xref: /freebsd/cddl/contrib/opensolaris/common/ctf/ctf_open.c (revision a9148abd9da5db2f1c682fb17bed791845fc41c9)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License, Version 1.0 only
6   * (the "License").  You may not use this file except in compliance
7   * with the License.
8   *
9   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10   * or http://www.opensolaris.org/os/licensing.
11   * See the License for the specific language governing permissions
12   * and limitations under the License.
13   *
14   * When distributing Covered Code, include this CDDL HEADER in each
15   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16   * If applicable, add the following below this CDDL HEADER, with the
17   * fields enclosed by brackets "[]" replaced with your own identifying
18   * information: Portions Copyright [yyyy] [name of copyright owner]
19   *
20   * CDDL HEADER END
21   */
22  
23  /*
24   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25   * Use is subject to license terms.
26   */
27  
28  #pragma ident	"%Z%%M%	%I%	%E% SMI"
29  
30  #include <ctf_impl.h>
31  #include <sys/mman.h>
32  #include <sys/zmod.h>
33  
34  static const ctf_dmodel_t _libctf_models[] = {
35  	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
36  	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
37  	{ NULL, 0, 0, 0, 0, 0, 0 }
38  };
39  
40  const char _CTF_SECTION[] = ".SUNW_ctf";
41  const char _CTF_NULLSTR[] = "";
42  
43  int _libctf_version = CTF_VERSION;	/* library client version */
44  int _libctf_debug = 0;			/* debugging messages enabled */
45  
46  static ushort_t
47  get_kind_v1(ushort_t info)
48  {
49  	return (CTF_INFO_KIND_V1(info));
50  }
51  
52  static ushort_t
53  get_kind_v2(ushort_t info)
54  {
55  	return (CTF_INFO_KIND(info));
56  }
57  
58  static ushort_t
59  get_root_v1(ushort_t info)
60  {
61  	return (CTF_INFO_ISROOT_V1(info));
62  }
63  
64  static ushort_t
65  get_root_v2(ushort_t info)
66  {
67  	return (CTF_INFO_ISROOT(info));
68  }
69  
70  static ushort_t
71  get_vlen_v1(ushort_t info)
72  {
73  	return (CTF_INFO_VLEN_V1(info));
74  }
75  
76  static ushort_t
77  get_vlen_v2(ushort_t info)
78  {
79  	return (CTF_INFO_VLEN(info));
80  }
81  
82  static const ctf_fileops_t ctf_fileops[] = {
83  	{ NULL, NULL },
84  	{ get_kind_v1, get_root_v1, get_vlen_v1 },
85  	{ get_kind_v2, get_root_v2, get_vlen_v2 },
86  };
87  
88  /*
89   * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
90   */
91  static Elf64_Sym *
92  sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
93  {
94  	dst->st_name = src->st_name;
95  	dst->st_value = src->st_value;
96  	dst->st_size = src->st_size;
97  	dst->st_info = src->st_info;
98  	dst->st_other = src->st_other;
99  	dst->st_shndx = src->st_shndx;
100  
101  	return (dst);
102  }
103  
104  /*
105   * Initialize the symtab translation table by filling each entry with the
106   * offset of the CTF type or function data corresponding to each STT_FUNC or
107   * STT_OBJECT entry in the symbol table.
108   */
109  static int
110  init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
111      const ctf_sect_t *sp, const ctf_sect_t *strp)
112  {
113  	const uchar_t *symp = sp->cts_data;
114  	uint_t *xp = fp->ctf_sxlate;
115  	uint_t *xend = xp + fp->ctf_nsyms;
116  
117  	uint_t objtoff = hp->cth_objtoff;
118  	uint_t funcoff = hp->cth_funcoff;
119  
120  	ushort_t info, vlen;
121  	Elf64_Sym sym, *gsp;
122  	const char *name;
123  
124  	/*
125  	 * The CTF data object and function type sections are ordered to match
126  	 * the relative order of the respective symbol types in the symtab.
127  	 * If no type information is available for a symbol table entry, a
128  	 * pad is inserted in the CTF section.  As a further optimization,
129  	 * anonymous or undefined symbols are omitted from the CTF data.
130  	 */
131  	for (; xp < xend; xp++, symp += sp->cts_entsize) {
132  		if (sp->cts_entsize == sizeof (Elf32_Sym))
133  			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
134  		else
135  			gsp = (Elf64_Sym *)(uintptr_t)symp;
136  
137  		if (gsp->st_name < strp->cts_size)
138  			name = (const char *)strp->cts_data + gsp->st_name;
139  		else
140  			name = _CTF_NULLSTR;
141  
142  		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
143  		    strcmp(name, "_START_") == 0 ||
144  		    strcmp(name, "_END_") == 0) {
145  			*xp = -1u;
146  			continue;
147  		}
148  
149  		switch (ELF64_ST_TYPE(gsp->st_info)) {
150  		case STT_OBJECT:
151  			if (objtoff >= hp->cth_funcoff ||
152  			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
153  				*xp = -1u;
154  				break;
155  			}
156  
157  			*xp = objtoff;
158  			objtoff += sizeof (ushort_t);
159  			break;
160  
161  		case STT_FUNC:
162  			if (funcoff >= hp->cth_typeoff) {
163  				*xp = -1u;
164  				break;
165  			}
166  
167  			*xp = funcoff;
168  
169  			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
170  			vlen = LCTF_INFO_VLEN(fp, info);
171  
172  			/*
173  			 * If we encounter a zero pad at the end, just skip it.
174  			 * Otherwise skip over the function and its return type
175  			 * (+2) and the argument list (vlen).
176  			 */
177  			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
178  			    vlen == 0)
179  				funcoff += sizeof (ushort_t); /* skip pad */
180  			else
181  				funcoff += sizeof (ushort_t) * (vlen + 2);
182  			break;
183  
184  		default:
185  			*xp = -1u;
186  			break;
187  		}
188  	}
189  
190  	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
191  	return (0);
192  }
193  
194  /*
195   * Initialize the type ID translation table with the byte offset of each type,
196   * and initialize the hash tables of each named type.
197   */
198  static int
199  init_types(ctf_file_t *fp, const ctf_header_t *cth)
200  {
201  	/* LINTED - pointer alignment */
202  	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
203  	/* LINTED - pointer alignment */
204  	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
205  
206  	ulong_t pop[CTF_K_MAX + 1] = { 0 };
207  	const ctf_type_t *tp;
208  	ctf_hash_t *hp;
209  	ushort_t id, dst;
210  	uint_t *xp;
211  
212  	/*
213  	 * We initially determine whether the container is a child or a parent
214  	 * based on the value of cth_parname.  To support containers that pre-
215  	 * date cth_parname, we also scan the types themselves for references
216  	 * to values in the range reserved for child types in our first pass.
217  	 */
218  	int child = cth->cth_parname != 0;
219  	int nlstructs = 0, nlunions = 0;
220  	int err;
221  
222  	/*
223  	 * We make two passes through the entire type section.  In this first
224  	 * pass, we count the number of each type and the total number of types.
225  	 */
226  	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
227  		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
228  		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
229  		ssize_t size, increment;
230  
231  		size_t vbytes;
232  		uint_t n;
233  
234  		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
235  
236  		switch (kind) {
237  		case CTF_K_INTEGER:
238  		case CTF_K_FLOAT:
239  			vbytes = sizeof (uint_t);
240  			break;
241  		case CTF_K_ARRAY:
242  			vbytes = sizeof (ctf_array_t);
243  			break;
244  		case CTF_K_FUNCTION:
245  			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
246  			break;
247  		case CTF_K_STRUCT:
248  		case CTF_K_UNION:
249  			if (fp->ctf_version == CTF_VERSION_1 ||
250  			    size < CTF_LSTRUCT_THRESH) {
251  				ctf_member_t *mp = (ctf_member_t *)
252  				    ((uintptr_t)tp + increment);
253  
254  				vbytes = sizeof (ctf_member_t) * vlen;
255  				for (n = vlen; n != 0; n--, mp++)
256  					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
257  			} else {
258  				ctf_lmember_t *lmp = (ctf_lmember_t *)
259  				    ((uintptr_t)tp + increment);
260  
261  				vbytes = sizeof (ctf_lmember_t) * vlen;
262  				for (n = vlen; n != 0; n--, lmp++)
263  					child |=
264  					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
265  			}
266  			break;
267  		case CTF_K_ENUM:
268  			vbytes = sizeof (ctf_enum_t) * vlen;
269  			break;
270  		case CTF_K_FORWARD:
271  			/*
272  			 * For forward declarations, ctt_type is the CTF_K_*
273  			 * kind for the tag, so bump that population count too.
274  			 * If ctt_type is unknown, treat the tag as a struct.
275  			 */
276  			if (tp->ctt_type == CTF_K_UNKNOWN ||
277  			    tp->ctt_type >= CTF_K_MAX)
278  				pop[CTF_K_STRUCT]++;
279  			else
280  				pop[tp->ctt_type]++;
281  			/*FALLTHRU*/
282  		case CTF_K_UNKNOWN:
283  			vbytes = 0;
284  			break;
285  		case CTF_K_POINTER:
286  		case CTF_K_TYPEDEF:
287  		case CTF_K_VOLATILE:
288  		case CTF_K_CONST:
289  		case CTF_K_RESTRICT:
290  			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
291  			vbytes = 0;
292  			break;
293  		default:
294  			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
295  			return (ECTF_CORRUPT);
296  		}
297  		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
298  		pop[kind]++;
299  	}
300  
301  	/*
302  	 * If we detected a reference to a child type ID, then we know this
303  	 * container is a child and may have a parent's types imported later.
304  	 */
305  	if (child) {
306  		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
307  		fp->ctf_flags |= LCTF_CHILD;
308  	} else
309  		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
310  
311  	/*
312  	 * Now that we've counted up the number of each type, we can allocate
313  	 * the hash tables, type translation table, and pointer table.
314  	 */
315  	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
316  		return (err);
317  
318  	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
319  		return (err);
320  
321  	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
322  		return (err);
323  
324  	if ((err = ctf_hash_create(&fp->ctf_names,
325  	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
326  	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
327  	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
328  		return (err);
329  
330  	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
331  	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
332  
333  	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
334  		return (EAGAIN); /* memory allocation failed */
335  
336  	xp = fp->ctf_txlate;
337  	*xp++ = 0; /* type id 0 is used as a sentinel value */
338  
339  	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
340  	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
341  
342  	/*
343  	 * In the second pass through the types, we fill in each entry of the
344  	 * type and pointer tables and add names to the appropriate hashes.
345  	 */
346  	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
347  		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
348  		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
349  		ssize_t size, increment;
350  
351  		const char *name;
352  		size_t vbytes;
353  		ctf_helem_t *hep;
354  		ctf_encoding_t cte;
355  
356  		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
357  		name = ctf_strptr(fp, tp->ctt_name);
358  
359  		switch (kind) {
360  		case CTF_K_INTEGER:
361  		case CTF_K_FLOAT:
362  			/*
363  			 * Only insert a new integer base type definition if
364  			 * this type name has not been defined yet.  We re-use
365  			 * the names with different encodings for bit-fields.
366  			 */
367  			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
368  			    name, strlen(name))) == NULL) {
369  				err = ctf_hash_insert(&fp->ctf_names, fp,
370  				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
371  				if (err != 0 && err != ECTF_STRTAB)
372  					return (err);
373  			} else if (ctf_type_encoding(fp, hep->h_type,
374  			    &cte) == 0 && cte.cte_bits == 0) {
375  				/*
376  				 * Work-around SOS8 stabs bug: replace existing
377  				 * intrinsic w/ same name if it was zero bits.
378  				 */
379  				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
380  			}
381  			vbytes = sizeof (uint_t);
382  			break;
383  
384  		case CTF_K_ARRAY:
385  			vbytes = sizeof (ctf_array_t);
386  			break;
387  
388  		case CTF_K_FUNCTION:
389  			err = ctf_hash_insert(&fp->ctf_names, fp,
390  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
391  			if (err != 0 && err != ECTF_STRTAB)
392  				return (err);
393  			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
394  			break;
395  
396  		case CTF_K_STRUCT:
397  			err = ctf_hash_define(&fp->ctf_structs, fp,
398  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
399  
400  			if (err != 0 && err != ECTF_STRTAB)
401  				return (err);
402  
403  			if (fp->ctf_version == CTF_VERSION_1 ||
404  			    size < CTF_LSTRUCT_THRESH)
405  				vbytes = sizeof (ctf_member_t) * vlen;
406  			else {
407  				vbytes = sizeof (ctf_lmember_t) * vlen;
408  				nlstructs++;
409  			}
410  			break;
411  
412  		case CTF_K_UNION:
413  			err = ctf_hash_define(&fp->ctf_unions, fp,
414  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
415  
416  			if (err != 0 && err != ECTF_STRTAB)
417  				return (err);
418  
419  			if (fp->ctf_version == CTF_VERSION_1 ||
420  			    size < CTF_LSTRUCT_THRESH)
421  				vbytes = sizeof (ctf_member_t) * vlen;
422  			else {
423  				vbytes = sizeof (ctf_lmember_t) * vlen;
424  				nlunions++;
425  			}
426  			break;
427  
428  		case CTF_K_ENUM:
429  			err = ctf_hash_define(&fp->ctf_enums, fp,
430  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
431  
432  			if (err != 0 && err != ECTF_STRTAB)
433  				return (err);
434  
435  			vbytes = sizeof (ctf_enum_t) * vlen;
436  			break;
437  
438  		case CTF_K_TYPEDEF:
439  			err = ctf_hash_insert(&fp->ctf_names, fp,
440  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
441  			if (err != 0 && err != ECTF_STRTAB)
442  				return (err);
443  			vbytes = 0;
444  			break;
445  
446  		case CTF_K_FORWARD:
447  			/*
448  			 * Only insert forward tags into the given hash if the
449  			 * type or tag name is not already present.
450  			 */
451  			switch (tp->ctt_type) {
452  			case CTF_K_STRUCT:
453  				hp = &fp->ctf_structs;
454  				break;
455  			case CTF_K_UNION:
456  				hp = &fp->ctf_unions;
457  				break;
458  			case CTF_K_ENUM:
459  				hp = &fp->ctf_enums;
460  				break;
461  			default:
462  				hp = &fp->ctf_structs;
463  			}
464  
465  			if (ctf_hash_lookup(hp, fp,
466  			    name, strlen(name)) == NULL) {
467  				err = ctf_hash_insert(hp, fp,
468  				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
469  				if (err != 0 && err != ECTF_STRTAB)
470  					return (err);
471  			}
472  			vbytes = 0;
473  			break;
474  
475  		case CTF_K_POINTER:
476  			/*
477  			 * If the type referenced by the pointer is in this CTF
478  			 * container, then store the index of the pointer type
479  			 * in fp->ctf_ptrtab[ index of referenced type ].
480  			 */
481  			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
482  			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
483  				fp->ctf_ptrtab[
484  				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
485  			/*FALLTHRU*/
486  
487  		case CTF_K_VOLATILE:
488  		case CTF_K_CONST:
489  		case CTF_K_RESTRICT:
490  			err = ctf_hash_insert(&fp->ctf_names, fp,
491  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
492  			if (err != 0 && err != ECTF_STRTAB)
493  				return (err);
494  			/*FALLTHRU*/
495  
496  		default:
497  			vbytes = 0;
498  			break;
499  		}
500  
501  		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
502  		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
503  	}
504  
505  	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
506  	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
507  	ctf_dprintf("%u struct names hashed (%d long)\n",
508  	    ctf_hash_size(&fp->ctf_structs), nlstructs);
509  	ctf_dprintf("%u union names hashed (%d long)\n",
510  	    ctf_hash_size(&fp->ctf_unions), nlunions);
511  	ctf_dprintf("%u base type names hashed\n",
512  	    ctf_hash_size(&fp->ctf_names));
513  
514  	/*
515  	 * Make an additional pass through the pointer table to find pointers
516  	 * that point to anonymous typedef nodes.  If we find one, modify the
517  	 * pointer table so that the pointer is also known to point to the
518  	 * node that is referenced by the anonymous typedef node.
519  	 */
520  	for (id = 1; id <= fp->ctf_typemax; id++) {
521  		if ((dst = fp->ctf_ptrtab[id]) != 0) {
522  			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
523  
524  			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
525  			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
526  			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
527  			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
528  				fp->ctf_ptrtab[
529  				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
530  		}
531  	}
532  
533  	return (0);
534  }
535  
536  /*
537   * Decode the specified CTF buffer and optional symbol table and create a new
538   * CTF container representing the symbolic debugging information.  This code
539   * can be used directly by the debugger, or it can be used as the engine for
540   * ctf_fdopen() or ctf_open(), below.
541   */
542  ctf_file_t *
543  ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
544      const ctf_sect_t *strsect, int *errp)
545  {
546  	const ctf_preamble_t *pp;
547  	ctf_header_t hp;
548  	ctf_file_t *fp;
549  	void *buf, *base;
550  	size_t size, hdrsz;
551  	int err;
552  
553  	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
554  		return (ctf_set_open_errno(errp, EINVAL));
555  
556  	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
557  	    symsect->cts_entsize != sizeof (Elf64_Sym))
558  		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
559  
560  	if (symsect != NULL && symsect->cts_data == NULL)
561  		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
562  
563  	if (strsect != NULL && strsect->cts_data == NULL)
564  		return (ctf_set_open_errno(errp, ECTF_STRBAD));
565  
566  	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
567  		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
568  
569  	pp = (const ctf_preamble_t *)ctfsect->cts_data;
570  
571  	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
572  	    pp->ctp_magic, pp->ctp_version);
573  
574  	/*
575  	 * Validate each part of the CTF header (either V1 or V2).
576  	 * First, we validate the preamble (common to all versions).  At that
577  	 * point, we know specific header version, and can validate the
578  	 * version-specific parts including section offsets and alignments.
579  	 */
580  	if (pp->ctp_magic != CTF_MAGIC)
581  		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
582  
583  	if (pp->ctp_version == CTF_VERSION_2) {
584  		if (ctfsect->cts_size < sizeof (ctf_header_t))
585  			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
586  
587  		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
588  		hdrsz = sizeof (ctf_header_t);
589  
590  	} else if (pp->ctp_version == CTF_VERSION_1) {
591  		const ctf_header_v1_t *h1p =
592  		    (const ctf_header_v1_t *)ctfsect->cts_data;
593  
594  		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
595  			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
596  
597  		bzero(&hp, sizeof (hp));
598  		hp.cth_preamble = h1p->cth_preamble;
599  		hp.cth_objtoff = h1p->cth_objtoff;
600  		hp.cth_funcoff = h1p->cth_funcoff;
601  		hp.cth_typeoff = h1p->cth_typeoff;
602  		hp.cth_stroff = h1p->cth_stroff;
603  		hp.cth_strlen = h1p->cth_strlen;
604  
605  		hdrsz = sizeof (ctf_header_v1_t);
606  	} else
607  		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
608  
609  	size = hp.cth_stroff + hp.cth_strlen;
610  
611  	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
612  
613  	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
614  	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
615  	    hp.cth_stroff > size)
616  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
617  
618  	if (hp.cth_lbloff > hp.cth_objtoff ||
619  	    hp.cth_objtoff > hp.cth_funcoff ||
620  	    hp.cth_funcoff > hp.cth_typeoff ||
621  	    hp.cth_typeoff > hp.cth_stroff)
622  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
623  
624  	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
625  	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
626  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
627  
628  	/*
629  	 * Once everything is determined to be valid, attempt to decompress
630  	 * the CTF data buffer if it is compressed.  Otherwise we just put
631  	 * the data section's buffer pointer into ctf_buf, below.
632  	 */
633  	if (hp.cth_flags & CTF_F_COMPRESS) {
634  		size_t srclen, dstlen;
635  		const void *src;
636  		int rc = Z_OK;
637  
638  		if (ctf_zopen(errp) == NULL)
639  			return (NULL); /* errp is set for us */
640  
641  		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
642  			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
643  
644  		bcopy(ctfsect->cts_data, base, hdrsz);
645  		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
646  		buf = (uchar_t *)base + hdrsz;
647  
648  		src = (uchar_t *)ctfsect->cts_data + hdrsz;
649  		srclen = ctfsect->cts_size - hdrsz;
650  		dstlen = size;
651  
652  		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
653  			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
654  			ctf_data_free(base, size + hdrsz);
655  			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
656  		}
657  
658  		if (dstlen != size) {
659  			ctf_dprintf("zlib inflate short -- got %lu of %lu "
660  			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
661  			ctf_data_free(base, size + hdrsz);
662  			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
663  		}
664  
665  		ctf_data_protect(base, size + hdrsz);
666  
667  	} else {
668  		base = (void *)ctfsect->cts_data;
669  		buf = (uchar_t *)base + hdrsz;
670  	}
671  
672  	/*
673  	 * Once we have uncompressed and validated the CTF data buffer, we can
674  	 * proceed with allocating a ctf_file_t and initializing it.
675  	 */
676  	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
677  		return (ctf_set_open_errno(errp, EAGAIN));
678  
679  	bzero(fp, sizeof (ctf_file_t));
680  	fp->ctf_version = hp.cth_version;
681  	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
682  	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
683  
684  	if (symsect != NULL) {
685  		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
686  		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
687  	}
688  
689  	if (fp->ctf_data.cts_name != NULL)
690  		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
691  	if (fp->ctf_symtab.cts_name != NULL)
692  		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
693  	if (fp->ctf_strtab.cts_name != NULL)
694  		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
695  
696  	if (fp->ctf_data.cts_name == NULL)
697  		fp->ctf_data.cts_name = _CTF_NULLSTR;
698  	if (fp->ctf_symtab.cts_name == NULL)
699  		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
700  	if (fp->ctf_strtab.cts_name == NULL)
701  		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
702  
703  	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
704  	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
705  
706  	if (strsect != NULL) {
707  		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
708  		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
709  	}
710  
711  	fp->ctf_base = base;
712  	fp->ctf_buf = buf;
713  	fp->ctf_size = size + hdrsz;
714  
715  	/*
716  	 * If we have a parent container name and label, store the relocated
717  	 * string pointers in the CTF container for easy access later.
718  	 */
719  	if (hp.cth_parlabel != 0)
720  		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
721  	if (hp.cth_parname != 0)
722  		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
723  
724  	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
725  	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
726  	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
727  
728  	/*
729  	 * If we have a symbol table section, allocate and initialize
730  	 * the symtab translation table, pointed to by ctf_sxlate.
731  	 */
732  	if (symsect != NULL) {
733  		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
734  		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
735  
736  		if (fp->ctf_sxlate == NULL) {
737  			(void) ctf_set_open_errno(errp, EAGAIN);
738  			goto bad;
739  		}
740  
741  		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
742  			(void) ctf_set_open_errno(errp, err);
743  			goto bad;
744  		}
745  	}
746  
747  	if ((err = init_types(fp, &hp)) != 0) {
748  		(void) ctf_set_open_errno(errp, err);
749  		goto bad;
750  	}
751  
752  	/*
753  	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
754  	 * array of type name prefixes and the corresponding ctf_hash to use.
755  	 * NOTE: This code must be kept in sync with the code in ctf_update().
756  	 */
757  	fp->ctf_lookups[0].ctl_prefix = "struct";
758  	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
759  	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
760  	fp->ctf_lookups[1].ctl_prefix = "union";
761  	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
762  	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
763  	fp->ctf_lookups[2].ctl_prefix = "enum";
764  	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
765  	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
766  	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
767  	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
768  	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
769  	fp->ctf_lookups[4].ctl_prefix = NULL;
770  	fp->ctf_lookups[4].ctl_len = 0;
771  	fp->ctf_lookups[4].ctl_hash = NULL;
772  
773  	if (symsect != NULL) {
774  		if (symsect->cts_entsize == sizeof (Elf64_Sym))
775  			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
776  		else
777  			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
778  	} else
779  		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
780  
781  	fp->ctf_refcnt = 1;
782  	return (fp);
783  
784  bad:
785  	ctf_close(fp);
786  	return (NULL);
787  }
788  
789  /*
790   * Close the specified CTF container and free associated data structures.  Note
791   * that ctf_close() is a reference counted operation: if the specified file is
792   * the parent of other active containers, its reference count will be greater
793   * than one and it will be freed later when no active children exist.
794   */
795  void
796  ctf_close(ctf_file_t *fp)
797  {
798  	ctf_dtdef_t *dtd, *ntd;
799  
800  	if (fp == NULL)
801  		return; /* allow ctf_close(NULL) to simplify caller code */
802  
803  	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
804  
805  	if (fp->ctf_refcnt > 1) {
806  		fp->ctf_refcnt--;
807  		return;
808  	}
809  
810  	if (fp->ctf_parent != NULL)
811  		ctf_close(fp->ctf_parent);
812  
813  	for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
814  		ntd = ctf_list_next(dtd);
815  		ctf_dtd_delete(fp, dtd);
816  	}
817  
818  	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
819  
820  	if (fp->ctf_flags & LCTF_MMAP) {
821  		if (fp->ctf_data.cts_data != NULL)
822  			ctf_sect_munmap(&fp->ctf_data);
823  		if (fp->ctf_symtab.cts_data != NULL)
824  			ctf_sect_munmap(&fp->ctf_symtab);
825  		if (fp->ctf_strtab.cts_data != NULL)
826  			ctf_sect_munmap(&fp->ctf_strtab);
827  	}
828  
829  	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
830  	    fp->ctf_data.cts_name != NULL) {
831  		ctf_free((char *)fp->ctf_data.cts_name,
832  		    strlen(fp->ctf_data.cts_name) + 1);
833  	}
834  
835  	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
836  	    fp->ctf_symtab.cts_name != NULL) {
837  		ctf_free((char *)fp->ctf_symtab.cts_name,
838  		    strlen(fp->ctf_symtab.cts_name) + 1);
839  	}
840  
841  	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
842  	    fp->ctf_strtab.cts_name != NULL) {
843  		ctf_free((char *)fp->ctf_strtab.cts_name,
844  		    strlen(fp->ctf_strtab.cts_name) + 1);
845  	}
846  
847  	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
848  		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
849  
850  	if (fp->ctf_sxlate != NULL)
851  		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
852  
853  	if (fp->ctf_txlate != NULL) {
854  		ctf_free(fp->ctf_txlate,
855  		    sizeof (uint_t) * (fp->ctf_typemax + 1));
856  	}
857  
858  	if (fp->ctf_ptrtab != NULL) {
859  		ctf_free(fp->ctf_ptrtab,
860  		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
861  	}
862  
863  	ctf_hash_destroy(&fp->ctf_structs);
864  	ctf_hash_destroy(&fp->ctf_unions);
865  	ctf_hash_destroy(&fp->ctf_enums);
866  	ctf_hash_destroy(&fp->ctf_names);
867  
868  	ctf_free(fp, sizeof (ctf_file_t));
869  }
870  
871  /*
872   * Return the CTF handle for the parent CTF container, if one exists.
873   * Otherwise return NULL to indicate this container has no imported parent.
874   */
875  ctf_file_t *
876  ctf_parent_file(ctf_file_t *fp)
877  {
878  	return (fp->ctf_parent);
879  }
880  
881  /*
882   * Return the name of the parent CTF container, if one exists.  Otherwise
883   * return NULL to indicate this container is a root container.
884   */
885  const char *
886  ctf_parent_name(ctf_file_t *fp)
887  {
888  	return (fp->ctf_parname);
889  }
890  
891  /*
892   * Import the types from the specified parent container by storing a pointer
893   * to it in ctf_parent and incrementing its reference count.  Only one parent
894   * is allowed: if a parent already exists, it is replaced by the new parent.
895   */
896  int
897  ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
898  {
899  	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
900  		return (ctf_set_errno(fp, EINVAL));
901  
902  	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
903  		return (ctf_set_errno(fp, ECTF_DMODEL));
904  
905  	if (fp->ctf_parent != NULL)
906  		ctf_close(fp->ctf_parent);
907  
908  	if (pfp != NULL) {
909  		fp->ctf_flags |= LCTF_CHILD;
910  		pfp->ctf_refcnt++;
911  	}
912  
913  	fp->ctf_parent = pfp;
914  	return (0);
915  }
916  
917  /*
918   * Set the data model constant for the CTF container.
919   */
920  int
921  ctf_setmodel(ctf_file_t *fp, int model)
922  {
923  	const ctf_dmodel_t *dp;
924  
925  	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
926  		if (dp->ctd_code == model) {
927  			fp->ctf_dmodel = dp;
928  			return (0);
929  		}
930  	}
931  
932  	return (ctf_set_errno(fp, EINVAL));
933  }
934  
935  /*
936   * Return the data model constant for the CTF container.
937   */
938  int
939  ctf_getmodel(ctf_file_t *fp)
940  {
941  	return (fp->ctf_dmodel->ctd_code);
942  }
943  
944  void
945  ctf_setspecific(ctf_file_t *fp, void *data)
946  {
947  	fp->ctf_specific = data;
948  }
949  
950  void *
951  ctf_getspecific(ctf_file_t *fp)
952  {
953  	return (fp->ctf_specific);
954  }
955