1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2012 by Delphix. All rights reserved. 30 */ 31 32 #include <stdlib.h> 33 #include <strings.h> 34 #include <errno.h> 35 #include <unistd.h> 36 #include <dt_impl.h> 37 #include <assert.h> 38 #include <dt_oformat.h> 39 #ifdef illumos 40 #include <alloca.h> 41 #else 42 #include <sys/sysctl.h> 43 #include <libproc_compat.h> 44 #endif 45 #include <limits.h> 46 47 #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ 48 49 /* 50 * Because qsort(3C) does not allow an argument to be passed to a comparison 51 * function, the variables that affect comparison must regrettably be global; 52 * they are protected by a global static lock, dt_qsort_lock. 53 */ 54 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; 55 56 static int dt_revsort; 57 static int dt_keysort; 58 static int dt_keypos; 59 60 #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) 61 #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) 62 63 static void 64 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) 65 { 66 uint_t i; 67 68 for (i = 0; i < size / sizeof (int64_t); i++) 69 existing[i] = existing[i] + new[i]; 70 } 71 72 static int 73 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) 74 { 75 int64_t lvar = *lhs; 76 int64_t rvar = *rhs; 77 78 if (lvar < rvar) 79 return (DT_LESSTHAN); 80 81 if (lvar > rvar) 82 return (DT_GREATERTHAN); 83 84 return (0); 85 } 86 87 /*ARGSUSED*/ 88 static void 89 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) 90 { 91 if (*new < *existing) 92 *existing = *new; 93 } 94 95 /*ARGSUSED*/ 96 static void 97 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) 98 { 99 if (*new > *existing) 100 *existing = *new; 101 } 102 103 static int 104 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) 105 { 106 int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; 107 int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; 108 109 if (lavg < ravg) 110 return (DT_LESSTHAN); 111 112 if (lavg > ravg) 113 return (DT_GREATERTHAN); 114 115 return (0); 116 } 117 118 static int 119 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) 120 { 121 uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); 122 uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); 123 124 if (lsd < rsd) 125 return (DT_LESSTHAN); 126 127 if (lsd > rsd) 128 return (DT_GREATERTHAN); 129 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) 136 { 137 int64_t arg = *existing++; 138 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 139 int i; 140 141 for (i = 0; i <= levels + 1; i++) 142 existing[i] = existing[i] + new[i + 1]; 143 } 144 145 static long double 146 dt_aggregate_lquantizedsum(int64_t *lquanta) 147 { 148 int64_t arg = *lquanta++; 149 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 150 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 151 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 152 long double total = (long double)lquanta[0] * (long double)(base - 1); 153 154 for (i = 0; i < levels; base += step, i++) 155 total += (long double)lquanta[i + 1] * (long double)base; 156 157 return (total + (long double)lquanta[levels + 1] * 158 (long double)(base + 1)); 159 } 160 161 static int64_t 162 dt_aggregate_lquantizedzero(int64_t *lquanta) 163 { 164 int64_t arg = *lquanta++; 165 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 166 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 167 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 168 169 if (base - 1 == 0) 170 return (lquanta[0]); 171 172 for (i = 0; i < levels; base += step, i++) { 173 if (base != 0) 174 continue; 175 176 return (lquanta[i + 1]); 177 } 178 179 if (base + 1 == 0) 180 return (lquanta[levels + 1]); 181 182 return (0); 183 } 184 185 static int 186 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) 187 { 188 long double lsum = dt_aggregate_lquantizedsum(lhs); 189 long double rsum = dt_aggregate_lquantizedsum(rhs); 190 int64_t lzero, rzero; 191 192 if (lsum < rsum) 193 return (DT_LESSTHAN); 194 195 if (lsum > rsum) 196 return (DT_GREATERTHAN); 197 198 /* 199 * If they're both equal, then we will compare based on the weights at 200 * zero. If the weights at zero are equal (or if zero is not within 201 * the range of the linear quantization), then this will be judged a 202 * tie and will be resolved based on the key comparison. 203 */ 204 lzero = dt_aggregate_lquantizedzero(lhs); 205 rzero = dt_aggregate_lquantizedzero(rhs); 206 207 if (lzero < rzero) 208 return (DT_LESSTHAN); 209 210 if (lzero > rzero) 211 return (DT_GREATERTHAN); 212 213 return (0); 214 } 215 216 static void 217 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size) 218 { 219 int i; 220 221 for (i = 1; i < size / sizeof (int64_t); i++) 222 existing[i] = existing[i] + new[i]; 223 } 224 225 static long double 226 dt_aggregate_llquantizedsum(int64_t *llquanta) 227 { 228 int64_t arg = *llquanta++; 229 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 230 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 231 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 232 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 233 int bin = 0, order; 234 int64_t value = 1, next, step; 235 long double total; 236 237 assert(nsteps >= factor); 238 assert(nsteps % factor == 0); 239 240 for (order = 0; order < low; order++) 241 value *= factor; 242 243 total = (long double)llquanta[bin++] * (long double)(value - 1); 244 245 next = value * factor; 246 step = next > nsteps ? next / nsteps : 1; 247 248 while (order <= high) { 249 assert(value < next); 250 total += (long double)llquanta[bin++] * (long double)(value); 251 252 if ((value += step) != next) 253 continue; 254 255 next = value * factor; 256 step = next > nsteps ? next / nsteps : 1; 257 order++; 258 } 259 260 return (total + (long double)llquanta[bin] * (long double)value); 261 } 262 263 static int 264 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs) 265 { 266 long double lsum = dt_aggregate_llquantizedsum(lhs); 267 long double rsum = dt_aggregate_llquantizedsum(rhs); 268 int64_t lzero, rzero; 269 270 if (lsum < rsum) 271 return (DT_LESSTHAN); 272 273 if (lsum > rsum) 274 return (DT_GREATERTHAN); 275 276 /* 277 * If they're both equal, then we will compare based on the weights at 278 * zero. If the weights at zero are equal, then this will be judged a 279 * tie and will be resolved based on the key comparison. 280 */ 281 lzero = lhs[1]; 282 rzero = rhs[1]; 283 284 if (lzero < rzero) 285 return (DT_LESSTHAN); 286 287 if (lzero > rzero) 288 return (DT_GREATERTHAN); 289 290 return (0); 291 } 292 293 static int 294 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) 295 { 296 int nbuckets = DTRACE_QUANTIZE_NBUCKETS; 297 long double ltotal = 0, rtotal = 0; 298 int64_t lzero, rzero; 299 uint_t i; 300 301 for (i = 0; i < nbuckets; i++) { 302 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); 303 304 if (bucketval == 0) { 305 lzero = lhs[i]; 306 rzero = rhs[i]; 307 } 308 309 ltotal += (long double)bucketval * (long double)lhs[i]; 310 rtotal += (long double)bucketval * (long double)rhs[i]; 311 } 312 313 if (ltotal < rtotal) 314 return (DT_LESSTHAN); 315 316 if (ltotal > rtotal) 317 return (DT_GREATERTHAN); 318 319 /* 320 * If they're both equal, then we will compare based on the weights at 321 * zero. If the weights at zero are equal, then this will be judged a 322 * tie and will be resolved based on the key comparison. 323 */ 324 if (lzero < rzero) 325 return (DT_LESSTHAN); 326 327 if (lzero > rzero) 328 return (DT_GREATERTHAN); 329 330 return (0); 331 } 332 333 static void 334 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) 335 { 336 uint64_t pid = data[0]; 337 uint64_t *pc = &data[1]; 338 struct ps_prochandle *P; 339 GElf_Sym sym; 340 341 if (dtp->dt_vector != NULL) 342 return; 343 344 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 345 return; 346 347 dt_proc_lock(dtp, P); 348 349 if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) 350 *pc = sym.st_value; 351 352 dt_proc_unlock(dtp, P); 353 dt_proc_release(dtp, P); 354 } 355 356 static void 357 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) 358 { 359 uint64_t pid = data[0]; 360 uint64_t *pc = &data[1]; 361 struct ps_prochandle *P; 362 const prmap_t *map; 363 364 if (dtp->dt_vector != NULL) 365 return; 366 367 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 368 return; 369 370 dt_proc_lock(dtp, P); 371 372 if ((map = Paddr_to_map(P, *pc)) != NULL) 373 *pc = map->pr_vaddr; 374 375 dt_proc_unlock(dtp, P); 376 dt_proc_release(dtp, P); 377 } 378 379 static void 380 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) 381 { 382 GElf_Sym sym; 383 uint64_t *pc = data; 384 385 if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) 386 *pc = sym.st_value; 387 } 388 389 static void 390 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) 391 { 392 uint64_t *pc = data; 393 dt_module_t *dmp; 394 395 if (dtp->dt_vector != NULL) { 396 /* 397 * We don't have a way of just getting the module for a 398 * vectored open, and it doesn't seem to be worth defining 399 * one. This means that use of mod() won't get true 400 * aggregation in the postmortem case (some modules may 401 * appear more than once in aggregation output). It seems 402 * unlikely that anyone will ever notice or care... 403 */ 404 return; 405 } 406 407 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; 408 dmp = dt_list_next(dmp)) { 409 if (*pc - dmp->dm_text_va < dmp->dm_text_size) { 410 *pc = dmp->dm_text_va; 411 return; 412 } 413 } 414 } 415 416 static dtrace_aggvarid_t 417 dt_aggregate_aggvarid(dt_ahashent_t *ent) 418 { 419 dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; 420 caddr_t data = ent->dtahe_data.dtada_data; 421 dtrace_recdesc_t *rec = agg->dtagd_rec; 422 423 /* 424 * First, we'll check the variable ID in the aggdesc. If it's valid, 425 * we'll return it. If not, we'll use the compiler-generated ID 426 * present as the first record. 427 */ 428 if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) 429 return (agg->dtagd_varid); 430 431 agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + 432 rec->dtrd_offset)); 433 434 return (agg->dtagd_varid); 435 } 436 437 438 static int 439 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) 440 { 441 dtrace_epid_t id; 442 uint64_t hashval; 443 size_t offs, roffs, size, ndx; 444 int i, j, rval; 445 caddr_t addr, data; 446 dtrace_recdesc_t *rec; 447 dt_aggregate_t *agp = &dtp->dt_aggregate; 448 dtrace_aggdesc_t *agg; 449 dt_ahash_t *hash = &agp->dtat_hash; 450 dt_ahashent_t *h; 451 dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; 452 dtrace_aggdata_t *aggdata; 453 int flags = agp->dtat_flags; 454 455 buf->dtbd_cpu = cpu; 456 457 #ifdef illumos 458 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { 459 #else 460 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) { 461 #endif 462 if (errno == ENOENT) { 463 /* 464 * If that failed with ENOENT, it may be because the 465 * CPU was unconfigured. This is okay; we'll just 466 * do nothing but return success. 467 */ 468 return (0); 469 } 470 471 return (dt_set_errno(dtp, errno)); 472 } 473 474 if (buf->dtbd_drops != 0) { 475 int error; 476 477 if (dtp->dt_oformat) { 478 xo_open_instance("probes"); 479 dt_oformat_drop(dtp, cpu); 480 } 481 error = dt_handle_cpudrop(dtp, cpu, DTRACEDROP_AGGREGATION, 482 buf->dtbd_drops); 483 if (dtp->dt_oformat) 484 xo_close_instance("probes"); 485 if (error != 0) 486 return (-1); 487 } 488 489 if (buf->dtbd_size == 0) 490 return (0); 491 492 if (hash->dtah_hash == NULL) { 493 size_t size; 494 495 hash->dtah_size = DTRACE_AHASHSIZE; 496 size = hash->dtah_size * sizeof (dt_ahashent_t *); 497 498 if ((hash->dtah_hash = malloc(size)) == NULL) 499 return (dt_set_errno(dtp, EDT_NOMEM)); 500 501 bzero(hash->dtah_hash, size); 502 } 503 504 for (offs = 0; offs < buf->dtbd_size; ) { 505 /* 506 * We're guaranteed to have an ID. 507 */ 508 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + 509 (uintptr_t)offs)); 510 511 if (id == DTRACE_AGGIDNONE) { 512 /* 513 * This is filler to assure proper alignment of the 514 * next record; we simply ignore it. 515 */ 516 offs += sizeof (id); 517 continue; 518 } 519 520 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) 521 return (rval); 522 523 addr = buf->dtbd_data + offs; 524 size = agg->dtagd_size; 525 hashval = 0; 526 527 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 528 rec = &agg->dtagd_rec[j]; 529 roffs = rec->dtrd_offset; 530 531 switch (rec->dtrd_action) { 532 case DTRACEACT_USYM: 533 dt_aggregate_usym(dtp, 534 /* LINTED - alignment */ 535 (uint64_t *)&addr[roffs]); 536 break; 537 538 case DTRACEACT_UMOD: 539 dt_aggregate_umod(dtp, 540 /* LINTED - alignment */ 541 (uint64_t *)&addr[roffs]); 542 break; 543 544 case DTRACEACT_SYM: 545 /* LINTED - alignment */ 546 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); 547 break; 548 549 case DTRACEACT_MOD: 550 /* LINTED - alignment */ 551 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); 552 break; 553 554 default: 555 break; 556 } 557 558 for (i = 0; i < rec->dtrd_size; i++) 559 hashval += addr[roffs + i]; 560 } 561 562 ndx = hashval % hash->dtah_size; 563 564 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { 565 if (h->dtahe_hashval != hashval) 566 continue; 567 568 if (h->dtahe_size != size) 569 continue; 570 571 aggdata = &h->dtahe_data; 572 data = aggdata->dtada_data; 573 574 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 575 rec = &agg->dtagd_rec[j]; 576 roffs = rec->dtrd_offset; 577 578 for (i = 0; i < rec->dtrd_size; i++) 579 if (addr[roffs + i] != data[roffs + i]) 580 goto hashnext; 581 } 582 583 /* 584 * We found it. Now we need to apply the aggregating 585 * action on the data here. 586 */ 587 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 588 roffs = rec->dtrd_offset; 589 /* LINTED - alignment */ 590 h->dtahe_aggregate((int64_t *)&data[roffs], 591 /* LINTED - alignment */ 592 (int64_t *)&addr[roffs], rec->dtrd_size); 593 594 /* 595 * If we're keeping per CPU data, apply the aggregating 596 * action there as well. 597 */ 598 if (aggdata->dtada_percpu != NULL) { 599 data = aggdata->dtada_percpu[cpu]; 600 601 /* LINTED - alignment */ 602 h->dtahe_aggregate((int64_t *)data, 603 /* LINTED - alignment */ 604 (int64_t *)&addr[roffs], rec->dtrd_size); 605 } 606 607 goto bufnext; 608 hashnext: 609 continue; 610 } 611 612 /* 613 * If we're here, we couldn't find an entry for this record. 614 */ 615 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) 616 return (dt_set_errno(dtp, EDT_NOMEM)); 617 bzero(h, sizeof (dt_ahashent_t)); 618 aggdata = &h->dtahe_data; 619 620 if ((aggdata->dtada_data = malloc(size)) == NULL) { 621 free(h); 622 return (dt_set_errno(dtp, EDT_NOMEM)); 623 } 624 625 bcopy(addr, aggdata->dtada_data, size); 626 aggdata->dtada_size = size; 627 aggdata->dtada_desc = agg; 628 aggdata->dtada_handle = dtp; 629 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 630 &aggdata->dtada_edesc, &aggdata->dtada_pdesc); 631 aggdata->dtada_normal = 1; 632 633 h->dtahe_hashval = hashval; 634 h->dtahe_size = size; 635 (void) dt_aggregate_aggvarid(h); 636 637 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 638 639 if (flags & DTRACE_A_PERCPU) { 640 int max_cpus = agp->dtat_maxcpu; 641 caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); 642 643 if (percpu == NULL) { 644 free(aggdata->dtada_data); 645 free(h); 646 return (dt_set_errno(dtp, EDT_NOMEM)); 647 } 648 649 for (j = 0; j < max_cpus; j++) { 650 percpu[j] = malloc(rec->dtrd_size); 651 652 if (percpu[j] == NULL) { 653 while (--j >= 0) 654 free(percpu[j]); 655 656 free(aggdata->dtada_data); 657 free(h); 658 return (dt_set_errno(dtp, EDT_NOMEM)); 659 } 660 661 if (j == cpu) { 662 bcopy(&addr[rec->dtrd_offset], 663 percpu[j], rec->dtrd_size); 664 } else { 665 bzero(percpu[j], rec->dtrd_size); 666 } 667 } 668 669 aggdata->dtada_percpu = percpu; 670 } 671 672 switch (rec->dtrd_action) { 673 case DTRACEAGG_MIN: 674 h->dtahe_aggregate = dt_aggregate_min; 675 break; 676 677 case DTRACEAGG_MAX: 678 h->dtahe_aggregate = dt_aggregate_max; 679 break; 680 681 case DTRACEAGG_LQUANTIZE: 682 h->dtahe_aggregate = dt_aggregate_lquantize; 683 break; 684 685 case DTRACEAGG_LLQUANTIZE: 686 h->dtahe_aggregate = dt_aggregate_llquantize; 687 break; 688 689 case DTRACEAGG_COUNT: 690 case DTRACEAGG_SUM: 691 case DTRACEAGG_AVG: 692 case DTRACEAGG_STDDEV: 693 case DTRACEAGG_QUANTIZE: 694 h->dtahe_aggregate = dt_aggregate_count; 695 break; 696 697 default: 698 return (dt_set_errno(dtp, EDT_BADAGG)); 699 } 700 701 if (hash->dtah_hash[ndx] != NULL) 702 hash->dtah_hash[ndx]->dtahe_prev = h; 703 704 h->dtahe_next = hash->dtah_hash[ndx]; 705 hash->dtah_hash[ndx] = h; 706 707 if (hash->dtah_all != NULL) 708 hash->dtah_all->dtahe_prevall = h; 709 710 h->dtahe_nextall = hash->dtah_all; 711 hash->dtah_all = h; 712 bufnext: 713 offs += agg->dtagd_size; 714 } 715 716 return (0); 717 } 718 719 int 720 dtrace_aggregate_snap(dtrace_hdl_t *dtp) 721 { 722 int i, rval; 723 dt_aggregate_t *agp = &dtp->dt_aggregate; 724 hrtime_t now = gethrtime(); 725 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; 726 727 if (dtp->dt_lastagg != 0) { 728 if (now - dtp->dt_lastagg < interval) 729 return (0); 730 731 dtp->dt_lastagg += interval; 732 } else { 733 dtp->dt_lastagg = now; 734 } 735 736 if (!dtp->dt_active) 737 return (dt_set_errno(dtp, EINVAL)); 738 739 if (agp->dtat_buf.dtbd_size == 0) 740 return (0); 741 742 for (i = 0; i < agp->dtat_ncpus; i++) { 743 if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))) 744 return (rval); 745 } 746 747 return (0); 748 } 749 750 static int 751 dt_aggregate_hashcmp(const void *lhs, const void *rhs) 752 { 753 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 754 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 755 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 756 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 757 758 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 759 return (DT_LESSTHAN); 760 761 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 762 return (DT_GREATERTHAN); 763 764 return (0); 765 } 766 767 static int 768 dt_aggregate_varcmp(const void *lhs, const void *rhs) 769 { 770 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 771 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 772 dtrace_aggvarid_t lid, rid; 773 774 lid = dt_aggregate_aggvarid(lh); 775 rid = dt_aggregate_aggvarid(rh); 776 777 if (lid < rid) 778 return (DT_LESSTHAN); 779 780 if (lid > rid) 781 return (DT_GREATERTHAN); 782 783 return (0); 784 } 785 786 static int 787 dt_aggregate_keycmp(const void *lhs, const void *rhs) 788 { 789 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 790 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 791 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 792 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 793 dtrace_recdesc_t *lrec, *rrec; 794 char *ldata, *rdata; 795 int rval, i, j, keypos, nrecs; 796 797 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 798 return (rval); 799 800 nrecs = lagg->dtagd_nrecs - 1; 801 assert(nrecs == ragg->dtagd_nrecs - 1); 802 803 keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; 804 805 for (i = 1; i < nrecs; i++) { 806 uint64_t lval, rval; 807 int ndx = i + keypos; 808 809 if (ndx >= nrecs) 810 ndx = ndx - nrecs + 1; 811 812 lrec = &lagg->dtagd_rec[ndx]; 813 rrec = &ragg->dtagd_rec[ndx]; 814 815 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; 816 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; 817 818 if (lrec->dtrd_size < rrec->dtrd_size) 819 return (DT_LESSTHAN); 820 821 if (lrec->dtrd_size > rrec->dtrd_size) 822 return (DT_GREATERTHAN); 823 824 switch (lrec->dtrd_size) { 825 case sizeof (uint64_t): 826 /* LINTED - alignment */ 827 lval = *((uint64_t *)ldata); 828 /* LINTED - alignment */ 829 rval = *((uint64_t *)rdata); 830 break; 831 832 case sizeof (uint32_t): 833 /* LINTED - alignment */ 834 lval = *((uint32_t *)ldata); 835 /* LINTED - alignment */ 836 rval = *((uint32_t *)rdata); 837 break; 838 839 case sizeof (uint16_t): 840 /* LINTED - alignment */ 841 lval = *((uint16_t *)ldata); 842 /* LINTED - alignment */ 843 rval = *((uint16_t *)rdata); 844 break; 845 846 case sizeof (uint8_t): 847 lval = *((uint8_t *)ldata); 848 rval = *((uint8_t *)rdata); 849 break; 850 851 default: 852 switch (lrec->dtrd_action) { 853 case DTRACEACT_UMOD: 854 case DTRACEACT_UADDR: 855 case DTRACEACT_USYM: 856 for (j = 0; j < 2; j++) { 857 /* LINTED - alignment */ 858 lval = ((uint64_t *)ldata)[j]; 859 /* LINTED - alignment */ 860 rval = ((uint64_t *)rdata)[j]; 861 862 if (lval < rval) 863 return (DT_LESSTHAN); 864 865 if (lval > rval) 866 return (DT_GREATERTHAN); 867 } 868 869 break; 870 871 default: 872 for (j = 0; j < lrec->dtrd_size; j++) { 873 lval = ((uint8_t *)ldata)[j]; 874 rval = ((uint8_t *)rdata)[j]; 875 876 if (lval < rval) 877 return (DT_LESSTHAN); 878 879 if (lval > rval) 880 return (DT_GREATERTHAN); 881 } 882 } 883 884 continue; 885 } 886 887 if (lval < rval) 888 return (DT_LESSTHAN); 889 890 if (lval > rval) 891 return (DT_GREATERTHAN); 892 } 893 894 return (0); 895 } 896 897 static int 898 dt_aggregate_valcmp(const void *lhs, const void *rhs) 899 { 900 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 901 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 902 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 903 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 904 caddr_t ldata = lh->dtahe_data.dtada_data; 905 caddr_t rdata = rh->dtahe_data.dtada_data; 906 dtrace_recdesc_t *lrec, *rrec; 907 int64_t *laddr, *raddr; 908 int rval; 909 910 assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs); 911 912 lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1]; 913 rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1]; 914 915 assert(lrec->dtrd_action == rrec->dtrd_action); 916 917 laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); 918 raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); 919 920 switch (lrec->dtrd_action) { 921 case DTRACEAGG_AVG: 922 rval = dt_aggregate_averagecmp(laddr, raddr); 923 break; 924 925 case DTRACEAGG_STDDEV: 926 rval = dt_aggregate_stddevcmp(laddr, raddr); 927 break; 928 929 case DTRACEAGG_QUANTIZE: 930 rval = dt_aggregate_quantizedcmp(laddr, raddr); 931 break; 932 933 case DTRACEAGG_LQUANTIZE: 934 rval = dt_aggregate_lquantizedcmp(laddr, raddr); 935 break; 936 937 case DTRACEAGG_LLQUANTIZE: 938 rval = dt_aggregate_llquantizedcmp(laddr, raddr); 939 break; 940 941 case DTRACEAGG_COUNT: 942 case DTRACEAGG_SUM: 943 case DTRACEAGG_MIN: 944 case DTRACEAGG_MAX: 945 rval = dt_aggregate_countcmp(laddr, raddr); 946 break; 947 948 default: 949 assert(0); 950 } 951 952 return (rval); 953 } 954 955 static int 956 dt_aggregate_valkeycmp(const void *lhs, const void *rhs) 957 { 958 int rval; 959 960 if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) 961 return (rval); 962 963 /* 964 * If we're here, the values for the two aggregation elements are 965 * equal. We already know that the key layout is the same for the two 966 * elements; we must now compare the keys themselves as a tie-breaker. 967 */ 968 return (dt_aggregate_keycmp(lhs, rhs)); 969 } 970 971 static int 972 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) 973 { 974 int rval; 975 976 if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) 977 return (rval); 978 979 return (dt_aggregate_varcmp(lhs, rhs)); 980 } 981 982 static int 983 dt_aggregate_varkeycmp(const void *lhs, const void *rhs) 984 { 985 int rval; 986 987 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 988 return (rval); 989 990 return (dt_aggregate_keycmp(lhs, rhs)); 991 } 992 993 static int 994 dt_aggregate_valvarcmp(const void *lhs, const void *rhs) 995 { 996 int rval; 997 998 if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) 999 return (rval); 1000 1001 return (dt_aggregate_varcmp(lhs, rhs)); 1002 } 1003 1004 static int 1005 dt_aggregate_varvalcmp(const void *lhs, const void *rhs) 1006 { 1007 int rval; 1008 1009 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 1010 return (rval); 1011 1012 return (dt_aggregate_valkeycmp(lhs, rhs)); 1013 } 1014 1015 static int 1016 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) 1017 { 1018 return (dt_aggregate_keyvarcmp(rhs, lhs)); 1019 } 1020 1021 static int 1022 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) 1023 { 1024 return (dt_aggregate_varkeycmp(rhs, lhs)); 1025 } 1026 1027 static int 1028 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) 1029 { 1030 return (dt_aggregate_valvarcmp(rhs, lhs)); 1031 } 1032 1033 static int 1034 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) 1035 { 1036 return (dt_aggregate_varvalcmp(rhs, lhs)); 1037 } 1038 1039 static int 1040 dt_aggregate_bundlecmp(const void *lhs, const void *rhs) 1041 { 1042 dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); 1043 dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); 1044 int i, rval; 1045 1046 if (dt_keysort) { 1047 /* 1048 * If we're sorting on keys, we need to scan until we find the 1049 * last entry -- that's the representative key. (The order of 1050 * the bundle is values followed by key to accommodate the 1051 * default behavior of sorting by value.) If the keys are 1052 * equal, we'll fall into the value comparison loop, below. 1053 */ 1054 for (i = 0; lh[i + 1] != NULL; i++) 1055 continue; 1056 1057 assert(i != 0); 1058 assert(rh[i + 1] == NULL); 1059 1060 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) 1061 return (rval); 1062 } 1063 1064 for (i = 0; ; i++) { 1065 if (lh[i + 1] == NULL) { 1066 /* 1067 * All of the values are equal; if we're sorting on 1068 * keys, then we're only here because the keys were 1069 * found to be equal and these records are therefore 1070 * equal. If we're not sorting on keys, we'll use the 1071 * key comparison from the representative key as the 1072 * tie-breaker. 1073 */ 1074 if (dt_keysort) 1075 return (0); 1076 1077 assert(i != 0); 1078 assert(rh[i + 1] == NULL); 1079 return (dt_aggregate_keycmp(&lh[i], &rh[i])); 1080 } else { 1081 if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) 1082 return (rval); 1083 } 1084 } 1085 } 1086 1087 int 1088 dt_aggregate_go(dtrace_hdl_t *dtp) 1089 { 1090 dt_aggregate_t *agp = &dtp->dt_aggregate; 1091 dtrace_optval_t size, cpu; 1092 dtrace_bufdesc_t *buf = &agp->dtat_buf; 1093 int rval, i; 1094 1095 assert(agp->dtat_maxcpu == 0); 1096 assert(agp->dtat_ncpu == 0); 1097 assert(agp->dtat_cpus == NULL); 1098 1099 agp->dtat_maxcpu = dt_cpu_maxid(dtp) + 1; 1100 if (agp->dtat_maxcpu <= 0) 1101 return (-1); 1102 agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_CONF); 1103 agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); 1104 1105 if (agp->dtat_cpus == NULL) 1106 return (dt_set_errno(dtp, EDT_NOMEM)); 1107 1108 /* 1109 * Use the aggregation buffer size as reloaded from the kernel. 1110 */ 1111 size = dtp->dt_options[DTRACEOPT_AGGSIZE]; 1112 1113 rval = dtrace_getopt(dtp, "aggsize", &size); 1114 assert(rval == 0); 1115 1116 if (size == 0 || size == DTRACEOPT_UNSET) 1117 return (0); 1118 1119 buf = &agp->dtat_buf; 1120 buf->dtbd_size = size; 1121 1122 if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) 1123 return (dt_set_errno(dtp, EDT_NOMEM)); 1124 1125 /* 1126 * Now query for the CPUs enabled. 1127 */ 1128 rval = dtrace_getopt(dtp, "cpu", &cpu); 1129 assert(rval == 0 && cpu != DTRACEOPT_UNSET); 1130 1131 if (cpu != DTRACE_CPUALL) { 1132 assert(cpu < agp->dtat_ncpu); 1133 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; 1134 1135 return (0); 1136 } 1137 1138 agp->dtat_ncpus = 0; 1139 for (i = 0; i < agp->dtat_maxcpu; i++) { 1140 if (dt_status(dtp, i) == -1) 1141 continue; 1142 1143 agp->dtat_cpus[agp->dtat_ncpus++] = i; 1144 } 1145 1146 return (0); 1147 } 1148 1149 static int 1150 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) 1151 { 1152 dt_aggregate_t *agp = &dtp->dt_aggregate; 1153 dtrace_aggdata_t *data; 1154 dtrace_aggdesc_t *aggdesc; 1155 dtrace_recdesc_t *rec; 1156 int i; 1157 1158 switch (rval) { 1159 case DTRACE_AGGWALK_NEXT: 1160 break; 1161 1162 case DTRACE_AGGWALK_CLEAR: { 1163 uint32_t size, offs = 0; 1164 1165 aggdesc = h->dtahe_data.dtada_desc; 1166 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1167 size = rec->dtrd_size; 1168 data = &h->dtahe_data; 1169 1170 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1171 offs = sizeof (uint64_t); 1172 size -= sizeof (uint64_t); 1173 } 1174 1175 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); 1176 1177 if (data->dtada_percpu == NULL) 1178 break; 1179 1180 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) 1181 bzero(data->dtada_percpu[i] + offs, size); 1182 break; 1183 } 1184 1185 case DTRACE_AGGWALK_ERROR: 1186 /* 1187 * We assume that errno is already set in this case. 1188 */ 1189 return (dt_set_errno(dtp, errno)); 1190 1191 case DTRACE_AGGWALK_ABORT: 1192 return (dt_set_errno(dtp, EDT_DIRABORT)); 1193 1194 case DTRACE_AGGWALK_DENORMALIZE: 1195 h->dtahe_data.dtada_normal = 1; 1196 return (0); 1197 1198 case DTRACE_AGGWALK_NORMALIZE: 1199 if (h->dtahe_data.dtada_normal == 0) { 1200 h->dtahe_data.dtada_normal = 1; 1201 return (dt_set_errno(dtp, EDT_BADRVAL)); 1202 } 1203 1204 return (0); 1205 1206 case DTRACE_AGGWALK_REMOVE: { 1207 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1208 int max_cpus = agp->dtat_maxcpu; 1209 1210 /* 1211 * First, remove this hash entry from its hash chain. 1212 */ 1213 if (h->dtahe_prev != NULL) { 1214 h->dtahe_prev->dtahe_next = h->dtahe_next; 1215 } else { 1216 dt_ahash_t *hash = &agp->dtat_hash; 1217 size_t ndx = h->dtahe_hashval % hash->dtah_size; 1218 1219 assert(hash->dtah_hash[ndx] == h); 1220 hash->dtah_hash[ndx] = h->dtahe_next; 1221 } 1222 1223 if (h->dtahe_next != NULL) 1224 h->dtahe_next->dtahe_prev = h->dtahe_prev; 1225 1226 /* 1227 * Now remove it from the list of all hash entries. 1228 */ 1229 if (h->dtahe_prevall != NULL) { 1230 h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; 1231 } else { 1232 dt_ahash_t *hash = &agp->dtat_hash; 1233 1234 assert(hash->dtah_all == h); 1235 hash->dtah_all = h->dtahe_nextall; 1236 } 1237 1238 if (h->dtahe_nextall != NULL) 1239 h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; 1240 1241 /* 1242 * We're unlinked. We can safely destroy the data. 1243 */ 1244 if (aggdata->dtada_percpu != NULL) { 1245 for (i = 0; i < max_cpus; i++) 1246 free(aggdata->dtada_percpu[i]); 1247 free(aggdata->dtada_percpu); 1248 } 1249 1250 free(aggdata->dtada_data); 1251 free(h); 1252 1253 return (0); 1254 } 1255 1256 default: 1257 return (dt_set_errno(dtp, EDT_BADRVAL)); 1258 } 1259 1260 return (0); 1261 } 1262 1263 void 1264 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, 1265 int (*compar)(const void *, const void *)) 1266 { 1267 int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; 1268 dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; 1269 1270 dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); 1271 dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); 1272 1273 if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { 1274 dt_keypos = (int)keyposopt; 1275 } else { 1276 dt_keypos = 0; 1277 } 1278 1279 if (compar == NULL) { 1280 if (!dt_keysort) { 1281 compar = dt_aggregate_varvalcmp; 1282 } else { 1283 compar = dt_aggregate_varkeycmp; 1284 } 1285 } 1286 1287 qsort(base, nel, width, compar); 1288 1289 dt_revsort = rev; 1290 dt_keysort = key; 1291 dt_keypos = keypos; 1292 } 1293 1294 int 1295 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) 1296 { 1297 dt_ahashent_t *h, *next; 1298 dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; 1299 1300 for (h = hash->dtah_all; h != NULL; h = next) { 1301 /* 1302 * dt_aggwalk_rval() can potentially remove the current hash 1303 * entry; we need to load the next hash entry before calling 1304 * into it. 1305 */ 1306 next = h->dtahe_nextall; 1307 1308 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) 1309 return (-1); 1310 } 1311 1312 return (0); 1313 } 1314 1315 static int 1316 dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear) 1317 { 1318 dt_ahashent_t *h; 1319 dtrace_aggdata_t **total; 1320 dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; 1321 dt_aggregate_t *agp = &dtp->dt_aggregate; 1322 dt_ahash_t *hash = &agp->dtat_hash; 1323 uint32_t tflags; 1324 1325 tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES; 1326 1327 /* 1328 * If we need to deliver per-aggregation totals, we're going to take 1329 * three passes over the aggregate: one to clear everything out and 1330 * determine our maximum aggregation ID, one to actually total 1331 * everything up, and a final pass to assign the totals to the 1332 * individual elements. 1333 */ 1334 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1335 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1336 1337 if ((id = dt_aggregate_aggvarid(h)) > max) 1338 max = id; 1339 1340 aggdata->dtada_total = 0; 1341 aggdata->dtada_flags &= ~tflags; 1342 } 1343 1344 if (clear || max == DTRACE_AGGVARIDNONE) 1345 return (0); 1346 1347 total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); 1348 1349 if (total == NULL) 1350 return (-1); 1351 1352 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1353 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1354 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1355 dtrace_recdesc_t *rec; 1356 caddr_t data; 1357 int64_t val, *addr; 1358 1359 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 1360 data = aggdata->dtada_data; 1361 addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); 1362 1363 switch (rec->dtrd_action) { 1364 case DTRACEAGG_STDDEV: 1365 val = dt_stddev((uint64_t *)addr, 1); 1366 break; 1367 1368 case DTRACEAGG_SUM: 1369 case DTRACEAGG_COUNT: 1370 val = *addr; 1371 break; 1372 1373 case DTRACEAGG_AVG: 1374 val = addr[0] ? (addr[1] / addr[0]) : 0; 1375 break; 1376 1377 default: 1378 continue; 1379 } 1380 1381 if (total[agg->dtagd_varid] == NULL) { 1382 total[agg->dtagd_varid] = aggdata; 1383 aggdata->dtada_flags |= DTRACE_A_TOTAL; 1384 } else { 1385 aggdata = total[agg->dtagd_varid]; 1386 } 1387 1388 if (val > 0) 1389 aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES; 1390 1391 if (val < 0) { 1392 aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES; 1393 val = -val; 1394 } 1395 1396 if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) { 1397 val = (int64_t)((long double)val * 1398 (1 / DTRACE_AGGZOOM_MAX)); 1399 1400 if (val > aggdata->dtada_total) 1401 aggdata->dtada_total = val; 1402 } else { 1403 aggdata->dtada_total += val; 1404 } 1405 } 1406 1407 /* 1408 * And now one final pass to set everyone's total. 1409 */ 1410 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1411 dtrace_aggdata_t *aggdata = &h->dtahe_data, *t; 1412 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1413 1414 if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t) 1415 continue; 1416 1417 aggdata->dtada_total = t->dtada_total; 1418 aggdata->dtada_flags |= (t->dtada_flags & tflags); 1419 } 1420 1421 dt_free(dtp, total); 1422 1423 return (0); 1424 } 1425 1426 static int 1427 dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear) 1428 { 1429 dt_ahashent_t *h; 1430 dtrace_aggdata_t **minmax; 1431 dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; 1432 dt_aggregate_t *agp = &dtp->dt_aggregate; 1433 dt_ahash_t *hash = &agp->dtat_hash; 1434 1435 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1436 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1437 1438 if ((id = dt_aggregate_aggvarid(h)) > max) 1439 max = id; 1440 1441 aggdata->dtada_minbin = 0; 1442 aggdata->dtada_maxbin = 0; 1443 aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN; 1444 } 1445 1446 if (clear || max == DTRACE_AGGVARIDNONE) 1447 return (0); 1448 1449 minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); 1450 1451 if (minmax == NULL) 1452 return (-1); 1453 1454 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1455 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1456 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1457 dtrace_recdesc_t *rec; 1458 caddr_t data; 1459 int64_t *addr; 1460 int minbin = -1, maxbin = -1, i; 1461 int start = 0, size; 1462 1463 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 1464 size = rec->dtrd_size / sizeof (int64_t); 1465 data = aggdata->dtada_data; 1466 addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); 1467 1468 switch (rec->dtrd_action) { 1469 case DTRACEAGG_LQUANTIZE: 1470 /* 1471 * For lquantize(), we always display the entire range 1472 * of the aggregation when aggpack is set. 1473 */ 1474 start = 1; 1475 minbin = start; 1476 maxbin = size - 1 - start; 1477 break; 1478 1479 case DTRACEAGG_QUANTIZE: 1480 for (i = start; i < size; i++) { 1481 if (!addr[i]) 1482 continue; 1483 1484 if (minbin == -1) 1485 minbin = i - start; 1486 1487 maxbin = i - start; 1488 } 1489 1490 if (minbin == -1) { 1491 /* 1492 * If we have no data (e.g., due to a clear() 1493 * or negative increments), we'll use the 1494 * zero bucket as both our min and max. 1495 */ 1496 minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET; 1497 } 1498 1499 break; 1500 1501 default: 1502 continue; 1503 } 1504 1505 if (minmax[agg->dtagd_varid] == NULL) { 1506 minmax[agg->dtagd_varid] = aggdata; 1507 aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; 1508 aggdata->dtada_minbin = minbin; 1509 aggdata->dtada_maxbin = maxbin; 1510 continue; 1511 } 1512 1513 if (minbin < minmax[agg->dtagd_varid]->dtada_minbin) 1514 minmax[agg->dtagd_varid]->dtada_minbin = minbin; 1515 1516 if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin) 1517 minmax[agg->dtagd_varid]->dtada_maxbin = maxbin; 1518 } 1519 1520 /* 1521 * And now one final pass to set everyone's minbin and maxbin. 1522 */ 1523 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1524 dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm; 1525 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1526 1527 if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm) 1528 continue; 1529 1530 aggdata->dtada_minbin = mm->dtada_minbin; 1531 aggdata->dtada_maxbin = mm->dtada_maxbin; 1532 aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; 1533 } 1534 1535 dt_free(dtp, minmax); 1536 1537 return (0); 1538 } 1539 1540 static int 1541 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1542 dtrace_aggregate_f *func, void *arg, 1543 int (*sfunc)(const void *, const void *)) 1544 { 1545 dt_aggregate_t *agp = &dtp->dt_aggregate; 1546 dt_ahashent_t *h, **sorted; 1547 dt_ahash_t *hash = &agp->dtat_hash; 1548 size_t i, nentries = 0; 1549 int rval = -1; 1550 1551 agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN); 1552 1553 if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) { 1554 agp->dtat_flags |= DTRACE_A_TOTAL; 1555 1556 if (dt_aggregate_total(dtp, B_FALSE) != 0) 1557 return (-1); 1558 } 1559 1560 if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) { 1561 agp->dtat_flags |= DTRACE_A_MINMAXBIN; 1562 1563 if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0) 1564 return (-1); 1565 } 1566 1567 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) 1568 nentries++; 1569 1570 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1571 1572 if (sorted == NULL) 1573 goto out; 1574 1575 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) 1576 sorted[i++] = h; 1577 1578 (void) pthread_mutex_lock(&dt_qsort_lock); 1579 1580 if (sfunc == NULL) { 1581 dt_aggregate_qsort(dtp, sorted, nentries, 1582 sizeof (dt_ahashent_t *), NULL); 1583 } else { 1584 /* 1585 * If we've been explicitly passed a sorting function, 1586 * we'll use that -- ignoring the values of the "aggsortrev", 1587 * "aggsortkey" and "aggsortkeypos" options. 1588 */ 1589 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); 1590 } 1591 1592 (void) pthread_mutex_unlock(&dt_qsort_lock); 1593 1594 for (i = 0; i < nentries; i++) { 1595 h = sorted[i]; 1596 1597 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) 1598 goto out; 1599 } 1600 1601 rval = 0; 1602 out: 1603 if (agp->dtat_flags & DTRACE_A_TOTAL) 1604 (void) dt_aggregate_total(dtp, B_TRUE); 1605 1606 if (agp->dtat_flags & DTRACE_A_MINMAXBIN) 1607 (void) dt_aggregate_minmaxbin(dtp, B_TRUE); 1608 1609 dt_free(dtp, sorted); 1610 return (rval); 1611 } 1612 1613 int 1614 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1615 dtrace_aggregate_f *func, void *arg) 1616 { 1617 return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); 1618 } 1619 1620 int 1621 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, 1622 dtrace_aggregate_f *func, void *arg) 1623 { 1624 return (dt_aggregate_walk_sorted(dtp, func, 1625 arg, dt_aggregate_varkeycmp)); 1626 } 1627 1628 int 1629 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, 1630 dtrace_aggregate_f *func, void *arg) 1631 { 1632 return (dt_aggregate_walk_sorted(dtp, func, 1633 arg, dt_aggregate_varvalcmp)); 1634 } 1635 1636 int 1637 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, 1638 dtrace_aggregate_f *func, void *arg) 1639 { 1640 return (dt_aggregate_walk_sorted(dtp, func, 1641 arg, dt_aggregate_keyvarcmp)); 1642 } 1643 1644 int 1645 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, 1646 dtrace_aggregate_f *func, void *arg) 1647 { 1648 return (dt_aggregate_walk_sorted(dtp, func, 1649 arg, dt_aggregate_valvarcmp)); 1650 } 1651 1652 int 1653 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, 1654 dtrace_aggregate_f *func, void *arg) 1655 { 1656 return (dt_aggregate_walk_sorted(dtp, func, 1657 arg, dt_aggregate_varkeyrevcmp)); 1658 } 1659 1660 int 1661 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, 1662 dtrace_aggregate_f *func, void *arg) 1663 { 1664 return (dt_aggregate_walk_sorted(dtp, func, 1665 arg, dt_aggregate_varvalrevcmp)); 1666 } 1667 1668 int 1669 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, 1670 dtrace_aggregate_f *func, void *arg) 1671 { 1672 return (dt_aggregate_walk_sorted(dtp, func, 1673 arg, dt_aggregate_keyvarrevcmp)); 1674 } 1675 1676 int 1677 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, 1678 dtrace_aggregate_f *func, void *arg) 1679 { 1680 return (dt_aggregate_walk_sorted(dtp, func, 1681 arg, dt_aggregate_valvarrevcmp)); 1682 } 1683 1684 int 1685 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, 1686 int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) 1687 { 1688 dt_aggregate_t *agp = &dtp->dt_aggregate; 1689 dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; 1690 const dtrace_aggdata_t **data; 1691 dt_ahashent_t *zaggdata = NULL; 1692 dt_ahash_t *hash = &agp->dtat_hash; 1693 size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; 1694 dtrace_aggvarid_t max = 0, aggvar; 1695 int rval = -1, *map, *remap = NULL; 1696 int i, j; 1697 dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; 1698 1699 /* 1700 * If the sorting position is greater than the number of aggregation 1701 * variable IDs, we silently set it to 0. 1702 */ 1703 if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) 1704 sortpos = 0; 1705 1706 /* 1707 * First we need to translate the specified aggregation variable IDs 1708 * into a linear map that will allow us to translate an aggregation 1709 * variable ID into its position in the specified aggvars. 1710 */ 1711 for (i = 0; i < naggvars; i++) { 1712 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) 1713 return (dt_set_errno(dtp, EDT_BADAGGVAR)); 1714 1715 if (aggvars[i] > max) 1716 max = aggvars[i]; 1717 } 1718 1719 if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) 1720 return (-1); 1721 1722 zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); 1723 1724 if (zaggdata == NULL) 1725 goto out; 1726 1727 for (i = 0; i < naggvars; i++) { 1728 int ndx = i + sortpos; 1729 1730 if (ndx >= naggvars) 1731 ndx -= naggvars; 1732 1733 aggvar = aggvars[ndx]; 1734 assert(aggvar <= max); 1735 1736 if (map[aggvar]) { 1737 /* 1738 * We have an aggregation variable that is present 1739 * more than once in the array of aggregation 1740 * variables. While it's unclear why one might want 1741 * to do this, it's legal. To support this construct, 1742 * we will allocate a remap that will indicate the 1743 * position from which this aggregation variable 1744 * should be pulled. (That is, where the remap will 1745 * map from one position to another.) 1746 */ 1747 if (remap == NULL) { 1748 remap = dt_zalloc(dtp, naggvars * sizeof (int)); 1749 1750 if (remap == NULL) 1751 goto out; 1752 } 1753 1754 /* 1755 * Given that the variable is already present, assert 1756 * that following through the mapping and adjusting 1757 * for the sort position yields the same aggregation 1758 * variable ID. 1759 */ 1760 assert(aggvars[(map[aggvar] - 1 + sortpos) % 1761 naggvars] == aggvars[ndx]); 1762 1763 remap[i] = map[aggvar]; 1764 continue; 1765 } 1766 1767 map[aggvar] = i + 1; 1768 } 1769 1770 /* 1771 * We need to take two passes over the data to size our allocation, so 1772 * we'll use the first pass to also fill in the zero-filled data to be 1773 * used to properly format a zero-valued aggregation. 1774 */ 1775 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1776 dtrace_aggvarid_t id; 1777 int ndx; 1778 1779 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) 1780 continue; 1781 1782 if (zaggdata[ndx - 1].dtahe_size == 0) { 1783 zaggdata[ndx - 1].dtahe_size = h->dtahe_size; 1784 zaggdata[ndx - 1].dtahe_data = h->dtahe_data; 1785 } 1786 1787 nentries++; 1788 } 1789 1790 if (nentries == 0) { 1791 /* 1792 * We couldn't find any entries; there is nothing else to do. 1793 */ 1794 rval = 0; 1795 goto out; 1796 } 1797 1798 /* 1799 * Before we sort the data, we're going to look for any holes in our 1800 * zero-filled data. This will occur if an aggregation variable that 1801 * we are being asked to print has not yet been assigned the result of 1802 * any aggregating action for _any_ tuple. The issue becomes that we 1803 * would like a zero value to be printed for all columns for this 1804 * aggregation, but without any record description, we don't know the 1805 * aggregating action that corresponds to the aggregation variable. To 1806 * try to find a match, we're simply going to lookup aggregation IDs 1807 * (which are guaranteed to be contiguous and to start from 1), looking 1808 * for the specified aggregation variable ID. If we find a match, 1809 * we'll use that. If we iterate over all aggregation IDs and don't 1810 * find a match, then we must be an anonymous enabling. (Anonymous 1811 * enablings can't currently derive either aggregation variable IDs or 1812 * aggregation variable names given only an aggregation ID.) In this 1813 * obscure case (anonymous enabling, multiple aggregation printa() with 1814 * some aggregations not represented for any tuple), our defined 1815 * behavior is that the zero will be printed in the format of the first 1816 * aggregation variable that contains any non-zero value. 1817 */ 1818 for (i = 0; i < naggvars; i++) { 1819 if (zaggdata[i].dtahe_size == 0) { 1820 dtrace_aggvarid_t aggvar; 1821 1822 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1823 assert(zaggdata[i].dtahe_data.dtada_data == NULL); 1824 1825 for (j = DTRACE_AGGIDNONE + 1; ; j++) { 1826 dtrace_aggdesc_t *agg; 1827 dtrace_aggdata_t *aggdata; 1828 1829 if (dt_aggid_lookup(dtp, j, &agg) != 0) 1830 break; 1831 1832 if (agg->dtagd_varid != aggvar) 1833 continue; 1834 1835 /* 1836 * We have our description -- now we need to 1837 * cons up the zaggdata entry for it. 1838 */ 1839 aggdata = &zaggdata[i].dtahe_data; 1840 aggdata->dtada_size = agg->dtagd_size; 1841 aggdata->dtada_desc = agg; 1842 aggdata->dtada_handle = dtp; 1843 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 1844 &aggdata->dtada_edesc, 1845 &aggdata->dtada_pdesc); 1846 aggdata->dtada_normal = 1; 1847 zaggdata[i].dtahe_hashval = 0; 1848 zaggdata[i].dtahe_size = agg->dtagd_size; 1849 break; 1850 } 1851 1852 if (zaggdata[i].dtahe_size == 0) { 1853 caddr_t data; 1854 1855 /* 1856 * We couldn't find this aggregation, meaning 1857 * that we have never seen it before for any 1858 * tuple _and_ this is an anonymous enabling. 1859 * That is, we're in the obscure case outlined 1860 * above. In this case, our defined behavior 1861 * is to format the data in the format of the 1862 * first non-zero aggregation -- of which, of 1863 * course, we know there to be at least one 1864 * (or nentries would have been zero). 1865 */ 1866 for (j = 0; j < naggvars; j++) { 1867 if (zaggdata[j].dtahe_size != 0) 1868 break; 1869 } 1870 1871 assert(j < naggvars); 1872 zaggdata[i] = zaggdata[j]; 1873 1874 data = zaggdata[i].dtahe_data.dtada_data; 1875 assert(data != NULL); 1876 } 1877 } 1878 } 1879 1880 /* 1881 * Now we need to allocate our zero-filled data for use for 1882 * aggregations that don't have a value corresponding to a given key. 1883 */ 1884 for (i = 0; i < naggvars; i++) { 1885 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; 1886 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; 1887 dtrace_recdesc_t *rec; 1888 uint64_t larg; 1889 caddr_t zdata; 1890 1891 zsize = zaggdata[i].dtahe_size; 1892 assert(zsize != 0); 1893 1894 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { 1895 /* 1896 * If we failed to allocated some zero-filled data, we 1897 * need to zero out the remaining dtada_data pointers 1898 * to prevent the wrong data from being freed below. 1899 */ 1900 for (j = i; j < naggvars; j++) 1901 zaggdata[j].dtahe_data.dtada_data = NULL; 1902 goto out; 1903 } 1904 1905 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1906 1907 /* 1908 * First, the easy bit. To maintain compatibility with 1909 * consumers that pull the compiler-generated ID out of the 1910 * data, we put that ID at the top of the zero-filled data. 1911 */ 1912 rec = &aggdesc->dtagd_rec[0]; 1913 /* LINTED - alignment */ 1914 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; 1915 1916 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1917 1918 /* 1919 * Now for the more complicated part. If (and only if) this 1920 * is an lquantize() aggregating action, zero-filled data is 1921 * not equivalent to an empty record: we must also get the 1922 * parameters for the lquantize(). 1923 */ 1924 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1925 if (aggdata->dtada_data != NULL) { 1926 /* 1927 * The easier case here is if we actually have 1928 * some prototype data -- in which case we 1929 * manually dig it out of the aggregation 1930 * record. 1931 */ 1932 /* LINTED - alignment */ 1933 larg = *((uint64_t *)(aggdata->dtada_data + 1934 rec->dtrd_offset)); 1935 } else { 1936 /* 1937 * We don't have any prototype data. As a 1938 * result, we know that we _do_ have the 1939 * compiler-generated information. (If this 1940 * were an anonymous enabling, all of our 1941 * zero-filled data would have prototype data 1942 * -- either directly or indirectly.) So as 1943 * gross as it is, we'll grovel around in the 1944 * compiler-generated information to find the 1945 * lquantize() parameters. 1946 */ 1947 dtrace_stmtdesc_t *sdp; 1948 dt_ident_t *aid; 1949 dt_idsig_t *isp; 1950 1951 sdp = (dtrace_stmtdesc_t *)(uintptr_t) 1952 aggdesc->dtagd_rec[0].dtrd_uarg; 1953 aid = sdp->dtsd_aggdata; 1954 isp = (dt_idsig_t *)aid->di_data; 1955 assert(isp->dis_auxinfo != 0); 1956 larg = isp->dis_auxinfo; 1957 } 1958 1959 /* LINTED - alignment */ 1960 *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; 1961 } 1962 1963 aggdata->dtada_data = zdata; 1964 } 1965 1966 /* 1967 * Now that we've dealt with setting up our zero-filled data, we can 1968 * allocate our sorted array, and take another pass over the data to 1969 * fill it. 1970 */ 1971 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1972 1973 if (sorted == NULL) 1974 goto out; 1975 1976 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { 1977 dtrace_aggvarid_t id; 1978 1979 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) 1980 continue; 1981 1982 sorted[i++] = h; 1983 } 1984 1985 assert(i == nentries); 1986 1987 /* 1988 * We've loaded our array; now we need to sort by value to allow us 1989 * to create bundles of like value. We're going to acquire the 1990 * dt_qsort_lock here, and hold it across all of our subsequent 1991 * comparison and sorting. 1992 */ 1993 (void) pthread_mutex_lock(&dt_qsort_lock); 1994 1995 qsort(sorted, nentries, sizeof (dt_ahashent_t *), 1996 dt_aggregate_keyvarcmp); 1997 1998 /* 1999 * Now we need to go through and create bundles. Because the number 2000 * of bundles is bounded by the size of the sorted array, we're going 2001 * to reuse the underlying storage. And note that "bundle" is an 2002 * array of pointers to arrays of pointers to dt_ahashent_t -- making 2003 * its type (regrettably) "dt_ahashent_t ***". (Regrettable because 2004 * '*' -- like '_' and 'X' -- should never appear in triplicate in 2005 * an ideal world.) 2006 */ 2007 bundle = (dt_ahashent_t ***)sorted; 2008 2009 for (i = 1, start = 0; i <= nentries; i++) { 2010 if (i < nentries && 2011 dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) 2012 continue; 2013 2014 /* 2015 * We have a bundle boundary. Everything from start to 2016 * (i - 1) belongs in one bundle. 2017 */ 2018 assert(i - start <= naggvars); 2019 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); 2020 2021 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { 2022 (void) pthread_mutex_unlock(&dt_qsort_lock); 2023 goto out; 2024 } 2025 2026 for (j = start; j < i; j++) { 2027 dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); 2028 2029 assert(id <= max); 2030 assert(map[id] != 0); 2031 assert(map[id] - 1 < naggvars); 2032 assert(nbundle[map[id] - 1] == NULL); 2033 nbundle[map[id] - 1] = sorted[j]; 2034 2035 if (nbundle[naggvars] == NULL) 2036 nbundle[naggvars] = sorted[j]; 2037 } 2038 2039 for (j = 0; j < naggvars; j++) { 2040 if (nbundle[j] != NULL) 2041 continue; 2042 2043 /* 2044 * Before we assume that this aggregation variable 2045 * isn't present (and fall back to using the 2046 * zero-filled data allocated earlier), check the 2047 * remap. If we have a remapping, we'll drop it in 2048 * here. Note that we might be remapping an 2049 * aggregation variable that isn't present for this 2050 * key; in this case, the aggregation data that we 2051 * copy will point to the zeroed data. 2052 */ 2053 if (remap != NULL && remap[j]) { 2054 assert(remap[j] - 1 < j); 2055 assert(nbundle[remap[j] - 1] != NULL); 2056 nbundle[j] = nbundle[remap[j] - 1]; 2057 } else { 2058 nbundle[j] = &zaggdata[j]; 2059 } 2060 } 2061 2062 bundle[nbundles++] = nbundle; 2063 start = i; 2064 } 2065 2066 /* 2067 * Now we need to re-sort based on the first value. 2068 */ 2069 dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), 2070 dt_aggregate_bundlecmp); 2071 2072 (void) pthread_mutex_unlock(&dt_qsort_lock); 2073 2074 /* 2075 * We're done! Now we just need to go back over the sorted bundles, 2076 * calling the function. 2077 */ 2078 data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); 2079 2080 for (i = 0; i < nbundles; i++) { 2081 for (j = 0; j < naggvars; j++) 2082 data[j + 1] = NULL; 2083 2084 for (j = 0; j < naggvars; j++) { 2085 int ndx = j - sortpos; 2086 2087 if (ndx < 0) 2088 ndx += naggvars; 2089 2090 assert(bundle[i][ndx] != NULL); 2091 data[j + 1] = &bundle[i][ndx]->dtahe_data; 2092 } 2093 2094 for (j = 0; j < naggvars; j++) 2095 assert(data[j + 1] != NULL); 2096 2097 /* 2098 * The representative key is the last element in the bundle. 2099 * Assert that we have one, and then set it to be the first 2100 * element of data. 2101 */ 2102 assert(bundle[i][j] != NULL); 2103 data[0] = &bundle[i][j]->dtahe_data; 2104 2105 if ((rval = func(data, naggvars + 1, arg)) == -1) 2106 goto out; 2107 } 2108 2109 rval = 0; 2110 out: 2111 for (i = 0; i < nbundles; i++) 2112 dt_free(dtp, bundle[i]); 2113 2114 if (zaggdata != NULL) { 2115 for (i = 0; i < naggvars; i++) 2116 dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); 2117 } 2118 2119 dt_free(dtp, zaggdata); 2120 dt_free(dtp, sorted); 2121 dt_free(dtp, remap); 2122 dt_free(dtp, map); 2123 2124 return (rval); 2125 } 2126 2127 int 2128 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, 2129 dtrace_aggregate_walk_f *func) 2130 { 2131 dt_print_aggdata_t pd; 2132 2133 bzero(&pd, sizeof (pd)); 2134 2135 pd.dtpa_dtp = dtp; 2136 pd.dtpa_fp = fp; 2137 pd.dtpa_allunprint = 1; 2138 2139 if (func == NULL) 2140 func = dtrace_aggregate_walk_sorted; 2141 2142 if (dtp->dt_oformat) { 2143 if ((*func)(dtp, dt_format_agg, &pd) == -1) 2144 return (dt_set_errno(dtp, dtp->dt_errno)); 2145 } else { 2146 if ((*func)(dtp, dt_print_agg, &pd) == -1) 2147 return (dt_set_errno(dtp, dtp->dt_errno)); 2148 } 2149 2150 return (0); 2151 } 2152 2153 void 2154 dtrace_aggregate_clear(dtrace_hdl_t *dtp) 2155 { 2156 dt_aggregate_t *agp = &dtp->dt_aggregate; 2157 dt_ahash_t *hash = &agp->dtat_hash; 2158 dt_ahashent_t *h; 2159 dtrace_aggdata_t *data; 2160 dtrace_aggdesc_t *aggdesc; 2161 dtrace_recdesc_t *rec; 2162 int i, max_cpus = agp->dtat_maxcpu; 2163 2164 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 2165 aggdesc = h->dtahe_data.dtada_desc; 2166 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 2167 data = &h->dtahe_data; 2168 2169 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); 2170 2171 if (data->dtada_percpu == NULL) 2172 continue; 2173 2174 for (i = 0; i < max_cpus; i++) 2175 bzero(data->dtada_percpu[i], rec->dtrd_size); 2176 } 2177 } 2178 2179 void 2180 dt_aggregate_destroy(dtrace_hdl_t *dtp) 2181 { 2182 dt_aggregate_t *agp = &dtp->dt_aggregate; 2183 dt_ahash_t *hash = &agp->dtat_hash; 2184 dt_ahashent_t *h, *next; 2185 dtrace_aggdata_t *aggdata; 2186 int i, max_cpus = agp->dtat_maxcpu; 2187 2188 if (hash->dtah_hash == NULL) { 2189 assert(hash->dtah_all == NULL); 2190 } else { 2191 free(hash->dtah_hash); 2192 2193 for (h = hash->dtah_all; h != NULL; h = next) { 2194 next = h->dtahe_nextall; 2195 2196 aggdata = &h->dtahe_data; 2197 2198 if (aggdata->dtada_percpu != NULL) { 2199 for (i = 0; i < max_cpus; i++) 2200 free(aggdata->dtada_percpu[i]); 2201 free(aggdata->dtada_percpu); 2202 } 2203 2204 free(aggdata->dtada_data); 2205 free(h); 2206 } 2207 2208 hash->dtah_hash = NULL; 2209 hash->dtah_all = NULL; 2210 hash->dtah_size = 0; 2211 } 2212 2213 free(agp->dtat_buf.dtbd_data); 2214 free(agp->dtat_cpus); 2215 } 2216