xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_aggregate.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29  * Copyright (c) 2012 by Delphix. All rights reserved.
30  */
31 
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <errno.h>
35 #include <unistd.h>
36 #include <dt_impl.h>
37 #include <assert.h>
38 #include <dt_oformat.h>
39 #ifdef illumos
40 #include <alloca.h>
41 #else
42 #include <sys/sysctl.h>
43 #include <libproc_compat.h>
44 #endif
45 #include <limits.h>
46 
47 #define	DTRACE_AHASHSIZE	32779		/* big 'ol prime */
48 
49 /*
50  * Because qsort(3C) does not allow an argument to be passed to a comparison
51  * function, the variables that affect comparison must regrettably be global;
52  * they are protected by a global static lock, dt_qsort_lock.
53  */
54 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
55 
56 static int dt_revsort;
57 static int dt_keysort;
58 static int dt_keypos;
59 
60 #define	DT_LESSTHAN	(dt_revsort == 0 ? -1 : 1)
61 #define	DT_GREATERTHAN	(dt_revsort == 0 ? 1 : -1)
62 
63 static void
64 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
65 {
66 	uint_t i;
67 
68 	for (i = 0; i < size / sizeof (int64_t); i++)
69 		existing[i] = existing[i] + new[i];
70 }
71 
72 static int
73 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
74 {
75 	int64_t lvar = *lhs;
76 	int64_t rvar = *rhs;
77 
78 	if (lvar < rvar)
79 		return (DT_LESSTHAN);
80 
81 	if (lvar > rvar)
82 		return (DT_GREATERTHAN);
83 
84 	return (0);
85 }
86 
87 /*ARGSUSED*/
88 static void
89 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
90 {
91 	if (*new < *existing)
92 		*existing = *new;
93 }
94 
95 /*ARGSUSED*/
96 static void
97 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
98 {
99 	if (*new > *existing)
100 		*existing = *new;
101 }
102 
103 static int
104 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
105 {
106 	int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
107 	int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
108 
109 	if (lavg < ravg)
110 		return (DT_LESSTHAN);
111 
112 	if (lavg > ravg)
113 		return (DT_GREATERTHAN);
114 
115 	return (0);
116 }
117 
118 static int
119 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
120 {
121 	uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
122 	uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
123 
124 	if (lsd < rsd)
125 		return (DT_LESSTHAN);
126 
127 	if (lsd > rsd)
128 		return (DT_GREATERTHAN);
129 
130 	return (0);
131 }
132 
133 /*ARGSUSED*/
134 static void
135 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
136 {
137 	int64_t arg = *existing++;
138 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
139 	int i;
140 
141 	for (i = 0; i <= levels + 1; i++)
142 		existing[i] = existing[i] + new[i + 1];
143 }
144 
145 static long double
146 dt_aggregate_lquantizedsum(int64_t *lquanta)
147 {
148 	int64_t arg = *lquanta++;
149 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
150 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
151 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
152 	long double total = (long double)lquanta[0] * (long double)(base - 1);
153 
154 	for (i = 0; i < levels; base += step, i++)
155 		total += (long double)lquanta[i + 1] * (long double)base;
156 
157 	return (total + (long double)lquanta[levels + 1] *
158 	    (long double)(base + 1));
159 }
160 
161 static int64_t
162 dt_aggregate_lquantizedzero(int64_t *lquanta)
163 {
164 	int64_t arg = *lquanta++;
165 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
166 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
167 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
168 
169 	if (base - 1 == 0)
170 		return (lquanta[0]);
171 
172 	for (i = 0; i < levels; base += step, i++) {
173 		if (base != 0)
174 			continue;
175 
176 		return (lquanta[i + 1]);
177 	}
178 
179 	if (base + 1 == 0)
180 		return (lquanta[levels + 1]);
181 
182 	return (0);
183 }
184 
185 static int
186 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
187 {
188 	long double lsum = dt_aggregate_lquantizedsum(lhs);
189 	long double rsum = dt_aggregate_lquantizedsum(rhs);
190 	int64_t lzero, rzero;
191 
192 	if (lsum < rsum)
193 		return (DT_LESSTHAN);
194 
195 	if (lsum > rsum)
196 		return (DT_GREATERTHAN);
197 
198 	/*
199 	 * If they're both equal, then we will compare based on the weights at
200 	 * zero.  If the weights at zero are equal (or if zero is not within
201 	 * the range of the linear quantization), then this will be judged a
202 	 * tie and will be resolved based on the key comparison.
203 	 */
204 	lzero = dt_aggregate_lquantizedzero(lhs);
205 	rzero = dt_aggregate_lquantizedzero(rhs);
206 
207 	if (lzero < rzero)
208 		return (DT_LESSTHAN);
209 
210 	if (lzero > rzero)
211 		return (DT_GREATERTHAN);
212 
213 	return (0);
214 }
215 
216 static void
217 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
218 {
219 	int i;
220 
221 	for (i = 1; i < size / sizeof (int64_t); i++)
222 		existing[i] = existing[i] + new[i];
223 }
224 
225 static long double
226 dt_aggregate_llquantizedsum(int64_t *llquanta)
227 {
228 	int64_t arg = *llquanta++;
229 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
230 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
231 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
232 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
233 	int bin = 0, order;
234 	int64_t value = 1, next, step;
235 	long double total;
236 
237 	assert(nsteps >= factor);
238 	assert(nsteps % factor == 0);
239 
240 	for (order = 0; order < low; order++)
241 		value *= factor;
242 
243 	total = (long double)llquanta[bin++] * (long double)(value - 1);
244 
245 	next = value * factor;
246 	step = next > nsteps ? next / nsteps : 1;
247 
248 	while (order <= high) {
249 		assert(value < next);
250 		total += (long double)llquanta[bin++] * (long double)(value);
251 
252 		if ((value += step) != next)
253 			continue;
254 
255 		next = value * factor;
256 		step = next > nsteps ? next / nsteps : 1;
257 		order++;
258 	}
259 
260 	return (total + (long double)llquanta[bin] * (long double)value);
261 }
262 
263 static int
264 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
265 {
266 	long double lsum = dt_aggregate_llquantizedsum(lhs);
267 	long double rsum = dt_aggregate_llquantizedsum(rhs);
268 	int64_t lzero, rzero;
269 
270 	if (lsum < rsum)
271 		return (DT_LESSTHAN);
272 
273 	if (lsum > rsum)
274 		return (DT_GREATERTHAN);
275 
276 	/*
277 	 * If they're both equal, then we will compare based on the weights at
278 	 * zero.  If the weights at zero are equal, then this will be judged a
279 	 * tie and will be resolved based on the key comparison.
280 	 */
281 	lzero = lhs[1];
282 	rzero = rhs[1];
283 
284 	if (lzero < rzero)
285 		return (DT_LESSTHAN);
286 
287 	if (lzero > rzero)
288 		return (DT_GREATERTHAN);
289 
290 	return (0);
291 }
292 
293 static int
294 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
295 {
296 	int nbuckets = DTRACE_QUANTIZE_NBUCKETS;
297 	long double ltotal = 0, rtotal = 0;
298 	int64_t lzero, rzero;
299 	uint_t i;
300 
301 	for (i = 0; i < nbuckets; i++) {
302 		int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
303 
304 		if (bucketval == 0) {
305 			lzero = lhs[i];
306 			rzero = rhs[i];
307 		}
308 
309 		ltotal += (long double)bucketval * (long double)lhs[i];
310 		rtotal += (long double)bucketval * (long double)rhs[i];
311 	}
312 
313 	if (ltotal < rtotal)
314 		return (DT_LESSTHAN);
315 
316 	if (ltotal > rtotal)
317 		return (DT_GREATERTHAN);
318 
319 	/*
320 	 * If they're both equal, then we will compare based on the weights at
321 	 * zero.  If the weights at zero are equal, then this will be judged a
322 	 * tie and will be resolved based on the key comparison.
323 	 */
324 	if (lzero < rzero)
325 		return (DT_LESSTHAN);
326 
327 	if (lzero > rzero)
328 		return (DT_GREATERTHAN);
329 
330 	return (0);
331 }
332 
333 static void
334 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
335 {
336 	uint64_t pid = data[0];
337 	uint64_t *pc = &data[1];
338 	struct ps_prochandle *P;
339 	GElf_Sym sym;
340 
341 	if (dtp->dt_vector != NULL)
342 		return;
343 
344 	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
345 		return;
346 
347 	dt_proc_lock(dtp, P);
348 
349 	if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
350 		*pc = sym.st_value;
351 
352 	dt_proc_unlock(dtp, P);
353 	dt_proc_release(dtp, P);
354 }
355 
356 static void
357 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
358 {
359 	uint64_t pid = data[0];
360 	uint64_t *pc = &data[1];
361 	struct ps_prochandle *P;
362 	const prmap_t *map;
363 
364 	if (dtp->dt_vector != NULL)
365 		return;
366 
367 	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
368 		return;
369 
370 	dt_proc_lock(dtp, P);
371 
372 	if ((map = Paddr_to_map(P, *pc)) != NULL)
373 		*pc = map->pr_vaddr;
374 
375 	dt_proc_unlock(dtp, P);
376 	dt_proc_release(dtp, P);
377 }
378 
379 static void
380 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
381 {
382 	GElf_Sym sym;
383 	uint64_t *pc = data;
384 
385 	if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
386 		*pc = sym.st_value;
387 }
388 
389 static void
390 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
391 {
392 	uint64_t *pc = data;
393 	dt_module_t *dmp;
394 
395 	if (dtp->dt_vector != NULL) {
396 		/*
397 		 * We don't have a way of just getting the module for a
398 		 * vectored open, and it doesn't seem to be worth defining
399 		 * one.  This means that use of mod() won't get true
400 		 * aggregation in the postmortem case (some modules may
401 		 * appear more than once in aggregation output).  It seems
402 		 * unlikely that anyone will ever notice or care...
403 		 */
404 		return;
405 	}
406 
407 	for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
408 	    dmp = dt_list_next(dmp)) {
409 		if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
410 			*pc = dmp->dm_text_va;
411 			return;
412 		}
413 	}
414 }
415 
416 static dtrace_aggvarid_t
417 dt_aggregate_aggvarid(dt_ahashent_t *ent)
418 {
419 	dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
420 	caddr_t data = ent->dtahe_data.dtada_data;
421 	dtrace_recdesc_t *rec = agg->dtagd_rec;
422 
423 	/*
424 	 * First, we'll check the variable ID in the aggdesc.  If it's valid,
425 	 * we'll return it.  If not, we'll use the compiler-generated ID
426 	 * present as the first record.
427 	 */
428 	if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
429 		return (agg->dtagd_varid);
430 
431 	agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
432 	    rec->dtrd_offset));
433 
434 	return (agg->dtagd_varid);
435 }
436 
437 
438 static int
439 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
440 {
441 	dtrace_epid_t id;
442 	uint64_t hashval;
443 	size_t offs, roffs, size, ndx;
444 	int i, j, rval;
445 	caddr_t addr, data;
446 	dtrace_recdesc_t *rec;
447 	dt_aggregate_t *agp = &dtp->dt_aggregate;
448 	dtrace_aggdesc_t *agg;
449 	dt_ahash_t *hash = &agp->dtat_hash;
450 	dt_ahashent_t *h;
451 	dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
452 	dtrace_aggdata_t *aggdata;
453 	int flags = agp->dtat_flags;
454 
455 	buf->dtbd_cpu = cpu;
456 
457 #ifdef illumos
458 	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
459 #else
460 	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) {
461 #endif
462 		if (errno == ENOENT) {
463 			/*
464 			 * If that failed with ENOENT, it may be because the
465 			 * CPU was unconfigured.  This is okay; we'll just
466 			 * do nothing but return success.
467 			 */
468 			return (0);
469 		}
470 
471 		return (dt_set_errno(dtp, errno));
472 	}
473 
474 	if (buf->dtbd_drops != 0) {
475 		xo_open_instance("probes");
476 		dt_oformat_drop(dtp, cpu);
477 		if (dt_handle_cpudrop(dtp, cpu,
478 		    DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) {
479 			xo_close_instance("probes");
480 			return (-1);
481 		}
482 		xo_close_instance("probes");
483 	}
484 
485 	if (buf->dtbd_size == 0)
486 		return (0);
487 
488 	if (hash->dtah_hash == NULL) {
489 		size_t size;
490 
491 		hash->dtah_size = DTRACE_AHASHSIZE;
492 		size = hash->dtah_size * sizeof (dt_ahashent_t *);
493 
494 		if ((hash->dtah_hash = malloc(size)) == NULL)
495 			return (dt_set_errno(dtp, EDT_NOMEM));
496 
497 		bzero(hash->dtah_hash, size);
498 	}
499 
500 	for (offs = 0; offs < buf->dtbd_size; ) {
501 		/*
502 		 * We're guaranteed to have an ID.
503 		 */
504 		id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
505 		    (uintptr_t)offs));
506 
507 		if (id == DTRACE_AGGIDNONE) {
508 			/*
509 			 * This is filler to assure proper alignment of the
510 			 * next record; we simply ignore it.
511 			 */
512 			offs += sizeof (id);
513 			continue;
514 		}
515 
516 		if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
517 			return (rval);
518 
519 		addr = buf->dtbd_data + offs;
520 		size = agg->dtagd_size;
521 		hashval = 0;
522 
523 		for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
524 			rec = &agg->dtagd_rec[j];
525 			roffs = rec->dtrd_offset;
526 
527 			switch (rec->dtrd_action) {
528 			case DTRACEACT_USYM:
529 				dt_aggregate_usym(dtp,
530 				    /* LINTED - alignment */
531 				    (uint64_t *)&addr[roffs]);
532 				break;
533 
534 			case DTRACEACT_UMOD:
535 				dt_aggregate_umod(dtp,
536 				    /* LINTED - alignment */
537 				    (uint64_t *)&addr[roffs]);
538 				break;
539 
540 			case DTRACEACT_SYM:
541 				/* LINTED - alignment */
542 				dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
543 				break;
544 
545 			case DTRACEACT_MOD:
546 				/* LINTED - alignment */
547 				dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
548 				break;
549 
550 			default:
551 				break;
552 			}
553 
554 			for (i = 0; i < rec->dtrd_size; i++)
555 				hashval += addr[roffs + i];
556 		}
557 
558 		ndx = hashval % hash->dtah_size;
559 
560 		for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
561 			if (h->dtahe_hashval != hashval)
562 				continue;
563 
564 			if (h->dtahe_size != size)
565 				continue;
566 
567 			aggdata = &h->dtahe_data;
568 			data = aggdata->dtada_data;
569 
570 			for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
571 				rec = &agg->dtagd_rec[j];
572 				roffs = rec->dtrd_offset;
573 
574 				for (i = 0; i < rec->dtrd_size; i++)
575 					if (addr[roffs + i] != data[roffs + i])
576 						goto hashnext;
577 			}
578 
579 			/*
580 			 * We found it.  Now we need to apply the aggregating
581 			 * action on the data here.
582 			 */
583 			rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
584 			roffs = rec->dtrd_offset;
585 			/* LINTED - alignment */
586 			h->dtahe_aggregate((int64_t *)&data[roffs],
587 			    /* LINTED - alignment */
588 			    (int64_t *)&addr[roffs], rec->dtrd_size);
589 
590 			/*
591 			 * If we're keeping per CPU data, apply the aggregating
592 			 * action there as well.
593 			 */
594 			if (aggdata->dtada_percpu != NULL) {
595 				data = aggdata->dtada_percpu[cpu];
596 
597 				/* LINTED - alignment */
598 				h->dtahe_aggregate((int64_t *)data,
599 				    /* LINTED - alignment */
600 				    (int64_t *)&addr[roffs], rec->dtrd_size);
601 			}
602 
603 			goto bufnext;
604 hashnext:
605 			continue;
606 		}
607 
608 		/*
609 		 * If we're here, we couldn't find an entry for this record.
610 		 */
611 		if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
612 			return (dt_set_errno(dtp, EDT_NOMEM));
613 		bzero(h, sizeof (dt_ahashent_t));
614 		aggdata = &h->dtahe_data;
615 
616 		if ((aggdata->dtada_data = malloc(size)) == NULL) {
617 			free(h);
618 			return (dt_set_errno(dtp, EDT_NOMEM));
619 		}
620 
621 		bcopy(addr, aggdata->dtada_data, size);
622 		aggdata->dtada_size = size;
623 		aggdata->dtada_desc = agg;
624 		aggdata->dtada_handle = dtp;
625 		(void) dt_epid_lookup(dtp, agg->dtagd_epid,
626 		    &aggdata->dtada_edesc, &aggdata->dtada_pdesc);
627 		aggdata->dtada_normal = 1;
628 
629 		h->dtahe_hashval = hashval;
630 		h->dtahe_size = size;
631 		(void) dt_aggregate_aggvarid(h);
632 
633 		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
634 
635 		if (flags & DTRACE_A_PERCPU) {
636 			int max_cpus = agp->dtat_maxcpu;
637 			caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
638 
639 			if (percpu == NULL) {
640 				free(aggdata->dtada_data);
641 				free(h);
642 				return (dt_set_errno(dtp, EDT_NOMEM));
643 			}
644 
645 			for (j = 0; j < max_cpus; j++) {
646 				percpu[j] = malloc(rec->dtrd_size);
647 
648 				if (percpu[j] == NULL) {
649 					while (--j >= 0)
650 						free(percpu[j]);
651 
652 					free(aggdata->dtada_data);
653 					free(h);
654 					return (dt_set_errno(dtp, EDT_NOMEM));
655 				}
656 
657 				if (j == cpu) {
658 					bcopy(&addr[rec->dtrd_offset],
659 					    percpu[j], rec->dtrd_size);
660 				} else {
661 					bzero(percpu[j], rec->dtrd_size);
662 				}
663 			}
664 
665 			aggdata->dtada_percpu = percpu;
666 		}
667 
668 		switch (rec->dtrd_action) {
669 		case DTRACEAGG_MIN:
670 			h->dtahe_aggregate = dt_aggregate_min;
671 			break;
672 
673 		case DTRACEAGG_MAX:
674 			h->dtahe_aggregate = dt_aggregate_max;
675 			break;
676 
677 		case DTRACEAGG_LQUANTIZE:
678 			h->dtahe_aggregate = dt_aggregate_lquantize;
679 			break;
680 
681 		case DTRACEAGG_LLQUANTIZE:
682 			h->dtahe_aggregate = dt_aggregate_llquantize;
683 			break;
684 
685 		case DTRACEAGG_COUNT:
686 		case DTRACEAGG_SUM:
687 		case DTRACEAGG_AVG:
688 		case DTRACEAGG_STDDEV:
689 		case DTRACEAGG_QUANTIZE:
690 			h->dtahe_aggregate = dt_aggregate_count;
691 			break;
692 
693 		default:
694 			return (dt_set_errno(dtp, EDT_BADAGG));
695 		}
696 
697 		if (hash->dtah_hash[ndx] != NULL)
698 			hash->dtah_hash[ndx]->dtahe_prev = h;
699 
700 		h->dtahe_next = hash->dtah_hash[ndx];
701 		hash->dtah_hash[ndx] = h;
702 
703 		if (hash->dtah_all != NULL)
704 			hash->dtah_all->dtahe_prevall = h;
705 
706 		h->dtahe_nextall = hash->dtah_all;
707 		hash->dtah_all = h;
708 bufnext:
709 		offs += agg->dtagd_size;
710 	}
711 
712 	return (0);
713 }
714 
715 int
716 dtrace_aggregate_snap(dtrace_hdl_t *dtp)
717 {
718 	int i, rval;
719 	dt_aggregate_t *agp = &dtp->dt_aggregate;
720 	hrtime_t now = gethrtime();
721 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
722 
723 	if (dtp->dt_lastagg != 0) {
724 		if (now - dtp->dt_lastagg < interval)
725 			return (0);
726 
727 		dtp->dt_lastagg += interval;
728 	} else {
729 		dtp->dt_lastagg = now;
730 	}
731 
732 	if (!dtp->dt_active)
733 		return (dt_set_errno(dtp, EINVAL));
734 
735 	if (agp->dtat_buf.dtbd_size == 0)
736 		return (0);
737 
738 	for (i = 0; i < agp->dtat_ncpus; i++) {
739 		if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])))
740 			return (rval);
741 	}
742 
743 	return (0);
744 }
745 
746 static int
747 dt_aggregate_hashcmp(const void *lhs, const void *rhs)
748 {
749 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
750 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
751 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
752 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
753 
754 	if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
755 		return (DT_LESSTHAN);
756 
757 	if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
758 		return (DT_GREATERTHAN);
759 
760 	return (0);
761 }
762 
763 static int
764 dt_aggregate_varcmp(const void *lhs, const void *rhs)
765 {
766 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
767 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
768 	dtrace_aggvarid_t lid, rid;
769 
770 	lid = dt_aggregate_aggvarid(lh);
771 	rid = dt_aggregate_aggvarid(rh);
772 
773 	if (lid < rid)
774 		return (DT_LESSTHAN);
775 
776 	if (lid > rid)
777 		return (DT_GREATERTHAN);
778 
779 	return (0);
780 }
781 
782 static int
783 dt_aggregate_keycmp(const void *lhs, const void *rhs)
784 {
785 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
786 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
787 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
788 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
789 	dtrace_recdesc_t *lrec, *rrec;
790 	char *ldata, *rdata;
791 	int rval, i, j, keypos, nrecs;
792 
793 	if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
794 		return (rval);
795 
796 	nrecs = lagg->dtagd_nrecs - 1;
797 	assert(nrecs == ragg->dtagd_nrecs - 1);
798 
799 	keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
800 
801 	for (i = 1; i < nrecs; i++) {
802 		uint64_t lval, rval;
803 		int ndx = i + keypos;
804 
805 		if (ndx >= nrecs)
806 			ndx = ndx - nrecs + 1;
807 
808 		lrec = &lagg->dtagd_rec[ndx];
809 		rrec = &ragg->dtagd_rec[ndx];
810 
811 		ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
812 		rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
813 
814 		if (lrec->dtrd_size < rrec->dtrd_size)
815 			return (DT_LESSTHAN);
816 
817 		if (lrec->dtrd_size > rrec->dtrd_size)
818 			return (DT_GREATERTHAN);
819 
820 		switch (lrec->dtrd_size) {
821 		case sizeof (uint64_t):
822 			/* LINTED - alignment */
823 			lval = *((uint64_t *)ldata);
824 			/* LINTED - alignment */
825 			rval = *((uint64_t *)rdata);
826 			break;
827 
828 		case sizeof (uint32_t):
829 			/* LINTED - alignment */
830 			lval = *((uint32_t *)ldata);
831 			/* LINTED - alignment */
832 			rval = *((uint32_t *)rdata);
833 			break;
834 
835 		case sizeof (uint16_t):
836 			/* LINTED - alignment */
837 			lval = *((uint16_t *)ldata);
838 			/* LINTED - alignment */
839 			rval = *((uint16_t *)rdata);
840 			break;
841 
842 		case sizeof (uint8_t):
843 			lval = *((uint8_t *)ldata);
844 			rval = *((uint8_t *)rdata);
845 			break;
846 
847 		default:
848 			switch (lrec->dtrd_action) {
849 			case DTRACEACT_UMOD:
850 			case DTRACEACT_UADDR:
851 			case DTRACEACT_USYM:
852 				for (j = 0; j < 2; j++) {
853 					/* LINTED - alignment */
854 					lval = ((uint64_t *)ldata)[j];
855 					/* LINTED - alignment */
856 					rval = ((uint64_t *)rdata)[j];
857 
858 					if (lval < rval)
859 						return (DT_LESSTHAN);
860 
861 					if (lval > rval)
862 						return (DT_GREATERTHAN);
863 				}
864 
865 				break;
866 
867 			default:
868 				for (j = 0; j < lrec->dtrd_size; j++) {
869 					lval = ((uint8_t *)ldata)[j];
870 					rval = ((uint8_t *)rdata)[j];
871 
872 					if (lval < rval)
873 						return (DT_LESSTHAN);
874 
875 					if (lval > rval)
876 						return (DT_GREATERTHAN);
877 				}
878 			}
879 
880 			continue;
881 		}
882 
883 		if (lval < rval)
884 			return (DT_LESSTHAN);
885 
886 		if (lval > rval)
887 			return (DT_GREATERTHAN);
888 	}
889 
890 	return (0);
891 }
892 
893 static int
894 dt_aggregate_valcmp(const void *lhs, const void *rhs)
895 {
896 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
897 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
898 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
899 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
900 	caddr_t ldata = lh->dtahe_data.dtada_data;
901 	caddr_t rdata = rh->dtahe_data.dtada_data;
902 	dtrace_recdesc_t *lrec, *rrec;
903 	int64_t *laddr, *raddr;
904 	int rval;
905 
906 	assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
907 
908 	lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
909 	rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
910 
911 	assert(lrec->dtrd_action == rrec->dtrd_action);
912 
913 	laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
914 	raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
915 
916 	switch (lrec->dtrd_action) {
917 	case DTRACEAGG_AVG:
918 		rval = dt_aggregate_averagecmp(laddr, raddr);
919 		break;
920 
921 	case DTRACEAGG_STDDEV:
922 		rval = dt_aggregate_stddevcmp(laddr, raddr);
923 		break;
924 
925 	case DTRACEAGG_QUANTIZE:
926 		rval = dt_aggregate_quantizedcmp(laddr, raddr);
927 		break;
928 
929 	case DTRACEAGG_LQUANTIZE:
930 		rval = dt_aggregate_lquantizedcmp(laddr, raddr);
931 		break;
932 
933 	case DTRACEAGG_LLQUANTIZE:
934 		rval = dt_aggregate_llquantizedcmp(laddr, raddr);
935 		break;
936 
937 	case DTRACEAGG_COUNT:
938 	case DTRACEAGG_SUM:
939 	case DTRACEAGG_MIN:
940 	case DTRACEAGG_MAX:
941 		rval = dt_aggregate_countcmp(laddr, raddr);
942 		break;
943 
944 	default:
945 		assert(0);
946 	}
947 
948 	return (rval);
949 }
950 
951 static int
952 dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
953 {
954 	int rval;
955 
956 	if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
957 		return (rval);
958 
959 	/*
960 	 * If we're here, the values for the two aggregation elements are
961 	 * equal.  We already know that the key layout is the same for the two
962 	 * elements; we must now compare the keys themselves as a tie-breaker.
963 	 */
964 	return (dt_aggregate_keycmp(lhs, rhs));
965 }
966 
967 static int
968 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
969 {
970 	int rval;
971 
972 	if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
973 		return (rval);
974 
975 	return (dt_aggregate_varcmp(lhs, rhs));
976 }
977 
978 static int
979 dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
980 {
981 	int rval;
982 
983 	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
984 		return (rval);
985 
986 	return (dt_aggregate_keycmp(lhs, rhs));
987 }
988 
989 static int
990 dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
991 {
992 	int rval;
993 
994 	if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
995 		return (rval);
996 
997 	return (dt_aggregate_varcmp(lhs, rhs));
998 }
999 
1000 static int
1001 dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
1002 {
1003 	int rval;
1004 
1005 	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
1006 		return (rval);
1007 
1008 	return (dt_aggregate_valkeycmp(lhs, rhs));
1009 }
1010 
1011 static int
1012 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
1013 {
1014 	return (dt_aggregate_keyvarcmp(rhs, lhs));
1015 }
1016 
1017 static int
1018 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1019 {
1020 	return (dt_aggregate_varkeycmp(rhs, lhs));
1021 }
1022 
1023 static int
1024 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1025 {
1026 	return (dt_aggregate_valvarcmp(rhs, lhs));
1027 }
1028 
1029 static int
1030 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1031 {
1032 	return (dt_aggregate_varvalcmp(rhs, lhs));
1033 }
1034 
1035 static int
1036 dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1037 {
1038 	dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1039 	dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1040 	int i, rval;
1041 
1042 	if (dt_keysort) {
1043 		/*
1044 		 * If we're sorting on keys, we need to scan until we find the
1045 		 * last entry -- that's the representative key.  (The order of
1046 		 * the bundle is values followed by key to accommodate the
1047 		 * default behavior of sorting by value.)  If the keys are
1048 		 * equal, we'll fall into the value comparison loop, below.
1049 		 */
1050 		for (i = 0; lh[i + 1] != NULL; i++)
1051 			continue;
1052 
1053 		assert(i != 0);
1054 		assert(rh[i + 1] == NULL);
1055 
1056 		if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1057 			return (rval);
1058 	}
1059 
1060 	for (i = 0; ; i++) {
1061 		if (lh[i + 1] == NULL) {
1062 			/*
1063 			 * All of the values are equal; if we're sorting on
1064 			 * keys, then we're only here because the keys were
1065 			 * found to be equal and these records are therefore
1066 			 * equal.  If we're not sorting on keys, we'll use the
1067 			 * key comparison from the representative key as the
1068 			 * tie-breaker.
1069 			 */
1070 			if (dt_keysort)
1071 				return (0);
1072 
1073 			assert(i != 0);
1074 			assert(rh[i + 1] == NULL);
1075 			return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1076 		} else {
1077 			if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1078 				return (rval);
1079 		}
1080 	}
1081 }
1082 
1083 int
1084 dt_aggregate_go(dtrace_hdl_t *dtp)
1085 {
1086 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1087 	dtrace_optval_t size, cpu;
1088 	dtrace_bufdesc_t *buf = &agp->dtat_buf;
1089 	int rval, i;
1090 
1091 	assert(agp->dtat_maxcpu == 0);
1092 	assert(agp->dtat_ncpu == 0);
1093 	assert(agp->dtat_cpus == NULL);
1094 
1095 	agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1096 	agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
1097 	agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1098 
1099 	if (agp->dtat_cpus == NULL)
1100 		return (dt_set_errno(dtp, EDT_NOMEM));
1101 
1102 	/*
1103 	 * Use the aggregation buffer size as reloaded from the kernel.
1104 	 */
1105 	size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1106 
1107 	rval = dtrace_getopt(dtp, "aggsize", &size);
1108 	assert(rval == 0);
1109 
1110 	if (size == 0 || size == DTRACEOPT_UNSET)
1111 		return (0);
1112 
1113 	buf = &agp->dtat_buf;
1114 	buf->dtbd_size = size;
1115 
1116 	if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1117 		return (dt_set_errno(dtp, EDT_NOMEM));
1118 
1119 	/*
1120 	 * Now query for the CPUs enabled.
1121 	 */
1122 	rval = dtrace_getopt(dtp, "cpu", &cpu);
1123 	assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1124 
1125 	if (cpu != DTRACE_CPUALL) {
1126 		assert(cpu < agp->dtat_ncpu);
1127 		agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1128 
1129 		return (0);
1130 	}
1131 
1132 	agp->dtat_ncpus = 0;
1133 	for (i = 0; i < agp->dtat_maxcpu; i++) {
1134 		if (dt_status(dtp, i) == -1)
1135 			continue;
1136 
1137 		agp->dtat_cpus[agp->dtat_ncpus++] = i;
1138 	}
1139 
1140 	return (0);
1141 }
1142 
1143 static int
1144 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1145 {
1146 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1147 	dtrace_aggdata_t *data;
1148 	dtrace_aggdesc_t *aggdesc;
1149 	dtrace_recdesc_t *rec;
1150 	int i;
1151 
1152 	switch (rval) {
1153 	case DTRACE_AGGWALK_NEXT:
1154 		break;
1155 
1156 	case DTRACE_AGGWALK_CLEAR: {
1157 		uint32_t size, offs = 0;
1158 
1159 		aggdesc = h->dtahe_data.dtada_desc;
1160 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1161 		size = rec->dtrd_size;
1162 		data = &h->dtahe_data;
1163 
1164 		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1165 			offs = sizeof (uint64_t);
1166 			size -= sizeof (uint64_t);
1167 		}
1168 
1169 		bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1170 
1171 		if (data->dtada_percpu == NULL)
1172 			break;
1173 
1174 		for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1175 			bzero(data->dtada_percpu[i] + offs, size);
1176 		break;
1177 	}
1178 
1179 	case DTRACE_AGGWALK_ERROR:
1180 		/*
1181 		 * We assume that errno is already set in this case.
1182 		 */
1183 		return (dt_set_errno(dtp, errno));
1184 
1185 	case DTRACE_AGGWALK_ABORT:
1186 		return (dt_set_errno(dtp, EDT_DIRABORT));
1187 
1188 	case DTRACE_AGGWALK_DENORMALIZE:
1189 		h->dtahe_data.dtada_normal = 1;
1190 		return (0);
1191 
1192 	case DTRACE_AGGWALK_NORMALIZE:
1193 		if (h->dtahe_data.dtada_normal == 0) {
1194 			h->dtahe_data.dtada_normal = 1;
1195 			return (dt_set_errno(dtp, EDT_BADRVAL));
1196 		}
1197 
1198 		return (0);
1199 
1200 	case DTRACE_AGGWALK_REMOVE: {
1201 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1202 		int max_cpus = agp->dtat_maxcpu;
1203 
1204 		/*
1205 		 * First, remove this hash entry from its hash chain.
1206 		 */
1207 		if (h->dtahe_prev != NULL) {
1208 			h->dtahe_prev->dtahe_next = h->dtahe_next;
1209 		} else {
1210 			dt_ahash_t *hash = &agp->dtat_hash;
1211 			size_t ndx = h->dtahe_hashval % hash->dtah_size;
1212 
1213 			assert(hash->dtah_hash[ndx] == h);
1214 			hash->dtah_hash[ndx] = h->dtahe_next;
1215 		}
1216 
1217 		if (h->dtahe_next != NULL)
1218 			h->dtahe_next->dtahe_prev = h->dtahe_prev;
1219 
1220 		/*
1221 		 * Now remove it from the list of all hash entries.
1222 		 */
1223 		if (h->dtahe_prevall != NULL) {
1224 			h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1225 		} else {
1226 			dt_ahash_t *hash = &agp->dtat_hash;
1227 
1228 			assert(hash->dtah_all == h);
1229 			hash->dtah_all = h->dtahe_nextall;
1230 		}
1231 
1232 		if (h->dtahe_nextall != NULL)
1233 			h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1234 
1235 		/*
1236 		 * We're unlinked.  We can safely destroy the data.
1237 		 */
1238 		if (aggdata->dtada_percpu != NULL) {
1239 			for (i = 0; i < max_cpus; i++)
1240 				free(aggdata->dtada_percpu[i]);
1241 			free(aggdata->dtada_percpu);
1242 		}
1243 
1244 		free(aggdata->dtada_data);
1245 		free(h);
1246 
1247 		return (0);
1248 	}
1249 
1250 	default:
1251 		return (dt_set_errno(dtp, EDT_BADRVAL));
1252 	}
1253 
1254 	return (0);
1255 }
1256 
1257 void
1258 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1259     int (*compar)(const void *, const void *))
1260 {
1261 	int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1262 	dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1263 
1264 	dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1265 	dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1266 
1267 	if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1268 		dt_keypos = (int)keyposopt;
1269 	} else {
1270 		dt_keypos = 0;
1271 	}
1272 
1273 	if (compar == NULL) {
1274 		if (!dt_keysort) {
1275 			compar = dt_aggregate_varvalcmp;
1276 		} else {
1277 			compar = dt_aggregate_varkeycmp;
1278 		}
1279 	}
1280 
1281 	qsort(base, nel, width, compar);
1282 
1283 	dt_revsort = rev;
1284 	dt_keysort = key;
1285 	dt_keypos = keypos;
1286 }
1287 
1288 int
1289 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1290 {
1291 	dt_ahashent_t *h, *next;
1292 	dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1293 
1294 	for (h = hash->dtah_all; h != NULL; h = next) {
1295 		/*
1296 		 * dt_aggwalk_rval() can potentially remove the current hash
1297 		 * entry; we need to load the next hash entry before calling
1298 		 * into it.
1299 		 */
1300 		next = h->dtahe_nextall;
1301 
1302 		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1303 			return (-1);
1304 	}
1305 
1306 	return (0);
1307 }
1308 
1309 static int
1310 dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear)
1311 {
1312 	dt_ahashent_t *h;
1313 	dtrace_aggdata_t **total;
1314 	dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1315 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1316 	dt_ahash_t *hash = &agp->dtat_hash;
1317 	uint32_t tflags;
1318 
1319 	tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES;
1320 
1321 	/*
1322 	 * If we need to deliver per-aggregation totals, we're going to take
1323 	 * three passes over the aggregate:  one to clear everything out and
1324 	 * determine our maximum aggregation ID, one to actually total
1325 	 * everything up, and a final pass to assign the totals to the
1326 	 * individual elements.
1327 	 */
1328 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1329 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1330 
1331 		if ((id = dt_aggregate_aggvarid(h)) > max)
1332 			max = id;
1333 
1334 		aggdata->dtada_total = 0;
1335 		aggdata->dtada_flags &= ~tflags;
1336 	}
1337 
1338 	if (clear || max == DTRACE_AGGVARIDNONE)
1339 		return (0);
1340 
1341 	total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1342 
1343 	if (total == NULL)
1344 		return (-1);
1345 
1346 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1347 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1348 		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1349 		dtrace_recdesc_t *rec;
1350 		caddr_t data;
1351 		int64_t val, *addr;
1352 
1353 		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1354 		data = aggdata->dtada_data;
1355 		addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1356 
1357 		switch (rec->dtrd_action) {
1358 		case DTRACEAGG_STDDEV:
1359 			val = dt_stddev((uint64_t *)addr, 1);
1360 			break;
1361 
1362 		case DTRACEAGG_SUM:
1363 		case DTRACEAGG_COUNT:
1364 			val = *addr;
1365 			break;
1366 
1367 		case DTRACEAGG_AVG:
1368 			val = addr[0] ? (addr[1] / addr[0]) : 0;
1369 			break;
1370 
1371 		default:
1372 			continue;
1373 		}
1374 
1375 		if (total[agg->dtagd_varid] == NULL) {
1376 			total[agg->dtagd_varid] = aggdata;
1377 			aggdata->dtada_flags |= DTRACE_A_TOTAL;
1378 		} else {
1379 			aggdata = total[agg->dtagd_varid];
1380 		}
1381 
1382 		if (val > 0)
1383 			aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES;
1384 
1385 		if (val < 0) {
1386 			aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES;
1387 			val = -val;
1388 		}
1389 
1390 		if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) {
1391 			val = (int64_t)((long double)val *
1392 			    (1 / DTRACE_AGGZOOM_MAX));
1393 
1394 			if (val > aggdata->dtada_total)
1395 				aggdata->dtada_total = val;
1396 		} else {
1397 			aggdata->dtada_total += val;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * And now one final pass to set everyone's total.
1403 	 */
1404 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1405 		dtrace_aggdata_t *aggdata = &h->dtahe_data, *t;
1406 		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1407 
1408 		if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t)
1409 			continue;
1410 
1411 		aggdata->dtada_total = t->dtada_total;
1412 		aggdata->dtada_flags |= (t->dtada_flags & tflags);
1413 	}
1414 
1415 	dt_free(dtp, total);
1416 
1417 	return (0);
1418 }
1419 
1420 static int
1421 dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear)
1422 {
1423 	dt_ahashent_t *h;
1424 	dtrace_aggdata_t **minmax;
1425 	dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1426 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1427 	dt_ahash_t *hash = &agp->dtat_hash;
1428 
1429 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1430 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1431 
1432 		if ((id = dt_aggregate_aggvarid(h)) > max)
1433 			max = id;
1434 
1435 		aggdata->dtada_minbin = 0;
1436 		aggdata->dtada_maxbin = 0;
1437 		aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN;
1438 	}
1439 
1440 	if (clear || max == DTRACE_AGGVARIDNONE)
1441 		return (0);
1442 
1443 	minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1444 
1445 	if (minmax == NULL)
1446 		return (-1);
1447 
1448 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1449 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1450 		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1451 		dtrace_recdesc_t *rec;
1452 		caddr_t data;
1453 		int64_t *addr;
1454 		int minbin = -1, maxbin = -1, i;
1455 		int start = 0, size;
1456 
1457 		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1458 		size = rec->dtrd_size / sizeof (int64_t);
1459 		data = aggdata->dtada_data;
1460 		addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1461 
1462 		switch (rec->dtrd_action) {
1463 		case DTRACEAGG_LQUANTIZE:
1464 			/*
1465 			 * For lquantize(), we always display the entire range
1466 			 * of the aggregation when aggpack is set.
1467 			 */
1468 			start = 1;
1469 			minbin = start;
1470 			maxbin = size - 1 - start;
1471 			break;
1472 
1473 		case DTRACEAGG_QUANTIZE:
1474 			for (i = start; i < size; i++) {
1475 				if (!addr[i])
1476 					continue;
1477 
1478 				if (minbin == -1)
1479 					minbin = i - start;
1480 
1481 				maxbin = i - start;
1482 			}
1483 
1484 			if (minbin == -1) {
1485 				/*
1486 				 * If we have no data (e.g., due to a clear()
1487 				 * or negative increments), we'll use the
1488 				 * zero bucket as both our min and max.
1489 				 */
1490 				minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET;
1491 			}
1492 
1493 			break;
1494 
1495 		default:
1496 			continue;
1497 		}
1498 
1499 		if (minmax[agg->dtagd_varid] == NULL) {
1500 			minmax[agg->dtagd_varid] = aggdata;
1501 			aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1502 			aggdata->dtada_minbin = minbin;
1503 			aggdata->dtada_maxbin = maxbin;
1504 			continue;
1505 		}
1506 
1507 		if (minbin < minmax[agg->dtagd_varid]->dtada_minbin)
1508 			minmax[agg->dtagd_varid]->dtada_minbin = minbin;
1509 
1510 		if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin)
1511 			minmax[agg->dtagd_varid]->dtada_maxbin = maxbin;
1512 	}
1513 
1514 	/*
1515 	 * And now one final pass to set everyone's minbin and maxbin.
1516 	 */
1517 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1518 		dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm;
1519 		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1520 
1521 		if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm)
1522 			continue;
1523 
1524 		aggdata->dtada_minbin = mm->dtada_minbin;
1525 		aggdata->dtada_maxbin = mm->dtada_maxbin;
1526 		aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1527 	}
1528 
1529 	dt_free(dtp, minmax);
1530 
1531 	return (0);
1532 }
1533 
1534 static int
1535 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1536     dtrace_aggregate_f *func, void *arg,
1537     int (*sfunc)(const void *, const void *))
1538 {
1539 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1540 	dt_ahashent_t *h, **sorted;
1541 	dt_ahash_t *hash = &agp->dtat_hash;
1542 	size_t i, nentries = 0;
1543 	int rval = -1;
1544 
1545 	agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN);
1546 
1547 	if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) {
1548 		agp->dtat_flags |= DTRACE_A_TOTAL;
1549 
1550 		if (dt_aggregate_total(dtp, B_FALSE) != 0)
1551 			return (-1);
1552 	}
1553 
1554 	if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) {
1555 		agp->dtat_flags |= DTRACE_A_MINMAXBIN;
1556 
1557 		if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0)
1558 			return (-1);
1559 	}
1560 
1561 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1562 		nentries++;
1563 
1564 	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1565 
1566 	if (sorted == NULL)
1567 		goto out;
1568 
1569 	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1570 		sorted[i++] = h;
1571 
1572 	(void) pthread_mutex_lock(&dt_qsort_lock);
1573 
1574 	if (sfunc == NULL) {
1575 		dt_aggregate_qsort(dtp, sorted, nentries,
1576 		    sizeof (dt_ahashent_t *), NULL);
1577 	} else {
1578 		/*
1579 		 * If we've been explicitly passed a sorting function,
1580 		 * we'll use that -- ignoring the values of the "aggsortrev",
1581 		 * "aggsortkey" and "aggsortkeypos" options.
1582 		 */
1583 		qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1584 	}
1585 
1586 	(void) pthread_mutex_unlock(&dt_qsort_lock);
1587 
1588 	for (i = 0; i < nentries; i++) {
1589 		h = sorted[i];
1590 
1591 		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1592 			goto out;
1593 	}
1594 
1595 	rval = 0;
1596 out:
1597 	if (agp->dtat_flags & DTRACE_A_TOTAL)
1598 		(void) dt_aggregate_total(dtp, B_TRUE);
1599 
1600 	if (agp->dtat_flags & DTRACE_A_MINMAXBIN)
1601 		(void) dt_aggregate_minmaxbin(dtp, B_TRUE);
1602 
1603 	dt_free(dtp, sorted);
1604 	return (rval);
1605 }
1606 
1607 int
1608 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1609     dtrace_aggregate_f *func, void *arg)
1610 {
1611 	return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1612 }
1613 
1614 int
1615 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1616     dtrace_aggregate_f *func, void *arg)
1617 {
1618 	return (dt_aggregate_walk_sorted(dtp, func,
1619 	    arg, dt_aggregate_varkeycmp));
1620 }
1621 
1622 int
1623 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1624     dtrace_aggregate_f *func, void *arg)
1625 {
1626 	return (dt_aggregate_walk_sorted(dtp, func,
1627 	    arg, dt_aggregate_varvalcmp));
1628 }
1629 
1630 int
1631 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1632     dtrace_aggregate_f *func, void *arg)
1633 {
1634 	return (dt_aggregate_walk_sorted(dtp, func,
1635 	    arg, dt_aggregate_keyvarcmp));
1636 }
1637 
1638 int
1639 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1640     dtrace_aggregate_f *func, void *arg)
1641 {
1642 	return (dt_aggregate_walk_sorted(dtp, func,
1643 	    arg, dt_aggregate_valvarcmp));
1644 }
1645 
1646 int
1647 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1648     dtrace_aggregate_f *func, void *arg)
1649 {
1650 	return (dt_aggregate_walk_sorted(dtp, func,
1651 	    arg, dt_aggregate_varkeyrevcmp));
1652 }
1653 
1654 int
1655 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1656     dtrace_aggregate_f *func, void *arg)
1657 {
1658 	return (dt_aggregate_walk_sorted(dtp, func,
1659 	    arg, dt_aggregate_varvalrevcmp));
1660 }
1661 
1662 int
1663 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1664     dtrace_aggregate_f *func, void *arg)
1665 {
1666 	return (dt_aggregate_walk_sorted(dtp, func,
1667 	    arg, dt_aggregate_keyvarrevcmp));
1668 }
1669 
1670 int
1671 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1672     dtrace_aggregate_f *func, void *arg)
1673 {
1674 	return (dt_aggregate_walk_sorted(dtp, func,
1675 	    arg, dt_aggregate_valvarrevcmp));
1676 }
1677 
1678 int
1679 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1680     int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1681 {
1682 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1683 	dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1684 	const dtrace_aggdata_t **data;
1685 	dt_ahashent_t *zaggdata = NULL;
1686 	dt_ahash_t *hash = &agp->dtat_hash;
1687 	size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1688 	dtrace_aggvarid_t max = 0, aggvar;
1689 	int rval = -1, *map, *remap = NULL;
1690 	int i, j;
1691 	dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1692 
1693 	/*
1694 	 * If the sorting position is greater than the number of aggregation
1695 	 * variable IDs, we silently set it to 0.
1696 	 */
1697 	if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1698 		sortpos = 0;
1699 
1700 	/*
1701 	 * First we need to translate the specified aggregation variable IDs
1702 	 * into a linear map that will allow us to translate an aggregation
1703 	 * variable ID into its position in the specified aggvars.
1704 	 */
1705 	for (i = 0; i < naggvars; i++) {
1706 		if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1707 			return (dt_set_errno(dtp, EDT_BADAGGVAR));
1708 
1709 		if (aggvars[i] > max)
1710 			max = aggvars[i];
1711 	}
1712 
1713 	if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1714 		return (-1);
1715 
1716 	zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1717 
1718 	if (zaggdata == NULL)
1719 		goto out;
1720 
1721 	for (i = 0; i < naggvars; i++) {
1722 		int ndx = i + sortpos;
1723 
1724 		if (ndx >= naggvars)
1725 			ndx -= naggvars;
1726 
1727 		aggvar = aggvars[ndx];
1728 		assert(aggvar <= max);
1729 
1730 		if (map[aggvar]) {
1731 			/*
1732 			 * We have an aggregation variable that is present
1733 			 * more than once in the array of aggregation
1734 			 * variables.  While it's unclear why one might want
1735 			 * to do this, it's legal.  To support this construct,
1736 			 * we will allocate a remap that will indicate the
1737 			 * position from which this aggregation variable
1738 			 * should be pulled.  (That is, where the remap will
1739 			 * map from one position to another.)
1740 			 */
1741 			if (remap == NULL) {
1742 				remap = dt_zalloc(dtp, naggvars * sizeof (int));
1743 
1744 				if (remap == NULL)
1745 					goto out;
1746 			}
1747 
1748 			/*
1749 			 * Given that the variable is already present, assert
1750 			 * that following through the mapping and adjusting
1751 			 * for the sort position yields the same aggregation
1752 			 * variable ID.
1753 			 */
1754 			assert(aggvars[(map[aggvar] - 1 + sortpos) %
1755 			    naggvars] == aggvars[ndx]);
1756 
1757 			remap[i] = map[aggvar];
1758 			continue;
1759 		}
1760 
1761 		map[aggvar] = i + 1;
1762 	}
1763 
1764 	/*
1765 	 * We need to take two passes over the data to size our allocation, so
1766 	 * we'll use the first pass to also fill in the zero-filled data to be
1767 	 * used to properly format a zero-valued aggregation.
1768 	 */
1769 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1770 		dtrace_aggvarid_t id;
1771 		int ndx;
1772 
1773 		if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1774 			continue;
1775 
1776 		if (zaggdata[ndx - 1].dtahe_size == 0) {
1777 			zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1778 			zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1779 		}
1780 
1781 		nentries++;
1782 	}
1783 
1784 	if (nentries == 0) {
1785 		/*
1786 		 * We couldn't find any entries; there is nothing else to do.
1787 		 */
1788 		rval = 0;
1789 		goto out;
1790 	}
1791 
1792 	/*
1793 	 * Before we sort the data, we're going to look for any holes in our
1794 	 * zero-filled data.  This will occur if an aggregation variable that
1795 	 * we are being asked to print has not yet been assigned the result of
1796 	 * any aggregating action for _any_ tuple.  The issue becomes that we
1797 	 * would like a zero value to be printed for all columns for this
1798 	 * aggregation, but without any record description, we don't know the
1799 	 * aggregating action that corresponds to the aggregation variable.  To
1800 	 * try to find a match, we're simply going to lookup aggregation IDs
1801 	 * (which are guaranteed to be contiguous and to start from 1), looking
1802 	 * for the specified aggregation variable ID.  If we find a match,
1803 	 * we'll use that.  If we iterate over all aggregation IDs and don't
1804 	 * find a match, then we must be an anonymous enabling.  (Anonymous
1805 	 * enablings can't currently derive either aggregation variable IDs or
1806 	 * aggregation variable names given only an aggregation ID.)  In this
1807 	 * obscure case (anonymous enabling, multiple aggregation printa() with
1808 	 * some aggregations not represented for any tuple), our defined
1809 	 * behavior is that the zero will be printed in the format of the first
1810 	 * aggregation variable that contains any non-zero value.
1811 	 */
1812 	for (i = 0; i < naggvars; i++) {
1813 		if (zaggdata[i].dtahe_size == 0) {
1814 			dtrace_aggvarid_t aggvar;
1815 
1816 			aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1817 			assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1818 
1819 			for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1820 				dtrace_aggdesc_t *agg;
1821 				dtrace_aggdata_t *aggdata;
1822 
1823 				if (dt_aggid_lookup(dtp, j, &agg) != 0)
1824 					break;
1825 
1826 				if (agg->dtagd_varid != aggvar)
1827 					continue;
1828 
1829 				/*
1830 				 * We have our description -- now we need to
1831 				 * cons up the zaggdata entry for it.
1832 				 */
1833 				aggdata = &zaggdata[i].dtahe_data;
1834 				aggdata->dtada_size = agg->dtagd_size;
1835 				aggdata->dtada_desc = agg;
1836 				aggdata->dtada_handle = dtp;
1837 				(void) dt_epid_lookup(dtp, agg->dtagd_epid,
1838 				    &aggdata->dtada_edesc,
1839 				    &aggdata->dtada_pdesc);
1840 				aggdata->dtada_normal = 1;
1841 				zaggdata[i].dtahe_hashval = 0;
1842 				zaggdata[i].dtahe_size = agg->dtagd_size;
1843 				break;
1844 			}
1845 
1846 			if (zaggdata[i].dtahe_size == 0) {
1847 				caddr_t data;
1848 
1849 				/*
1850 				 * We couldn't find this aggregation, meaning
1851 				 * that we have never seen it before for any
1852 				 * tuple _and_ this is an anonymous enabling.
1853 				 * That is, we're in the obscure case outlined
1854 				 * above.  In this case, our defined behavior
1855 				 * is to format the data in the format of the
1856 				 * first non-zero aggregation -- of which, of
1857 				 * course, we know there to be at least one
1858 				 * (or nentries would have been zero).
1859 				 */
1860 				for (j = 0; j < naggvars; j++) {
1861 					if (zaggdata[j].dtahe_size != 0)
1862 						break;
1863 				}
1864 
1865 				assert(j < naggvars);
1866 				zaggdata[i] = zaggdata[j];
1867 
1868 				data = zaggdata[i].dtahe_data.dtada_data;
1869 				assert(data != NULL);
1870 			}
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * Now we need to allocate our zero-filled data for use for
1876 	 * aggregations that don't have a value corresponding to a given key.
1877 	 */
1878 	for (i = 0; i < naggvars; i++) {
1879 		dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1880 		dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1881 		dtrace_recdesc_t *rec;
1882 		uint64_t larg;
1883 		caddr_t zdata;
1884 
1885 		zsize = zaggdata[i].dtahe_size;
1886 		assert(zsize != 0);
1887 
1888 		if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1889 			/*
1890 			 * If we failed to allocated some zero-filled data, we
1891 			 * need to zero out the remaining dtada_data pointers
1892 			 * to prevent the wrong data from being freed below.
1893 			 */
1894 			for (j = i; j < naggvars; j++)
1895 				zaggdata[j].dtahe_data.dtada_data = NULL;
1896 			goto out;
1897 		}
1898 
1899 		aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1900 
1901 		/*
1902 		 * First, the easy bit.  To maintain compatibility with
1903 		 * consumers that pull the compiler-generated ID out of the
1904 		 * data, we put that ID at the top of the zero-filled data.
1905 		 */
1906 		rec = &aggdesc->dtagd_rec[0];
1907 		/* LINTED - alignment */
1908 		*((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1909 
1910 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1911 
1912 		/*
1913 		 * Now for the more complicated part.  If (and only if) this
1914 		 * is an lquantize() aggregating action, zero-filled data is
1915 		 * not equivalent to an empty record:  we must also get the
1916 		 * parameters for the lquantize().
1917 		 */
1918 		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1919 			if (aggdata->dtada_data != NULL) {
1920 				/*
1921 				 * The easier case here is if we actually have
1922 				 * some prototype data -- in which case we
1923 				 * manually dig it out of the aggregation
1924 				 * record.
1925 				 */
1926 				/* LINTED - alignment */
1927 				larg = *((uint64_t *)(aggdata->dtada_data +
1928 				    rec->dtrd_offset));
1929 			} else {
1930 				/*
1931 				 * We don't have any prototype data.  As a
1932 				 * result, we know that we _do_ have the
1933 				 * compiler-generated information.  (If this
1934 				 * were an anonymous enabling, all of our
1935 				 * zero-filled data would have prototype data
1936 				 * -- either directly or indirectly.) So as
1937 				 * gross as it is, we'll grovel around in the
1938 				 * compiler-generated information to find the
1939 				 * lquantize() parameters.
1940 				 */
1941 				dtrace_stmtdesc_t *sdp;
1942 				dt_ident_t *aid;
1943 				dt_idsig_t *isp;
1944 
1945 				sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1946 				    aggdesc->dtagd_rec[0].dtrd_uarg;
1947 				aid = sdp->dtsd_aggdata;
1948 				isp = (dt_idsig_t *)aid->di_data;
1949 				assert(isp->dis_auxinfo != 0);
1950 				larg = isp->dis_auxinfo;
1951 			}
1952 
1953 			/* LINTED - alignment */
1954 			*((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1955 		}
1956 
1957 		aggdata->dtada_data = zdata;
1958 	}
1959 
1960 	/*
1961 	 * Now that we've dealt with setting up our zero-filled data, we can
1962 	 * allocate our sorted array, and take another pass over the data to
1963 	 * fill it.
1964 	 */
1965 	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1966 
1967 	if (sorted == NULL)
1968 		goto out;
1969 
1970 	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1971 		dtrace_aggvarid_t id;
1972 
1973 		if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1974 			continue;
1975 
1976 		sorted[i++] = h;
1977 	}
1978 
1979 	assert(i == nentries);
1980 
1981 	/*
1982 	 * We've loaded our array; now we need to sort by value to allow us
1983 	 * to create bundles of like value.  We're going to acquire the
1984 	 * dt_qsort_lock here, and hold it across all of our subsequent
1985 	 * comparison and sorting.
1986 	 */
1987 	(void) pthread_mutex_lock(&dt_qsort_lock);
1988 
1989 	qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1990 	    dt_aggregate_keyvarcmp);
1991 
1992 	/*
1993 	 * Now we need to go through and create bundles.  Because the number
1994 	 * of bundles is bounded by the size of the sorted array, we're going
1995 	 * to reuse the underlying storage.  And note that "bundle" is an
1996 	 * array of pointers to arrays of pointers to dt_ahashent_t -- making
1997 	 * its type (regrettably) "dt_ahashent_t ***".  (Regrettable because
1998 	 * '*' -- like '_' and 'X' -- should never appear in triplicate in
1999 	 * an ideal world.)
2000 	 */
2001 	bundle = (dt_ahashent_t ***)sorted;
2002 
2003 	for (i = 1, start = 0; i <= nentries; i++) {
2004 		if (i < nentries &&
2005 		    dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
2006 			continue;
2007 
2008 		/*
2009 		 * We have a bundle boundary.  Everything from start to
2010 		 * (i - 1) belongs in one bundle.
2011 		 */
2012 		assert(i - start <= naggvars);
2013 		bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
2014 
2015 		if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
2016 			(void) pthread_mutex_unlock(&dt_qsort_lock);
2017 			goto out;
2018 		}
2019 
2020 		for (j = start; j < i; j++) {
2021 			dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
2022 
2023 			assert(id <= max);
2024 			assert(map[id] != 0);
2025 			assert(map[id] - 1 < naggvars);
2026 			assert(nbundle[map[id] - 1] == NULL);
2027 			nbundle[map[id] - 1] = sorted[j];
2028 
2029 			if (nbundle[naggvars] == NULL)
2030 				nbundle[naggvars] = sorted[j];
2031 		}
2032 
2033 		for (j = 0; j < naggvars; j++) {
2034 			if (nbundle[j] != NULL)
2035 				continue;
2036 
2037 			/*
2038 			 * Before we assume that this aggregation variable
2039 			 * isn't present (and fall back to using the
2040 			 * zero-filled data allocated earlier), check the
2041 			 * remap.  If we have a remapping, we'll drop it in
2042 			 * here.  Note that we might be remapping an
2043 			 * aggregation variable that isn't present for this
2044 			 * key; in this case, the aggregation data that we
2045 			 * copy will point to the zeroed data.
2046 			 */
2047 			if (remap != NULL && remap[j]) {
2048 				assert(remap[j] - 1 < j);
2049 				assert(nbundle[remap[j] - 1] != NULL);
2050 				nbundle[j] = nbundle[remap[j] - 1];
2051 			} else {
2052 				nbundle[j] = &zaggdata[j];
2053 			}
2054 		}
2055 
2056 		bundle[nbundles++] = nbundle;
2057 		start = i;
2058 	}
2059 
2060 	/*
2061 	 * Now we need to re-sort based on the first value.
2062 	 */
2063 	dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
2064 	    dt_aggregate_bundlecmp);
2065 
2066 	(void) pthread_mutex_unlock(&dt_qsort_lock);
2067 
2068 	/*
2069 	 * We're done!  Now we just need to go back over the sorted bundles,
2070 	 * calling the function.
2071 	 */
2072 	data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
2073 
2074 	for (i = 0; i < nbundles; i++) {
2075 		for (j = 0; j < naggvars; j++)
2076 			data[j + 1] = NULL;
2077 
2078 		for (j = 0; j < naggvars; j++) {
2079 			int ndx = j - sortpos;
2080 
2081 			if (ndx < 0)
2082 				ndx += naggvars;
2083 
2084 			assert(bundle[i][ndx] != NULL);
2085 			data[j + 1] = &bundle[i][ndx]->dtahe_data;
2086 		}
2087 
2088 		for (j = 0; j < naggvars; j++)
2089 			assert(data[j + 1] != NULL);
2090 
2091 		/*
2092 		 * The representative key is the last element in the bundle.
2093 		 * Assert that we have one, and then set it to be the first
2094 		 * element of data.
2095 		 */
2096 		assert(bundle[i][j] != NULL);
2097 		data[0] = &bundle[i][j]->dtahe_data;
2098 
2099 		if ((rval = func(data, naggvars + 1, arg)) == -1)
2100 			goto out;
2101 	}
2102 
2103 	rval = 0;
2104 out:
2105 	for (i = 0; i < nbundles; i++)
2106 		dt_free(dtp, bundle[i]);
2107 
2108 	if (zaggdata != NULL) {
2109 		for (i = 0; i < naggvars; i++)
2110 			dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
2111 	}
2112 
2113 	dt_free(dtp, zaggdata);
2114 	dt_free(dtp, sorted);
2115 	dt_free(dtp, remap);
2116 	dt_free(dtp, map);
2117 
2118 	return (rval);
2119 }
2120 
2121 int
2122 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
2123     dtrace_aggregate_walk_f *func)
2124 {
2125 	dt_print_aggdata_t pd;
2126 
2127 	bzero(&pd, sizeof (pd));
2128 
2129 	pd.dtpa_dtp = dtp;
2130 	pd.dtpa_fp = fp;
2131 	pd.dtpa_allunprint = 1;
2132 
2133 	if (func == NULL)
2134 		func = dtrace_aggregate_walk_sorted;
2135 
2136 	if (dtp->dt_oformat) {
2137 		if ((*func)(dtp, dt_format_agg, &pd) == -1)
2138 			return (dt_set_errno(dtp, dtp->dt_errno));
2139 	} else {
2140 		if ((*func)(dtp, dt_print_agg, &pd) == -1)
2141 			return (dt_set_errno(dtp, dtp->dt_errno));
2142 	}
2143 
2144 	return (0);
2145 }
2146 
2147 void
2148 dtrace_aggregate_clear(dtrace_hdl_t *dtp)
2149 {
2150 	dt_aggregate_t *agp = &dtp->dt_aggregate;
2151 	dt_ahash_t *hash = &agp->dtat_hash;
2152 	dt_ahashent_t *h;
2153 	dtrace_aggdata_t *data;
2154 	dtrace_aggdesc_t *aggdesc;
2155 	dtrace_recdesc_t *rec;
2156 	int i, max_cpus = agp->dtat_maxcpu;
2157 
2158 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
2159 		aggdesc = h->dtahe_data.dtada_desc;
2160 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
2161 		data = &h->dtahe_data;
2162 
2163 		bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
2164 
2165 		if (data->dtada_percpu == NULL)
2166 			continue;
2167 
2168 		for (i = 0; i < max_cpus; i++)
2169 			bzero(data->dtada_percpu[i], rec->dtrd_size);
2170 	}
2171 }
2172 
2173 void
2174 dt_aggregate_destroy(dtrace_hdl_t *dtp)
2175 {
2176 	dt_aggregate_t *agp = &dtp->dt_aggregate;
2177 	dt_ahash_t *hash = &agp->dtat_hash;
2178 	dt_ahashent_t *h, *next;
2179 	dtrace_aggdata_t *aggdata;
2180 	int i, max_cpus = agp->dtat_maxcpu;
2181 
2182 	if (hash->dtah_hash == NULL) {
2183 		assert(hash->dtah_all == NULL);
2184 	} else {
2185 		free(hash->dtah_hash);
2186 
2187 		for (h = hash->dtah_all; h != NULL; h = next) {
2188 			next = h->dtahe_nextall;
2189 
2190 			aggdata = &h->dtahe_data;
2191 
2192 			if (aggdata->dtada_percpu != NULL) {
2193 				for (i = 0; i < max_cpus; i++)
2194 					free(aggdata->dtada_percpu[i]);
2195 				free(aggdata->dtada_percpu);
2196 			}
2197 
2198 			free(aggdata->dtada_data);
2199 			free(h);
2200 		}
2201 
2202 		hash->dtah_hash = NULL;
2203 		hash->dtah_all = NULL;
2204 		hash->dtah_size = 0;
2205 	}
2206 
2207 	free(agp->dtat_buf.dtbd_data);
2208 	free(agp->dtat_cpus);
2209 }
2210