1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <stdlib.h> 30 #include <strings.h> 31 #include <errno.h> 32 #include <unistd.h> 33 #include <dt_impl.h> 34 #include <assert.h> 35 #if defined(sun) 36 #include <alloca.h> 37 #else 38 #include <sys/sysctl.h> 39 #endif 40 #include <limits.h> 41 42 #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ 43 44 /* 45 * Because qsort(3C) does not allow an argument to be passed to a comparison 46 * function, the variables that affect comparison must regrettably be global; 47 * they are protected by a global static lock, dt_qsort_lock. 48 */ 49 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; 50 51 static int dt_revsort; 52 static int dt_keysort; 53 static int dt_keypos; 54 55 #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) 56 #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) 57 58 static void 59 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) 60 { 61 uint_t i; 62 63 for (i = 0; i < size / sizeof (int64_t); i++) 64 existing[i] = existing[i] + new[i]; 65 } 66 67 static int 68 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) 69 { 70 int64_t lvar = *lhs; 71 int64_t rvar = *rhs; 72 73 if (lvar < rvar) 74 return (DT_LESSTHAN); 75 76 if (lvar > rvar) 77 return (DT_GREATERTHAN); 78 79 return (0); 80 } 81 82 /*ARGSUSED*/ 83 static void 84 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) 85 { 86 if (*new < *existing) 87 *existing = *new; 88 } 89 90 /*ARGSUSED*/ 91 static void 92 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) 93 { 94 if (*new > *existing) 95 *existing = *new; 96 } 97 98 static int 99 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) 100 { 101 int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; 102 int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; 103 104 if (lavg < ravg) 105 return (DT_LESSTHAN); 106 107 if (lavg > ravg) 108 return (DT_GREATERTHAN); 109 110 return (0); 111 } 112 113 static int 114 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) 115 { 116 uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); 117 uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); 118 119 if (lsd < rsd) 120 return (DT_LESSTHAN); 121 122 if (lsd > rsd) 123 return (DT_GREATERTHAN); 124 125 return (0); 126 } 127 128 /*ARGSUSED*/ 129 static void 130 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) 131 { 132 int64_t arg = *existing++; 133 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 134 int i; 135 136 for (i = 0; i <= levels + 1; i++) 137 existing[i] = existing[i] + new[i + 1]; 138 } 139 140 static long double 141 dt_aggregate_lquantizedsum(int64_t *lquanta) 142 { 143 int64_t arg = *lquanta++; 144 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 145 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 146 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 147 long double total = (long double)lquanta[0] * (long double)(base - 1); 148 149 for (i = 0; i < levels; base += step, i++) 150 total += (long double)lquanta[i + 1] * (long double)base; 151 152 return (total + (long double)lquanta[levels + 1] * 153 (long double)(base + 1)); 154 } 155 156 static int64_t 157 dt_aggregate_lquantizedzero(int64_t *lquanta) 158 { 159 int64_t arg = *lquanta++; 160 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 161 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 162 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 163 164 if (base - 1 == 0) 165 return (lquanta[0]); 166 167 for (i = 0; i < levels; base += step, i++) { 168 if (base != 0) 169 continue; 170 171 return (lquanta[i + 1]); 172 } 173 174 if (base + 1 == 0) 175 return (lquanta[levels + 1]); 176 177 return (0); 178 } 179 180 static int 181 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) 182 { 183 long double lsum = dt_aggregate_lquantizedsum(lhs); 184 long double rsum = dt_aggregate_lquantizedsum(rhs); 185 int64_t lzero, rzero; 186 187 if (lsum < rsum) 188 return (DT_LESSTHAN); 189 190 if (lsum > rsum) 191 return (DT_GREATERTHAN); 192 193 /* 194 * If they're both equal, then we will compare based on the weights at 195 * zero. If the weights at zero are equal (or if zero is not within 196 * the range of the linear quantization), then this will be judged a 197 * tie and will be resolved based on the key comparison. 198 */ 199 lzero = dt_aggregate_lquantizedzero(lhs); 200 rzero = dt_aggregate_lquantizedzero(rhs); 201 202 if (lzero < rzero) 203 return (DT_LESSTHAN); 204 205 if (lzero > rzero) 206 return (DT_GREATERTHAN); 207 208 return (0); 209 } 210 211 static int 212 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) 213 { 214 int nbuckets = DTRACE_QUANTIZE_NBUCKETS; 215 long double ltotal = 0, rtotal = 0; 216 int64_t lzero, rzero; 217 uint_t i; 218 219 for (i = 0; i < nbuckets; i++) { 220 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); 221 222 if (bucketval == 0) { 223 lzero = lhs[i]; 224 rzero = rhs[i]; 225 } 226 227 ltotal += (long double)bucketval * (long double)lhs[i]; 228 rtotal += (long double)bucketval * (long double)rhs[i]; 229 } 230 231 if (ltotal < rtotal) 232 return (DT_LESSTHAN); 233 234 if (ltotal > rtotal) 235 return (DT_GREATERTHAN); 236 237 /* 238 * If they're both equal, then we will compare based on the weights at 239 * zero. If the weights at zero are equal, then this will be judged a 240 * tie and will be resolved based on the key comparison. 241 */ 242 if (lzero < rzero) 243 return (DT_LESSTHAN); 244 245 if (lzero > rzero) 246 return (DT_GREATERTHAN); 247 248 return (0); 249 } 250 251 static void 252 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) 253 { 254 uint64_t pid = data[0]; 255 uint64_t *pc = &data[1]; 256 struct ps_prochandle *P; 257 GElf_Sym sym; 258 259 if (dtp->dt_vector != NULL) 260 return; 261 262 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 263 return; 264 265 dt_proc_lock(dtp, P); 266 267 #if defined(sun) 268 if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) 269 #else 270 if (proc_addr2sym(P, *pc, NULL, 0, &sym) == 0) 271 #endif 272 *pc = sym.st_value; 273 274 dt_proc_unlock(dtp, P); 275 dt_proc_release(dtp, P); 276 } 277 278 static void 279 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) 280 { 281 uint64_t pid = data[0]; 282 uint64_t *pc = &data[1]; 283 struct ps_prochandle *P; 284 const prmap_t *map; 285 286 if (dtp->dt_vector != NULL) 287 return; 288 289 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 290 return; 291 292 dt_proc_lock(dtp, P); 293 294 #if defined(sun) 295 if ((map = Paddr_to_map(P, *pc)) != NULL) 296 #else 297 if ((map = proc_addr2map(P, *pc)) != NULL) 298 #endif 299 *pc = map->pr_vaddr; 300 301 dt_proc_unlock(dtp, P); 302 dt_proc_release(dtp, P); 303 } 304 305 static void 306 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) 307 { 308 GElf_Sym sym; 309 uint64_t *pc = data; 310 311 if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) 312 *pc = sym.st_value; 313 } 314 315 static void 316 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) 317 { 318 uint64_t *pc = data; 319 dt_module_t *dmp; 320 321 if (dtp->dt_vector != NULL) { 322 /* 323 * We don't have a way of just getting the module for a 324 * vectored open, and it doesn't seem to be worth defining 325 * one. This means that use of mod() won't get true 326 * aggregation in the postmortem case (some modules may 327 * appear more than once in aggregation output). It seems 328 * unlikely that anyone will ever notice or care... 329 */ 330 return; 331 } 332 333 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; 334 dmp = dt_list_next(dmp)) { 335 if (*pc - dmp->dm_text_va < dmp->dm_text_size) { 336 *pc = dmp->dm_text_va; 337 return; 338 } 339 } 340 } 341 342 static dtrace_aggvarid_t 343 dt_aggregate_aggvarid(dt_ahashent_t *ent) 344 { 345 dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; 346 caddr_t data = ent->dtahe_data.dtada_data; 347 dtrace_recdesc_t *rec = agg->dtagd_rec; 348 349 /* 350 * First, we'll check the variable ID in the aggdesc. If it's valid, 351 * we'll return it. If not, we'll use the compiler-generated ID 352 * present as the first record. 353 */ 354 if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) 355 return (agg->dtagd_varid); 356 357 agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + 358 rec->dtrd_offset)); 359 360 return (agg->dtagd_varid); 361 } 362 363 364 static int 365 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) 366 { 367 dtrace_epid_t id; 368 uint64_t hashval; 369 size_t offs, roffs, size, ndx; 370 int i, j, rval; 371 caddr_t addr, data; 372 dtrace_recdesc_t *rec; 373 dt_aggregate_t *agp = &dtp->dt_aggregate; 374 dtrace_aggdesc_t *agg; 375 dt_ahash_t *hash = &agp->dtat_hash; 376 dt_ahashent_t *h; 377 dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; 378 dtrace_aggdata_t *aggdata; 379 int flags = agp->dtat_flags; 380 381 buf->dtbd_cpu = cpu; 382 383 #if defined(sun) 384 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { 385 #else 386 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) { 387 #endif 388 if (errno == ENOENT) { 389 /* 390 * If that failed with ENOENT, it may be because the 391 * CPU was unconfigured. This is okay; we'll just 392 * do nothing but return success. 393 */ 394 return (0); 395 } 396 397 return (dt_set_errno(dtp, errno)); 398 } 399 400 if (buf->dtbd_drops != 0) { 401 if (dt_handle_cpudrop(dtp, cpu, 402 DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) 403 return (-1); 404 } 405 406 if (buf->dtbd_size == 0) 407 return (0); 408 409 if (hash->dtah_hash == NULL) { 410 size_t size; 411 412 hash->dtah_size = DTRACE_AHASHSIZE; 413 size = hash->dtah_size * sizeof (dt_ahashent_t *); 414 415 if ((hash->dtah_hash = malloc(size)) == NULL) 416 return (dt_set_errno(dtp, EDT_NOMEM)); 417 418 bzero(hash->dtah_hash, size); 419 } 420 421 for (offs = 0; offs < buf->dtbd_size; ) { 422 /* 423 * We're guaranteed to have an ID. 424 */ 425 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + 426 (uintptr_t)offs)); 427 428 if (id == DTRACE_AGGIDNONE) { 429 /* 430 * This is filler to assure proper alignment of the 431 * next record; we simply ignore it. 432 */ 433 offs += sizeof (id); 434 continue; 435 } 436 437 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) 438 return (rval); 439 440 addr = buf->dtbd_data + offs; 441 size = agg->dtagd_size; 442 hashval = 0; 443 444 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 445 rec = &agg->dtagd_rec[j]; 446 roffs = rec->dtrd_offset; 447 448 switch (rec->dtrd_action) { 449 case DTRACEACT_USYM: 450 dt_aggregate_usym(dtp, 451 /* LINTED - alignment */ 452 (uint64_t *)&addr[roffs]); 453 break; 454 455 case DTRACEACT_UMOD: 456 dt_aggregate_umod(dtp, 457 /* LINTED - alignment */ 458 (uint64_t *)&addr[roffs]); 459 break; 460 461 case DTRACEACT_SYM: 462 /* LINTED - alignment */ 463 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); 464 break; 465 466 case DTRACEACT_MOD: 467 /* LINTED - alignment */ 468 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); 469 break; 470 471 default: 472 break; 473 } 474 475 for (i = 0; i < rec->dtrd_size; i++) 476 hashval += addr[roffs + i]; 477 } 478 479 ndx = hashval % hash->dtah_size; 480 481 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { 482 if (h->dtahe_hashval != hashval) 483 continue; 484 485 if (h->dtahe_size != size) 486 continue; 487 488 aggdata = &h->dtahe_data; 489 data = aggdata->dtada_data; 490 491 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 492 rec = &agg->dtagd_rec[j]; 493 roffs = rec->dtrd_offset; 494 495 for (i = 0; i < rec->dtrd_size; i++) 496 if (addr[roffs + i] != data[roffs + i]) 497 goto hashnext; 498 } 499 500 /* 501 * We found it. Now we need to apply the aggregating 502 * action on the data here. 503 */ 504 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 505 roffs = rec->dtrd_offset; 506 /* LINTED - alignment */ 507 h->dtahe_aggregate((int64_t *)&data[roffs], 508 /* LINTED - alignment */ 509 (int64_t *)&addr[roffs], rec->dtrd_size); 510 511 /* 512 * If we're keeping per CPU data, apply the aggregating 513 * action there as well. 514 */ 515 if (aggdata->dtada_percpu != NULL) { 516 data = aggdata->dtada_percpu[cpu]; 517 518 /* LINTED - alignment */ 519 h->dtahe_aggregate((int64_t *)data, 520 /* LINTED - alignment */ 521 (int64_t *)&addr[roffs], rec->dtrd_size); 522 } 523 524 goto bufnext; 525 hashnext: 526 continue; 527 } 528 529 /* 530 * If we're here, we couldn't find an entry for this record. 531 */ 532 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) 533 return (dt_set_errno(dtp, EDT_NOMEM)); 534 bzero(h, sizeof (dt_ahashent_t)); 535 aggdata = &h->dtahe_data; 536 537 if ((aggdata->dtada_data = malloc(size)) == NULL) { 538 free(h); 539 return (dt_set_errno(dtp, EDT_NOMEM)); 540 } 541 542 bcopy(addr, aggdata->dtada_data, size); 543 aggdata->dtada_size = size; 544 aggdata->dtada_desc = agg; 545 aggdata->dtada_handle = dtp; 546 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 547 &aggdata->dtada_edesc, &aggdata->dtada_pdesc); 548 aggdata->dtada_normal = 1; 549 550 h->dtahe_hashval = hashval; 551 h->dtahe_size = size; 552 (void) dt_aggregate_aggvarid(h); 553 554 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 555 556 if (flags & DTRACE_A_PERCPU) { 557 int max_cpus = agp->dtat_maxcpu; 558 caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); 559 560 if (percpu == NULL) { 561 free(aggdata->dtada_data); 562 free(h); 563 return (dt_set_errno(dtp, EDT_NOMEM)); 564 } 565 566 for (j = 0; j < max_cpus; j++) { 567 percpu[j] = malloc(rec->dtrd_size); 568 569 if (percpu[j] == NULL) { 570 while (--j >= 0) 571 free(percpu[j]); 572 573 free(aggdata->dtada_data); 574 free(h); 575 return (dt_set_errno(dtp, EDT_NOMEM)); 576 } 577 578 if (j == cpu) { 579 bcopy(&addr[rec->dtrd_offset], 580 percpu[j], rec->dtrd_size); 581 } else { 582 bzero(percpu[j], rec->dtrd_size); 583 } 584 } 585 586 aggdata->dtada_percpu = percpu; 587 } 588 589 switch (rec->dtrd_action) { 590 case DTRACEAGG_MIN: 591 h->dtahe_aggregate = dt_aggregate_min; 592 break; 593 594 case DTRACEAGG_MAX: 595 h->dtahe_aggregate = dt_aggregate_max; 596 break; 597 598 case DTRACEAGG_LQUANTIZE: 599 h->dtahe_aggregate = dt_aggregate_lquantize; 600 break; 601 602 case DTRACEAGG_COUNT: 603 case DTRACEAGG_SUM: 604 case DTRACEAGG_AVG: 605 case DTRACEAGG_STDDEV: 606 case DTRACEAGG_QUANTIZE: 607 h->dtahe_aggregate = dt_aggregate_count; 608 break; 609 610 default: 611 return (dt_set_errno(dtp, EDT_BADAGG)); 612 } 613 614 if (hash->dtah_hash[ndx] != NULL) 615 hash->dtah_hash[ndx]->dtahe_prev = h; 616 617 h->dtahe_next = hash->dtah_hash[ndx]; 618 hash->dtah_hash[ndx] = h; 619 620 if (hash->dtah_all != NULL) 621 hash->dtah_all->dtahe_prevall = h; 622 623 h->dtahe_nextall = hash->dtah_all; 624 hash->dtah_all = h; 625 bufnext: 626 offs += agg->dtagd_size; 627 } 628 629 return (0); 630 } 631 632 int 633 dtrace_aggregate_snap(dtrace_hdl_t *dtp) 634 { 635 int i, rval; 636 dt_aggregate_t *agp = &dtp->dt_aggregate; 637 hrtime_t now = gethrtime(); 638 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; 639 640 if (dtp->dt_lastagg != 0) { 641 if (now - dtp->dt_lastagg < interval) 642 return (0); 643 644 dtp->dt_lastagg += interval; 645 } else { 646 dtp->dt_lastagg = now; 647 } 648 649 if (!dtp->dt_active) 650 return (dt_set_errno(dtp, EINVAL)); 651 652 if (agp->dtat_buf.dtbd_size == 0) 653 return (0); 654 655 for (i = 0; i < agp->dtat_ncpus; i++) { 656 if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))) 657 return (rval); 658 } 659 660 return (0); 661 } 662 663 static int 664 dt_aggregate_hashcmp(const void *lhs, const void *rhs) 665 { 666 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 667 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 668 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 669 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 670 671 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 672 return (DT_LESSTHAN); 673 674 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 675 return (DT_GREATERTHAN); 676 677 return (0); 678 } 679 680 static int 681 dt_aggregate_varcmp(const void *lhs, const void *rhs) 682 { 683 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 684 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 685 dtrace_aggvarid_t lid, rid; 686 687 lid = dt_aggregate_aggvarid(lh); 688 rid = dt_aggregate_aggvarid(rh); 689 690 if (lid < rid) 691 return (DT_LESSTHAN); 692 693 if (lid > rid) 694 return (DT_GREATERTHAN); 695 696 return (0); 697 } 698 699 static int 700 dt_aggregate_keycmp(const void *lhs, const void *rhs) 701 { 702 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 703 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 704 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 705 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 706 dtrace_recdesc_t *lrec, *rrec; 707 char *ldata, *rdata; 708 int rval, i, j, keypos, nrecs; 709 710 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 711 return (rval); 712 713 nrecs = lagg->dtagd_nrecs - 1; 714 assert(nrecs == ragg->dtagd_nrecs - 1); 715 716 keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; 717 718 for (i = 1; i < nrecs; i++) { 719 uint64_t lval, rval; 720 int ndx = i + keypos; 721 722 if (ndx >= nrecs) 723 ndx = ndx - nrecs + 1; 724 725 lrec = &lagg->dtagd_rec[ndx]; 726 rrec = &ragg->dtagd_rec[ndx]; 727 728 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; 729 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; 730 731 if (lrec->dtrd_size < rrec->dtrd_size) 732 return (DT_LESSTHAN); 733 734 if (lrec->dtrd_size > rrec->dtrd_size) 735 return (DT_GREATERTHAN); 736 737 switch (lrec->dtrd_size) { 738 case sizeof (uint64_t): 739 /* LINTED - alignment */ 740 lval = *((uint64_t *)ldata); 741 /* LINTED - alignment */ 742 rval = *((uint64_t *)rdata); 743 break; 744 745 case sizeof (uint32_t): 746 /* LINTED - alignment */ 747 lval = *((uint32_t *)ldata); 748 /* LINTED - alignment */ 749 rval = *((uint32_t *)rdata); 750 break; 751 752 case sizeof (uint16_t): 753 /* LINTED - alignment */ 754 lval = *((uint16_t *)ldata); 755 /* LINTED - alignment */ 756 rval = *((uint16_t *)rdata); 757 break; 758 759 case sizeof (uint8_t): 760 lval = *((uint8_t *)ldata); 761 rval = *((uint8_t *)rdata); 762 break; 763 764 default: 765 switch (lrec->dtrd_action) { 766 case DTRACEACT_UMOD: 767 case DTRACEACT_UADDR: 768 case DTRACEACT_USYM: 769 for (j = 0; j < 2; j++) { 770 /* LINTED - alignment */ 771 lval = ((uint64_t *)ldata)[j]; 772 /* LINTED - alignment */ 773 rval = ((uint64_t *)rdata)[j]; 774 775 if (lval < rval) 776 return (DT_LESSTHAN); 777 778 if (lval > rval) 779 return (DT_GREATERTHAN); 780 } 781 782 break; 783 784 default: 785 for (j = 0; j < lrec->dtrd_size; j++) { 786 lval = ((uint8_t *)ldata)[j]; 787 rval = ((uint8_t *)rdata)[j]; 788 789 if (lval < rval) 790 return (DT_LESSTHAN); 791 792 if (lval > rval) 793 return (DT_GREATERTHAN); 794 } 795 } 796 797 continue; 798 } 799 800 if (lval < rval) 801 return (DT_LESSTHAN); 802 803 if (lval > rval) 804 return (DT_GREATERTHAN); 805 } 806 807 return (0); 808 } 809 810 static int 811 dt_aggregate_valcmp(const void *lhs, const void *rhs) 812 { 813 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 814 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 815 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 816 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 817 caddr_t ldata = lh->dtahe_data.dtada_data; 818 caddr_t rdata = rh->dtahe_data.dtada_data; 819 dtrace_recdesc_t *lrec, *rrec; 820 int64_t *laddr, *raddr; 821 int rval, i; 822 823 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 824 return (rval); 825 826 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 827 return (DT_GREATERTHAN); 828 829 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 830 return (DT_LESSTHAN); 831 832 for (i = 0; i < lagg->dtagd_nrecs; i++) { 833 lrec = &lagg->dtagd_rec[i]; 834 rrec = &ragg->dtagd_rec[i]; 835 836 if (lrec->dtrd_offset < rrec->dtrd_offset) 837 return (DT_LESSTHAN); 838 839 if (lrec->dtrd_offset > rrec->dtrd_offset) 840 return (DT_GREATERTHAN); 841 842 if (lrec->dtrd_action < rrec->dtrd_action) 843 return (DT_LESSTHAN); 844 845 if (lrec->dtrd_action > rrec->dtrd_action) 846 return (DT_GREATERTHAN); 847 } 848 849 laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); 850 raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); 851 852 switch (lrec->dtrd_action) { 853 case DTRACEAGG_AVG: 854 rval = dt_aggregate_averagecmp(laddr, raddr); 855 break; 856 857 case DTRACEAGG_STDDEV: 858 rval = dt_aggregate_stddevcmp(laddr, raddr); 859 break; 860 861 case DTRACEAGG_QUANTIZE: 862 rval = dt_aggregate_quantizedcmp(laddr, raddr); 863 break; 864 865 case DTRACEAGG_LQUANTIZE: 866 rval = dt_aggregate_lquantizedcmp(laddr, raddr); 867 break; 868 869 case DTRACEAGG_COUNT: 870 case DTRACEAGG_SUM: 871 case DTRACEAGG_MIN: 872 case DTRACEAGG_MAX: 873 rval = dt_aggregate_countcmp(laddr, raddr); 874 break; 875 876 default: 877 assert(0); 878 } 879 880 return (rval); 881 } 882 883 static int 884 dt_aggregate_valkeycmp(const void *lhs, const void *rhs) 885 { 886 int rval; 887 888 if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) 889 return (rval); 890 891 /* 892 * If we're here, the values for the two aggregation elements are 893 * equal. We already know that the key layout is the same for the two 894 * elements; we must now compare the keys themselves as a tie-breaker. 895 */ 896 return (dt_aggregate_keycmp(lhs, rhs)); 897 } 898 899 static int 900 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) 901 { 902 int rval; 903 904 if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) 905 return (rval); 906 907 return (dt_aggregate_varcmp(lhs, rhs)); 908 } 909 910 static int 911 dt_aggregate_varkeycmp(const void *lhs, const void *rhs) 912 { 913 int rval; 914 915 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 916 return (rval); 917 918 return (dt_aggregate_keycmp(lhs, rhs)); 919 } 920 921 static int 922 dt_aggregate_valvarcmp(const void *lhs, const void *rhs) 923 { 924 int rval; 925 926 if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) 927 return (rval); 928 929 return (dt_aggregate_varcmp(lhs, rhs)); 930 } 931 932 static int 933 dt_aggregate_varvalcmp(const void *lhs, const void *rhs) 934 { 935 int rval; 936 937 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 938 return (rval); 939 940 return (dt_aggregate_valkeycmp(lhs, rhs)); 941 } 942 943 static int 944 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) 945 { 946 return (dt_aggregate_keyvarcmp(rhs, lhs)); 947 } 948 949 static int 950 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) 951 { 952 return (dt_aggregate_varkeycmp(rhs, lhs)); 953 } 954 955 static int 956 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) 957 { 958 return (dt_aggregate_valvarcmp(rhs, lhs)); 959 } 960 961 static int 962 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) 963 { 964 return (dt_aggregate_varvalcmp(rhs, lhs)); 965 } 966 967 static int 968 dt_aggregate_bundlecmp(const void *lhs, const void *rhs) 969 { 970 dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); 971 dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); 972 int i, rval; 973 974 if (dt_keysort) { 975 /* 976 * If we're sorting on keys, we need to scan until we find the 977 * last entry -- that's the representative key. (The order of 978 * the bundle is values followed by key to accommodate the 979 * default behavior of sorting by value.) If the keys are 980 * equal, we'll fall into the value comparison loop, below. 981 */ 982 for (i = 0; lh[i + 1] != NULL; i++) 983 continue; 984 985 assert(i != 0); 986 assert(rh[i + 1] == NULL); 987 988 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) 989 return (rval); 990 } 991 992 for (i = 0; ; i++) { 993 if (lh[i + 1] == NULL) { 994 /* 995 * All of the values are equal; if we're sorting on 996 * keys, then we're only here because the keys were 997 * found to be equal and these records are therefore 998 * equal. If we're not sorting on keys, we'll use the 999 * key comparison from the representative key as the 1000 * tie-breaker. 1001 */ 1002 if (dt_keysort) 1003 return (0); 1004 1005 assert(i != 0); 1006 assert(rh[i + 1] == NULL); 1007 return (dt_aggregate_keycmp(&lh[i], &rh[i])); 1008 } else { 1009 if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) 1010 return (rval); 1011 } 1012 } 1013 } 1014 1015 int 1016 dt_aggregate_go(dtrace_hdl_t *dtp) 1017 { 1018 dt_aggregate_t *agp = &dtp->dt_aggregate; 1019 dtrace_optval_t size, cpu; 1020 dtrace_bufdesc_t *buf = &agp->dtat_buf; 1021 int rval, i; 1022 1023 assert(agp->dtat_maxcpu == 0); 1024 assert(agp->dtat_ncpu == 0); 1025 assert(agp->dtat_cpus == NULL); 1026 1027 agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 1028 agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); 1029 agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); 1030 1031 if (agp->dtat_cpus == NULL) 1032 return (dt_set_errno(dtp, EDT_NOMEM)); 1033 1034 /* 1035 * Use the aggregation buffer size as reloaded from the kernel. 1036 */ 1037 size = dtp->dt_options[DTRACEOPT_AGGSIZE]; 1038 1039 rval = dtrace_getopt(dtp, "aggsize", &size); 1040 assert(rval == 0); 1041 1042 if (size == 0 || size == DTRACEOPT_UNSET) 1043 return (0); 1044 1045 buf = &agp->dtat_buf; 1046 buf->dtbd_size = size; 1047 1048 if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) 1049 return (dt_set_errno(dtp, EDT_NOMEM)); 1050 1051 /* 1052 * Now query for the CPUs enabled. 1053 */ 1054 rval = dtrace_getopt(dtp, "cpu", &cpu); 1055 assert(rval == 0 && cpu != DTRACEOPT_UNSET); 1056 1057 if (cpu != DTRACE_CPUALL) { 1058 assert(cpu < agp->dtat_ncpu); 1059 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; 1060 1061 return (0); 1062 } 1063 1064 agp->dtat_ncpus = 0; 1065 for (i = 0; i < agp->dtat_maxcpu; i++) { 1066 if (dt_status(dtp, i) == -1) 1067 continue; 1068 1069 agp->dtat_cpus[agp->dtat_ncpus++] = i; 1070 } 1071 1072 return (0); 1073 } 1074 1075 static int 1076 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) 1077 { 1078 dt_aggregate_t *agp = &dtp->dt_aggregate; 1079 dtrace_aggdata_t *data; 1080 dtrace_aggdesc_t *aggdesc; 1081 dtrace_recdesc_t *rec; 1082 int i; 1083 1084 switch (rval) { 1085 case DTRACE_AGGWALK_NEXT: 1086 break; 1087 1088 case DTRACE_AGGWALK_CLEAR: { 1089 uint32_t size, offs = 0; 1090 1091 aggdesc = h->dtahe_data.dtada_desc; 1092 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1093 size = rec->dtrd_size; 1094 data = &h->dtahe_data; 1095 1096 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1097 offs = sizeof (uint64_t); 1098 size -= sizeof (uint64_t); 1099 } 1100 1101 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); 1102 1103 if (data->dtada_percpu == NULL) 1104 break; 1105 1106 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) 1107 bzero(data->dtada_percpu[i] + offs, size); 1108 break; 1109 } 1110 1111 case DTRACE_AGGWALK_ERROR: 1112 /* 1113 * We assume that errno is already set in this case. 1114 */ 1115 return (dt_set_errno(dtp, errno)); 1116 1117 case DTRACE_AGGWALK_ABORT: 1118 return (dt_set_errno(dtp, EDT_DIRABORT)); 1119 1120 case DTRACE_AGGWALK_DENORMALIZE: 1121 h->dtahe_data.dtada_normal = 1; 1122 return (0); 1123 1124 case DTRACE_AGGWALK_NORMALIZE: 1125 if (h->dtahe_data.dtada_normal == 0) { 1126 h->dtahe_data.dtada_normal = 1; 1127 return (dt_set_errno(dtp, EDT_BADRVAL)); 1128 } 1129 1130 return (0); 1131 1132 case DTRACE_AGGWALK_REMOVE: { 1133 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1134 int max_cpus = agp->dtat_maxcpu; 1135 1136 /* 1137 * First, remove this hash entry from its hash chain. 1138 */ 1139 if (h->dtahe_prev != NULL) { 1140 h->dtahe_prev->dtahe_next = h->dtahe_next; 1141 } else { 1142 dt_ahash_t *hash = &agp->dtat_hash; 1143 size_t ndx = h->dtahe_hashval % hash->dtah_size; 1144 1145 assert(hash->dtah_hash[ndx] == h); 1146 hash->dtah_hash[ndx] = h->dtahe_next; 1147 } 1148 1149 if (h->dtahe_next != NULL) 1150 h->dtahe_next->dtahe_prev = h->dtahe_prev; 1151 1152 /* 1153 * Now remove it from the list of all hash entries. 1154 */ 1155 if (h->dtahe_prevall != NULL) { 1156 h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; 1157 } else { 1158 dt_ahash_t *hash = &agp->dtat_hash; 1159 1160 assert(hash->dtah_all == h); 1161 hash->dtah_all = h->dtahe_nextall; 1162 } 1163 1164 if (h->dtahe_nextall != NULL) 1165 h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; 1166 1167 /* 1168 * We're unlinked. We can safely destroy the data. 1169 */ 1170 if (aggdata->dtada_percpu != NULL) { 1171 for (i = 0; i < max_cpus; i++) 1172 free(aggdata->dtada_percpu[i]); 1173 free(aggdata->dtada_percpu); 1174 } 1175 1176 free(aggdata->dtada_data); 1177 free(h); 1178 1179 return (0); 1180 } 1181 1182 default: 1183 return (dt_set_errno(dtp, EDT_BADRVAL)); 1184 } 1185 1186 return (0); 1187 } 1188 1189 void 1190 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, 1191 int (*compar)(const void *, const void *)) 1192 { 1193 int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; 1194 dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; 1195 1196 dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); 1197 dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); 1198 1199 if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { 1200 dt_keypos = (int)keyposopt; 1201 } else { 1202 dt_keypos = 0; 1203 } 1204 1205 if (compar == NULL) { 1206 if (!dt_keysort) { 1207 compar = dt_aggregate_varvalcmp; 1208 } else { 1209 compar = dt_aggregate_varkeycmp; 1210 } 1211 } 1212 1213 qsort(base, nel, width, compar); 1214 1215 dt_revsort = rev; 1216 dt_keysort = key; 1217 dt_keypos = keypos; 1218 } 1219 1220 int 1221 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) 1222 { 1223 dt_ahashent_t *h, *next; 1224 dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; 1225 1226 for (h = hash->dtah_all; h != NULL; h = next) { 1227 /* 1228 * dt_aggwalk_rval() can potentially remove the current hash 1229 * entry; we need to load the next hash entry before calling 1230 * into it. 1231 */ 1232 next = h->dtahe_nextall; 1233 1234 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) 1235 return (-1); 1236 } 1237 1238 return (0); 1239 } 1240 1241 static int 1242 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1243 dtrace_aggregate_f *func, void *arg, 1244 int (*sfunc)(const void *, const void *)) 1245 { 1246 dt_aggregate_t *agp = &dtp->dt_aggregate; 1247 dt_ahashent_t *h, **sorted; 1248 dt_ahash_t *hash = &agp->dtat_hash; 1249 size_t i, nentries = 0; 1250 1251 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) 1252 nentries++; 1253 1254 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1255 1256 if (sorted == NULL) 1257 return (-1); 1258 1259 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) 1260 sorted[i++] = h; 1261 1262 (void) pthread_mutex_lock(&dt_qsort_lock); 1263 1264 if (sfunc == NULL) { 1265 dt_aggregate_qsort(dtp, sorted, nentries, 1266 sizeof (dt_ahashent_t *), NULL); 1267 } else { 1268 /* 1269 * If we've been explicitly passed a sorting function, 1270 * we'll use that -- ignoring the values of the "aggsortrev", 1271 * "aggsortkey" and "aggsortkeypos" options. 1272 */ 1273 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); 1274 } 1275 1276 (void) pthread_mutex_unlock(&dt_qsort_lock); 1277 1278 for (i = 0; i < nentries; i++) { 1279 h = sorted[i]; 1280 1281 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) { 1282 dt_free(dtp, sorted); 1283 return (-1); 1284 } 1285 } 1286 1287 dt_free(dtp, sorted); 1288 return (0); 1289 } 1290 1291 int 1292 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1293 dtrace_aggregate_f *func, void *arg) 1294 { 1295 return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); 1296 } 1297 1298 int 1299 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, 1300 dtrace_aggregate_f *func, void *arg) 1301 { 1302 return (dt_aggregate_walk_sorted(dtp, func, 1303 arg, dt_aggregate_varkeycmp)); 1304 } 1305 1306 int 1307 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, 1308 dtrace_aggregate_f *func, void *arg) 1309 { 1310 return (dt_aggregate_walk_sorted(dtp, func, 1311 arg, dt_aggregate_varvalcmp)); 1312 } 1313 1314 int 1315 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, 1316 dtrace_aggregate_f *func, void *arg) 1317 { 1318 return (dt_aggregate_walk_sorted(dtp, func, 1319 arg, dt_aggregate_keyvarcmp)); 1320 } 1321 1322 int 1323 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, 1324 dtrace_aggregate_f *func, void *arg) 1325 { 1326 return (dt_aggregate_walk_sorted(dtp, func, 1327 arg, dt_aggregate_valvarcmp)); 1328 } 1329 1330 int 1331 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, 1332 dtrace_aggregate_f *func, void *arg) 1333 { 1334 return (dt_aggregate_walk_sorted(dtp, func, 1335 arg, dt_aggregate_varkeyrevcmp)); 1336 } 1337 1338 int 1339 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, 1340 dtrace_aggregate_f *func, void *arg) 1341 { 1342 return (dt_aggregate_walk_sorted(dtp, func, 1343 arg, dt_aggregate_varvalrevcmp)); 1344 } 1345 1346 int 1347 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, 1348 dtrace_aggregate_f *func, void *arg) 1349 { 1350 return (dt_aggregate_walk_sorted(dtp, func, 1351 arg, dt_aggregate_keyvarrevcmp)); 1352 } 1353 1354 int 1355 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, 1356 dtrace_aggregate_f *func, void *arg) 1357 { 1358 return (dt_aggregate_walk_sorted(dtp, func, 1359 arg, dt_aggregate_valvarrevcmp)); 1360 } 1361 1362 int 1363 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, 1364 int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) 1365 { 1366 dt_aggregate_t *agp = &dtp->dt_aggregate; 1367 dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; 1368 const dtrace_aggdata_t **data; 1369 dt_ahashent_t *zaggdata = NULL; 1370 dt_ahash_t *hash = &agp->dtat_hash; 1371 size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; 1372 dtrace_aggvarid_t max = 0, aggvar; 1373 int rval = -1, *map, *remap = NULL; 1374 int i, j; 1375 dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; 1376 1377 /* 1378 * If the sorting position is greater than the number of aggregation 1379 * variable IDs, we silently set it to 0. 1380 */ 1381 if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) 1382 sortpos = 0; 1383 1384 /* 1385 * First we need to translate the specified aggregation variable IDs 1386 * into a linear map that will allow us to translate an aggregation 1387 * variable ID into its position in the specified aggvars. 1388 */ 1389 for (i = 0; i < naggvars; i++) { 1390 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) 1391 return (dt_set_errno(dtp, EDT_BADAGGVAR)); 1392 1393 if (aggvars[i] > max) 1394 max = aggvars[i]; 1395 } 1396 1397 if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) 1398 return (-1); 1399 1400 zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); 1401 1402 if (zaggdata == NULL) 1403 goto out; 1404 1405 for (i = 0; i < naggvars; i++) { 1406 int ndx = i + sortpos; 1407 1408 if (ndx >= naggvars) 1409 ndx -= naggvars; 1410 1411 aggvar = aggvars[ndx]; 1412 assert(aggvar <= max); 1413 1414 if (map[aggvar]) { 1415 /* 1416 * We have an aggregation variable that is present 1417 * more than once in the array of aggregation 1418 * variables. While it's unclear why one might want 1419 * to do this, it's legal. To support this construct, 1420 * we will allocate a remap that will indicate the 1421 * position from which this aggregation variable 1422 * should be pulled. (That is, where the remap will 1423 * map from one position to another.) 1424 */ 1425 if (remap == NULL) { 1426 remap = dt_zalloc(dtp, naggvars * sizeof (int)); 1427 1428 if (remap == NULL) 1429 goto out; 1430 } 1431 1432 /* 1433 * Given that the variable is already present, assert 1434 * that following through the mapping and adjusting 1435 * for the sort position yields the same aggregation 1436 * variable ID. 1437 */ 1438 assert(aggvars[(map[aggvar] - 1 + sortpos) % 1439 naggvars] == aggvars[ndx]); 1440 1441 remap[i] = map[aggvar]; 1442 continue; 1443 } 1444 1445 map[aggvar] = i + 1; 1446 } 1447 1448 /* 1449 * We need to take two passes over the data to size our allocation, so 1450 * we'll use the first pass to also fill in the zero-filled data to be 1451 * used to properly format a zero-valued aggregation. 1452 */ 1453 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1454 dtrace_aggvarid_t id; 1455 int ndx; 1456 1457 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) 1458 continue; 1459 1460 if (zaggdata[ndx - 1].dtahe_size == 0) { 1461 zaggdata[ndx - 1].dtahe_size = h->dtahe_size; 1462 zaggdata[ndx - 1].dtahe_data = h->dtahe_data; 1463 } 1464 1465 nentries++; 1466 } 1467 1468 if (nentries == 0) { 1469 /* 1470 * We couldn't find any entries; there is nothing else to do. 1471 */ 1472 rval = 0; 1473 goto out; 1474 } 1475 1476 /* 1477 * Before we sort the data, we're going to look for any holes in our 1478 * zero-filled data. This will occur if an aggregation variable that 1479 * we are being asked to print has not yet been assigned the result of 1480 * any aggregating action for _any_ tuple. The issue becomes that we 1481 * would like a zero value to be printed for all columns for this 1482 * aggregation, but without any record description, we don't know the 1483 * aggregating action that corresponds to the aggregation variable. To 1484 * try to find a match, we're simply going to lookup aggregation IDs 1485 * (which are guaranteed to be contiguous and to start from 1), looking 1486 * for the specified aggregation variable ID. If we find a match, 1487 * we'll use that. If we iterate over all aggregation IDs and don't 1488 * find a match, then we must be an anonymous enabling. (Anonymous 1489 * enablings can't currently derive either aggregation variable IDs or 1490 * aggregation variable names given only an aggregation ID.) In this 1491 * obscure case (anonymous enabling, multiple aggregation printa() with 1492 * some aggregations not represented for any tuple), our defined 1493 * behavior is that the zero will be printed in the format of the first 1494 * aggregation variable that contains any non-zero value. 1495 */ 1496 for (i = 0; i < naggvars; i++) { 1497 if (zaggdata[i].dtahe_size == 0) { 1498 dtrace_aggvarid_t aggvar; 1499 1500 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1501 assert(zaggdata[i].dtahe_data.dtada_data == NULL); 1502 1503 for (j = DTRACE_AGGIDNONE + 1; ; j++) { 1504 dtrace_aggdesc_t *agg; 1505 dtrace_aggdata_t *aggdata; 1506 1507 if (dt_aggid_lookup(dtp, j, &agg) != 0) 1508 break; 1509 1510 if (agg->dtagd_varid != aggvar) 1511 continue; 1512 1513 /* 1514 * We have our description -- now we need to 1515 * cons up the zaggdata entry for it. 1516 */ 1517 aggdata = &zaggdata[i].dtahe_data; 1518 aggdata->dtada_size = agg->dtagd_size; 1519 aggdata->dtada_desc = agg; 1520 aggdata->dtada_handle = dtp; 1521 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 1522 &aggdata->dtada_edesc, 1523 &aggdata->dtada_pdesc); 1524 aggdata->dtada_normal = 1; 1525 zaggdata[i].dtahe_hashval = 0; 1526 zaggdata[i].dtahe_size = agg->dtagd_size; 1527 break; 1528 } 1529 1530 if (zaggdata[i].dtahe_size == 0) { 1531 caddr_t data; 1532 1533 /* 1534 * We couldn't find this aggregation, meaning 1535 * that we have never seen it before for any 1536 * tuple _and_ this is an anonymous enabling. 1537 * That is, we're in the obscure case outlined 1538 * above. In this case, our defined behavior 1539 * is to format the data in the format of the 1540 * first non-zero aggregation -- of which, of 1541 * course, we know there to be at least one 1542 * (or nentries would have been zero). 1543 */ 1544 for (j = 0; j < naggvars; j++) { 1545 if (zaggdata[j].dtahe_size != 0) 1546 break; 1547 } 1548 1549 assert(j < naggvars); 1550 zaggdata[i] = zaggdata[j]; 1551 1552 data = zaggdata[i].dtahe_data.dtada_data; 1553 assert(data != NULL); 1554 } 1555 } 1556 } 1557 1558 /* 1559 * Now we need to allocate our zero-filled data for use for 1560 * aggregations that don't have a value corresponding to a given key. 1561 */ 1562 for (i = 0; i < naggvars; i++) { 1563 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; 1564 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; 1565 dtrace_recdesc_t *rec; 1566 uint64_t larg; 1567 caddr_t zdata; 1568 1569 zsize = zaggdata[i].dtahe_size; 1570 assert(zsize != 0); 1571 1572 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { 1573 /* 1574 * If we failed to allocated some zero-filled data, we 1575 * need to zero out the remaining dtada_data pointers 1576 * to prevent the wrong data from being freed below. 1577 */ 1578 for (j = i; j < naggvars; j++) 1579 zaggdata[j].dtahe_data.dtada_data = NULL; 1580 goto out; 1581 } 1582 1583 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1584 1585 /* 1586 * First, the easy bit. To maintain compatibility with 1587 * consumers that pull the compiler-generated ID out of the 1588 * data, we put that ID at the top of the zero-filled data. 1589 */ 1590 rec = &aggdesc->dtagd_rec[0]; 1591 /* LINTED - alignment */ 1592 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; 1593 1594 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1595 1596 /* 1597 * Now for the more complicated part. If (and only if) this 1598 * is an lquantize() aggregating action, zero-filled data is 1599 * not equivalent to an empty record: we must also get the 1600 * parameters for the lquantize(). 1601 */ 1602 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1603 if (aggdata->dtada_data != NULL) { 1604 /* 1605 * The easier case here is if we actually have 1606 * some prototype data -- in which case we 1607 * manually dig it out of the aggregation 1608 * record. 1609 */ 1610 /* LINTED - alignment */ 1611 larg = *((uint64_t *)(aggdata->dtada_data + 1612 rec->dtrd_offset)); 1613 } else { 1614 /* 1615 * We don't have any prototype data. As a 1616 * result, we know that we _do_ have the 1617 * compiler-generated information. (If this 1618 * were an anonymous enabling, all of our 1619 * zero-filled data would have prototype data 1620 * -- either directly or indirectly.) So as 1621 * gross as it is, we'll grovel around in the 1622 * compiler-generated information to find the 1623 * lquantize() parameters. 1624 */ 1625 dtrace_stmtdesc_t *sdp; 1626 dt_ident_t *aid; 1627 dt_idsig_t *isp; 1628 1629 sdp = (dtrace_stmtdesc_t *)(uintptr_t) 1630 aggdesc->dtagd_rec[0].dtrd_uarg; 1631 aid = sdp->dtsd_aggdata; 1632 isp = (dt_idsig_t *)aid->di_data; 1633 assert(isp->dis_auxinfo != 0); 1634 larg = isp->dis_auxinfo; 1635 } 1636 1637 /* LINTED - alignment */ 1638 *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; 1639 } 1640 1641 aggdata->dtada_data = zdata; 1642 } 1643 1644 /* 1645 * Now that we've dealt with setting up our zero-filled data, we can 1646 * allocate our sorted array, and take another pass over the data to 1647 * fill it. 1648 */ 1649 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1650 1651 if (sorted == NULL) 1652 goto out; 1653 1654 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { 1655 dtrace_aggvarid_t id; 1656 1657 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) 1658 continue; 1659 1660 sorted[i++] = h; 1661 } 1662 1663 assert(i == nentries); 1664 1665 /* 1666 * We've loaded our array; now we need to sort by value to allow us 1667 * to create bundles of like value. We're going to acquire the 1668 * dt_qsort_lock here, and hold it across all of our subsequent 1669 * comparison and sorting. 1670 */ 1671 (void) pthread_mutex_lock(&dt_qsort_lock); 1672 1673 qsort(sorted, nentries, sizeof (dt_ahashent_t *), 1674 dt_aggregate_keyvarcmp); 1675 1676 /* 1677 * Now we need to go through and create bundles. Because the number 1678 * of bundles is bounded by the size of the sorted array, we're going 1679 * to reuse the underlying storage. And note that "bundle" is an 1680 * array of pointers to arrays of pointers to dt_ahashent_t -- making 1681 * its type (regrettably) "dt_ahashent_t ***". (Regrettable because 1682 * '*' -- like '_' and 'X' -- should never appear in triplicate in 1683 * an ideal world.) 1684 */ 1685 bundle = (dt_ahashent_t ***)sorted; 1686 1687 for (i = 1, start = 0; i <= nentries; i++) { 1688 if (i < nentries && 1689 dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) 1690 continue; 1691 1692 /* 1693 * We have a bundle boundary. Everything from start to 1694 * (i - 1) belongs in one bundle. 1695 */ 1696 assert(i - start <= naggvars); 1697 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); 1698 1699 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { 1700 (void) pthread_mutex_unlock(&dt_qsort_lock); 1701 goto out; 1702 } 1703 1704 for (j = start; j < i; j++) { 1705 dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); 1706 1707 assert(id <= max); 1708 assert(map[id] != 0); 1709 assert(map[id] - 1 < naggvars); 1710 assert(nbundle[map[id] - 1] == NULL); 1711 nbundle[map[id] - 1] = sorted[j]; 1712 1713 if (nbundle[naggvars] == NULL) 1714 nbundle[naggvars] = sorted[j]; 1715 } 1716 1717 for (j = 0; j < naggvars; j++) { 1718 if (nbundle[j] != NULL) 1719 continue; 1720 1721 /* 1722 * Before we assume that this aggregation variable 1723 * isn't present (and fall back to using the 1724 * zero-filled data allocated earlier), check the 1725 * remap. If we have a remapping, we'll drop it in 1726 * here. Note that we might be remapping an 1727 * aggregation variable that isn't present for this 1728 * key; in this case, the aggregation data that we 1729 * copy will point to the zeroed data. 1730 */ 1731 if (remap != NULL && remap[j]) { 1732 assert(remap[j] - 1 < j); 1733 assert(nbundle[remap[j] - 1] != NULL); 1734 nbundle[j] = nbundle[remap[j] - 1]; 1735 } else { 1736 nbundle[j] = &zaggdata[j]; 1737 } 1738 } 1739 1740 bundle[nbundles++] = nbundle; 1741 start = i; 1742 } 1743 1744 /* 1745 * Now we need to re-sort based on the first value. 1746 */ 1747 dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), 1748 dt_aggregate_bundlecmp); 1749 1750 (void) pthread_mutex_unlock(&dt_qsort_lock); 1751 1752 /* 1753 * We're done! Now we just need to go back over the sorted bundles, 1754 * calling the function. 1755 */ 1756 data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); 1757 1758 for (i = 0; i < nbundles; i++) { 1759 for (j = 0; j < naggvars; j++) 1760 data[j + 1] = NULL; 1761 1762 for (j = 0; j < naggvars; j++) { 1763 int ndx = j - sortpos; 1764 1765 if (ndx < 0) 1766 ndx += naggvars; 1767 1768 assert(bundle[i][ndx] != NULL); 1769 data[j + 1] = &bundle[i][ndx]->dtahe_data; 1770 } 1771 1772 for (j = 0; j < naggvars; j++) 1773 assert(data[j + 1] != NULL); 1774 1775 /* 1776 * The representative key is the last element in the bundle. 1777 * Assert that we have one, and then set it to be the first 1778 * element of data. 1779 */ 1780 assert(bundle[i][j] != NULL); 1781 data[0] = &bundle[i][j]->dtahe_data; 1782 1783 if ((rval = func(data, naggvars + 1, arg)) == -1) 1784 goto out; 1785 } 1786 1787 rval = 0; 1788 out: 1789 for (i = 0; i < nbundles; i++) 1790 dt_free(dtp, bundle[i]); 1791 1792 if (zaggdata != NULL) { 1793 for (i = 0; i < naggvars; i++) 1794 dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); 1795 } 1796 1797 dt_free(dtp, zaggdata); 1798 dt_free(dtp, sorted); 1799 dt_free(dtp, remap); 1800 dt_free(dtp, map); 1801 1802 return (rval); 1803 } 1804 1805 int 1806 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, 1807 dtrace_aggregate_walk_f *func) 1808 { 1809 dt_print_aggdata_t pd; 1810 1811 pd.dtpa_dtp = dtp; 1812 pd.dtpa_fp = fp; 1813 pd.dtpa_allunprint = 1; 1814 1815 if (func == NULL) 1816 func = dtrace_aggregate_walk_sorted; 1817 1818 if ((*func)(dtp, dt_print_agg, &pd) == -1) 1819 return (dt_set_errno(dtp, dtp->dt_errno)); 1820 1821 return (0); 1822 } 1823 1824 void 1825 dtrace_aggregate_clear(dtrace_hdl_t *dtp) 1826 { 1827 dt_aggregate_t *agp = &dtp->dt_aggregate; 1828 dt_ahash_t *hash = &agp->dtat_hash; 1829 dt_ahashent_t *h; 1830 dtrace_aggdata_t *data; 1831 dtrace_aggdesc_t *aggdesc; 1832 dtrace_recdesc_t *rec; 1833 int i, max_cpus = agp->dtat_maxcpu; 1834 1835 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1836 aggdesc = h->dtahe_data.dtada_desc; 1837 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1838 data = &h->dtahe_data; 1839 1840 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); 1841 1842 if (data->dtada_percpu == NULL) 1843 continue; 1844 1845 for (i = 0; i < max_cpus; i++) 1846 bzero(data->dtada_percpu[i], rec->dtrd_size); 1847 } 1848 } 1849 1850 void 1851 dt_aggregate_destroy(dtrace_hdl_t *dtp) 1852 { 1853 dt_aggregate_t *agp = &dtp->dt_aggregate; 1854 dt_ahash_t *hash = &agp->dtat_hash; 1855 dt_ahashent_t *h, *next; 1856 dtrace_aggdata_t *aggdata; 1857 int i, max_cpus = agp->dtat_maxcpu; 1858 1859 if (hash->dtah_hash == NULL) { 1860 assert(hash->dtah_all == NULL); 1861 } else { 1862 free(hash->dtah_hash); 1863 1864 for (h = hash->dtah_all; h != NULL; h = next) { 1865 next = h->dtahe_nextall; 1866 1867 aggdata = &h->dtahe_data; 1868 1869 if (aggdata->dtada_percpu != NULL) { 1870 for (i = 0; i < max_cpus; i++) 1871 free(aggdata->dtada_percpu[i]); 1872 free(aggdata->dtada_percpu); 1873 } 1874 1875 free(aggdata->dtada_data); 1876 free(h); 1877 } 1878 1879 hash->dtah_hash = NULL; 1880 hash->dtah_all = NULL; 1881 hash->dtah_size = 0; 1882 } 1883 1884 free(agp->dtat_buf.dtbd_data); 1885 free(agp->dtat_cpus); 1886 } 1887