xref: /freebsd/cddl/contrib/opensolaris/lib/libctf/common/ctf_lib.c (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/endian.h>
31 #include <sys/stat.h>
32 #include <sys/mman.h>
33 #include <sys/zmod.h>
34 #include <ctf_impl.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <errno.h>
38 #ifdef illumos
39 #include <dlfcn.h>
40 #else
41 #include <zlib.h>
42 #endif
43 #include <gelf.h>
44 
45 #ifdef illumos
46 #ifdef _LP64
47 static const char *_libctf_zlib = "/usr/lib/64/libz.so";
48 #else
49 static const char *_libctf_zlib = "/usr/lib/libz.so";
50 #endif
51 #endif
52 
53 static struct {
54 	int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t);
55 	const char *(*z_error)(int);
56 	void *z_dlp;
57 } zlib;
58 
59 static size_t _PAGESIZE;
60 static size_t _PAGEMASK;
61 
62 #ifdef illumos
63 #pragma init(_libctf_init)
64 #else
65 void    _libctf_init(void) __attribute__ ((constructor));
66 #endif
67 void
68 _libctf_init(void)
69 {
70 #ifdef illumos
71 	const char *p = getenv("LIBCTF_DECOMPRESSOR");
72 
73 	if (p != NULL)
74 		_libctf_zlib = p; /* use alternate decompression library */
75 #endif
76 
77 	_libctf_debug = getenv("LIBCTF_DEBUG") != NULL;
78 
79 	_PAGESIZE = getpagesize();
80 	_PAGEMASK = ~(_PAGESIZE - 1);
81 }
82 
83 /*
84  * Attempt to dlopen the decompression library and locate the symbols of
85  * interest that we will need to call.  This information in cached so
86  * that multiple calls to ctf_bufopen() do not need to reopen the library.
87  */
88 void *
89 ctf_zopen(int *errp)
90 {
91 #ifdef illumos
92 	ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib);
93 
94 	if (zlib.z_dlp != NULL)
95 		return (zlib.z_dlp); /* library is already loaded */
96 
97 	if (access(_libctf_zlib, R_OK) == -1)
98 		return (ctf_set_open_errno(errp, ECTF_ZMISSING));
99 
100 	if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL)
101 		return (ctf_set_open_errno(errp, ECTF_ZINIT));
102 
103 	zlib.z_uncompress = (int (*)(uchar_t *, ulong_t *, const uchar_t *, ulong_t)) dlsym(zlib.z_dlp, "uncompress");
104 	zlib.z_error = (const char *(*)(int)) dlsym(zlib.z_dlp, "zError");
105 
106 	if (zlib.z_uncompress == NULL || zlib.z_error == NULL) {
107 		(void) dlclose(zlib.z_dlp);
108 		bzero(&zlib, sizeof (zlib));
109 		return (ctf_set_open_errno(errp, ECTF_ZINIT));
110 	}
111 #else
112 	zlib.z_uncompress = uncompress;
113 	zlib.z_error = zError;
114 
115 	/* Dummy return variable as 'no error' */
116 	zlib.z_dlp = (void *) (uintptr_t) 1;
117 #endif
118 
119 	return (zlib.z_dlp);
120 }
121 
122 /*
123  * The ctf_bufopen() routine calls these subroutines, defined by <sys/zmod.h>,
124  * which we then patch through to the functions in the decompression library.
125  */
126 int
127 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
128 {
129 	return (zlib.z_uncompress(dst, (ulong_t *)dstlen, src, srclen));
130 }
131 
132 const char *
133 z_strerror(int err)
134 {
135 	return (zlib.z_error(err));
136 }
137 
138 /*
139  * Convert a 32-bit ELF file header into GElf.
140  */
141 static void
142 ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst)
143 {
144 	bcopy(src->e_ident, dst->e_ident, EI_NIDENT);
145 	dst->e_type = src->e_type;
146 	dst->e_machine = src->e_machine;
147 	dst->e_version = src->e_version;
148 	dst->e_entry = (Elf64_Addr)src->e_entry;
149 	dst->e_phoff = (Elf64_Off)src->e_phoff;
150 	dst->e_shoff = (Elf64_Off)src->e_shoff;
151 	dst->e_flags = src->e_flags;
152 	dst->e_ehsize = src->e_ehsize;
153 	dst->e_phentsize = src->e_phentsize;
154 	dst->e_phnum = src->e_phnum;
155 	dst->e_shentsize = src->e_shentsize;
156 	dst->e_shnum = src->e_shnum;
157 	dst->e_shstrndx = src->e_shstrndx;
158 }
159 
160 /*
161  * Convert a 32-bit ELF section header into GElf.
162  */
163 static void
164 shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
165 {
166 	dst->sh_name = src->sh_name;
167 	dst->sh_type = src->sh_type;
168 	dst->sh_flags = src->sh_flags;
169 	dst->sh_addr = src->sh_addr;
170 	dst->sh_offset = src->sh_offset;
171 	dst->sh_size = src->sh_size;
172 	dst->sh_link = src->sh_link;
173 	dst->sh_info = src->sh_info;
174 	dst->sh_addralign = src->sh_addralign;
175 	dst->sh_entsize = src->sh_entsize;
176 }
177 
178 /*
179  * In order to mmap a section from the ELF file, we must round down sh_offset
180  * to the previous page boundary, and mmap the surrounding page.  We store
181  * the pointer to the start of the actual section data back into sp->cts_data.
182  */
183 const void *
184 ctf_sect_mmap(ctf_sect_t *sp, int fd)
185 {
186 	size_t pageoff = sp->cts_offset & ~_PAGEMASK;
187 
188 	caddr_t base = mmap64(NULL, sp->cts_size + pageoff, PROT_READ,
189 	    MAP_PRIVATE, fd, sp->cts_offset & _PAGEMASK);
190 
191 	if (base != MAP_FAILED)
192 		sp->cts_data = base + pageoff;
193 
194 	return (base);
195 }
196 
197 /*
198  * Since sp->cts_data has the adjusted offset, we have to again round down
199  * to get the actual mmap address and round up to get the size.
200  */
201 void
202 ctf_sect_munmap(const ctf_sect_t *sp)
203 {
204 	uintptr_t addr = (uintptr_t)sp->cts_data;
205 	uintptr_t pageoff = addr & ~_PAGEMASK;
206 
207 	(void) munmap((void *)(addr - pageoff), sp->cts_size + pageoff);
208 }
209 
210 /*
211  * Open the specified file descriptor and return a pointer to a CTF container.
212  * The file can be either an ELF file or raw CTF file.  The caller is
213  * responsible for closing the file descriptor when it is no longer needed.
214  */
215 ctf_file_t *
216 ctf_fdopen(int fd, int *errp)
217 {
218 	ctf_sect_t ctfsect, symsect, strsect;
219 	ctf_file_t *fp = NULL;
220 	size_t shstrndx, shnum;
221 
222 	struct stat64 st;
223 	ssize_t nbytes;
224 
225 	union {
226 		ctf_preamble_t ctf;
227 		Elf32_Ehdr e32;
228 		GElf_Ehdr e64;
229 	} hdr;
230 
231 	bzero(&ctfsect, sizeof (ctf_sect_t));
232 	bzero(&symsect, sizeof (ctf_sect_t));
233 	bzero(&strsect, sizeof (ctf_sect_t));
234 	bzero(&hdr, sizeof (hdr));
235 
236 	if (fstat64(fd, &st) == -1)
237 		return (ctf_set_open_errno(errp, errno));
238 
239 	if ((nbytes = pread64(fd, &hdr, sizeof (hdr), 0)) <= 0)
240 		return (ctf_set_open_errno(errp, nbytes < 0? errno : ECTF_FMT));
241 
242 	/*
243 	 * If we have read enough bytes to form a CTF header and the magic
244 	 * string matches, attempt to interpret the file as raw CTF.
245 	 */
246 	if (nbytes >= (ssize_t) sizeof (ctf_preamble_t) &&
247 	    hdr.ctf.ctp_magic == CTF_MAGIC) {
248 		if (hdr.ctf.ctp_version != CTF_VERSION_2 &&
249 		    hdr.ctf.ctp_version != CTF_VERSION_3)
250 			return (ctf_set_open_errno(errp, ECTF_CTFVERS));
251 
252 		ctfsect.cts_data = mmap64(NULL, st.st_size, PROT_READ,
253 		    MAP_PRIVATE, fd, 0);
254 
255 		if (ctfsect.cts_data == MAP_FAILED)
256 			return (ctf_set_open_errno(errp, errno));
257 
258 		ctfsect.cts_name = _CTF_SECTION;
259 		ctfsect.cts_type = SHT_PROGBITS;
260 		ctfsect.cts_flags = SHF_ALLOC;
261 		ctfsect.cts_size = (size_t)st.st_size;
262 		ctfsect.cts_entsize = 1;
263 		ctfsect.cts_offset = 0;
264 
265 		if ((fp = ctf_bufopen(&ctfsect, NULL, NULL, errp)) == NULL)
266 			ctf_sect_munmap(&ctfsect);
267 
268 		return (fp);
269 	}
270 
271 	/*
272 	 * If we have read enough bytes to form an ELF header and the magic
273 	 * string matches, attempt to interpret the file as an ELF file.  We
274 	 * do our own largefile ELF processing, and convert everything to
275 	 * GElf structures so that clients can operate on any data model.
276 	 */
277 	if (nbytes >= (ssize_t) sizeof (Elf32_Ehdr) &&
278 	    bcmp(&hdr.e32.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) {
279 #if BYTE_ORDER == _BIG_ENDIAN
280 		uchar_t order = ELFDATA2MSB;
281 #else
282 		uchar_t order = ELFDATA2LSB;
283 #endif
284 		GElf_Shdr *sp;
285 
286 		void *strs_map;
287 		size_t strs_mapsz, i;
288 		char *strs;
289 
290 		if (hdr.e32.e_ident[EI_DATA] != order)
291 			return (ctf_set_open_errno(errp, ECTF_ENDIAN));
292 		if (hdr.e32.e_version != EV_CURRENT)
293 			return (ctf_set_open_errno(errp, ECTF_ELFVERS));
294 
295 		if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS64) {
296 			if (nbytes < (ssize_t) sizeof (GElf_Ehdr))
297 				return (ctf_set_open_errno(errp, ECTF_FMT));
298 		} else {
299 			Elf32_Ehdr e32 = hdr.e32;
300 			ehdr_to_gelf(&e32, &hdr.e64);
301 		}
302 
303 		shnum = hdr.e64.e_shnum;
304 		shstrndx = hdr.e64.e_shstrndx;
305 
306 		/* Extended ELF sections */
307 		if ((shstrndx == SHN_XINDEX) || (shnum == 0)) {
308 			if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
309 				Elf32_Shdr x32;
310 
311 				if (pread64(fd, &x32, sizeof (x32),
312 				    hdr.e64.e_shoff) != sizeof (x32))
313 					return (ctf_set_open_errno(errp,
314 					    errno));
315 
316 				shnum = x32.sh_size;
317 				shstrndx = x32.sh_link;
318 			} else {
319 				Elf64_Shdr x64;
320 
321 				if (pread64(fd, &x64, sizeof (x64),
322 				    hdr.e64.e_shoff) != sizeof (x64))
323 					return (ctf_set_open_errno(errp,
324 					    errno));
325 
326 				shnum = x64.sh_size;
327 				shstrndx = x64.sh_link;
328 			}
329 		}
330 
331 		if (shstrndx >= shnum)
332 			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
333 
334 		nbytes = sizeof (GElf_Shdr) * shnum;
335 
336 		if ((sp = malloc(nbytes)) == NULL)
337 			return (ctf_set_open_errno(errp, errno));
338 
339 		/*
340 		 * Read in and convert to GElf the array of Shdr structures
341 		 * from e_shoff so we can locate sections of interest.
342 		 */
343 		if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
344 			Elf32_Shdr *sp32;
345 
346 			nbytes = sizeof (Elf32_Shdr) * shnum;
347 
348 			if ((sp32 = malloc(nbytes)) == NULL || pread64(fd,
349 			    sp32, nbytes, hdr.e64.e_shoff) != nbytes) {
350 				free(sp);
351 				free(sp32);
352 				return (ctf_set_open_errno(errp, errno));
353 			}
354 
355 			for (i = 0; i < shnum; i++)
356 				shdr_to_gelf(&sp32[i], &sp[i]);
357 
358 			free(sp32);
359 
360 		} else if (pread64(fd, sp, nbytes, hdr.e64.e_shoff) != nbytes) {
361 			free(sp);
362 			return (ctf_set_open_errno(errp, errno));
363 		}
364 
365 		/*
366 		 * Now mmap the section header strings section so that we can
367 		 * perform string comparison on the section names.
368 		 */
369 		strs_mapsz = sp[shstrndx].sh_size +
370 		    (sp[shstrndx].sh_offset & ~_PAGEMASK);
371 
372 		strs_map = mmap64(NULL, strs_mapsz, PROT_READ, MAP_PRIVATE,
373 		    fd, sp[shstrndx].sh_offset & _PAGEMASK);
374 
375 		strs = (char *)strs_map +
376 		    (sp[shstrndx].sh_offset & ~_PAGEMASK);
377 
378 		if (strs_map == MAP_FAILED) {
379 			free(sp);
380 			return (ctf_set_open_errno(errp, ECTF_MMAP));
381 		}
382 
383 		/*
384 		 * Iterate over the section header array looking for the CTF
385 		 * section and symbol table.  The strtab is linked to symtab.
386 		 */
387 		for (i = 0; i < shnum; i++) {
388 			const GElf_Shdr *shp = &sp[i];
389 			const GElf_Shdr *lhp = &sp[shp->sh_link];
390 
391 			if (shp->sh_link >= shnum)
392 				continue; /* corrupt sh_link field */
393 
394 			if (shp->sh_name >= sp[shstrndx].sh_size ||
395 			    lhp->sh_name >= sp[shstrndx].sh_size)
396 				continue; /* corrupt sh_name field */
397 
398 			if (shp->sh_type == SHT_PROGBITS &&
399 			    strcmp(strs + shp->sh_name, _CTF_SECTION) == 0) {
400 				ctfsect.cts_name = strs + shp->sh_name;
401 				ctfsect.cts_type = shp->sh_type;
402 				ctfsect.cts_flags = shp->sh_flags;
403 				ctfsect.cts_size = shp->sh_size;
404 				ctfsect.cts_entsize = shp->sh_entsize;
405 				ctfsect.cts_offset = (off64_t)shp->sh_offset;
406 
407 			} else if (shp->sh_type == SHT_SYMTAB) {
408 				symsect.cts_name = strs + shp->sh_name;
409 				symsect.cts_type = shp->sh_type;
410 				symsect.cts_flags = shp->sh_flags;
411 				symsect.cts_size = shp->sh_size;
412 				symsect.cts_entsize = shp->sh_entsize;
413 				symsect.cts_offset = (off64_t)shp->sh_offset;
414 
415 				strsect.cts_name = strs + lhp->sh_name;
416 				strsect.cts_type = lhp->sh_type;
417 				strsect.cts_flags = lhp->sh_flags;
418 				strsect.cts_size = lhp->sh_size;
419 				strsect.cts_entsize = lhp->sh_entsize;
420 				strsect.cts_offset = (off64_t)lhp->sh_offset;
421 			}
422 		}
423 
424 		free(sp); /* free section header array */
425 
426 		if (ctfsect.cts_type == SHT_NULL) {
427 			(void) munmap(strs_map, strs_mapsz);
428 			return (ctf_set_open_errno(errp, ECTF_NOCTFDATA));
429 		}
430 
431 		/*
432 		 * Now mmap the CTF data, symtab, and strtab sections and
433 		 * call ctf_bufopen() to do the rest of the work.
434 		 */
435 		if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) {
436 			(void) munmap(strs_map, strs_mapsz);
437 			return (ctf_set_open_errno(errp, ECTF_MMAP));
438 		}
439 
440 		if (symsect.cts_type != SHT_NULL &&
441 		    strsect.cts_type != SHT_NULL) {
442 			if (ctf_sect_mmap(&symsect, fd) == MAP_FAILED ||
443 			    ctf_sect_mmap(&strsect, fd) == MAP_FAILED) {
444 				(void) ctf_set_open_errno(errp, ECTF_MMAP);
445 				goto bad; /* unmap all and abort */
446 			}
447 			fp = ctf_bufopen(&ctfsect, &symsect, &strsect, errp);
448 		} else
449 			fp = ctf_bufopen(&ctfsect, NULL, NULL, errp);
450 bad:
451 		if (fp == NULL) {
452 			ctf_sect_munmap(&ctfsect);
453 			ctf_sect_munmap(&symsect);
454 			ctf_sect_munmap(&strsect);
455 		} else
456 			fp->ctf_flags |= LCTF_MMAP;
457 
458 		(void) munmap(strs_map, strs_mapsz);
459 		return (fp);
460 	}
461 
462 	return (ctf_set_open_errno(errp, ECTF_FMT));
463 }
464 
465 /*
466  * Open the specified file and return a pointer to a CTF container.  The file
467  * can be either an ELF file or raw CTF file.  This is just a convenient
468  * wrapper around ctf_fdopen() for callers.
469  */
470 ctf_file_t *
471 ctf_open(const char *filename, int *errp)
472 {
473 	ctf_file_t *fp;
474 	int fd;
475 
476 	if ((fd = open64(filename, O_RDONLY)) == -1) {
477 		if (errp != NULL)
478 			*errp = errno;
479 		return (NULL);
480 	}
481 
482 	fp = ctf_fdopen(fd, errp);
483 	(void) close(fd);
484 	return (fp);
485 }
486 
487 /*
488  * Write the uncompressed CTF data stream to the specified file descriptor.
489  * This is useful for saving the results of dynamic CTF containers.
490  */
491 int
492 ctf_write(ctf_file_t *fp, int fd)
493 {
494 	const uchar_t *buf = fp->ctf_base;
495 	ssize_t resid = fp->ctf_size;
496 	ssize_t len;
497 
498 	while (resid != 0) {
499 		if ((len = write(fd, buf, resid)) <= 0)
500 			return (ctf_set_errno(fp, errno));
501 		resid -= len;
502 		buf += len;
503 	}
504 
505 	return (0);
506 }
507 
508 /*
509  * Set the CTF library client version to the specified version.  If version is
510  * zero, we just return the default library version number.
511  */
512 int
513 ctf_version(int version)
514 {
515 	if (version < 0) {
516 		errno = EINVAL;
517 		return (-1);
518 	}
519 
520 	if (version > 0) {
521 		if (version > CTF_VERSION) {
522 			errno = ENOTSUP;
523 			return (-1);
524 		}
525 		ctf_dprintf("ctf_version: client using version %d\n", version);
526 		_libctf_version = version;
527 	}
528 
529 	return (_libctf_version);
530 }
531