f;
600 	partial = (uint_t)((f - (long double)(uint_t)f) *
601 	    (long double)DTRACE_AGGUTF8_LEVELS);
602 
603 	if (dt_printf(dtp, fp, "|") < 0)
604 		return (-1);
605 
606 	for (i = 0; i < whole; i++) {
607 		if (dt_printf(dtp, fp, "%c%c%c",
608 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
609 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
610 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
611 			return (-1);
612 	}
613 
614 	if (partial != 0) {
615 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
616 
617 		if (dt_printf(dtp, fp, "%c%c%c",
618 		    DTRACE_AGGUTF8_BYTE0(partial),
619 		    DTRACE_AGGUTF8_BYTE1(partial),
620 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
621 			return (-1);
622 
623 		i++;
624 	}
625 
626 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
627 	    (long long)val / normal));
628 }
629 
630 static int
631 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
632     uint64_t normal, long double total, char positives, char negatives)
633 {
634 	long double f;
635 	uint_t depth, len = 40;
636 
637 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
638 	const char *spaces = "                                        ";
639 
640 	assert(strlen(ats) == len && strlen(spaces) == len);
641 	assert(!(total == 0 && (positives || negatives)));
642 	assert(!(val < 0 && !negatives));
643 	assert(!(val > 0 && !positives));
644 	assert(!(val != 0 && total == 0));
645 
646 	if (!negatives) {
647 		if (positives) {
648 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
649 				return (dt_print_quantline_utf8(dtp, fp, val,
650 				    normal, total));
651 			}
652 
653 			f = (dt_fabsl((long double)val) * len) / total;
654 			depth = (uint_t)(f + 0.5);
655 		} else {
656 			depth = 0;
657 		}
658 
659 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
660 		    spaces + depth, (long long)val / normal));
661 	}
662 
663 	if (!positives) {
664 		f = (dt_fabsl((long double)val) * len) / total;
665 		depth = (uint_t)(f + 0.5);
666 
667 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
668 		    ats + len - depth, (long long)val / normal));
669 	}
670 
671 	/*
672 	 * If we're here, we have both positive and negative bucket values.
673 	 * To express this graphically, we're going to generate both positive
674 	 * and negative bars separated by a centerline.  These bars are half
675 	 * the size of normal quantize()/lquantize() bars, so we divide the
676 	 * length in half before calculating the bar length.
677 	 */
678 	len /= 2;
679 	ats = &ats[len];
680 	spaces = &spaces[len];
681 
682 	f = (dt_fabsl((long double)val) * len) / total;
683 	depth = (uint_t)(f + 0.5);
684 
685 	if (val <= 0) {
686 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
687 		    ats + len - depth, len, "", (long long)val / normal));
688 	} else {
689 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
690 		    ats + len - depth, spaces + depth,
691 		    (long long)val / normal));
692 	}
693 }
694 
695 /*
696  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
697  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
698  * aggregation.
699  */
700 #define	DTRACE_AGGPACK_BASE	0x2581
701 #define	DTRACE_AGGPACK_LEVELS	8
702 
703 static int
704 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
705     long double datum, long double total)
706 {
707 	static boolean_t utf8_checked = B_FALSE;
708 	static boolean_t utf8;
709 	char *ascii = "__xxxxXX";
710 	char *neg = "vvvvVV";
711 	unsigned int len;
712 	long double val;
713 
714 	if (!utf8_checked) {
715 		char *term;
716 
717 		/*
718 		 * We want to determine if we can reasonably emit UTF-8 for our
719 		 * packed aggregation.  To do this, we will check for terminals
720 		 * that are known to be primitive to emit UTF-8 on these.
721 		 */
722 		utf8_checked = B_TRUE;
723 
724 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
725 			utf8 = B_FALSE;
726 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
727 			utf8 = B_TRUE;
728 		} else if ((term = getenv("TERM")) != NULL &&
729 		    (strcmp(term, "sun") == 0 ||
730 		    strcmp(term, "sun-color") == 0 ||
731 		    strcmp(term, "dumb") == 0)) {
732 			utf8 = B_FALSE;
733 		} else {
734 			utf8 = B_TRUE;
735 		}
736 	}
737 
738 	if (datum == 0)
739 		return (dt_printf(dtp, fp, " "));
740 
741 	if (datum < 0) {
742 		len = strlen(neg);
743 		val = dt_fabsl(datum * (len - 1)) / total;
744 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
745 	}
746 
747 	if (utf8) {
748 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
749 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
750 
751 		return (dt_printf(dtp, fp, "%c%c%c",
752 		    DTRACE_AGGUTF8_BYTE0(block),
753 		    DTRACE_AGGUTF8_BYTE1(block),
754 		    DTRACE_AGGUTF8_BYTE2(block)));
755 	}
756 
757 	len = strlen(ascii);
758 	val = (datum * (len - 1)) / total;
759 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
760 }
761 
762 int
763 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
764     size_t size, uint64_t normal)
765 {
766 	const int64_t *data = addr;
767 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
768 	long double total = 0;
769 	char positives = 0, negatives = 0;
770 
771 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
772 		return (dt_set_errno(dtp, EDT_DMISMATCH));
773 
774 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
775 		first_bin++;
776 
777 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
778 		/*
779 		 * There isn't any data.  This is possible if the aggregation
780 		 * has been clear()'d or if negative increment values have been
781 		 * used.  Regardless, we'll print the buckets around 0.
782 		 */
783 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
784 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
785 	} else {
786 		if (first_bin > 0)
787 			first_bin--;
788 
789 		while (last_bin > 0 && data[last_bin] == 0)
790 			last_bin--;
791 
792 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
793 			last_bin++;
794 	}
795 
796 	for (i = first_bin; i <= last_bin; i++) {
797 		positives |= (data[i] > 0);
798 		negatives |= (data[i] < 0);
799 		dt_quantize_total(dtp, data[i], &total);
800 	}
801 
802 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
803 		return (-1);
804 
805 	for (i = first_bin; i <= last_bin; i++) {
806 		if (dt_printf(dtp, fp, "%16lld ",
807 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
808 			return (-1);
809 
810 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
811 		    positives, negatives) < 0)
812 			return (-1);
813 	}
814 
815 	return (0);
816 }
817 
818 int
819 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
820     size_t size, const dtrace_aggdata_t *aggdata)
821 {
822 	const int64_t *data = addr;
823 	long double total = 0, count = 0;
824 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
825 	int64_t minval, maxval;
826 
827 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
828 		return (dt_set_errno(dtp, EDT_DMISMATCH));
829 
830 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
831 		min--;
832 
833 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
834 		max++;
835 
836 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
837 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
838 
839 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
840 	    (long long)minval) < 0)
841 		return (-1);
842 
843 	for (i = min; i <= max; i++) {
844 		dt_quantize_total(dtp, data[i], &total);
845 		count += data[i];
846 	}
847 
848 	for (i = min; i <= max; i++) {
849 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
850 			return (-1);
851 	}
852 
853 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
854 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
855 		return (-1);
856 
857 	return (0);
858 }
859 
860 int
861 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
862     size_t size, uint64_t normal)
863 {
864 	const int64_t *data = addr;
865 	int i, first_bin, last_bin, base;
866 	uint64_t arg;
867 	long double total = 0;
868 	uint16_t step, levels;
869 	char positives = 0, negatives = 0;
870 
871 	if (size < sizeof (uint64_t))
872 		return (dt_set_errno(dtp, EDT_DMISMATCH));
873 
874 	arg = *data++;
875 	size -= sizeof (uint64_t);
876 
877 	base = DTRACE_LQUANTIZE_BASE(arg);
878 	step = DTRACE_LQUANTIZE_STEP(arg);
879 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
880 
881 	first_bin = 0;
882 	last_bin = levels + 1;
883 
884 	if (size != sizeof (uint64_t) * (levels + 2))
885 		return (dt_set_errno(dtp, EDT_DMISMATCH));
886 
887 	while (first_bin <= levels + 1 && data[first_bin] == 0)
888 		first_bin++;
889 
890 	if (first_bin > levels + 1) {
891 		first_bin = 0;
892 		last_bin = 2;
893 	} else {
894 		if (first_bin > 0)
895 			first_bin--;
896 
897 		while (last_bin > 0 && data[last_bin] == 0)
898 			last_bin--;
899 
900 		if (last_bin < levels + 1)
901 			last_bin++;
902 	}
903 
904 	for (i = first_bin; i <= last_bin; i++) {
905 		positives |= (data[i] > 0);
906 		negatives |= (data[i] < 0);
907 		dt_quantize_total(dtp, data[i], &total);
908 	}
909 
910 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
911 	    "------------- Distribution -------------", "count") < 0)
912 		return (-1);
913 
914 	for (i = first_bin; i <= last_bin; i++) {
915 		char c[32];
916 		int err;
917 
918 		if (i == 0) {
919 			(void) snprintf(c, sizeof (c), "< %d", base);
920 			err = dt_printf(dtp, fp, "%16s ", c);
921 		} else if (i == levels + 1) {
922 			(void) snprintf(c, sizeof (c), ">= %d",
923 			    base + (levels * step));
924 			err = dt_printf(dtp, fp, "%16s ", c);
925 		} else {
926 			err = dt_printf(dtp, fp, "%16d ",
927 			    base + (i - 1) * step);
928 		}
929 
930 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
931 		    total, positives, negatives) < 0)
932 			return (-1);
933 	}
934 
935 	return (0);
936 }
937 
938 /*ARGSUSED*/
939 int
940 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
941     size_t size, const dtrace_aggdata_t *aggdata)
942 {
943 	const int64_t *data = addr;
944 	long double total = 0, count = 0;
945 	int min, max, base, err;
946 	uint64_t arg;
947 	uint16_t step, levels;
948 	char c[32];
949 	unsigned int i;
950 
951 	if (size < sizeof (uint64_t))
952 		return (dt_set_errno(dtp, EDT_DMISMATCH));
953 
954 	arg = *data++;
955 	size -= sizeof (uint64_t);
956 
957 	base = DTRACE_LQUANTIZE_BASE(arg);
958 	step = DTRACE_LQUANTIZE_STEP(arg);
959 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
960 
961 	if (size != sizeof (uint64_t) * (levels + 2))
962 		return (dt_set_errno(dtp, EDT_DMISMATCH));
963 
964 	min = 0;
965 	max = levels + 1;
966 
967 	if (min == 0) {
968 		(void) snprintf(c, sizeof (c), "< %d", base);
969 		err = dt_printf(dtp, fp, "%8s :", c);
970 	} else {
971 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
972 	}
973 
974 	if (err < 0)
975 		return (-1);
976 
977 	for (i = min; i <= max; i++) {
978 		dt_quantize_total(dtp, data[i], &total);
979 		count += data[i];
980 	}
981 
982 	for (i = min; i <= max; i++) {
983 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
984 			return (-1);
985 	}
986 
987 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
988 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
989 }
990 
991 int
992 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
993     size_t size, uint64_t normal)
994 {
995 	int i, first_bin, last_bin, bin = 1, order, levels;
996 	uint16_t factor, low, high, nsteps;
997 	const int64_t *data = addr;
998 	int64_t value = 1, next, step;
999 	char positives = 0, negatives = 0;
1000 	long double total = 0;
1001 	uint64_t arg;
1002 	char c[32];
1003 
1004 	if (size < sizeof (uint64_t))
1005 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1006 
1007 	arg = *data++;
1008 	size -= sizeof (uint64_t);
1009 
1010 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1011 	low = DTRACE_LLQUANTIZE_LOW(arg);
1012 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1013 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1014 
1015 	/*
1016 	 * We don't expect to be handed invalid llquantize() parameters here,
1017 	 * but sanity check them (to a degree) nonetheless.
1018 	 */
1019 	if (size > INT32_MAX || factor < 2 || low >= high ||
1020 	    nsteps == 0 || factor > nsteps)
1021 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1022 
1023 	levels = (int)size / sizeof (uint64_t);
1024 
1025 	first_bin = 0;
1026 	last_bin = levels - 1;
1027 
1028 	while (first_bin < levels && data[first_bin] == 0)
1029 		first_bin++;
1030 
1031 	if (first_bin == levels) {
1032 		first_bin = 0;
1033 		last_bin = 1;
1034 	} else {
1035 		if (first_bin > 0)
1036 			first_bin--;
1037 
1038 		while (last_bin > 0 && data[last_bin] == 0)
1039 			last_bin--;
1040 
1041 		if (last_bin < levels - 1)
1042 			last_bin++;
1043 	}
1044 
1045 	for (i = first_bin; i <= last_bin; i++) {
1046 		positives |= (data[i] > 0);
1047 		negatives |= (data[i] < 0);
1048 		dt_quantize_total(dtp, data[i], &total);
1049 	}
1050 
1051 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1052 	    "------------- Distribution -------------", "count") < 0)
1053 		return (-1);
1054 
1055 	for (order = 0; order < low; order++)
1056 		value *= factor;
1057 
1058 	next = value * factor;
1059 	step = next > nsteps ? next / nsteps : 1;
1060 
1061 	if (first_bin == 0) {
1062 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1063 
1064 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1065 			return (-1);
1066 
1067 		if (dt_print_quantline(dtp, fp, data[0], normal,
1068 		    total, positives, negatives) < 0)
1069 			return (-1);
1070 	}
1071 
1072 	while (order <= high) {
1073 		if (bin >= first_bin && bin <= last_bin) {
1074 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1075 				return (-1);
1076 
1077 			if (dt_print_quantline(dtp, fp, data[bin],
1078 			    normal, total, positives, negatives) < 0)
1079 				return (-1);
1080 		}
1081 
1082 		assert(value < next);
1083 		bin++;
1084 
1085 		if ((value += step) != next)
1086 			continue;
1087 
1088 		next = value * factor;
1089 		step = next > nsteps ? next / nsteps : 1;
1090 		order++;
1091 	}
1092 
1093 	if (last_bin < bin)
1094 		return (0);
1095 
1096 	assert(last_bin == bin);
1097 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1098 
1099 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1100 		return (-1);
1101 
1102 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1103 	    total, positives, negatives));
1104 }
1105 
1106 /*ARGSUSED*/
1107 static int
1108 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1109     size_t size, uint64_t normal)
1110 {
1111 	/* LINTED - alignment */
1112 	int64_t *data = (int64_t *)addr;
1113 
1114 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1115 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1116 }
1117 
1118 /*ARGSUSED*/
1119 static int
1120 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1121     size_t size, uint64_t normal)
1122 {
1123 	/* LINTED - alignment */
1124 	uint64_t *data = (uint64_t *)addr;
1125 
1126 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1127 	    (unsigned long long) dt_stddev(data, normal) : 0));
1128 }
1129 
1130 /*ARGSUSED*/
1131 static int
1132 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1133     size_t nbytes, int width, int quiet, int forceraw)
1134 {
1135 	/*
1136 	 * If the byte stream is a series of printable characters, followed by
1137 	 * a terminating byte, we print it out as a string.  Otherwise, we
1138 	 * assume that it's something else and just print the bytes.
1139 	 */
1140 	int i, j, margin = 5;
1141 	char *c = (char *)addr;
1142 
1143 	if (nbytes == 0)
1144 		return (0);
1145 
1146 	if (forceraw)
1147 		goto raw;
1148 
1149 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1150 		goto raw;
1151 
1152 	for (i = 0; i < nbytes; i++) {
1153 		/*
1154 		 * We define a "printable character" to be one for which
1155 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1156 		 * or a character which is either backspace or the bell.
1157 		 * Backspace and the bell are regrettably special because
1158 		 * they fail the first two tests -- and yet they are entirely
1159 		 * printable.  These are the only two control characters that
1160 		 * have meaning for the terminal and for which isprint(3C) and
1161 		 * isspace(3C) return 0.
1162 		 */
1163 		if (isprint(c[i]) || isspace(c[i]) ||
1164 		    c[i] == '\b' || c[i] == '\a')
1165 			continue;
1166 
1167 		if (c[i] == '\0' && i > 0) {
1168 			/*
1169 			 * This looks like it might be a string.  Before we
1170 			 * assume that it is indeed a string, check the
1171 			 * remainder of the byte range; if it contains
1172 			 * additional non-nul characters, we'll assume that
1173 			 * it's a binary stream that just happens to look like
1174 			 * a string, and we'll print out the individual bytes.
1175 			 */
1176 			for (j = i + 1; j < nbytes; j++) {
1177 				if (c[j] != '\0')
1178 					break;
1179 			}
1180 
1181 			if (j != nbytes)
1182 				break;
1183 
1184 			if (quiet) {
1185 				return (dt_printf(dtp, fp, "%s", c));
1186 			} else {
1187 				return (dt_printf(dtp, fp, " %s%*s",
1188 				    width < 0 ? " " : "", width, c));
1189 			}
1190 		}
1191 
1192 		break;
1193 	}
1194 
1195 	if (i == nbytes) {
1196 		/*
1197 		 * The byte range is all printable characters, but there is
1198 		 * no trailing nul byte.  We'll assume that it's a string and
1199 		 * print it as such.
1200 		 */
1201 		char *s = alloca(nbytes + 1);
1202 		bcopy(c, s, nbytes);
1203 		s[nbytes] = '\0';
1204 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1205 	}
1206 
1207 raw:
1208 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1209 		return (-1);
1210 
1211 	for (i = 0; i < 16; i++)
1212 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1213 			return (-1);
1214 
1215 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1216 		return (-1);
1217 
1218 
1219 	for (i = 0; i < nbytes; i += 16) {
1220 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1221 			return (-1);
1222 
1223 		for (j = i; j < i + 16 && j < nbytes; j++) {
1224 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1225 				return (-1);
1226 		}
1227 
1228 		while (j++ % 16) {
1229 			if (dt_printf(dtp, fp, "   ") < 0)
1230 				return (-1);
1231 		}
1232 
1233 		if (dt_printf(dtp, fp, "  ") < 0)
1234 			return (-1);
1235 
1236 		for (j = i; j < i + 16 && j < nbytes; j++) {
1237 			if (dt_printf(dtp, fp, "%c",
1238 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1239 				return (-1);
1240 		}
1241 
1242 		if (dt_printf(dtp, fp, "\n") < 0)
1243 			return (-1);
1244 	}
1245 
1246 	return (0);
1247 }
1248 
1249 int
1250 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1251     caddr_t addr, int depth, int size)
1252 {
1253 	dtrace_syminfo_t dts;
1254 	GElf_Sym sym;
1255 	int i, indent;
1256 	char c[PATH_MAX * 2];
1257 	uint64_t pc;
1258 
1259 	if (dt_printf(dtp, fp, "\n") < 0)
1260 		return (-1);
1261 
1262 	if (format == NULL)
1263 		format = "%s";
1264 
1265 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1266 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1267 	else
1268 		indent = _dtrace_stkindent;
1269 
1270 	for (i = 0; i < depth; i++) {
1271 		switch (size) {
1272 		case sizeof (uint32_t):
1273 			/* LINTED - alignment */
1274 			pc = *((uint32_t *)addr);
1275 			break;
1276 
1277 		case sizeof (uint64_t):
1278 			/* LINTED - alignment */
1279 			pc = *((uint64_t *)addr);
1280 			break;
1281 
1282 		default:
1283 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1284 		}
1285 
1286 		if (pc == 0)
1287 			break;
1288 
1289 		addr += size;
1290 
1291 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1292 			return (-1);
1293 
1294 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1295 			if (pc > sym.st_value) {
1296 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1297 				    dts.dts_object, dts.dts_name,
1298 				    (u_longlong_t)(pc - sym.st_value));
1299 			} else {
1300 				(void) snprintf(c, sizeof (c), "%s`%s",
1301 				    dts.dts_object, dts.dts_name);
1302 			}
1303 		} else {
1304 			/*
1305 			 * We'll repeat the lookup, but this time we'll specify
1306 			 * a NULL GElf_Sym -- indicating that we're only
1307 			 * interested in the containing module.
1308 			 */
1309 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1310 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1311 				    dts.dts_object, (u_longlong_t)pc);
1312 			} else {
1313 				(void) snprintf(c, sizeof (c), "0x%llx",
1314 				    (u_longlong_t)pc);
1315 			}
1316 		}
1317 
1318 		if (dt_printf(dtp, fp, format, c) < 0)
1319 			return (-1);
1320 
1321 		if (dt_printf(dtp, fp, "\n") < 0)
1322 			return (-1);
1323 	}
1324 
1325 	return (0);
1326 }
1327 
1328 int
1329 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1330     caddr_t addr, uint64_t arg)
1331 {
1332 	/* LINTED - alignment */
1333 	uint64_t *pc = (uint64_t *)addr;
1334 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1335 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1336 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1337 	const char *str = strsize ? strbase : NULL;
1338 	int err = 0;
1339 
1340 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1341 	struct ps_prochandle *P;
1342 	GElf_Sym sym;
1343 	int i, indent;
1344 	pid_t pid;
1345 
1346 	if (depth == 0)
1347 		return (0);
1348 
1349 	pid = (pid_t)*pc++;
1350 
1351 	if (dt_printf(dtp, fp, "\n") < 0)
1352 		return (-1);
1353 
1354 	if (format == NULL)
1355 		format = "%s";
1356 
1357 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1358 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1359 	else
1360 		indent = _dtrace_stkindent;
1361 
1362 	/*
1363 	 * Ultimately, we need to add an entry point in the library vector for
1364 	 * determining <symbol, offset> from <pid, address>.  For now, if
1365 	 * this is a vector open, we just print the raw address or string.
1366 	 */
1367 	if (dtp->dt_vector == NULL)
1368 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1369 	else
1370 		P = NULL;
1371 
1372 	if (P != NULL)
1373 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1374 
1375 	for (i = 0; i < depth && pc[i] != 0; i++) {
1376 		const prmap_t *map;
1377 
1378 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1379 			break;
1380 
1381 		if (P != NULL && Plookup_by_addr(P, pc[i],
1382 		    name, sizeof (name), &sym) == 0) {
1383 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1384 
1385 			if (pc[i] > sym.st_value) {
1386 				(void) snprintf(c, sizeof (c),
1387 				    "%s`%s+0x%llx", dt_basename(objname), name,
1388 				    (u_longlong_t)(pc[i] - sym.st_value));
1389 			} else {
1390 				(void) snprintf(c, sizeof (c),
1391 				    "%s`%s", dt_basename(objname), name);
1392 			}
1393 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1394 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1395 		    (map->pr_mflags & MA_WRITE)))) {
1396 			/*
1397 			 * If the current string pointer in the string table
1398 			 * does not point to an empty string _and_ the program
1399 			 * counter falls in a writable region, we'll use the
1400 			 * string from the string table instead of the raw
1401 			 * address.  This last condition is necessary because
1402 			 * some (broken) ustack helpers will return a string
1403 			 * even for a program counter that they can't
1404 			 * identify.  If we have a string for a program
1405 			 * counter that falls in a segment that isn't
1406 			 * writable, we assume that we have fallen into this
1407 			 * case and we refuse to use the string.
1408 			 */
1409 			(void) snprintf(c, sizeof (c), "%s", str);
1410 		} else {
1411 			if (P != NULL && Pobjname(P, pc[i], objname,
1412 			    sizeof (objname)) != 0) {
1413 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1414 				    dt_basename(objname), (u_longlong_t)pc[i]);
1415 			} else {
1416 				(void) snprintf(c, sizeof (c), "0x%llx",
1417 				    (u_longlong_t)pc[i]);
1418 			}
1419 		}
1420 
1421 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1422 			break;
1423 
1424 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1425 			break;
1426 
1427 		if (str != NULL && str[0] == '@') {
1428 			/*
1429 			 * If the first character of the string is an "at" sign,
1430 			 * then the string is inferred to be an annotation --
1431 			 * and it is printed out beneath the frame and offset
1432 			 * with brackets.
1433 			 */
1434 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1435 				break;
1436 
1437 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1438 
1439 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1440 				break;
1441 
1442 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1443 				break;
1444 		}
1445 
1446 		if (str != NULL) {
1447 			str += strlen(str) + 1;
1448 			if (str - strbase >= strsize)
1449 				str = NULL;
1450 		}
1451 	}
1452 
1453 	if (P != NULL) {
1454 		dt_proc_unlock(dtp, P);
1455 		dt_proc_release(dtp, P);
1456 	}
1457 
1458 	return (err);
1459 }
1460 
1461 static int
1462 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1463 {
1464 	/* LINTED - alignment */
1465 	uint64_t pid = ((uint64_t *)addr)[0];
1466 	/* LINTED - alignment */
1467 	uint64_t pc = ((uint64_t *)addr)[1];
1468 	const char *format = "  %-50s";
1469 	char *s;
1470 	int n, len = 256;
1471 
1472 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1473 		struct ps_prochandle *P;
1474 
1475 		if ((P = dt_proc_grab(dtp, pid,
1476 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1477 			GElf_Sym sym;
1478 
1479 			dt_proc_lock(dtp, P);
1480 
1481 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1482 				pc = sym.st_value;
1483 
1484 			dt_proc_unlock(dtp, P);
1485 			dt_proc_release(dtp, P);
1486 		}
1487 	}
1488 
1489 	do {
1490 		n = len;
1491 		s = alloca(n);
1492 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1493 
1494 	return (dt_printf(dtp, fp, format, s));
1495 }
1496 
1497 int
1498 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1499 {
1500 	/* LINTED - alignment */
1501 	uint64_t pid = ((uint64_t *)addr)[0];
1502 	/* LINTED - alignment */
1503 	uint64_t pc = ((uint64_t *)addr)[1];
1504 	int err = 0;
1505 
1506 	char objname[PATH_MAX], c[PATH_MAX * 2];
1507 	struct ps_prochandle *P;
1508 
1509 	if (format == NULL)
1510 		format = "  %-50s";
1511 
1512 	/*
1513 	 * See the comment in dt_print_ustack() for the rationale for
1514 	 * printing raw addresses in the vectored case.
1515 	 */
1516 	if (dtp->dt_vector == NULL)
1517 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1518 	else
1519 		P = NULL;
1520 
1521 	if (P != NULL)
1522 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1523 
1524 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1525 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1526 	} else {
1527 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1528 	}
1529 
1530 	err = dt_printf(dtp, fp, format, c);
1531 
1532 	if (P != NULL) {
1533 		dt_proc_unlock(dtp, P);
1534 		dt_proc_release(dtp, P);
1535 	}
1536 
1537 	return (err);
1538 }
1539 
1540 static int
1541 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1542 {
1543 	/* LINTED - alignment */
1544 	uint64_t pc = *((uint64_t *)addr);
1545 	dtrace_syminfo_t dts;
1546 	GElf_Sym sym;
1547 	char c[PATH_MAX * 2];
1548 
1549 	if (format == NULL)
1550 		format = "  %-50s";
1551 
1552 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1553 		(void) snprintf(c, sizeof (c), "%s`%s",
1554 		    dts.dts_object, dts.dts_name);
1555 	} else {
1556 		/*
1557 		 * We'll repeat the lookup, but this time we'll specify a
1558 		 * NULL GElf_Sym -- indicating that we're only interested in
1559 		 * the containing module.
1560 		 */
1561 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1562 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1563 			    dts.dts_object, (u_longlong_t)pc);
1564 		} else {
1565 			(void) snprintf(c, sizeof (c), "0x%llx",
1566 			    (u_longlong_t)pc);
1567 		}
1568 	}
1569 
1570 	if (dt_printf(dtp, fp, format, c) < 0)
1571 		return (-1);
1572 
1573 	return (0);
1574 }
1575 
1576 int
1577 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1578 {
1579 	/* LINTED - alignment */
1580 	uint64_t pc = *((uint64_t *)addr);
1581 	dtrace_syminfo_t dts;
1582 	char c[PATH_MAX * 2];
1583 
1584 	if (format == NULL)
1585 		format = "  %-50s";
1586 
1587 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1588 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1589 	} else {
1590 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1591 	}
1592 
1593 	if (dt_printf(dtp, fp, format, c) < 0)
1594 		return (-1);
1595 
1596 	return (0);
1597 }
1598 
1599 static int
1600 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1601 {
1602 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1603 	size_t nbytes = *((uintptr_t *) addr);
1604 
1605 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1606 	    nbytes, 50, quiet, 1));
1607 }
1608 
1609 typedef struct dt_normal {
1610 	dtrace_aggvarid_t dtnd_id;
1611 	uint64_t dtnd_normal;
1612 } dt_normal_t;
1613 
1614 static int
1615 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1616 {
1617 	dt_normal_t *normal = arg;
1618 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1619 	dtrace_aggvarid_t id = normal->dtnd_id;
1620 
1621 	if (agg->dtagd_nrecs == 0)
1622 		return (DTRACE_AGGWALK_NEXT);
1623 
1624 	if (agg->dtagd_varid != id)
1625 		return (DTRACE_AGGWALK_NEXT);
1626 
1627 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1628 	return (DTRACE_AGGWALK_NORMALIZE);
1629 }
1630 
1631 static int
1632 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1633 {
1634 	dt_normal_t normal;
1635 	caddr_t addr;
1636 
1637 	/*
1638 	 * We (should) have two records:  the aggregation ID followed by the
1639 	 * normalization value.
1640 	 */
1641 	addr = base + rec->dtrd_offset;
1642 
1643 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1644 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1645 
1646 	/* LINTED - alignment */
1647 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1648 	rec++;
1649 
1650 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1651 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1652 
1653 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1654 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1655 
1656 	addr = base + rec->dtrd_offset;
1657 
1658 	switch (rec->dtrd_size) {
1659 	case sizeof (uint64_t):
1660 		/* LINTED - alignment */
1661 		normal.dtnd_normal = *((uint64_t *)addr);
1662 		break;
1663 	case sizeof (uint32_t):
1664 		/* LINTED - alignment */
1665 		normal.dtnd_normal = *((uint32_t *)addr);
1666 		break;
1667 	case sizeof (uint16_t):
1668 		/* LINTED - alignment */
1669 		normal.dtnd_normal = *((uint16_t *)addr);
1670 		break;
1671 	case sizeof (uint8_t):
1672 		normal.dtnd_normal = *((uint8_t *)addr);
1673 		break;
1674 	default:
1675 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1676 	}
1677 
1678 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1679 
1680 	return (0);
1681 }
1682 
1683 static int
1684 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1685 {
1686 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1687 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1688 
1689 	if (agg->dtagd_nrecs == 0)
1690 		return (DTRACE_AGGWALK_NEXT);
1691 
1692 	if (agg->dtagd_varid != id)
1693 		return (DTRACE_AGGWALK_NEXT);
1694 
1695 	return (DTRACE_AGGWALK_DENORMALIZE);
1696 }
1697 
1698 static int
1699 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1700 {
1701 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1702 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1703 
1704 	if (agg->dtagd_nrecs == 0)
1705 		return (DTRACE_AGGWALK_NEXT);
1706 
1707 	if (agg->dtagd_varid != id)
1708 		return (DTRACE_AGGWALK_NEXT);
1709 
1710 	return (DTRACE_AGGWALK_CLEAR);
1711 }
1712 
1713 typedef struct dt_trunc {
1714 	dtrace_aggvarid_t dttd_id;
1715 	uint64_t dttd_remaining;
1716 } dt_trunc_t;
1717 
1718 static int
1719 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1720 {
1721 	dt_trunc_t *trunc = arg;
1722 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1723 	dtrace_aggvarid_t id = trunc->dttd_id;
1724 
1725 	if (agg->dtagd_nrecs == 0)
1726 		return (DTRACE_AGGWALK_NEXT);
1727 
1728 	if (agg->dtagd_varid != id)
1729 		return (DTRACE_AGGWALK_NEXT);
1730 
1731 	if (trunc->dttd_remaining == 0)
1732 		return (DTRACE_AGGWALK_REMOVE);
1733 
1734 	trunc->dttd_remaining--;
1735 	return (DTRACE_AGGWALK_NEXT);
1736 }
1737 
1738 static int
1739 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1740 {
1741 	dt_trunc_t trunc;
1742 	caddr_t addr;
1743 	int64_t remaining;
1744 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1745 
1746 	/*
1747 	 * We (should) have two records:  the aggregation ID followed by the
1748 	 * number of aggregation entries after which the aggregation is to be
1749 	 * truncated.
1750 	 */
1751 	addr = base + rec->dtrd_offset;
1752 
1753 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1754 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1755 
1756 	/* LINTED - alignment */
1757 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1758 	rec++;
1759 
1760 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1761 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1762 
1763 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1764 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1765 
1766 	addr = base + rec->dtrd_offset;
1767 
1768 	switch (rec->dtrd_size) {
1769 	case sizeof (uint64_t):
1770 		/* LINTED - alignment */
1771 		remaining = *((int64_t *)addr);
1772 		break;
1773 	case sizeof (uint32_t):
1774 		/* LINTED - alignment */
1775 		remaining = *((int32_t *)addr);
1776 		break;
1777 	case sizeof (uint16_t):
1778 		/* LINTED - alignment */
1779 		remaining = *((int16_t *)addr);
1780 		break;
1781 	case sizeof (uint8_t):
1782 		remaining = *((int8_t *)addr);
1783 		break;
1784 	default:
1785 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1786 	}
1787 
1788 	if (remaining < 0) {
1789 		func = dtrace_aggregate_walk_valsorted;
1790 		remaining = -remaining;
1791 	} else {
1792 		func = dtrace_aggregate_walk_valrevsorted;
1793 	}
1794 
1795 	assert(remaining >= 0);
1796 	trunc.dttd_remaining = remaining;
1797 
1798 	(void) func(dtp, dt_trunc_agg, &trunc);
1799 
1800 	return (0);
1801 }
1802 
1803 static int
1804 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1805     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1806     uint64_t normal, dt_print_aggdata_t *pd)
1807 {
1808 	int err, width;
1809 	dtrace_actkind_t act = rec->dtrd_action;
1810 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1811 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1812 
1813 	static struct {
1814 		size_t size;
1815 		int width;
1816 		int packedwidth;
1817 	} *fmt, fmttab[] = {
1818 		{ sizeof (uint8_t),	3,	3 },
1819 		{ sizeof (uint16_t),	5,	5 },
1820 		{ sizeof (uint32_t),	8,	8 },
1821 		{ sizeof (uint64_t),	16,	16 },
1822 		{ 0,			-50,	16 }
1823 	};
1824 
1825 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1826 		dtrace_recdesc_t *r;
1827 
1828 		width = 0;
1829 
1830 		/*
1831 		 * To print our quantization header for either an agghist or
1832 		 * aggpack aggregation, we need to iterate through all of our
1833 		 * of our records to determine their width.
1834 		 */
1835 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1836 			for (fmt = fmttab; fmt->size &&
1837 			    fmt->size != r->dtrd_size; fmt++)
1838 				continue;
1839 
1840 			width += fmt->packedwidth + 1;
1841 		}
1842 
1843 		if (pd->dtpa_agghist) {
1844 			if (dt_print_quanthdr(dtp, fp, width) < 0)
1845 				return (-1);
1846 		} else {
1847 			if (dt_print_quanthdr_packed(dtp, fp,
1848 			    width, aggdata, r->dtrd_action) < 0)
1849 				return (-1);
1850 		}
1851 
1852 		pd->dtpa_agghisthdr = agg->dtagd_varid;
1853 	}
1854 
1855 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1856 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1857 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1858 		int64_t val;
1859 
1860 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1861 		val = (long long)*((uint64_t *)addr);
1862 
1863 		if (dt_printf(dtp, fp, " ") < 0)
1864 			return (-1);
1865 
1866 		return (dt_print_quantline(dtp, fp, val, normal,
1867 		    aggdata->dtada_total, positives, negatives));
1868 	}
1869 
1870 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1871 		switch (act) {
1872 		case DTRACEAGG_QUANTIZE:
1873 			return (dt_print_quantize_packed(dtp,
1874 			    fp, addr, size, aggdata));
1875 		case DTRACEAGG_LQUANTIZE:
1876 			return (dt_print_lquantize_packed(dtp,
1877 			    fp, addr, size, aggdata));
1878 		default:
1879 			break;
1880 		}
1881 	}
1882 
1883 	switch (act) {
1884 	case DTRACEACT_STACK:
1885 		return (dt_print_stack(dtp, fp, NULL, addr,
1886 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1887 
1888 	case DTRACEACT_USTACK:
1889 	case DTRACEACT_JSTACK:
1890 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1891 
1892 	case DTRACEACT_USYM:
1893 	case DTRACEACT_UADDR:
1894 		return (dt_print_usym(dtp, fp, addr, act));
1895 
1896 	case DTRACEACT_UMOD:
1897 		return (dt_print_umod(dtp, fp, NULL, addr));
1898 
1899 	case DTRACEACT_SYM:
1900 		return (dt_print_sym(dtp, fp, NULL, addr));
1901 
1902 	case DTRACEACT_MOD:
1903 		return (dt_print_mod(dtp, fp, NULL, addr));
1904 
1905 	case DTRACEAGG_QUANTIZE:
1906 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1907 
1908 	case DTRACEAGG_LQUANTIZE:
1909 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1910 
1911 	case DTRACEAGG_LLQUANTIZE:
1912 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1913 
1914 	case DTRACEAGG_AVG:
1915 		return (dt_print_average(dtp, fp, addr, size, normal));
1916 
1917 	case DTRACEAGG_STDDEV:
1918 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1919 
1920 	default:
1921 		break;
1922 	}
1923 
1924 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1925 		continue;
1926 
1927 	width = packed ? fmt->packedwidth : fmt->width;
1928 
1929 	switch (size) {
1930 	case sizeof (uint64_t):
1931 		err = dt_printf(dtp, fp, " %*lld", width,
1932 		    /* LINTED - alignment */
1933 		    (long long)*((uint64_t *)addr) / normal);
1934 		break;
1935 	case sizeof (uint32_t):
1936 		/* LINTED - alignment */
1937 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1938 		    (uint32_t)normal);
1939 		break;
1940 	case sizeof (uint16_t):
1941 		/* LINTED - alignment */
1942 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1943 		    (uint32_t)normal);
1944 		break;
1945 	case sizeof (uint8_t):
1946 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1947 		    (uint32_t)normal);
1948 		break;
1949 	default:
1950 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1951 		break;
1952 	}
1953 
1954 	return (err);
1955 }
1956 
1957 int
1958 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1959 {
1960 	int i, aggact = 0;
1961 	dt_print_aggdata_t *pd = arg;
1962 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1963 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1964 	FILE *fp = pd->dtpa_fp;
1965 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1966 	dtrace_recdesc_t *rec;
1967 	dtrace_actkind_t act;
1968 	caddr_t addr;
1969 	size_t size;
1970 
1971 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1972 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1973 
1974 	/*
1975 	 * Iterate over each record description in the key, printing the traced
1976 	 * data, skipping the first datum (the tuple member created by the
1977 	 * compiler).
1978 	 */
1979 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1980 		rec = &agg->dtagd_rec[i];
1981 		act = rec->dtrd_action;
1982 		addr = aggdata->dtada_data + rec->dtrd_offset;
1983 		size = rec->dtrd_size;
1984 
1985 		if (DTRACEACT_ISAGG(act)) {
1986 			aggact = i;
1987 			break;
1988 		}
1989 
1990 		if (dt_print_datum(dtp, fp, rec, addr,
1991 		    size, aggdata, 1, pd) < 0)
1992 			return (-1);
1993 
1994 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1995 		    DTRACE_BUFDATA_AGGKEY) < 0)
1996 			return (-1);
1997 	}
1998 
1999 	assert(aggact != 0);
2000 
2001 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2002 		uint64_t normal;
2003 
2004 		aggdata = aggsdata[i];
2005 		agg = aggdata->dtada_desc;
2006 		rec = &agg->dtagd_rec[aggact];
2007 		act = rec->dtrd_action;
2008 		addr = aggdata->dtada_data + rec->dtrd_offset;
2009 		size = rec->dtrd_size;
2010 
2011 		assert(DTRACEACT_ISAGG(act));
2012 		normal = aggdata->dtada_normal;
2013 
2014 		if (dt_print_datum(dtp, fp, rec, addr,
2015 		    size, aggdata, normal, pd) < 0)
2016 			return (-1);
2017 
2018 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2019 		    DTRACE_BUFDATA_AGGVAL) < 0)
2020 			return (-1);
2021 
2022 		if (!pd->dtpa_allunprint)
2023 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2024 	}
2025 
2026 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2027 		if (dt_printf(dtp, fp, "\n") < 0)
2028 			return (-1);
2029 	}
2030 
2031 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2032 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2033 		return (-1);
2034 
2035 	return (0);
2036 }
2037 
2038 int
2039 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2040 {
2041 	dt_print_aggdata_t *pd = arg;
2042 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2043 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2044 
2045 	if (pd->dtpa_allunprint) {
2046 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2047 			return (0);
2048 	} else {
2049 		/*
2050 		 * If we're not printing all unprinted aggregations, then the
2051 		 * aggregation variable ID denotes a specific aggregation
2052 		 * variable that we should print -- skip any other aggregations
2053 		 * that we encounter.
2054 		 */
2055 		if (agg->dtagd_nrecs == 0)
2056 			return (0);
2057 
2058 		if (aggvarid != agg->dtagd_varid)
2059 			return (0);
2060 	}
2061 
2062 	return (dt_print_aggs(&aggdata, 1, arg));
2063 }
2064 
2065 int
2066 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2067     const char *option, const char *value)
2068 {
2069 	int len, rval;
2070 	char *msg;
2071 	const char *errstr;
2072 	dtrace_setoptdata_t optdata;
2073 
2074 	bzero(&optdata, sizeof (optdata));
2075 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2076 
2077 	if (dtrace_setopt(dtp, option, value) == 0) {
2078 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2079 		optdata.dtsda_probe = data;
2080 		optdata.dtsda_option = option;
2081 		optdata.dtsda_handle = dtp;
2082 
2083 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2084 			return (rval);
2085 
2086 		return (0);
2087 	}
2088 
2089 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2090 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2091 	msg = alloca(len);
2092 
2093 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2094 	    option, value, errstr);
2095 
2096 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2097 		return (0);
2098 
2099 	return (rval);
2100 }
2101 
2102 static int
2103 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2104     dtrace_bufdesc_t *buf, boolean_t just_one,
2105     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2106 {
2107 	dtrace_epid_t id;
2108 	size_t offs;
2109 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2110 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2111 	int rval, i, n;
2112 	uint64_t tracememsize = 0;
2113 	dtrace_probedata_t data;
2114 	uint64_t drops;
2115 
2116 	bzero(&data, sizeof (data));
2117 	data.dtpda_handle = dtp;
2118 	data.dtpda_cpu = cpu;
2119 	data.dtpda_flow = dtp->dt_flow;
2120 	data.dtpda_indent = dtp->dt_indent;
2121 	data.dtpda_prefix = dtp->dt_prefix;
2122 
2123 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2124 		dtrace_eprobedesc_t *epd;
2125 
2126 		/*
2127 		 * We're guaranteed to have an ID.
2128 		 */
2129 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2130 
2131 		if (id == DTRACE_EPIDNONE) {
2132 			/*
2133 			 * This is filler to assure proper alignment of the
2134 			 * next record; we simply ignore it.
2135 			 */
2136 			offs += sizeof (id);
2137 			continue;
2138 		}
2139 
2140 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2141 		    &data.dtpda_pdesc)) != 0)
2142 			return (rval);
2143 
2144 		epd = data.dtpda_edesc;
2145 		data.dtpda_data = buf->dtbd_data + offs;
2146 
2147 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2148 			rval = dt_handle(dtp, &data);
2149 
2150 			if (rval == DTRACE_CONSUME_NEXT)
2151 				goto nextepid;
2152 
2153 			if (rval == DTRACE_CONSUME_ERROR)
2154 				return (-1);
2155 		}
2156 
2157 		if (flow)
2158 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2159 			    buf, offs);
2160 
2161 		rval = (*efunc)(&data, arg);
2162 
2163 		if (flow) {
2164 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2165 				data.dtpda_indent += 2;
2166 		}
2167 
2168 		if (rval == DTRACE_CONSUME_NEXT)
2169 			goto nextepid;
2170 
2171 		if (rval == DTRACE_CONSUME_ABORT)
2172 			return (dt_set_errno(dtp, EDT_DIRABORT));
2173 
2174 		if (rval != DTRACE_CONSUME_THIS)
2175 			return (dt_set_errno(dtp, EDT_BADRVAL));
2176 
2177 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2178 			caddr_t addr;
2179 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2180 			dtrace_actkind_t act = rec->dtrd_action;
2181 
2182 			data.dtpda_data = buf->dtbd_data + offs +
2183 			    rec->dtrd_offset;
2184 			addr = data.dtpda_data;
2185 
2186 			if (act == DTRACEACT_LIBACT) {
2187 				uint64_t arg = rec->dtrd_arg;
2188 				dtrace_aggvarid_t id;
2189 
2190 				switch (arg) {
2191 				case DT_ACT_CLEAR:
2192 					/* LINTED - alignment */
2193 					id = *((dtrace_aggvarid_t *)addr);
2194 					(void) dtrace_aggregate_walk(dtp,
2195 					    dt_clear_agg, &id);
2196 					continue;
2197 
2198 				case DT_ACT_DENORMALIZE:
2199 					/* LINTED - alignment */
2200 					id = *((dtrace_aggvarid_t *)addr);
2201 					(void) dtrace_aggregate_walk(dtp,
2202 					    dt_denormalize_agg, &id);
2203 					continue;
2204 
2205 				case DT_ACT_FTRUNCATE:
2206 					if (fp == NULL)
2207 						continue;
2208 
2209 					(void) fflush(fp);
2210 					(void) ftruncate(fileno(fp), 0);
2211 					(void) fseeko(fp, 0, SEEK_SET);
2212 					continue;
2213 
2214 				case DT_ACT_NORMALIZE:
2215 					if (i == epd->dtepd_nrecs - 1)
2216 						return (dt_set_errno(dtp,
2217 						    EDT_BADNORMAL));
2218 
2219 					if (dt_normalize(dtp,
2220 					    buf->dtbd_data + offs, rec) != 0)
2221 						return (-1);
2222 
2223 					i++;
2224 					continue;
2225 
2226 				case DT_ACT_SETOPT: {
2227 					uint64_t *opts = dtp->dt_options;
2228 					dtrace_recdesc_t *valrec;
2229 					uint32_t valsize;
2230 					caddr_t val;
2231 					int rv;
2232 
2233 					if (i == epd->dtepd_nrecs - 1) {
2234 						return (dt_set_errno(dtp,
2235 						    EDT_BADSETOPT));
2236 					}
2237 
2238 					valrec = &epd->dtepd_rec[++i];
2239 					valsize = valrec->dtrd_size;
2240 
2241 					if (valrec->dtrd_action != act ||
2242 					    valrec->dtrd_arg != arg) {
2243 						return (dt_set_errno(dtp,
2244 						    EDT_BADSETOPT));
2245 					}
2246 
2247 					if (valsize > sizeof (uint64_t)) {
2248 						val = buf->dtbd_data + offs +
2249 						    valrec->dtrd_offset;
2250 					} else {
2251 						val = "1";
2252 					}
2253 
2254 					rv = dt_setopt(dtp, &data, addr, val);
2255 
2256 					if (rv != 0)
2257 						return (-1);
2258 
2259 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2260 					    DTRACEOPT_UNSET);
2261 					quiet = (opts[DTRACEOPT_QUIET] !=
2262 					    DTRACEOPT_UNSET);
2263 
2264 					continue;
2265 				}
2266 
2267 				case DT_ACT_TRUNC:
2268 					if (i == epd->dtepd_nrecs - 1)
2269 						return (dt_set_errno(dtp,
2270 						    EDT_BADTRUNC));
2271 
2272 					if (dt_trunc(dtp,
2273 					    buf->dtbd_data + offs, rec) != 0)
2274 						return (-1);
2275 
2276 					i++;
2277 					continue;
2278 
2279 				default:
2280 					continue;
2281 				}
2282 			}
2283 
2284 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2285 			    rec->dtrd_size == sizeof (uint64_t)) {
2286 			    	/* LINTED - alignment */
2287 				tracememsize = *((unsigned long long *)addr);
2288 				continue;
2289 			}
2290 
2291 			rval = (*rfunc)(&data, rec, arg);
2292 
2293 			if (rval == DTRACE_CONSUME_NEXT)
2294 				continue;
2295 
2296 			if (rval == DTRACE_CONSUME_ABORT)
2297 				return (dt_set_errno(dtp, EDT_DIRABORT));
2298 
2299 			if (rval != DTRACE_CONSUME_THIS)
2300 				return (dt_set_errno(dtp, EDT_BADRVAL));
2301 
2302 			if (act == DTRACEACT_STACK) {
2303 				int depth = rec->dtrd_arg;
2304 
2305 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2306 				    rec->dtrd_size / depth) < 0)
2307 					return (-1);
2308 				goto nextrec;
2309 			}
2310 
2311 			if (act == DTRACEACT_USTACK ||
2312 			    act == DTRACEACT_JSTACK) {
2313 				if (dt_print_ustack(dtp, fp, NULL,
2314 				    addr, rec->dtrd_arg) < 0)
2315 					return (-1);
2316 				goto nextrec;
2317 			}
2318 
2319 			if (act == DTRACEACT_SYM) {
2320 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2321 					return (-1);
2322 				goto nextrec;
2323 			}
2324 
2325 			if (act == DTRACEACT_MOD) {
2326 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2327 					return (-1);
2328 				goto nextrec;
2329 			}
2330 
2331 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2332 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2333 					return (-1);
2334 				goto nextrec;
2335 			}
2336 
2337 			if (act == DTRACEACT_UMOD) {
2338 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2339 					return (-1);
2340 				goto nextrec;
2341 			}
2342 
2343 			if (act == DTRACEACT_PRINTM) {
2344 				if (dt_print_memory(dtp, fp, addr) < 0)
2345 					return (-1);
2346 				goto nextrec;
2347 			}
2348 
2349 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2350 				void *fmtdata;
2351 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2352 				    const dtrace_probedata_t *,
2353 				    const dtrace_recdesc_t *, uint_t,
2354 				    const void *buf, size_t);
2355 
2356 				if ((fmtdata = dt_format_lookup(dtp,
2357 				    rec->dtrd_format)) == NULL)
2358 					goto nofmt;
2359 
2360 				switch (act) {
2361 				case DTRACEACT_PRINTF:
2362 					func = dtrace_fprintf;
2363 					break;
2364 				case DTRACEACT_PRINTA:
2365 					func = dtrace_fprinta;
2366 					break;
2367 				case DTRACEACT_SYSTEM:
2368 					func = dtrace_system;
2369 					break;
2370 				case DTRACEACT_FREOPEN:
2371 					func = dtrace_freopen;
2372 					break;
2373 				}
2374 
2375 				n = (*func)(dtp, fp, fmtdata, &data,
2376 				    rec, epd->dtepd_nrecs - i,
2377 				    (uchar_t *)buf->dtbd_data + offs,
2378 				    buf->dtbd_size - offs);
2379 
2380 				if (n < 0)
2381 					return (-1); /* errno is set for us */
2382 
2383 				if (n > 0)
2384 					i += n - 1;
2385 				goto nextrec;
2386 			}
2387 
2388 			/*
2389 			 * If this is a DIF expression, and the record has a
2390 			 * format set, this indicates we have a CTF type name
2391 			 * associated with the data and we should try to print
2392 			 * it out by type.
2393 			 */
2394 			if (act == DTRACEACT_DIFEXPR) {
2395 				const char *strdata = dt_strdata_lookup(dtp,
2396 				    rec->dtrd_format);
2397 				if (strdata != NULL) {
2398 					n = dtrace_print(dtp, fp, strdata,
2399 					    addr, rec->dtrd_size);
2400 
2401 					/*
2402 					 * dtrace_print() will return -1 on
2403 					 * error, or return the number of bytes
2404 					 * consumed.  It will return 0 if the
2405 					 * type couldn't be determined, and we
2406 					 * should fall through to the normal
2407 					 * trace method.
2408 					 */
2409 					if (n < 0)
2410 						return (-1);
2411 
2412 					if (n > 0)
2413 						goto nextrec;
2414 				}
2415 			}
2416 
2417 nofmt:
2418 			if (act == DTRACEACT_PRINTA) {
2419 				dt_print_aggdata_t pd;
2420 				dtrace_aggvarid_t *aggvars;
2421 				int j, naggvars = 0;
2422 				size_t size = ((epd->dtepd_nrecs - i) *
2423 				    sizeof (dtrace_aggvarid_t));
2424 
2425 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2426 					return (-1);
2427 
2428 				/*
2429 				 * This might be a printa() with multiple
2430 				 * aggregation variables.  We need to scan
2431 				 * forward through the records until we find
2432 				 * a record from a different statement.
2433 				 */
2434 				for (j = i; j < epd->dtepd_nrecs; j++) {
2435 					dtrace_recdesc_t *nrec;
2436 					caddr_t naddr;
2437 
2438 					nrec = &epd->dtepd_rec[j];
2439 
2440 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2441 						break;
2442 
2443 					if (nrec->dtrd_action != act) {
2444 						return (dt_set_errno(dtp,
2445 						    EDT_BADAGG));
2446 					}
2447 
2448 					naddr = buf->dtbd_data + offs +
2449 					    nrec->dtrd_offset;
2450 
2451 					aggvars[naggvars++] =
2452 					    /* LINTED - alignment */
2453 					    *((dtrace_aggvarid_t *)naddr);
2454 				}
2455 
2456 				i = j - 1;
2457 				bzero(&pd, sizeof (pd));
2458 				pd.dtpa_dtp = dtp;
2459 				pd.dtpa_fp = fp;
2460 
2461 				assert(naggvars >= 1);
2462 
2463 				if (naggvars == 1) {
2464 					pd.dtpa_id = aggvars[0];
2465 					dt_free(dtp, aggvars);
2466 
2467 					if (dt_printf(dtp, fp, "\n") < 0 ||
2468 					    dtrace_aggregate_walk_sorted(dtp,
2469 					    dt_print_agg, &pd) < 0)
2470 						return (-1);
2471 					goto nextrec;
2472 				}
2473 
2474 				if (dt_printf(dtp, fp, "\n") < 0 ||
2475 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2476 				    naggvars, dt_print_aggs, &pd) < 0) {
2477 					dt_free(dtp, aggvars);
2478 					return (-1);
2479 				}
2480 
2481 				dt_free(dtp, aggvars);
2482 				goto nextrec;
2483 			}
2484 
2485 			if (act == DTRACEACT_TRACEMEM) {
2486 				if (tracememsize == 0 ||
2487 				    tracememsize > rec->dtrd_size) {
2488 					tracememsize = rec->dtrd_size;
2489 				}
2490 
2491 				n = dt_print_bytes(dtp, fp, addr,
2492 				    tracememsize, -33, quiet, 1);
2493 
2494 				tracememsize = 0;
2495 
2496 				if (n < 0)
2497 					return (-1);
2498 
2499 				goto nextrec;
2500 			}
2501 
2502 			switch (rec->dtrd_size) {
2503 			case sizeof (uint64_t):
2504 				n = dt_printf(dtp, fp,
2505 				    quiet ? "%lld" : " %16lld",
2506 				    /* LINTED - alignment */
2507 				    *((unsigned long long *)addr));
2508 				break;
2509 			case sizeof (uint32_t):
2510 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2511 				    /* LINTED - alignment */
2512 				    *((uint32_t *)addr));
2513 				break;
2514 			case sizeof (uint16_t):
2515 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2516 				    /* LINTED - alignment */
2517 				    *((uint16_t *)addr));
2518 				break;
2519 			case sizeof (uint8_t):
2520 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2521 				    *((uint8_t *)addr));
2522 				break;
2523 			default:
2524 				n = dt_print_bytes(dtp, fp, addr,
2525 				    rec->dtrd_size, -33, quiet, 0);
2526 				break;
2527 			}
2528 
2529 			if (n < 0)
2530 				return (-1); /* errno is set for us */
2531 
2532 nextrec:
2533 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2534 				return (-1); /* errno is set for us */
2535 		}
2536 
2537 		/*
2538 		 * Call the record callback with a NULL record to indicate
2539 		 * that we're done processing this EPID.
2540 		 */
2541 		rval = (*rfunc)(&data, NULL, arg);
2542 nextepid:
2543 		offs += epd->dtepd_size;
2544 		dtp->dt_last_epid = id;
2545 		if (just_one) {
2546 			buf->dtbd_oldest = offs;
2547 			break;
2548 		}
2549 	}
2550 
2551 	dtp->dt_flow = data.dtpda_flow;
2552 	dtp->dt_indent = data.dtpda_indent;
2553 	dtp->dt_prefix = data.dtpda_prefix;
2554 
2555 	if ((drops = buf->dtbd_drops) == 0)
2556 		return (0);
2557 
2558 	/*
2559 	 * Explicitly zero the drops to prevent us from processing them again.
2560 	 */
2561 	buf->dtbd_drops = 0;
2562 
2563 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2564 }
2565 
2566 /*
2567  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2568  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2569  * only 4-byte aligned.
2570  */
2571 static void
2572 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2573 {
2574 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2575 	if (used < cursize / 2) {
2576 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2577 		char *newdata = dt_alloc(dtp, used + misalign);
2578 		if (newdata == NULL)
2579 			return;
2580 		bzero(newdata, misalign);
2581 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2582 		    newdata + misalign, used);
2583 		dt_free(dtp, buf->dtbd_data);
2584 		buf->dtbd_oldest = misalign;
2585 		buf->dtbd_size = used + misalign;
2586 		buf->dtbd_data = newdata;
2587 	}
2588 }
2589 
2590 /*
2591  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2592  * so that it is.  Note, we need to preserve the alignment of the data at
2593  * dtbd_oldest, which is only 4-byte aligned.
2594  */
2595 static int
2596 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2597 {
2598 	int misalign;
2599 	char *newdata, *ndp;
2600 
2601 	if (buf->dtbd_oldest == 0)
2602 		return (0);
2603 
2604 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2605 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2606 
2607 	if (newdata == NULL)
2608 		return (-1);
2609 
2610 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2611 
2612 	bzero(ndp, misalign);
2613 	ndp += misalign;
2614 
2615 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2616 	    buf->dtbd_size - buf->dtbd_oldest);
2617 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2618 
2619 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2620 
2621 	dt_free(dtp, buf->dtbd_data);
2622 	buf->dtbd_oldest = 0;
2623 	buf->dtbd_data = newdata;
2624 	buf->dtbd_size += misalign;
2625 
2626 	return (0);
2627 }
2628 
2629 static void
2630 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2631 {
2632 	dt_free(dtp, buf->dtbd_data);
2633 	dt_free(dtp, buf);
2634 }
2635 
2636 /*
2637  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2638  * data, or NULL if there is no data for this CPU.
2639  * Returns -1 on failure and sets dt_errno.
2640  */
2641 static int
2642 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2643 {
2644 	dtrace_optval_t size;
2645 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2646 	int error, rval;
2647 
2648 	if (buf == NULL)
2649 		return (-1);
2650 
2651 	(void) dtrace_getopt(dtp, "bufsize", &size);
2652 	buf->dtbd_data = dt_alloc(dtp, size);
2653 	if (buf->dtbd_data == NULL) {
2654 		dt_free(dtp, buf);
2655 		return (-1);
2656 	}
2657 	buf->dtbd_size = size;
2658 	buf->dtbd_cpu = cpu;
2659 
2660 #ifdef illumos
2661 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2662 #else
2663 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2664 #endif
2665 		/*
2666 		 * If we failed with ENOENT, it may be because the
2667 		 * CPU was unconfigured -- this is okay.  Any other
2668 		 * error, however, is unexpected.
2669 		 */
2670 		if (errno == ENOENT) {
2671 			*bufp = NULL;
2672 			rval = 0;
2673 		} else
2674 			rval = dt_set_errno(dtp, errno);
2675 
2676 		dt_put_buf(dtp, buf);
2677 		return (rval);
2678 	}
2679 
2680 	error = dt_unring_buf(dtp, buf);
2681 	if (error != 0) {
2682 		dt_put_buf(dtp, buf);
2683 		return (error);
2684 	}
2685 	dt_realloc_buf(dtp, buf, size);
2686 
2687 	*bufp = buf;
2688 	return (0);
2689 }
2690 
2691 typedef struct dt_begin {
2692 	dtrace_consume_probe_f *dtbgn_probefunc;
2693 	dtrace_consume_rec_f *dtbgn_recfunc;
2694 	void *dtbgn_arg;
2695 	dtrace_handle_err_f *dtbgn_errhdlr;
2696 	void *dtbgn_errarg;
2697 	int dtbgn_beginonly;
2698 } dt_begin_t;
2699 
2700 static int
2701 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2702 {
2703 	dt_begin_t *begin = arg;
2704 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2705 
2706 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2707 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2708 
2709 	if (begin->dtbgn_beginonly) {
2710 		if (!(r1 && r2))
2711 			return (DTRACE_CONSUME_NEXT);
2712 	} else {
2713 		if (r1 && r2)
2714 			return (DTRACE_CONSUME_NEXT);
2715 	}
2716 
2717 	/*
2718 	 * We have a record that we're interested in.  Now call the underlying
2719 	 * probe function...
2720 	 */
2721 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2722 }
2723 
2724 static int
2725 dt_consume_begin_record(const dtrace_probedata_t *data,
2726     const dtrace_recdesc_t *rec, void *arg)
2727 {
2728 	dt_begin_t *begin = arg;
2729 
2730 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2731 }
2732 
2733 static int
2734 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2735 {
2736 	dt_begin_t *begin = (dt_begin_t *)arg;
2737 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2738 
2739 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2740 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2741 
2742 	if (begin->dtbgn_beginonly) {
2743 		if (!(r1 && r2))
2744 			return (DTRACE_HANDLE_OK);
2745 	} else {
2746 		if (r1 && r2)
2747 			return (DTRACE_HANDLE_OK);
2748 	}
2749 
2750 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2751 }
2752 
2753 static int
2754 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2755     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2756 {
2757 	/*
2758 	 * There's this idea that the BEGIN probe should be processed before
2759 	 * everything else, and that the END probe should be processed after
2760 	 * anything else.  In the common case, this is pretty easy to deal
2761 	 * with.  However, a situation may arise where the BEGIN enabling and
2762 	 * END enabling are on the same CPU, and some enabling in the middle
2763 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2764 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2765 	 * then set it aside.  We will then process every other CPU, and then
2766 	 * we'll return to the BEGIN CPU and process the rest of the data
2767 	 * (which will inevitably include the END probe, if any).  Making this
2768 	 * even more complicated (!) is the library's ERROR enabling.  Because
2769 	 * this enabling is processed before we even get into the consume call
2770 	 * back, any ERROR firing would result in the library's ERROR enabling
2771 	 * being processed twice -- once in our first pass (for BEGIN probes),
2772 	 * and again in our second pass (for everything but BEGIN probes).  To
2773 	 * deal with this, we interpose on the ERROR handler to assure that we
2774 	 * only process ERROR enablings induced by BEGIN enablings in the
2775 	 * first pass, and that we only process ERROR enablings _not_ induced
2776 	 * by BEGIN enablings in the second pass.
2777 	 */
2778 
2779 	dt_begin_t begin;
2780 	processorid_t cpu = dtp->dt_beganon;
2781 	int rval, i;
2782 	static int max_ncpus;
2783 	dtrace_bufdesc_t *buf;
2784 
2785 	dtp->dt_beganon = -1;
2786 
2787 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2788 		return (-1);
2789 	if (buf == NULL)
2790 		return (0);
2791 
2792 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2793 		/*
2794 		 * This is the simple case.  We're either not stopped, or if
2795 		 * we are, we actually processed any END probes on another
2796 		 * CPU.  We can simply consume this buffer and return.
2797 		 */
2798 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2799 		    pf, rf, arg);
2800 		dt_put_buf(dtp, buf);
2801 		return (rval);
2802 	}
2803 
2804 	begin.dtbgn_probefunc = pf;
2805 	begin.dtbgn_recfunc = rf;
2806 	begin.dtbgn_arg = arg;
2807 	begin.dtbgn_beginonly = 1;
2808 
2809 	/*
2810 	 * We need to interpose on the ERROR handler to be sure that we
2811 	 * only process ERRORs induced by BEGIN.
2812 	 */
2813 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2814 	begin.dtbgn_errarg = dtp->dt_errarg;
2815 	dtp->dt_errhdlr = dt_consume_begin_error;
2816 	dtp->dt_errarg = &begin;
2817 
2818 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2819 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2820 
2821 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2822 	dtp->dt_errarg = begin.dtbgn_errarg;
2823 
2824 	if (rval != 0) {
2825 		dt_put_buf(dtp, buf);
2826 		return (rval);
2827 	}
2828 
2829 	if (max_ncpus == 0)
2830 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2831 
2832 	for (i = 0; i < max_ncpus; i++) {
2833 		dtrace_bufdesc_t *nbuf;
2834 		if (i == cpu)
2835 			continue;
2836 
2837 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2838 			dt_put_buf(dtp, buf);
2839 			return (-1);
2840 		}
2841 		if (nbuf == NULL)
2842 			continue;
2843 
2844 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2845 		    pf, rf, arg);
2846 		dt_put_buf(dtp, nbuf);
2847 		if (rval != 0) {
2848 			dt_put_buf(dtp, buf);
2849 			return (rval);
2850 		}
2851 	}
2852 
2853 	/*
2854 	 * Okay -- we're done with the other buffers.  Now we want to
2855 	 * reconsume the first buffer -- but this time we're looking for
2856 	 * everything _but_ BEGIN.  And of course, in order to only consume
2857 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2858 	 * ERROR interposition function...
2859 	 */
2860 	begin.dtbgn_beginonly = 0;
2861 
2862 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2863 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2864 	dtp->dt_errhdlr = dt_consume_begin_error;
2865 	dtp->dt_errarg = &begin;
2866 
2867 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2868 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2869 
2870 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2871 	dtp->dt_errarg = begin.dtbgn_errarg;
2872 
2873 	return (rval);
2874 }
2875 
2876 /* ARGSUSED */
2877 static uint64_t
2878 dt_buf_oldest(void *elem, void *arg)
2879 {
2880 	dtrace_bufdesc_t *buf = elem;
2881 	size_t offs = buf->dtbd_oldest;
2882 
2883 	while (offs < buf->dtbd_size) {
2884 		dtrace_rechdr_t *dtrh =
2885 		    /* LINTED - alignment */
2886 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2887 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2888 			offs += sizeof (dtrace_epid_t);
2889 		} else {
2890 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2891 		}
2892 	}
2893 
2894 	/* There are no records left; use the time the buffer was retrieved. */
2895 	return (buf->dtbd_timestamp);
2896 }
2897 
2898 int
2899 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2900     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2901 {
2902 	dtrace_optval_t size;
2903 	static int max_ncpus;
2904 	int i, rval;
2905 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2906 	hrtime_t now = gethrtime();
2907 
2908 	if (dtp->dt_lastswitch != 0) {
2909 		if (now - dtp->dt_lastswitch < interval)
2910 			return (0);
2911 
2912 		dtp->dt_lastswitch += interval;
2913 	} else {
2914 		dtp->dt_lastswitch = now;
2915 	}
2916 
2917 	if (!dtp->dt_active)
2918 		return (dt_set_errno(dtp, EINVAL));
2919 
2920 	if (max_ncpus == 0)
2921 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2922 
2923 	if (pf == NULL)
2924 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2925 
2926 	if (rf == NULL)
2927 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2928 
2929 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2930 		/*
2931 		 * The output will not be in the order it was traced.  Rather,
2932 		 * we will consume all of the data from each CPU's buffer in
2933 		 * turn.  We apply special handling for the records from BEGIN
2934 		 * and END probes so that they are consumed first and last,
2935 		 * respectively.
2936 		 *
2937 		 * If we have just begun, we want to first process the CPU that
2938 		 * executed the BEGIN probe (if any).
2939 		 */
2940 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2941 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2942 			return (rval);
2943 
2944 		for (i = 0; i < max_ncpus; i++) {
2945 			dtrace_bufdesc_t *buf;
2946 
2947 			/*
2948 			 * If we have stopped, we want to process the CPU on
2949 			 * which the END probe was processed only _after_ we
2950 			 * have processed everything else.
2951 			 */
2952 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2953 				continue;
2954 
2955 			if (dt_get_buf(dtp, i, &buf) != 0)
2956 				return (-1);
2957 			if (buf == NULL)
2958 				continue;
2959 
2960 			dtp->dt_flow = 0;
2961 			dtp->dt_indent = 0;
2962 			dtp->dt_prefix = NULL;
2963 			rval = dt_consume_cpu(dtp, fp, i,
2964 			    buf, B_FALSE, pf, rf, arg);
2965 			dt_put_buf(dtp, buf);
2966 			if (rval != 0)
2967 				return (rval);
2968 		}
2969 		if (dtp->dt_stopped) {
2970 			dtrace_bufdesc_t *buf;
2971 
2972 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2973 				return (-1);
2974 			if (buf == NULL)
2975 				return (0);
2976 
2977 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2978 			    buf, B_FALSE, pf, rf, arg);
2979 			dt_put_buf(dtp, buf);
2980 			return (rval);
2981 		}
2982 	} else {
2983 		/*
2984 		 * The output will be in the order it was traced (or for
2985 		 * speculations, when it was committed).  We retrieve a buffer
2986 		 * from each CPU and put it into a priority queue, which sorts
2987 		 * based on the first entry in the buffer.  This is sufficient
2988 		 * because entries within a buffer are already sorted.
2989 		 *
2990 		 * We then consume records one at a time, always consuming the
2991 		 * oldest record, as determined by the priority queue.  When
2992 		 * we reach the end of the time covered by these buffers,
2993 		 * we need to stop and retrieve more records on the next pass.
2994 		 * The kernel tells us the time covered by each buffer, in
2995 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2996 		 * time covered by all buffers, as subsequently retrieved
2997 		 * buffers will cover to a more recent time.
2998 		 */
2999 
3000 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3001 		uint64_t first_timestamp = 0;
3002 		uint_t cookie = 0;
3003 		dtrace_bufdesc_t *buf;
3004 
3005 		bzero(drops, max_ncpus * sizeof (uint64_t));
3006 
3007 		if (dtp->dt_bufq == NULL) {
3008 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3009 			    dt_buf_oldest, NULL);
3010 			if (dtp->dt_bufq == NULL) /* ENOMEM */
3011 				return (-1);
3012 		}
3013 
3014 		/* Retrieve data from each CPU. */
3015 		(void) dtrace_getopt(dtp, "bufsize", &size);
3016 		for (i = 0; i < max_ncpus; i++) {
3017 			dtrace_bufdesc_t *buf;
3018 
3019 			if (dt_get_buf(dtp, i, &buf) != 0)
3020 				return (-1);
3021 			if (buf != NULL) {
3022 				if (first_timestamp == 0)
3023 					first_timestamp = buf->dtbd_timestamp;
3024 				assert(buf->dtbd_timestamp >= first_timestamp);
3025 
3026 				dt_pq_insert(dtp->dt_bufq, buf);
3027 				drops[i] = buf->dtbd_drops;
3028 				buf->dtbd_drops = 0;
3029 			}
3030 		}
3031 
3032 		/* Consume records. */
3033 		for (;;) {
3034 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3035 			uint64_t timestamp;
3036 
3037 			if (buf == NULL)
3038 				break;
3039 
3040 			timestamp = dt_buf_oldest(buf, dtp);
3041 			assert(timestamp >= dtp->dt_last_timestamp);
3042 			dtp->dt_last_timestamp = timestamp;
3043 
3044 			if (timestamp == buf->dtbd_timestamp) {
3045 				/*
3046 				 * We've reached the end of the time covered
3047 				 * by this buffer.  If this is the oldest
3048 				 * buffer, we must do another pass
3049 				 * to retrieve more data.
3050 				 */
3051 				dt_put_buf(dtp, buf);
3052 				if (timestamp == first_timestamp &&
3053 				    !dtp->dt_stopped)
3054 					break;
3055 				continue;
3056 			}
3057 
3058 			if ((rval = dt_consume_cpu(dtp, fp,
3059 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3060 				return (rval);
3061 			dt_pq_insert(dtp->dt_bufq, buf);
3062 		}
3063 
3064 		/* Consume drops. */
3065 		for (i = 0; i < max_ncpus; i++) {
3066 			if (drops[i] != 0) {
3067 				int error = dt_handle_cpudrop(dtp, i,
3068 				    DTRACEDROP_PRINCIPAL, drops[i]);
3069 				if (error != 0)
3070 					return (error);
3071 			}
3072 		}
3073 
3074 		/*
3075 		 * Reduce memory usage by re-allocating smaller buffers
3076 		 * for the "remnants".
3077 		 */
3078 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3079 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3080 	}
3081 
3082 	return (0);
3083 }
3084