xref: /freebsd/cddl/contrib/opensolaris/lib/libdtrace/common/dt_aggregate.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  * Copyright (c) 2012 by Delphix. All rights reserved.
30  */
31 
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <errno.h>
35 #include <unistd.h>
36 #include <dt_impl.h>
37 #include <assert.h>
38 #if defined(sun)
39 #include <alloca.h>
40 #else
41 #include <sys/sysctl.h>
42 #include <libproc_compat.h>
43 #endif
44 #include <limits.h>
45 
46 #define	DTRACE_AHASHSIZE	32779		/* big 'ol prime */
47 
48 /*
49  * Because qsort(3C) does not allow an argument to be passed to a comparison
50  * function, the variables that affect comparison must regrettably be global;
51  * they are protected by a global static lock, dt_qsort_lock.
52  */
53 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
54 
55 static int dt_revsort;
56 static int dt_keysort;
57 static int dt_keypos;
58 
59 #define	DT_LESSTHAN	(dt_revsort == 0 ? -1 : 1)
60 #define	DT_GREATERTHAN	(dt_revsort == 0 ? 1 : -1)
61 
62 static void
63 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
64 {
65 	uint_t i;
66 
67 	for (i = 0; i < size / sizeof (int64_t); i++)
68 		existing[i] = existing[i] + new[i];
69 }
70 
71 static int
72 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
73 {
74 	int64_t lvar = *lhs;
75 	int64_t rvar = *rhs;
76 
77 	if (lvar < rvar)
78 		return (DT_LESSTHAN);
79 
80 	if (lvar > rvar)
81 		return (DT_GREATERTHAN);
82 
83 	return (0);
84 }
85 
86 /*ARGSUSED*/
87 static void
88 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
89 {
90 	if (*new < *existing)
91 		*existing = *new;
92 }
93 
94 /*ARGSUSED*/
95 static void
96 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
97 {
98 	if (*new > *existing)
99 		*existing = *new;
100 }
101 
102 static int
103 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
104 {
105 	int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
106 	int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
107 
108 	if (lavg < ravg)
109 		return (DT_LESSTHAN);
110 
111 	if (lavg > ravg)
112 		return (DT_GREATERTHAN);
113 
114 	return (0);
115 }
116 
117 static int
118 dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
119 {
120 	uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
121 	uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
122 
123 	if (lsd < rsd)
124 		return (DT_LESSTHAN);
125 
126 	if (lsd > rsd)
127 		return (DT_GREATERTHAN);
128 
129 	return (0);
130 }
131 
132 /*ARGSUSED*/
133 static void
134 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
135 {
136 	int64_t arg = *existing++;
137 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
138 	int i;
139 
140 	for (i = 0; i <= levels + 1; i++)
141 		existing[i] = existing[i] + new[i + 1];
142 }
143 
144 static long double
145 dt_aggregate_lquantizedsum(int64_t *lquanta)
146 {
147 	int64_t arg = *lquanta++;
148 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
149 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
150 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
151 	long double total = (long double)lquanta[0] * (long double)(base - 1);
152 
153 	for (i = 0; i < levels; base += step, i++)
154 		total += (long double)lquanta[i + 1] * (long double)base;
155 
156 	return (total + (long double)lquanta[levels + 1] *
157 	    (long double)(base + 1));
158 }
159 
160 static int64_t
161 dt_aggregate_lquantizedzero(int64_t *lquanta)
162 {
163 	int64_t arg = *lquanta++;
164 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
165 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
166 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
167 
168 	if (base - 1 == 0)
169 		return (lquanta[0]);
170 
171 	for (i = 0; i < levels; base += step, i++) {
172 		if (base != 0)
173 			continue;
174 
175 		return (lquanta[i + 1]);
176 	}
177 
178 	if (base + 1 == 0)
179 		return (lquanta[levels + 1]);
180 
181 	return (0);
182 }
183 
184 static int
185 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
186 {
187 	long double lsum = dt_aggregate_lquantizedsum(lhs);
188 	long double rsum = dt_aggregate_lquantizedsum(rhs);
189 	int64_t lzero, rzero;
190 
191 	if (lsum < rsum)
192 		return (DT_LESSTHAN);
193 
194 	if (lsum > rsum)
195 		return (DT_GREATERTHAN);
196 
197 	/*
198 	 * If they're both equal, then we will compare based on the weights at
199 	 * zero.  If the weights at zero are equal (or if zero is not within
200 	 * the range of the linear quantization), then this will be judged a
201 	 * tie and will be resolved based on the key comparison.
202 	 */
203 	lzero = dt_aggregate_lquantizedzero(lhs);
204 	rzero = dt_aggregate_lquantizedzero(rhs);
205 
206 	if (lzero < rzero)
207 		return (DT_LESSTHAN);
208 
209 	if (lzero > rzero)
210 		return (DT_GREATERTHAN);
211 
212 	return (0);
213 }
214 
215 static void
216 dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
217 {
218 	int i;
219 
220 	for (i = 1; i < size / sizeof (int64_t); i++)
221 		existing[i] = existing[i] + new[i];
222 }
223 
224 static long double
225 dt_aggregate_llquantizedsum(int64_t *llquanta)
226 {
227 	int64_t arg = *llquanta++;
228 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
229 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
230 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
231 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
232 	int bin = 0, order;
233 	int64_t value = 1, next, step;
234 	long double total;
235 
236 	assert(nsteps >= factor);
237 	assert(nsteps % factor == 0);
238 
239 	for (order = 0; order < low; order++)
240 		value *= factor;
241 
242 	total = (long double)llquanta[bin++] * (long double)(value - 1);
243 
244 	next = value * factor;
245 	step = next > nsteps ? next / nsteps : 1;
246 
247 	while (order <= high) {
248 		assert(value < next);
249 		total += (long double)llquanta[bin++] * (long double)(value);
250 
251 		if ((value += step) != next)
252 			continue;
253 
254 		next = value * factor;
255 		step = next > nsteps ? next / nsteps : 1;
256 		order++;
257 	}
258 
259 	return (total + (long double)llquanta[bin] * (long double)value);
260 }
261 
262 static int
263 dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
264 {
265 	long double lsum = dt_aggregate_llquantizedsum(lhs);
266 	long double rsum = dt_aggregate_llquantizedsum(rhs);
267 	int64_t lzero, rzero;
268 
269 	if (lsum < rsum)
270 		return (DT_LESSTHAN);
271 
272 	if (lsum > rsum)
273 		return (DT_GREATERTHAN);
274 
275 	/*
276 	 * If they're both equal, then we will compare based on the weights at
277 	 * zero.  If the weights at zero are equal, then this will be judged a
278 	 * tie and will be resolved based on the key comparison.
279 	 */
280 	lzero = lhs[1];
281 	rzero = rhs[1];
282 
283 	if (lzero < rzero)
284 		return (DT_LESSTHAN);
285 
286 	if (lzero > rzero)
287 		return (DT_GREATERTHAN);
288 
289 	return (0);
290 }
291 
292 static int
293 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
294 {
295 	int nbuckets = DTRACE_QUANTIZE_NBUCKETS;
296 	long double ltotal = 0, rtotal = 0;
297 	int64_t lzero, rzero;
298 	uint_t i;
299 
300 	for (i = 0; i < nbuckets; i++) {
301 		int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
302 
303 		if (bucketval == 0) {
304 			lzero = lhs[i];
305 			rzero = rhs[i];
306 		}
307 
308 		ltotal += (long double)bucketval * (long double)lhs[i];
309 		rtotal += (long double)bucketval * (long double)rhs[i];
310 	}
311 
312 	if (ltotal < rtotal)
313 		return (DT_LESSTHAN);
314 
315 	if (ltotal > rtotal)
316 		return (DT_GREATERTHAN);
317 
318 	/*
319 	 * If they're both equal, then we will compare based on the weights at
320 	 * zero.  If the weights at zero are equal, then this will be judged a
321 	 * tie and will be resolved based on the key comparison.
322 	 */
323 	if (lzero < rzero)
324 		return (DT_LESSTHAN);
325 
326 	if (lzero > rzero)
327 		return (DT_GREATERTHAN);
328 
329 	return (0);
330 }
331 
332 static void
333 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
334 {
335 	uint64_t pid = data[0];
336 	uint64_t *pc = &data[1];
337 	struct ps_prochandle *P;
338 	GElf_Sym sym;
339 
340 	if (dtp->dt_vector != NULL)
341 		return;
342 
343 	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
344 		return;
345 
346 	dt_proc_lock(dtp, P);
347 
348 	if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
349 		*pc = sym.st_value;
350 
351 	dt_proc_unlock(dtp, P);
352 	dt_proc_release(dtp, P);
353 }
354 
355 static void
356 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
357 {
358 	uint64_t pid = data[0];
359 	uint64_t *pc = &data[1];
360 	struct ps_prochandle *P;
361 	const prmap_t *map;
362 
363 	if (dtp->dt_vector != NULL)
364 		return;
365 
366 	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
367 		return;
368 
369 	dt_proc_lock(dtp, P);
370 
371 	if ((map = Paddr_to_map(P, *pc)) != NULL)
372 		*pc = map->pr_vaddr;
373 
374 	dt_proc_unlock(dtp, P);
375 	dt_proc_release(dtp, P);
376 }
377 
378 static void
379 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
380 {
381 	GElf_Sym sym;
382 	uint64_t *pc = data;
383 
384 	if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
385 		*pc = sym.st_value;
386 }
387 
388 static void
389 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
390 {
391 	uint64_t *pc = data;
392 	dt_module_t *dmp;
393 
394 	if (dtp->dt_vector != NULL) {
395 		/*
396 		 * We don't have a way of just getting the module for a
397 		 * vectored open, and it doesn't seem to be worth defining
398 		 * one.  This means that use of mod() won't get true
399 		 * aggregation in the postmortem case (some modules may
400 		 * appear more than once in aggregation output).  It seems
401 		 * unlikely that anyone will ever notice or care...
402 		 */
403 		return;
404 	}
405 
406 	for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
407 	    dmp = dt_list_next(dmp)) {
408 		if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
409 			*pc = dmp->dm_text_va;
410 			return;
411 		}
412 	}
413 }
414 
415 static dtrace_aggvarid_t
416 dt_aggregate_aggvarid(dt_ahashent_t *ent)
417 {
418 	dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
419 	caddr_t data = ent->dtahe_data.dtada_data;
420 	dtrace_recdesc_t *rec = agg->dtagd_rec;
421 
422 	/*
423 	 * First, we'll check the variable ID in the aggdesc.  If it's valid,
424 	 * we'll return it.  If not, we'll use the compiler-generated ID
425 	 * present as the first record.
426 	 */
427 	if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
428 		return (agg->dtagd_varid);
429 
430 	agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
431 	    rec->dtrd_offset));
432 
433 	return (agg->dtagd_varid);
434 }
435 
436 
437 static int
438 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
439 {
440 	dtrace_epid_t id;
441 	uint64_t hashval;
442 	size_t offs, roffs, size, ndx;
443 	int i, j, rval;
444 	caddr_t addr, data;
445 	dtrace_recdesc_t *rec;
446 	dt_aggregate_t *agp = &dtp->dt_aggregate;
447 	dtrace_aggdesc_t *agg;
448 	dt_ahash_t *hash = &agp->dtat_hash;
449 	dt_ahashent_t *h;
450 	dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
451 	dtrace_aggdata_t *aggdata;
452 	int flags = agp->dtat_flags;
453 
454 	buf->dtbd_cpu = cpu;
455 
456 #if defined(sun)
457 	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
458 #else
459 	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) {
460 #endif
461 		if (errno == ENOENT) {
462 			/*
463 			 * If that failed with ENOENT, it may be because the
464 			 * CPU was unconfigured.  This is okay; we'll just
465 			 * do nothing but return success.
466 			 */
467 			return (0);
468 		}
469 
470 		return (dt_set_errno(dtp, errno));
471 	}
472 
473 	if (buf->dtbd_drops != 0) {
474 		if (dt_handle_cpudrop(dtp, cpu,
475 		    DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1)
476 			return (-1);
477 	}
478 
479 	if (buf->dtbd_size == 0)
480 		return (0);
481 
482 	if (hash->dtah_hash == NULL) {
483 		size_t size;
484 
485 		hash->dtah_size = DTRACE_AHASHSIZE;
486 		size = hash->dtah_size * sizeof (dt_ahashent_t *);
487 
488 		if ((hash->dtah_hash = malloc(size)) == NULL)
489 			return (dt_set_errno(dtp, EDT_NOMEM));
490 
491 		bzero(hash->dtah_hash, size);
492 	}
493 
494 	for (offs = 0; offs < buf->dtbd_size; ) {
495 		/*
496 		 * We're guaranteed to have an ID.
497 		 */
498 		id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
499 		    (uintptr_t)offs));
500 
501 		if (id == DTRACE_AGGIDNONE) {
502 			/*
503 			 * This is filler to assure proper alignment of the
504 			 * next record; we simply ignore it.
505 			 */
506 			offs += sizeof (id);
507 			continue;
508 		}
509 
510 		if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
511 			return (rval);
512 
513 		addr = buf->dtbd_data + offs;
514 		size = agg->dtagd_size;
515 		hashval = 0;
516 
517 		for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
518 			rec = &agg->dtagd_rec[j];
519 			roffs = rec->dtrd_offset;
520 
521 			switch (rec->dtrd_action) {
522 			case DTRACEACT_USYM:
523 				dt_aggregate_usym(dtp,
524 				    /* LINTED - alignment */
525 				    (uint64_t *)&addr[roffs]);
526 				break;
527 
528 			case DTRACEACT_UMOD:
529 				dt_aggregate_umod(dtp,
530 				    /* LINTED - alignment */
531 				    (uint64_t *)&addr[roffs]);
532 				break;
533 
534 			case DTRACEACT_SYM:
535 				/* LINTED - alignment */
536 				dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
537 				break;
538 
539 			case DTRACEACT_MOD:
540 				/* LINTED - alignment */
541 				dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
542 				break;
543 
544 			default:
545 				break;
546 			}
547 
548 			for (i = 0; i < rec->dtrd_size; i++)
549 				hashval += addr[roffs + i];
550 		}
551 
552 		ndx = hashval % hash->dtah_size;
553 
554 		for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
555 			if (h->dtahe_hashval != hashval)
556 				continue;
557 
558 			if (h->dtahe_size != size)
559 				continue;
560 
561 			aggdata = &h->dtahe_data;
562 			data = aggdata->dtada_data;
563 
564 			for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
565 				rec = &agg->dtagd_rec[j];
566 				roffs = rec->dtrd_offset;
567 
568 				for (i = 0; i < rec->dtrd_size; i++)
569 					if (addr[roffs + i] != data[roffs + i])
570 						goto hashnext;
571 			}
572 
573 			/*
574 			 * We found it.  Now we need to apply the aggregating
575 			 * action on the data here.
576 			 */
577 			rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
578 			roffs = rec->dtrd_offset;
579 			/* LINTED - alignment */
580 			h->dtahe_aggregate((int64_t *)&data[roffs],
581 			    /* LINTED - alignment */
582 			    (int64_t *)&addr[roffs], rec->dtrd_size);
583 
584 			/*
585 			 * If we're keeping per CPU data, apply the aggregating
586 			 * action there as well.
587 			 */
588 			if (aggdata->dtada_percpu != NULL) {
589 				data = aggdata->dtada_percpu[cpu];
590 
591 				/* LINTED - alignment */
592 				h->dtahe_aggregate((int64_t *)data,
593 				    /* LINTED - alignment */
594 				    (int64_t *)&addr[roffs], rec->dtrd_size);
595 			}
596 
597 			goto bufnext;
598 hashnext:
599 			continue;
600 		}
601 
602 		/*
603 		 * If we're here, we couldn't find an entry for this record.
604 		 */
605 		if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
606 			return (dt_set_errno(dtp, EDT_NOMEM));
607 		bzero(h, sizeof (dt_ahashent_t));
608 		aggdata = &h->dtahe_data;
609 
610 		if ((aggdata->dtada_data = malloc(size)) == NULL) {
611 			free(h);
612 			return (dt_set_errno(dtp, EDT_NOMEM));
613 		}
614 
615 		bcopy(addr, aggdata->dtada_data, size);
616 		aggdata->dtada_size = size;
617 		aggdata->dtada_desc = agg;
618 		aggdata->dtada_handle = dtp;
619 		(void) dt_epid_lookup(dtp, agg->dtagd_epid,
620 		    &aggdata->dtada_edesc, &aggdata->dtada_pdesc);
621 		aggdata->dtada_normal = 1;
622 
623 		h->dtahe_hashval = hashval;
624 		h->dtahe_size = size;
625 		(void) dt_aggregate_aggvarid(h);
626 
627 		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
628 
629 		if (flags & DTRACE_A_PERCPU) {
630 			int max_cpus = agp->dtat_maxcpu;
631 			caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
632 
633 			if (percpu == NULL) {
634 				free(aggdata->dtada_data);
635 				free(h);
636 				return (dt_set_errno(dtp, EDT_NOMEM));
637 			}
638 
639 			for (j = 0; j < max_cpus; j++) {
640 				percpu[j] = malloc(rec->dtrd_size);
641 
642 				if (percpu[j] == NULL) {
643 					while (--j >= 0)
644 						free(percpu[j]);
645 
646 					free(aggdata->dtada_data);
647 					free(h);
648 					return (dt_set_errno(dtp, EDT_NOMEM));
649 				}
650 
651 				if (j == cpu) {
652 					bcopy(&addr[rec->dtrd_offset],
653 					    percpu[j], rec->dtrd_size);
654 				} else {
655 					bzero(percpu[j], rec->dtrd_size);
656 				}
657 			}
658 
659 			aggdata->dtada_percpu = percpu;
660 		}
661 
662 		switch (rec->dtrd_action) {
663 		case DTRACEAGG_MIN:
664 			h->dtahe_aggregate = dt_aggregate_min;
665 			break;
666 
667 		case DTRACEAGG_MAX:
668 			h->dtahe_aggregate = dt_aggregate_max;
669 			break;
670 
671 		case DTRACEAGG_LQUANTIZE:
672 			h->dtahe_aggregate = dt_aggregate_lquantize;
673 			break;
674 
675 		case DTRACEAGG_LLQUANTIZE:
676 			h->dtahe_aggregate = dt_aggregate_llquantize;
677 			break;
678 
679 		case DTRACEAGG_COUNT:
680 		case DTRACEAGG_SUM:
681 		case DTRACEAGG_AVG:
682 		case DTRACEAGG_STDDEV:
683 		case DTRACEAGG_QUANTIZE:
684 			h->dtahe_aggregate = dt_aggregate_count;
685 			break;
686 
687 		default:
688 			return (dt_set_errno(dtp, EDT_BADAGG));
689 		}
690 
691 		if (hash->dtah_hash[ndx] != NULL)
692 			hash->dtah_hash[ndx]->dtahe_prev = h;
693 
694 		h->dtahe_next = hash->dtah_hash[ndx];
695 		hash->dtah_hash[ndx] = h;
696 
697 		if (hash->dtah_all != NULL)
698 			hash->dtah_all->dtahe_prevall = h;
699 
700 		h->dtahe_nextall = hash->dtah_all;
701 		hash->dtah_all = h;
702 bufnext:
703 		offs += agg->dtagd_size;
704 	}
705 
706 	return (0);
707 }
708 
709 int
710 dtrace_aggregate_snap(dtrace_hdl_t *dtp)
711 {
712 	int i, rval;
713 	dt_aggregate_t *agp = &dtp->dt_aggregate;
714 	hrtime_t now = gethrtime();
715 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
716 
717 	if (dtp->dt_lastagg != 0) {
718 		if (now - dtp->dt_lastagg < interval)
719 			return (0);
720 
721 		dtp->dt_lastagg += interval;
722 	} else {
723 		dtp->dt_lastagg = now;
724 	}
725 
726 	if (!dtp->dt_active)
727 		return (dt_set_errno(dtp, EINVAL));
728 
729 	if (agp->dtat_buf.dtbd_size == 0)
730 		return (0);
731 
732 	for (i = 0; i < agp->dtat_ncpus; i++) {
733 		if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])))
734 			return (rval);
735 	}
736 
737 	return (0);
738 }
739 
740 static int
741 dt_aggregate_hashcmp(const void *lhs, const void *rhs)
742 {
743 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
744 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
745 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
746 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
747 
748 	if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
749 		return (DT_LESSTHAN);
750 
751 	if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
752 		return (DT_GREATERTHAN);
753 
754 	return (0);
755 }
756 
757 static int
758 dt_aggregate_varcmp(const void *lhs, const void *rhs)
759 {
760 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
761 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
762 	dtrace_aggvarid_t lid, rid;
763 
764 	lid = dt_aggregate_aggvarid(lh);
765 	rid = dt_aggregate_aggvarid(rh);
766 
767 	if (lid < rid)
768 		return (DT_LESSTHAN);
769 
770 	if (lid > rid)
771 		return (DT_GREATERTHAN);
772 
773 	return (0);
774 }
775 
776 static int
777 dt_aggregate_keycmp(const void *lhs, const void *rhs)
778 {
779 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
780 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
781 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
782 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
783 	dtrace_recdesc_t *lrec, *rrec;
784 	char *ldata, *rdata;
785 	int rval, i, j, keypos, nrecs;
786 
787 	if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
788 		return (rval);
789 
790 	nrecs = lagg->dtagd_nrecs - 1;
791 	assert(nrecs == ragg->dtagd_nrecs - 1);
792 
793 	keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
794 
795 	for (i = 1; i < nrecs; i++) {
796 		uint64_t lval, rval;
797 		int ndx = i + keypos;
798 
799 		if (ndx >= nrecs)
800 			ndx = ndx - nrecs + 1;
801 
802 		lrec = &lagg->dtagd_rec[ndx];
803 		rrec = &ragg->dtagd_rec[ndx];
804 
805 		ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
806 		rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
807 
808 		if (lrec->dtrd_size < rrec->dtrd_size)
809 			return (DT_LESSTHAN);
810 
811 		if (lrec->dtrd_size > rrec->dtrd_size)
812 			return (DT_GREATERTHAN);
813 
814 		switch (lrec->dtrd_size) {
815 		case sizeof (uint64_t):
816 			/* LINTED - alignment */
817 			lval = *((uint64_t *)ldata);
818 			/* LINTED - alignment */
819 			rval = *((uint64_t *)rdata);
820 			break;
821 
822 		case sizeof (uint32_t):
823 			/* LINTED - alignment */
824 			lval = *((uint32_t *)ldata);
825 			/* LINTED - alignment */
826 			rval = *((uint32_t *)rdata);
827 			break;
828 
829 		case sizeof (uint16_t):
830 			/* LINTED - alignment */
831 			lval = *((uint16_t *)ldata);
832 			/* LINTED - alignment */
833 			rval = *((uint16_t *)rdata);
834 			break;
835 
836 		case sizeof (uint8_t):
837 			lval = *((uint8_t *)ldata);
838 			rval = *((uint8_t *)rdata);
839 			break;
840 
841 		default:
842 			switch (lrec->dtrd_action) {
843 			case DTRACEACT_UMOD:
844 			case DTRACEACT_UADDR:
845 			case DTRACEACT_USYM:
846 				for (j = 0; j < 2; j++) {
847 					/* LINTED - alignment */
848 					lval = ((uint64_t *)ldata)[j];
849 					/* LINTED - alignment */
850 					rval = ((uint64_t *)rdata)[j];
851 
852 					if (lval < rval)
853 						return (DT_LESSTHAN);
854 
855 					if (lval > rval)
856 						return (DT_GREATERTHAN);
857 				}
858 
859 				break;
860 
861 			default:
862 				for (j = 0; j < lrec->dtrd_size; j++) {
863 					lval = ((uint8_t *)ldata)[j];
864 					rval = ((uint8_t *)rdata)[j];
865 
866 					if (lval < rval)
867 						return (DT_LESSTHAN);
868 
869 					if (lval > rval)
870 						return (DT_GREATERTHAN);
871 				}
872 			}
873 
874 			continue;
875 		}
876 
877 		if (lval < rval)
878 			return (DT_LESSTHAN);
879 
880 		if (lval > rval)
881 			return (DT_GREATERTHAN);
882 	}
883 
884 	return (0);
885 }
886 
887 static int
888 dt_aggregate_valcmp(const void *lhs, const void *rhs)
889 {
890 	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
891 	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
892 	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
893 	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
894 	caddr_t ldata = lh->dtahe_data.dtada_data;
895 	caddr_t rdata = rh->dtahe_data.dtada_data;
896 	dtrace_recdesc_t *lrec, *rrec;
897 	int64_t *laddr, *raddr;
898 	int rval;
899 
900 	assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
901 
902 	lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
903 	rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
904 
905 	assert(lrec->dtrd_action == rrec->dtrd_action);
906 
907 	laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
908 	raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
909 
910 	switch (lrec->dtrd_action) {
911 	case DTRACEAGG_AVG:
912 		rval = dt_aggregate_averagecmp(laddr, raddr);
913 		break;
914 
915 	case DTRACEAGG_STDDEV:
916 		rval = dt_aggregate_stddevcmp(laddr, raddr);
917 		break;
918 
919 	case DTRACEAGG_QUANTIZE:
920 		rval = dt_aggregate_quantizedcmp(laddr, raddr);
921 		break;
922 
923 	case DTRACEAGG_LQUANTIZE:
924 		rval = dt_aggregate_lquantizedcmp(laddr, raddr);
925 		break;
926 
927 	case DTRACEAGG_LLQUANTIZE:
928 		rval = dt_aggregate_llquantizedcmp(laddr, raddr);
929 		break;
930 
931 	case DTRACEAGG_COUNT:
932 	case DTRACEAGG_SUM:
933 	case DTRACEAGG_MIN:
934 	case DTRACEAGG_MAX:
935 		rval = dt_aggregate_countcmp(laddr, raddr);
936 		break;
937 
938 	default:
939 		assert(0);
940 	}
941 
942 	return (rval);
943 }
944 
945 static int
946 dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
947 {
948 	int rval;
949 
950 	if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
951 		return (rval);
952 
953 	/*
954 	 * If we're here, the values for the two aggregation elements are
955 	 * equal.  We already know that the key layout is the same for the two
956 	 * elements; we must now compare the keys themselves as a tie-breaker.
957 	 */
958 	return (dt_aggregate_keycmp(lhs, rhs));
959 }
960 
961 static int
962 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
963 {
964 	int rval;
965 
966 	if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
967 		return (rval);
968 
969 	return (dt_aggregate_varcmp(lhs, rhs));
970 }
971 
972 static int
973 dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
974 {
975 	int rval;
976 
977 	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
978 		return (rval);
979 
980 	return (dt_aggregate_keycmp(lhs, rhs));
981 }
982 
983 static int
984 dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
985 {
986 	int rval;
987 
988 	if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
989 		return (rval);
990 
991 	return (dt_aggregate_varcmp(lhs, rhs));
992 }
993 
994 static int
995 dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
996 {
997 	int rval;
998 
999 	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
1000 		return (rval);
1001 
1002 	return (dt_aggregate_valkeycmp(lhs, rhs));
1003 }
1004 
1005 static int
1006 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
1007 {
1008 	return (dt_aggregate_keyvarcmp(rhs, lhs));
1009 }
1010 
1011 static int
1012 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1013 {
1014 	return (dt_aggregate_varkeycmp(rhs, lhs));
1015 }
1016 
1017 static int
1018 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1019 {
1020 	return (dt_aggregate_valvarcmp(rhs, lhs));
1021 }
1022 
1023 static int
1024 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1025 {
1026 	return (dt_aggregate_varvalcmp(rhs, lhs));
1027 }
1028 
1029 static int
1030 dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1031 {
1032 	dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1033 	dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1034 	int i, rval;
1035 
1036 	if (dt_keysort) {
1037 		/*
1038 		 * If we're sorting on keys, we need to scan until we find the
1039 		 * last entry -- that's the representative key.  (The order of
1040 		 * the bundle is values followed by key to accommodate the
1041 		 * default behavior of sorting by value.)  If the keys are
1042 		 * equal, we'll fall into the value comparison loop, below.
1043 		 */
1044 		for (i = 0; lh[i + 1] != NULL; i++)
1045 			continue;
1046 
1047 		assert(i != 0);
1048 		assert(rh[i + 1] == NULL);
1049 
1050 		if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1051 			return (rval);
1052 	}
1053 
1054 	for (i = 0; ; i++) {
1055 		if (lh[i + 1] == NULL) {
1056 			/*
1057 			 * All of the values are equal; if we're sorting on
1058 			 * keys, then we're only here because the keys were
1059 			 * found to be equal and these records are therefore
1060 			 * equal.  If we're not sorting on keys, we'll use the
1061 			 * key comparison from the representative key as the
1062 			 * tie-breaker.
1063 			 */
1064 			if (dt_keysort)
1065 				return (0);
1066 
1067 			assert(i != 0);
1068 			assert(rh[i + 1] == NULL);
1069 			return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1070 		} else {
1071 			if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1072 				return (rval);
1073 		}
1074 	}
1075 }
1076 
1077 int
1078 dt_aggregate_go(dtrace_hdl_t *dtp)
1079 {
1080 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1081 	dtrace_optval_t size, cpu;
1082 	dtrace_bufdesc_t *buf = &agp->dtat_buf;
1083 	int rval, i;
1084 
1085 	assert(agp->dtat_maxcpu == 0);
1086 	assert(agp->dtat_ncpu == 0);
1087 	assert(agp->dtat_cpus == NULL);
1088 
1089 	agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1090 	agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
1091 	agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1092 
1093 	if (agp->dtat_cpus == NULL)
1094 		return (dt_set_errno(dtp, EDT_NOMEM));
1095 
1096 	/*
1097 	 * Use the aggregation buffer size as reloaded from the kernel.
1098 	 */
1099 	size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1100 
1101 	rval = dtrace_getopt(dtp, "aggsize", &size);
1102 	assert(rval == 0);
1103 
1104 	if (size == 0 || size == DTRACEOPT_UNSET)
1105 		return (0);
1106 
1107 	buf = &agp->dtat_buf;
1108 	buf->dtbd_size = size;
1109 
1110 	if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1111 		return (dt_set_errno(dtp, EDT_NOMEM));
1112 
1113 	/*
1114 	 * Now query for the CPUs enabled.
1115 	 */
1116 	rval = dtrace_getopt(dtp, "cpu", &cpu);
1117 	assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1118 
1119 	if (cpu != DTRACE_CPUALL) {
1120 		assert(cpu < agp->dtat_ncpu);
1121 		agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1122 
1123 		return (0);
1124 	}
1125 
1126 	agp->dtat_ncpus = 0;
1127 	for (i = 0; i < agp->dtat_maxcpu; i++) {
1128 		if (dt_status(dtp, i) == -1)
1129 			continue;
1130 
1131 		agp->dtat_cpus[agp->dtat_ncpus++] = i;
1132 	}
1133 
1134 	return (0);
1135 }
1136 
1137 static int
1138 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1139 {
1140 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1141 	dtrace_aggdata_t *data;
1142 	dtrace_aggdesc_t *aggdesc;
1143 	dtrace_recdesc_t *rec;
1144 	int i;
1145 
1146 	switch (rval) {
1147 	case DTRACE_AGGWALK_NEXT:
1148 		break;
1149 
1150 	case DTRACE_AGGWALK_CLEAR: {
1151 		uint32_t size, offs = 0;
1152 
1153 		aggdesc = h->dtahe_data.dtada_desc;
1154 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1155 		size = rec->dtrd_size;
1156 		data = &h->dtahe_data;
1157 
1158 		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1159 			offs = sizeof (uint64_t);
1160 			size -= sizeof (uint64_t);
1161 		}
1162 
1163 		bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1164 
1165 		if (data->dtada_percpu == NULL)
1166 			break;
1167 
1168 		for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1169 			bzero(data->dtada_percpu[i] + offs, size);
1170 		break;
1171 	}
1172 
1173 	case DTRACE_AGGWALK_ERROR:
1174 		/*
1175 		 * We assume that errno is already set in this case.
1176 		 */
1177 		return (dt_set_errno(dtp, errno));
1178 
1179 	case DTRACE_AGGWALK_ABORT:
1180 		return (dt_set_errno(dtp, EDT_DIRABORT));
1181 
1182 	case DTRACE_AGGWALK_DENORMALIZE:
1183 		h->dtahe_data.dtada_normal = 1;
1184 		return (0);
1185 
1186 	case DTRACE_AGGWALK_NORMALIZE:
1187 		if (h->dtahe_data.dtada_normal == 0) {
1188 			h->dtahe_data.dtada_normal = 1;
1189 			return (dt_set_errno(dtp, EDT_BADRVAL));
1190 		}
1191 
1192 		return (0);
1193 
1194 	case DTRACE_AGGWALK_REMOVE: {
1195 		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1196 		int max_cpus = agp->dtat_maxcpu;
1197 
1198 		/*
1199 		 * First, remove this hash entry from its hash chain.
1200 		 */
1201 		if (h->dtahe_prev != NULL) {
1202 			h->dtahe_prev->dtahe_next = h->dtahe_next;
1203 		} else {
1204 			dt_ahash_t *hash = &agp->dtat_hash;
1205 			size_t ndx = h->dtahe_hashval % hash->dtah_size;
1206 
1207 			assert(hash->dtah_hash[ndx] == h);
1208 			hash->dtah_hash[ndx] = h->dtahe_next;
1209 		}
1210 
1211 		if (h->dtahe_next != NULL)
1212 			h->dtahe_next->dtahe_prev = h->dtahe_prev;
1213 
1214 		/*
1215 		 * Now remove it from the list of all hash entries.
1216 		 */
1217 		if (h->dtahe_prevall != NULL) {
1218 			h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1219 		} else {
1220 			dt_ahash_t *hash = &agp->dtat_hash;
1221 
1222 			assert(hash->dtah_all == h);
1223 			hash->dtah_all = h->dtahe_nextall;
1224 		}
1225 
1226 		if (h->dtahe_nextall != NULL)
1227 			h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1228 
1229 		/*
1230 		 * We're unlinked.  We can safely destroy the data.
1231 		 */
1232 		if (aggdata->dtada_percpu != NULL) {
1233 			for (i = 0; i < max_cpus; i++)
1234 				free(aggdata->dtada_percpu[i]);
1235 			free(aggdata->dtada_percpu);
1236 		}
1237 
1238 		free(aggdata->dtada_data);
1239 		free(h);
1240 
1241 		return (0);
1242 	}
1243 
1244 	default:
1245 		return (dt_set_errno(dtp, EDT_BADRVAL));
1246 	}
1247 
1248 	return (0);
1249 }
1250 
1251 void
1252 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1253     int (*compar)(const void *, const void *))
1254 {
1255 	int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1256 	dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1257 
1258 	dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1259 	dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1260 
1261 	if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1262 		dt_keypos = (int)keyposopt;
1263 	} else {
1264 		dt_keypos = 0;
1265 	}
1266 
1267 	if (compar == NULL) {
1268 		if (!dt_keysort) {
1269 			compar = dt_aggregate_varvalcmp;
1270 		} else {
1271 			compar = dt_aggregate_varkeycmp;
1272 		}
1273 	}
1274 
1275 	qsort(base, nel, width, compar);
1276 
1277 	dt_revsort = rev;
1278 	dt_keysort = key;
1279 	dt_keypos = keypos;
1280 }
1281 
1282 int
1283 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1284 {
1285 	dt_ahashent_t *h, *next;
1286 	dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1287 
1288 	for (h = hash->dtah_all; h != NULL; h = next) {
1289 		/*
1290 		 * dt_aggwalk_rval() can potentially remove the current hash
1291 		 * entry; we need to load the next hash entry before calling
1292 		 * into it.
1293 		 */
1294 		next = h->dtahe_nextall;
1295 
1296 		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1297 			return (-1);
1298 	}
1299 
1300 	return (0);
1301 }
1302 
1303 static int
1304 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1305     dtrace_aggregate_f *func, void *arg,
1306     int (*sfunc)(const void *, const void *))
1307 {
1308 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1309 	dt_ahashent_t *h, **sorted;
1310 	dt_ahash_t *hash = &agp->dtat_hash;
1311 	size_t i, nentries = 0;
1312 
1313 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1314 		nentries++;
1315 
1316 	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1317 
1318 	if (sorted == NULL)
1319 		return (-1);
1320 
1321 	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1322 		sorted[i++] = h;
1323 
1324 	(void) pthread_mutex_lock(&dt_qsort_lock);
1325 
1326 	if (sfunc == NULL) {
1327 		dt_aggregate_qsort(dtp, sorted, nentries,
1328 		    sizeof (dt_ahashent_t *), NULL);
1329 	} else {
1330 		/*
1331 		 * If we've been explicitly passed a sorting function,
1332 		 * we'll use that -- ignoring the values of the "aggsortrev",
1333 		 * "aggsortkey" and "aggsortkeypos" options.
1334 		 */
1335 		qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1336 	}
1337 
1338 	(void) pthread_mutex_unlock(&dt_qsort_lock);
1339 
1340 	for (i = 0; i < nentries; i++) {
1341 		h = sorted[i];
1342 
1343 		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) {
1344 			dt_free(dtp, sorted);
1345 			return (-1);
1346 		}
1347 	}
1348 
1349 	dt_free(dtp, sorted);
1350 	return (0);
1351 }
1352 
1353 int
1354 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1355     dtrace_aggregate_f *func, void *arg)
1356 {
1357 	return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1358 }
1359 
1360 int
1361 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1362     dtrace_aggregate_f *func, void *arg)
1363 {
1364 	return (dt_aggregate_walk_sorted(dtp, func,
1365 	    arg, dt_aggregate_varkeycmp));
1366 }
1367 
1368 int
1369 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1370     dtrace_aggregate_f *func, void *arg)
1371 {
1372 	return (dt_aggregate_walk_sorted(dtp, func,
1373 	    arg, dt_aggregate_varvalcmp));
1374 }
1375 
1376 int
1377 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1378     dtrace_aggregate_f *func, void *arg)
1379 {
1380 	return (dt_aggregate_walk_sorted(dtp, func,
1381 	    arg, dt_aggregate_keyvarcmp));
1382 }
1383 
1384 int
1385 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1386     dtrace_aggregate_f *func, void *arg)
1387 {
1388 	return (dt_aggregate_walk_sorted(dtp, func,
1389 	    arg, dt_aggregate_valvarcmp));
1390 }
1391 
1392 int
1393 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1394     dtrace_aggregate_f *func, void *arg)
1395 {
1396 	return (dt_aggregate_walk_sorted(dtp, func,
1397 	    arg, dt_aggregate_varkeyrevcmp));
1398 }
1399 
1400 int
1401 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1402     dtrace_aggregate_f *func, void *arg)
1403 {
1404 	return (dt_aggregate_walk_sorted(dtp, func,
1405 	    arg, dt_aggregate_varvalrevcmp));
1406 }
1407 
1408 int
1409 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1410     dtrace_aggregate_f *func, void *arg)
1411 {
1412 	return (dt_aggregate_walk_sorted(dtp, func,
1413 	    arg, dt_aggregate_keyvarrevcmp));
1414 }
1415 
1416 int
1417 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1418     dtrace_aggregate_f *func, void *arg)
1419 {
1420 	return (dt_aggregate_walk_sorted(dtp, func,
1421 	    arg, dt_aggregate_valvarrevcmp));
1422 }
1423 
1424 int
1425 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1426     int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1427 {
1428 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1429 	dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1430 	const dtrace_aggdata_t **data;
1431 	dt_ahashent_t *zaggdata = NULL;
1432 	dt_ahash_t *hash = &agp->dtat_hash;
1433 	size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1434 	dtrace_aggvarid_t max = 0, aggvar;
1435 	int rval = -1, *map, *remap = NULL;
1436 	int i, j;
1437 	dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1438 
1439 	/*
1440 	 * If the sorting position is greater than the number of aggregation
1441 	 * variable IDs, we silently set it to 0.
1442 	 */
1443 	if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1444 		sortpos = 0;
1445 
1446 	/*
1447 	 * First we need to translate the specified aggregation variable IDs
1448 	 * into a linear map that will allow us to translate an aggregation
1449 	 * variable ID into its position in the specified aggvars.
1450 	 */
1451 	for (i = 0; i < naggvars; i++) {
1452 		if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1453 			return (dt_set_errno(dtp, EDT_BADAGGVAR));
1454 
1455 		if (aggvars[i] > max)
1456 			max = aggvars[i];
1457 	}
1458 
1459 	if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1460 		return (-1);
1461 
1462 	zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1463 
1464 	if (zaggdata == NULL)
1465 		goto out;
1466 
1467 	for (i = 0; i < naggvars; i++) {
1468 		int ndx = i + sortpos;
1469 
1470 		if (ndx >= naggvars)
1471 			ndx -= naggvars;
1472 
1473 		aggvar = aggvars[ndx];
1474 		assert(aggvar <= max);
1475 
1476 		if (map[aggvar]) {
1477 			/*
1478 			 * We have an aggregation variable that is present
1479 			 * more than once in the array of aggregation
1480 			 * variables.  While it's unclear why one might want
1481 			 * to do this, it's legal.  To support this construct,
1482 			 * we will allocate a remap that will indicate the
1483 			 * position from which this aggregation variable
1484 			 * should be pulled.  (That is, where the remap will
1485 			 * map from one position to another.)
1486 			 */
1487 			if (remap == NULL) {
1488 				remap = dt_zalloc(dtp, naggvars * sizeof (int));
1489 
1490 				if (remap == NULL)
1491 					goto out;
1492 			}
1493 
1494 			/*
1495 			 * Given that the variable is already present, assert
1496 			 * that following through the mapping and adjusting
1497 			 * for the sort position yields the same aggregation
1498 			 * variable ID.
1499 			 */
1500 			assert(aggvars[(map[aggvar] - 1 + sortpos) %
1501 			    naggvars] == aggvars[ndx]);
1502 
1503 			remap[i] = map[aggvar];
1504 			continue;
1505 		}
1506 
1507 		map[aggvar] = i + 1;
1508 	}
1509 
1510 	/*
1511 	 * We need to take two passes over the data to size our allocation, so
1512 	 * we'll use the first pass to also fill in the zero-filled data to be
1513 	 * used to properly format a zero-valued aggregation.
1514 	 */
1515 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1516 		dtrace_aggvarid_t id;
1517 		int ndx;
1518 
1519 		if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1520 			continue;
1521 
1522 		if (zaggdata[ndx - 1].dtahe_size == 0) {
1523 			zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1524 			zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1525 		}
1526 
1527 		nentries++;
1528 	}
1529 
1530 	if (nentries == 0) {
1531 		/*
1532 		 * We couldn't find any entries; there is nothing else to do.
1533 		 */
1534 		rval = 0;
1535 		goto out;
1536 	}
1537 
1538 	/*
1539 	 * Before we sort the data, we're going to look for any holes in our
1540 	 * zero-filled data.  This will occur if an aggregation variable that
1541 	 * we are being asked to print has not yet been assigned the result of
1542 	 * any aggregating action for _any_ tuple.  The issue becomes that we
1543 	 * would like a zero value to be printed for all columns for this
1544 	 * aggregation, but without any record description, we don't know the
1545 	 * aggregating action that corresponds to the aggregation variable.  To
1546 	 * try to find a match, we're simply going to lookup aggregation IDs
1547 	 * (which are guaranteed to be contiguous and to start from 1), looking
1548 	 * for the specified aggregation variable ID.  If we find a match,
1549 	 * we'll use that.  If we iterate over all aggregation IDs and don't
1550 	 * find a match, then we must be an anonymous enabling.  (Anonymous
1551 	 * enablings can't currently derive either aggregation variable IDs or
1552 	 * aggregation variable names given only an aggregation ID.)  In this
1553 	 * obscure case (anonymous enabling, multiple aggregation printa() with
1554 	 * some aggregations not represented for any tuple), our defined
1555 	 * behavior is that the zero will be printed in the format of the first
1556 	 * aggregation variable that contains any non-zero value.
1557 	 */
1558 	for (i = 0; i < naggvars; i++) {
1559 		if (zaggdata[i].dtahe_size == 0) {
1560 			dtrace_aggvarid_t aggvar;
1561 
1562 			aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1563 			assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1564 
1565 			for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1566 				dtrace_aggdesc_t *agg;
1567 				dtrace_aggdata_t *aggdata;
1568 
1569 				if (dt_aggid_lookup(dtp, j, &agg) != 0)
1570 					break;
1571 
1572 				if (agg->dtagd_varid != aggvar)
1573 					continue;
1574 
1575 				/*
1576 				 * We have our description -- now we need to
1577 				 * cons up the zaggdata entry for it.
1578 				 */
1579 				aggdata = &zaggdata[i].dtahe_data;
1580 				aggdata->dtada_size = agg->dtagd_size;
1581 				aggdata->dtada_desc = agg;
1582 				aggdata->dtada_handle = dtp;
1583 				(void) dt_epid_lookup(dtp, agg->dtagd_epid,
1584 				    &aggdata->dtada_edesc,
1585 				    &aggdata->dtada_pdesc);
1586 				aggdata->dtada_normal = 1;
1587 				zaggdata[i].dtahe_hashval = 0;
1588 				zaggdata[i].dtahe_size = agg->dtagd_size;
1589 				break;
1590 			}
1591 
1592 			if (zaggdata[i].dtahe_size == 0) {
1593 				caddr_t data;
1594 
1595 				/*
1596 				 * We couldn't find this aggregation, meaning
1597 				 * that we have never seen it before for any
1598 				 * tuple _and_ this is an anonymous enabling.
1599 				 * That is, we're in the obscure case outlined
1600 				 * above.  In this case, our defined behavior
1601 				 * is to format the data in the format of the
1602 				 * first non-zero aggregation -- of which, of
1603 				 * course, we know there to be at least one
1604 				 * (or nentries would have been zero).
1605 				 */
1606 				for (j = 0; j < naggvars; j++) {
1607 					if (zaggdata[j].dtahe_size != 0)
1608 						break;
1609 				}
1610 
1611 				assert(j < naggvars);
1612 				zaggdata[i] = zaggdata[j];
1613 
1614 				data = zaggdata[i].dtahe_data.dtada_data;
1615 				assert(data != NULL);
1616 			}
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * Now we need to allocate our zero-filled data for use for
1622 	 * aggregations that don't have a value corresponding to a given key.
1623 	 */
1624 	for (i = 0; i < naggvars; i++) {
1625 		dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1626 		dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1627 		dtrace_recdesc_t *rec;
1628 		uint64_t larg;
1629 		caddr_t zdata;
1630 
1631 		zsize = zaggdata[i].dtahe_size;
1632 		assert(zsize != 0);
1633 
1634 		if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1635 			/*
1636 			 * If we failed to allocated some zero-filled data, we
1637 			 * need to zero out the remaining dtada_data pointers
1638 			 * to prevent the wrong data from being freed below.
1639 			 */
1640 			for (j = i; j < naggvars; j++)
1641 				zaggdata[j].dtahe_data.dtada_data = NULL;
1642 			goto out;
1643 		}
1644 
1645 		aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1646 
1647 		/*
1648 		 * First, the easy bit.  To maintain compatibility with
1649 		 * consumers that pull the compiler-generated ID out of the
1650 		 * data, we put that ID at the top of the zero-filled data.
1651 		 */
1652 		rec = &aggdesc->dtagd_rec[0];
1653 		/* LINTED - alignment */
1654 		*((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1655 
1656 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1657 
1658 		/*
1659 		 * Now for the more complicated part.  If (and only if) this
1660 		 * is an lquantize() aggregating action, zero-filled data is
1661 		 * not equivalent to an empty record:  we must also get the
1662 		 * parameters for the lquantize().
1663 		 */
1664 		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1665 			if (aggdata->dtada_data != NULL) {
1666 				/*
1667 				 * The easier case here is if we actually have
1668 				 * some prototype data -- in which case we
1669 				 * manually dig it out of the aggregation
1670 				 * record.
1671 				 */
1672 				/* LINTED - alignment */
1673 				larg = *((uint64_t *)(aggdata->dtada_data +
1674 				    rec->dtrd_offset));
1675 			} else {
1676 				/*
1677 				 * We don't have any prototype data.  As a
1678 				 * result, we know that we _do_ have the
1679 				 * compiler-generated information.  (If this
1680 				 * were an anonymous enabling, all of our
1681 				 * zero-filled data would have prototype data
1682 				 * -- either directly or indirectly.) So as
1683 				 * gross as it is, we'll grovel around in the
1684 				 * compiler-generated information to find the
1685 				 * lquantize() parameters.
1686 				 */
1687 				dtrace_stmtdesc_t *sdp;
1688 				dt_ident_t *aid;
1689 				dt_idsig_t *isp;
1690 
1691 				sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1692 				    aggdesc->dtagd_rec[0].dtrd_uarg;
1693 				aid = sdp->dtsd_aggdata;
1694 				isp = (dt_idsig_t *)aid->di_data;
1695 				assert(isp->dis_auxinfo != 0);
1696 				larg = isp->dis_auxinfo;
1697 			}
1698 
1699 			/* LINTED - alignment */
1700 			*((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1701 		}
1702 
1703 		aggdata->dtada_data = zdata;
1704 	}
1705 
1706 	/*
1707 	 * Now that we've dealt with setting up our zero-filled data, we can
1708 	 * allocate our sorted array, and take another pass over the data to
1709 	 * fill it.
1710 	 */
1711 	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1712 
1713 	if (sorted == NULL)
1714 		goto out;
1715 
1716 	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1717 		dtrace_aggvarid_t id;
1718 
1719 		if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1720 			continue;
1721 
1722 		sorted[i++] = h;
1723 	}
1724 
1725 	assert(i == nentries);
1726 
1727 	/*
1728 	 * We've loaded our array; now we need to sort by value to allow us
1729 	 * to create bundles of like value.  We're going to acquire the
1730 	 * dt_qsort_lock here, and hold it across all of our subsequent
1731 	 * comparison and sorting.
1732 	 */
1733 	(void) pthread_mutex_lock(&dt_qsort_lock);
1734 
1735 	qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1736 	    dt_aggregate_keyvarcmp);
1737 
1738 	/*
1739 	 * Now we need to go through and create bundles.  Because the number
1740 	 * of bundles is bounded by the size of the sorted array, we're going
1741 	 * to reuse the underlying storage.  And note that "bundle" is an
1742 	 * array of pointers to arrays of pointers to dt_ahashent_t -- making
1743 	 * its type (regrettably) "dt_ahashent_t ***".  (Regrettable because
1744 	 * '*' -- like '_' and 'X' -- should never appear in triplicate in
1745 	 * an ideal world.)
1746 	 */
1747 	bundle = (dt_ahashent_t ***)sorted;
1748 
1749 	for (i = 1, start = 0; i <= nentries; i++) {
1750 		if (i < nentries &&
1751 		    dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
1752 			continue;
1753 
1754 		/*
1755 		 * We have a bundle boundary.  Everything from start to
1756 		 * (i - 1) belongs in one bundle.
1757 		 */
1758 		assert(i - start <= naggvars);
1759 		bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
1760 
1761 		if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
1762 			(void) pthread_mutex_unlock(&dt_qsort_lock);
1763 			goto out;
1764 		}
1765 
1766 		for (j = start; j < i; j++) {
1767 			dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
1768 
1769 			assert(id <= max);
1770 			assert(map[id] != 0);
1771 			assert(map[id] - 1 < naggvars);
1772 			assert(nbundle[map[id] - 1] == NULL);
1773 			nbundle[map[id] - 1] = sorted[j];
1774 
1775 			if (nbundle[naggvars] == NULL)
1776 				nbundle[naggvars] = sorted[j];
1777 		}
1778 
1779 		for (j = 0; j < naggvars; j++) {
1780 			if (nbundle[j] != NULL)
1781 				continue;
1782 
1783 			/*
1784 			 * Before we assume that this aggregation variable
1785 			 * isn't present (and fall back to using the
1786 			 * zero-filled data allocated earlier), check the
1787 			 * remap.  If we have a remapping, we'll drop it in
1788 			 * here.  Note that we might be remapping an
1789 			 * aggregation variable that isn't present for this
1790 			 * key; in this case, the aggregation data that we
1791 			 * copy will point to the zeroed data.
1792 			 */
1793 			if (remap != NULL && remap[j]) {
1794 				assert(remap[j] - 1 < j);
1795 				assert(nbundle[remap[j] - 1] != NULL);
1796 				nbundle[j] = nbundle[remap[j] - 1];
1797 			} else {
1798 				nbundle[j] = &zaggdata[j];
1799 			}
1800 		}
1801 
1802 		bundle[nbundles++] = nbundle;
1803 		start = i;
1804 	}
1805 
1806 	/*
1807 	 * Now we need to re-sort based on the first value.
1808 	 */
1809 	dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
1810 	    dt_aggregate_bundlecmp);
1811 
1812 	(void) pthread_mutex_unlock(&dt_qsort_lock);
1813 
1814 	/*
1815 	 * We're done!  Now we just need to go back over the sorted bundles,
1816 	 * calling the function.
1817 	 */
1818 	data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
1819 
1820 	for (i = 0; i < nbundles; i++) {
1821 		for (j = 0; j < naggvars; j++)
1822 			data[j + 1] = NULL;
1823 
1824 		for (j = 0; j < naggvars; j++) {
1825 			int ndx = j - sortpos;
1826 
1827 			if (ndx < 0)
1828 				ndx += naggvars;
1829 
1830 			assert(bundle[i][ndx] != NULL);
1831 			data[j + 1] = &bundle[i][ndx]->dtahe_data;
1832 		}
1833 
1834 		for (j = 0; j < naggvars; j++)
1835 			assert(data[j + 1] != NULL);
1836 
1837 		/*
1838 		 * The representative key is the last element in the bundle.
1839 		 * Assert that we have one, and then set it to be the first
1840 		 * element of data.
1841 		 */
1842 		assert(bundle[i][j] != NULL);
1843 		data[0] = &bundle[i][j]->dtahe_data;
1844 
1845 		if ((rval = func(data, naggvars + 1, arg)) == -1)
1846 			goto out;
1847 	}
1848 
1849 	rval = 0;
1850 out:
1851 	for (i = 0; i < nbundles; i++)
1852 		dt_free(dtp, bundle[i]);
1853 
1854 	if (zaggdata != NULL) {
1855 		for (i = 0; i < naggvars; i++)
1856 			dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
1857 	}
1858 
1859 	dt_free(dtp, zaggdata);
1860 	dt_free(dtp, sorted);
1861 	dt_free(dtp, remap);
1862 	dt_free(dtp, map);
1863 
1864 	return (rval);
1865 }
1866 
1867 int
1868 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
1869     dtrace_aggregate_walk_f *func)
1870 {
1871 	dt_print_aggdata_t pd;
1872 
1873 	pd.dtpa_dtp = dtp;
1874 	pd.dtpa_fp = fp;
1875 	pd.dtpa_allunprint = 1;
1876 
1877 	if (func == NULL)
1878 		func = dtrace_aggregate_walk_sorted;
1879 
1880 	if ((*func)(dtp, dt_print_agg, &pd) == -1)
1881 		return (dt_set_errno(dtp, dtp->dt_errno));
1882 
1883 	return (0);
1884 }
1885 
1886 void
1887 dtrace_aggregate_clear(dtrace_hdl_t *dtp)
1888 {
1889 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1890 	dt_ahash_t *hash = &agp->dtat_hash;
1891 	dt_ahashent_t *h;
1892 	dtrace_aggdata_t *data;
1893 	dtrace_aggdesc_t *aggdesc;
1894 	dtrace_recdesc_t *rec;
1895 	int i, max_cpus = agp->dtat_maxcpu;
1896 
1897 	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1898 		aggdesc = h->dtahe_data.dtada_desc;
1899 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1900 		data = &h->dtahe_data;
1901 
1902 		bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
1903 
1904 		if (data->dtada_percpu == NULL)
1905 			continue;
1906 
1907 		for (i = 0; i < max_cpus; i++)
1908 			bzero(data->dtada_percpu[i], rec->dtrd_size);
1909 	}
1910 }
1911 
1912 void
1913 dt_aggregate_destroy(dtrace_hdl_t *dtp)
1914 {
1915 	dt_aggregate_t *agp = &dtp->dt_aggregate;
1916 	dt_ahash_t *hash = &agp->dtat_hash;
1917 	dt_ahashent_t *h, *next;
1918 	dtrace_aggdata_t *aggdata;
1919 	int i, max_cpus = agp->dtat_maxcpu;
1920 
1921 	if (hash->dtah_hash == NULL) {
1922 		assert(hash->dtah_all == NULL);
1923 	} else {
1924 		free(hash->dtah_hash);
1925 
1926 		for (h = hash->dtah_all; h != NULL; h = next) {
1927 			next = h->dtahe_nextall;
1928 
1929 			aggdata = &h->dtahe_data;
1930 
1931 			if (aggdata->dtada_percpu != NULL) {
1932 				for (i = 0; i < max_cpus; i++)
1933 					free(aggdata->dtada_percpu[i]);
1934 				free(aggdata->dtada_percpu);
1935 			}
1936 
1937 			free(aggdata->dtada_data);
1938 			free(h);
1939 		}
1940 
1941 		hash->dtah_hash = NULL;
1942 		hash->dtah_all = NULL;
1943 		hash->dtah_size = 0;
1944 	}
1945 
1946 	free(agp->dtat_buf.dtbd_data);
1947 	free(agp->dtat_cpus);
1948 }
1949