xref: /freebsd/cddl/contrib/opensolaris/common/ctf/ctf_open.c (revision 36712a94975f5bd0d26c85377283b49a2369c82f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 /*
28  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
29  */
30 
31 #include <ctf_impl.h>
32 #include <sys/mman.h>
33 #include <sys/zmod.h>
34 
35 static const ctf_dmodel_t _libctf_models[] = {
36 	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37 	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38 	{ NULL, 0, 0, 0, 0, 0, 0 }
39 };
40 
41 const char _CTF_SECTION[] = ".SUNW_ctf";
42 const char _CTF_NULLSTR[] = "";
43 
44 int _libctf_version = CTF_VERSION;	/* library client version */
45 int _libctf_debug = 0;			/* debugging messages enabled */
46 
47 static ushort_t
48 get_kind_v1(ushort_t info)
49 {
50 	return (CTF_INFO_KIND_V1(info));
51 }
52 
53 static ushort_t
54 get_kind_v2(ushort_t info)
55 {
56 	return (CTF_INFO_KIND(info));
57 }
58 
59 static ushort_t
60 get_root_v1(ushort_t info)
61 {
62 	return (CTF_INFO_ISROOT_V1(info));
63 }
64 
65 static ushort_t
66 get_root_v2(ushort_t info)
67 {
68 	return (CTF_INFO_ISROOT(info));
69 }
70 
71 static ushort_t
72 get_vlen_v1(ushort_t info)
73 {
74 	return (CTF_INFO_VLEN_V1(info));
75 }
76 
77 static ushort_t
78 get_vlen_v2(ushort_t info)
79 {
80 	return (CTF_INFO_VLEN(info));
81 }
82 
83 static const ctf_fileops_t ctf_fileops[] = {
84 	{ NULL, NULL },
85 	{ get_kind_v1, get_root_v1, get_vlen_v1 },
86 	{ get_kind_v2, get_root_v2, get_vlen_v2 },
87 };
88 
89 /*
90  * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
91  */
92 static Elf64_Sym *
93 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
94 {
95 	dst->st_name = src->st_name;
96 	dst->st_value = src->st_value;
97 	dst->st_size = src->st_size;
98 	dst->st_info = src->st_info;
99 	dst->st_other = src->st_other;
100 	dst->st_shndx = src->st_shndx;
101 
102 	return (dst);
103 }
104 
105 /*
106  * Initialize the symtab translation table by filling each entry with the
107  * offset of the CTF type or function data corresponding to each STT_FUNC or
108  * STT_OBJECT entry in the symbol table.
109  */
110 static int
111 init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
112     const ctf_sect_t *sp, const ctf_sect_t *strp)
113 {
114 	const uchar_t *symp = sp->cts_data;
115 	uint_t *xp = fp->ctf_sxlate;
116 	uint_t *xend = xp + fp->ctf_nsyms;
117 
118 	uint_t objtoff = hp->cth_objtoff;
119 	uint_t funcoff = hp->cth_funcoff;
120 
121 	ushort_t info, vlen;
122 	Elf64_Sym sym, *gsp;
123 	const char *name;
124 
125 	/*
126 	 * The CTF data object and function type sections are ordered to match
127 	 * the relative order of the respective symbol types in the symtab.
128 	 * If no type information is available for a symbol table entry, a
129 	 * pad is inserted in the CTF section.  As a further optimization,
130 	 * anonymous or undefined symbols are omitted from the CTF data.
131 	 */
132 	for (; xp < xend; xp++, symp += sp->cts_entsize) {
133 		if (sp->cts_entsize == sizeof (Elf32_Sym))
134 			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
135 		else
136 			gsp = (Elf64_Sym *)(uintptr_t)symp;
137 
138 		if (gsp->st_name < strp->cts_size)
139 			name = (const char *)strp->cts_data + gsp->st_name;
140 		else
141 			name = _CTF_NULLSTR;
142 
143 		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
144 		    strcmp(name, "_START_") == 0 ||
145 		    strcmp(name, "_END_") == 0) {
146 			*xp = -1u;
147 			continue;
148 		}
149 
150 		switch (ELF64_ST_TYPE(gsp->st_info)) {
151 		case STT_OBJECT:
152 			if (objtoff >= hp->cth_funcoff ||
153 			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
154 				*xp = -1u;
155 				break;
156 			}
157 
158 			*xp = objtoff;
159 			objtoff += sizeof (ushort_t);
160 			break;
161 
162 		case STT_FUNC:
163 			if (funcoff >= hp->cth_typeoff) {
164 				*xp = -1u;
165 				break;
166 			}
167 
168 			*xp = funcoff;
169 
170 			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
171 			vlen = LCTF_INFO_VLEN(fp, info);
172 
173 			/*
174 			 * If we encounter a zero pad at the end, just skip it.
175 			 * Otherwise skip over the function and its return type
176 			 * (+2) and the argument list (vlen).
177 			 */
178 			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
179 			    vlen == 0)
180 				funcoff += sizeof (ushort_t); /* skip pad */
181 			else
182 				funcoff += sizeof (ushort_t) * (vlen + 2);
183 			break;
184 
185 		default:
186 			*xp = -1u;
187 			break;
188 		}
189 	}
190 
191 	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
192 	return (0);
193 }
194 
195 /*
196  * Initialize the type ID translation table with the byte offset of each type,
197  * and initialize the hash tables of each named type.
198  */
199 static int
200 init_types(ctf_file_t *fp, const ctf_header_t *cth)
201 {
202 	/* LINTED - pointer alignment */
203 	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
204 	/* LINTED - pointer alignment */
205 	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
206 
207 	ulong_t pop[CTF_K_MAX + 1] = { 0 };
208 	const ctf_type_t *tp;
209 	ctf_hash_t *hp;
210 	ushort_t id, dst;
211 	uint_t *xp;
212 
213 	/*
214 	 * We initially determine whether the container is a child or a parent
215 	 * based on the value of cth_parname.  To support containers that pre-
216 	 * date cth_parname, we also scan the types themselves for references
217 	 * to values in the range reserved for child types in our first pass.
218 	 */
219 	int child = cth->cth_parname != 0;
220 	int nlstructs = 0, nlunions = 0;
221 	int err;
222 
223 	/*
224 	 * We make two passes through the entire type section.  In this first
225 	 * pass, we count the number of each type and the total number of types.
226 	 */
227 	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
228 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
229 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
230 		ssize_t size, increment;
231 
232 		size_t vbytes;
233 		uint_t n;
234 
235 		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
236 
237 		switch (kind) {
238 		case CTF_K_INTEGER:
239 		case CTF_K_FLOAT:
240 			vbytes = sizeof (uint_t);
241 			break;
242 		case CTF_K_ARRAY:
243 			vbytes = sizeof (ctf_array_t);
244 			break;
245 		case CTF_K_FUNCTION:
246 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
247 			break;
248 		case CTF_K_STRUCT:
249 		case CTF_K_UNION:
250 			if (fp->ctf_version == CTF_VERSION_1 ||
251 			    size < CTF_LSTRUCT_THRESH) {
252 				ctf_member_t *mp = (ctf_member_t *)
253 				    ((uintptr_t)tp + increment);
254 
255 				vbytes = sizeof (ctf_member_t) * vlen;
256 				for (n = vlen; n != 0; n--, mp++)
257 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
258 			} else {
259 				ctf_lmember_t *lmp = (ctf_lmember_t *)
260 				    ((uintptr_t)tp + increment);
261 
262 				vbytes = sizeof (ctf_lmember_t) * vlen;
263 				for (n = vlen; n != 0; n--, lmp++)
264 					child |=
265 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
266 			}
267 			break;
268 		case CTF_K_ENUM:
269 			vbytes = sizeof (ctf_enum_t) * vlen;
270 			break;
271 		case CTF_K_FORWARD:
272 			/*
273 			 * For forward declarations, ctt_type is the CTF_K_*
274 			 * kind for the tag, so bump that population count too.
275 			 * If ctt_type is unknown, treat the tag as a struct.
276 			 */
277 			if (tp->ctt_type == CTF_K_UNKNOWN ||
278 			    tp->ctt_type >= CTF_K_MAX)
279 				pop[CTF_K_STRUCT]++;
280 			else
281 				pop[tp->ctt_type]++;
282 			/*FALLTHRU*/
283 		case CTF_K_UNKNOWN:
284 			vbytes = 0;
285 			break;
286 		case CTF_K_POINTER:
287 		case CTF_K_TYPEDEF:
288 		case CTF_K_VOLATILE:
289 		case CTF_K_CONST:
290 		case CTF_K_RESTRICT:
291 			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
292 			vbytes = 0;
293 			break;
294 		default:
295 			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
296 			return (ECTF_CORRUPT);
297 		}
298 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
299 		pop[kind]++;
300 	}
301 
302 	/*
303 	 * If we detected a reference to a child type ID, then we know this
304 	 * container is a child and may have a parent's types imported later.
305 	 */
306 	if (child) {
307 		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
308 		fp->ctf_flags |= LCTF_CHILD;
309 	} else
310 		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
311 
312 	/*
313 	 * Now that we've counted up the number of each type, we can allocate
314 	 * the hash tables, type translation table, and pointer table.
315 	 */
316 	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
317 		return (err);
318 
319 	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
320 		return (err);
321 
322 	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
323 		return (err);
324 
325 	if ((err = ctf_hash_create(&fp->ctf_names,
326 	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
327 	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
328 	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
329 		return (err);
330 
331 	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
332 	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
333 
334 	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
335 		return (EAGAIN); /* memory allocation failed */
336 
337 	xp = fp->ctf_txlate;
338 	*xp++ = 0; /* type id 0 is used as a sentinel value */
339 
340 	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
341 	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
342 
343 	/*
344 	 * In the second pass through the types, we fill in each entry of the
345 	 * type and pointer tables and add names to the appropriate hashes.
346 	 */
347 	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
348 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
349 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
350 		ssize_t size, increment;
351 
352 		const char *name;
353 		size_t vbytes;
354 		ctf_helem_t *hep;
355 		ctf_encoding_t cte;
356 
357 		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
358 		name = ctf_strptr(fp, tp->ctt_name);
359 
360 		switch (kind) {
361 		case CTF_K_INTEGER:
362 		case CTF_K_FLOAT:
363 			/*
364 			 * Only insert a new integer base type definition if
365 			 * this type name has not been defined yet.  We re-use
366 			 * the names with different encodings for bit-fields.
367 			 */
368 			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
369 			    name, strlen(name))) == NULL) {
370 				err = ctf_hash_insert(&fp->ctf_names, fp,
371 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
372 				if (err != 0 && err != ECTF_STRTAB)
373 					return (err);
374 			} else if (ctf_type_encoding(fp, hep->h_type,
375 			    &cte) == 0 && cte.cte_bits == 0) {
376 				/*
377 				 * Work-around SOS8 stabs bug: replace existing
378 				 * intrinsic w/ same name if it was zero bits.
379 				 */
380 				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
381 			}
382 			vbytes = sizeof (uint_t);
383 			break;
384 
385 		case CTF_K_ARRAY:
386 			vbytes = sizeof (ctf_array_t);
387 			break;
388 
389 		case CTF_K_FUNCTION:
390 			err = ctf_hash_insert(&fp->ctf_names, fp,
391 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
392 			if (err != 0 && err != ECTF_STRTAB)
393 				return (err);
394 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
395 			break;
396 
397 		case CTF_K_STRUCT:
398 			err = ctf_hash_define(&fp->ctf_structs, fp,
399 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
400 
401 			if (err != 0 && err != ECTF_STRTAB)
402 				return (err);
403 
404 			if (fp->ctf_version == CTF_VERSION_1 ||
405 			    size < CTF_LSTRUCT_THRESH)
406 				vbytes = sizeof (ctf_member_t) * vlen;
407 			else {
408 				vbytes = sizeof (ctf_lmember_t) * vlen;
409 				nlstructs++;
410 			}
411 			break;
412 
413 		case CTF_K_UNION:
414 			err = ctf_hash_define(&fp->ctf_unions, fp,
415 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
416 
417 			if (err != 0 && err != ECTF_STRTAB)
418 				return (err);
419 
420 			if (fp->ctf_version == CTF_VERSION_1 ||
421 			    size < CTF_LSTRUCT_THRESH)
422 				vbytes = sizeof (ctf_member_t) * vlen;
423 			else {
424 				vbytes = sizeof (ctf_lmember_t) * vlen;
425 				nlunions++;
426 			}
427 			break;
428 
429 		case CTF_K_ENUM:
430 			err = ctf_hash_define(&fp->ctf_enums, fp,
431 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
432 
433 			if (err != 0 && err != ECTF_STRTAB)
434 				return (err);
435 
436 			vbytes = sizeof (ctf_enum_t) * vlen;
437 			break;
438 
439 		case CTF_K_TYPEDEF:
440 			err = ctf_hash_insert(&fp->ctf_names, fp,
441 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
442 			if (err != 0 && err != ECTF_STRTAB)
443 				return (err);
444 			vbytes = 0;
445 			break;
446 
447 		case CTF_K_FORWARD:
448 			/*
449 			 * Only insert forward tags into the given hash if the
450 			 * type or tag name is not already present.
451 			 */
452 			switch (tp->ctt_type) {
453 			case CTF_K_STRUCT:
454 				hp = &fp->ctf_structs;
455 				break;
456 			case CTF_K_UNION:
457 				hp = &fp->ctf_unions;
458 				break;
459 			case CTF_K_ENUM:
460 				hp = &fp->ctf_enums;
461 				break;
462 			default:
463 				hp = &fp->ctf_structs;
464 			}
465 
466 			if (ctf_hash_lookup(hp, fp,
467 			    name, strlen(name)) == NULL) {
468 				err = ctf_hash_insert(hp, fp,
469 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
470 				if (err != 0 && err != ECTF_STRTAB)
471 					return (err);
472 			}
473 			vbytes = 0;
474 			break;
475 
476 		case CTF_K_POINTER:
477 			/*
478 			 * If the type referenced by the pointer is in this CTF
479 			 * container, then store the index of the pointer type
480 			 * in fp->ctf_ptrtab[ index of referenced type ].
481 			 */
482 			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
483 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
484 				fp->ctf_ptrtab[
485 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
486 			/*FALLTHRU*/
487 
488 		case CTF_K_VOLATILE:
489 		case CTF_K_CONST:
490 		case CTF_K_RESTRICT:
491 			err = ctf_hash_insert(&fp->ctf_names, fp,
492 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
493 			if (err != 0 && err != ECTF_STRTAB)
494 				return (err);
495 			/*FALLTHRU*/
496 
497 		default:
498 			vbytes = 0;
499 			break;
500 		}
501 
502 		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
503 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
504 	}
505 
506 	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
507 	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
508 	ctf_dprintf("%u struct names hashed (%d long)\n",
509 	    ctf_hash_size(&fp->ctf_structs), nlstructs);
510 	ctf_dprintf("%u union names hashed (%d long)\n",
511 	    ctf_hash_size(&fp->ctf_unions), nlunions);
512 	ctf_dprintf("%u base type names hashed\n",
513 	    ctf_hash_size(&fp->ctf_names));
514 
515 	/*
516 	 * Make an additional pass through the pointer table to find pointers
517 	 * that point to anonymous typedef nodes.  If we find one, modify the
518 	 * pointer table so that the pointer is also known to point to the
519 	 * node that is referenced by the anonymous typedef node.
520 	 */
521 	for (id = 1; id <= fp->ctf_typemax; id++) {
522 		if ((dst = fp->ctf_ptrtab[id]) != 0) {
523 			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
524 
525 			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
526 			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
527 			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
528 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
529 				fp->ctf_ptrtab[
530 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
531 		}
532 	}
533 
534 	return (0);
535 }
536 
537 /*
538  * Decode the specified CTF buffer and optional symbol table and create a new
539  * CTF container representing the symbolic debugging information.  This code
540  * can be used directly by the debugger, or it can be used as the engine for
541  * ctf_fdopen() or ctf_open(), below.
542  */
543 ctf_file_t *
544 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
545     const ctf_sect_t *strsect, int *errp)
546 {
547 	const ctf_preamble_t *pp;
548 	ctf_header_t hp;
549 	ctf_file_t *fp;
550 	void *buf, *base;
551 	size_t size, hdrsz;
552 	int err;
553 
554 	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
555 		return (ctf_set_open_errno(errp, EINVAL));
556 
557 	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
558 	    symsect->cts_entsize != sizeof (Elf64_Sym))
559 		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
560 
561 	if (symsect != NULL && symsect->cts_data == NULL)
562 		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
563 
564 	if (strsect != NULL && strsect->cts_data == NULL)
565 		return (ctf_set_open_errno(errp, ECTF_STRBAD));
566 
567 	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
568 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
569 
570 	pp = (const ctf_preamble_t *)ctfsect->cts_data;
571 
572 	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
573 	    pp->ctp_magic, pp->ctp_version);
574 
575 	/*
576 	 * Validate each part of the CTF header (either V1 or V2).
577 	 * First, we validate the preamble (common to all versions).  At that
578 	 * point, we know specific header version, and can validate the
579 	 * version-specific parts including section offsets and alignments.
580 	 */
581 	if (pp->ctp_magic != CTF_MAGIC)
582 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
583 
584 	if (pp->ctp_version == CTF_VERSION_2) {
585 		if (ctfsect->cts_size < sizeof (ctf_header_t))
586 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
587 
588 		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
589 		hdrsz = sizeof (ctf_header_t);
590 
591 	} else if (pp->ctp_version == CTF_VERSION_1) {
592 		const ctf_header_v1_t *h1p =
593 		    (const ctf_header_v1_t *)ctfsect->cts_data;
594 
595 		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
596 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
597 
598 		bzero(&hp, sizeof (hp));
599 		hp.cth_preamble = h1p->cth_preamble;
600 		hp.cth_objtoff = h1p->cth_objtoff;
601 		hp.cth_funcoff = h1p->cth_funcoff;
602 		hp.cth_typeoff = h1p->cth_typeoff;
603 		hp.cth_stroff = h1p->cth_stroff;
604 		hp.cth_strlen = h1p->cth_strlen;
605 
606 		hdrsz = sizeof (ctf_header_v1_t);
607 	} else
608 		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
609 
610 	size = hp.cth_stroff + hp.cth_strlen;
611 
612 	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
613 
614 	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
615 	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
616 	    hp.cth_stroff > size)
617 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
618 
619 	if (hp.cth_lbloff > hp.cth_objtoff ||
620 	    hp.cth_objtoff > hp.cth_funcoff ||
621 	    hp.cth_funcoff > hp.cth_typeoff ||
622 	    hp.cth_typeoff > hp.cth_stroff)
623 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
624 
625 	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
626 	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
627 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
628 
629 	/*
630 	 * Once everything is determined to be valid, attempt to decompress
631 	 * the CTF data buffer if it is compressed.  Otherwise we just put
632 	 * the data section's buffer pointer into ctf_buf, below.
633 	 */
634 	if (hp.cth_flags & CTF_F_COMPRESS) {
635 		size_t srclen, dstlen;
636 		const void *src;
637 		int rc = Z_OK;
638 
639 		if (ctf_zopen(errp) == NULL)
640 			return (NULL); /* errp is set for us */
641 
642 		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
643 			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
644 
645 		bcopy(ctfsect->cts_data, base, hdrsz);
646 		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
647 		buf = (uchar_t *)base + hdrsz;
648 
649 		src = (uchar_t *)ctfsect->cts_data + hdrsz;
650 		srclen = ctfsect->cts_size - hdrsz;
651 		dstlen = size;
652 
653 		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
654 			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
655 			ctf_data_free(base, size + hdrsz);
656 			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
657 		}
658 
659 		if (dstlen != size) {
660 			ctf_dprintf("zlib inflate short -- got %lu of %lu "
661 			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
662 			ctf_data_free(base, size + hdrsz);
663 			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
664 		}
665 
666 		ctf_data_protect(base, size + hdrsz);
667 
668 	} else {
669 		base = (void *)ctfsect->cts_data;
670 		buf = (uchar_t *)base + hdrsz;
671 	}
672 
673 	/*
674 	 * Once we have uncompressed and validated the CTF data buffer, we can
675 	 * proceed with allocating a ctf_file_t and initializing it.
676 	 */
677 	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
678 		return (ctf_set_open_errno(errp, EAGAIN));
679 
680 	bzero(fp, sizeof (ctf_file_t));
681 	fp->ctf_version = hp.cth_version;
682 	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
683 	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
684 
685 	if (symsect != NULL) {
686 		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
687 		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
688 	}
689 
690 	if (fp->ctf_data.cts_name != NULL)
691 		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
692 	if (fp->ctf_symtab.cts_name != NULL)
693 		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
694 	if (fp->ctf_strtab.cts_name != NULL)
695 		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
696 
697 	if (fp->ctf_data.cts_name == NULL)
698 		fp->ctf_data.cts_name = _CTF_NULLSTR;
699 	if (fp->ctf_symtab.cts_name == NULL)
700 		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
701 	if (fp->ctf_strtab.cts_name == NULL)
702 		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
703 
704 	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
705 	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
706 
707 	if (strsect != NULL) {
708 		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
709 		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
710 	}
711 
712 	fp->ctf_base = base;
713 	fp->ctf_buf = buf;
714 	fp->ctf_size = size + hdrsz;
715 
716 	/*
717 	 * If we have a parent container name and label, store the relocated
718 	 * string pointers in the CTF container for easy access later.
719 	 */
720 	if (hp.cth_parlabel != 0)
721 		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
722 	if (hp.cth_parname != 0)
723 		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
724 
725 	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
726 	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
727 	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
728 
729 	/*
730 	 * If we have a symbol table section, allocate and initialize
731 	 * the symtab translation table, pointed to by ctf_sxlate.
732 	 */
733 	if (symsect != NULL) {
734 		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
735 		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
736 
737 		if (fp->ctf_sxlate == NULL) {
738 			(void) ctf_set_open_errno(errp, EAGAIN);
739 			goto bad;
740 		}
741 
742 		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
743 			(void) ctf_set_open_errno(errp, err);
744 			goto bad;
745 		}
746 	}
747 
748 	if ((err = init_types(fp, &hp)) != 0) {
749 		(void) ctf_set_open_errno(errp, err);
750 		goto bad;
751 	}
752 
753 	/*
754 	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
755 	 * array of type name prefixes and the corresponding ctf_hash to use.
756 	 * NOTE: This code must be kept in sync with the code in ctf_update().
757 	 */
758 	fp->ctf_lookups[0].ctl_prefix = "struct";
759 	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
760 	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
761 	fp->ctf_lookups[1].ctl_prefix = "union";
762 	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
763 	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
764 	fp->ctf_lookups[2].ctl_prefix = "enum";
765 	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
766 	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
767 	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
768 	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
769 	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
770 	fp->ctf_lookups[4].ctl_prefix = NULL;
771 	fp->ctf_lookups[4].ctl_len = 0;
772 	fp->ctf_lookups[4].ctl_hash = NULL;
773 
774 	if (symsect != NULL) {
775 		if (symsect->cts_entsize == sizeof (Elf64_Sym))
776 			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
777 		else
778 			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
779 	} else
780 		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
781 
782 	fp->ctf_refcnt = 1;
783 	return (fp);
784 
785 bad:
786 	ctf_close(fp);
787 	return (NULL);
788 }
789 
790 /*
791  * Dupliate a ctf_file_t and its underlying section information into a new
792  * container. This works by copying the three ctf_sect_t's of the original
793  * container if they exist and passing those into ctf_bufopen. To copy those, we
794  * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
795  * the cheapest thing, but it's what we've got.
796  */
797 ctf_file_t *
798 ctf_dup(ctf_file_t *ofp)
799 {
800 	ctf_file_t *fp;
801 	ctf_sect_t ctfsect, symsect, strsect;
802 	ctf_sect_t *ctp, *symp, *strp;
803 	void *cbuf, *symbuf, *strbuf;
804 	int err;
805 
806 	cbuf = symbuf = strbuf = NULL;
807 	/*
808 	 * The ctfsect isn't allowed to not exist, but the symbol and string
809 	 * section might not. We only need to copy the data of the section, not
810 	 * the name, as ctf_bufopen will take care of that.
811 	 */
812 	bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
813 	cbuf = ctf_data_alloc(ctfsect.cts_size);
814 	if (cbuf == NULL) {
815 		(void) ctf_set_errno(ofp, ECTF_MMAP);
816 		return (NULL);
817 	}
818 
819 	bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
820 	ctf_data_protect(cbuf, ctfsect.cts_size);
821 	ctfsect.cts_data = cbuf;
822 	ctfsect.cts_offset = 0;
823 	ctp = &ctfsect;
824 
825 	if (ofp->ctf_symtab.cts_data != NULL) {
826 		bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
827 		symbuf = ctf_data_alloc(symsect.cts_size);
828 		if (symbuf == NULL) {
829 			(void) ctf_set_errno(ofp, ECTF_MMAP);
830 			goto err;
831 		}
832 		bcopy(symsect.cts_data, symbuf, symsect.cts_size);
833 		ctf_data_protect(symbuf, symsect.cts_size);
834 		symsect.cts_data = symbuf;
835 		symsect.cts_offset = 0;
836 		symp = &symsect;
837 	} else {
838 		symp = NULL;
839 	}
840 
841 	if (ofp->ctf_strtab.cts_data != NULL) {
842 		bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
843 		strbuf = ctf_data_alloc(strsect.cts_size);
844 		if (strbuf == NULL) {
845 			(void) ctf_set_errno(ofp, ECTF_MMAP);
846 			goto err;
847 		}
848 		bcopy(strsect.cts_data, strbuf, strsect.cts_size);
849 		ctf_data_protect(strbuf, strsect.cts_size);
850 		strsect.cts_data = strbuf;
851 		strsect.cts_offset = 0;
852 		strp = &strsect;
853 	} else {
854 		strp = NULL;
855 	}
856 
857 	fp = ctf_bufopen(ctp, symp, strp, &err);
858 	if (fp == NULL) {
859 		(void) ctf_set_errno(ofp, err);
860 		goto err;
861 	}
862 
863 	fp->ctf_flags |= LCTF_MMAP;
864 
865 	return (fp);
866 
867 err:
868 	ctf_data_free(cbuf, ctfsect.cts_size);
869 	if (symbuf != NULL)
870 		ctf_data_free(symbuf, symsect.cts_size);
871 	if (strbuf != NULL)
872 		ctf_data_free(strbuf, strsect.cts_size);
873 	return (NULL);
874 }
875 
876 /*
877  * Close the specified CTF container and free associated data structures.  Note
878  * that ctf_close() is a reference counted operation: if the specified file is
879  * the parent of other active containers, its reference count will be greater
880  * than one and it will be freed later when no active children exist.
881  */
882 void
883 ctf_close(ctf_file_t *fp)
884 {
885 	ctf_dtdef_t *dtd, *ntd;
886 
887 	if (fp == NULL)
888 		return; /* allow ctf_close(NULL) to simplify caller code */
889 
890 	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
891 
892 	if (fp->ctf_refcnt > 1) {
893 		fp->ctf_refcnt--;
894 		return;
895 	}
896 
897 	if (fp->ctf_parent != NULL)
898 		ctf_close(fp->ctf_parent);
899 
900 	/*
901 	 * Note, to work properly with reference counting on the dynamic
902 	 * section, we must delete the list in reverse.
903 	 */
904 	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
905 		ntd = ctf_list_prev(dtd);
906 		ctf_dtd_delete(fp, dtd);
907 	}
908 
909 	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
910 
911 	if (fp->ctf_flags & LCTF_MMAP) {
912 		if (fp->ctf_data.cts_data != NULL)
913 			ctf_sect_munmap(&fp->ctf_data);
914 		if (fp->ctf_symtab.cts_data != NULL)
915 			ctf_sect_munmap(&fp->ctf_symtab);
916 		if (fp->ctf_strtab.cts_data != NULL)
917 			ctf_sect_munmap(&fp->ctf_strtab);
918 	}
919 
920 	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
921 	    fp->ctf_data.cts_name != NULL) {
922 		ctf_free((char *)fp->ctf_data.cts_name,
923 		    strlen(fp->ctf_data.cts_name) + 1);
924 	}
925 
926 	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
927 	    fp->ctf_symtab.cts_name != NULL) {
928 		ctf_free((char *)fp->ctf_symtab.cts_name,
929 		    strlen(fp->ctf_symtab.cts_name) + 1);
930 	}
931 
932 	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
933 	    fp->ctf_strtab.cts_name != NULL) {
934 		ctf_free((char *)fp->ctf_strtab.cts_name,
935 		    strlen(fp->ctf_strtab.cts_name) + 1);
936 	}
937 
938 	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
939 		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
940 
941 	if (fp->ctf_sxlate != NULL)
942 		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
943 
944 	if (fp->ctf_txlate != NULL) {
945 		ctf_free(fp->ctf_txlate,
946 		    sizeof (uint_t) * (fp->ctf_typemax + 1));
947 	}
948 
949 	if (fp->ctf_ptrtab != NULL) {
950 		ctf_free(fp->ctf_ptrtab,
951 		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
952 	}
953 
954 	ctf_hash_destroy(&fp->ctf_structs);
955 	ctf_hash_destroy(&fp->ctf_unions);
956 	ctf_hash_destroy(&fp->ctf_enums);
957 	ctf_hash_destroy(&fp->ctf_names);
958 
959 	ctf_free(fp, sizeof (ctf_file_t));
960 }
961 
962 /*
963  * Return the CTF handle for the parent CTF container, if one exists.
964  * Otherwise return NULL to indicate this container has no imported parent.
965  */
966 ctf_file_t *
967 ctf_parent_file(ctf_file_t *fp)
968 {
969 	return (fp->ctf_parent);
970 }
971 
972 /*
973  * Return the name of the parent CTF container, if one exists.  Otherwise
974  * return NULL to indicate this container is a root container.
975  */
976 const char *
977 ctf_parent_name(ctf_file_t *fp)
978 {
979 	return (fp->ctf_parname);
980 }
981 
982 /*
983  * Import the types from the specified parent container by storing a pointer
984  * to it in ctf_parent and incrementing its reference count.  Only one parent
985  * is allowed: if a parent already exists, it is replaced by the new parent.
986  */
987 int
988 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
989 {
990 	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
991 		return (ctf_set_errno(fp, EINVAL));
992 
993 	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
994 		return (ctf_set_errno(fp, ECTF_DMODEL));
995 
996 	if (fp->ctf_parent != NULL)
997 		ctf_close(fp->ctf_parent);
998 
999 	if (pfp != NULL) {
1000 		fp->ctf_flags |= LCTF_CHILD;
1001 		pfp->ctf_refcnt++;
1002 	}
1003 
1004 	fp->ctf_parent = pfp;
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Set the data model constant for the CTF container.
1010  */
1011 int
1012 ctf_setmodel(ctf_file_t *fp, int model)
1013 {
1014 	const ctf_dmodel_t *dp;
1015 
1016 	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1017 		if (dp->ctd_code == model) {
1018 			fp->ctf_dmodel = dp;
1019 			return (0);
1020 		}
1021 	}
1022 
1023 	return (ctf_set_errno(fp, EINVAL));
1024 }
1025 
1026 /*
1027  * Return the data model constant for the CTF container.
1028  */
1029 int
1030 ctf_getmodel(ctf_file_t *fp)
1031 {
1032 	return (fp->ctf_dmodel->ctd_code);
1033 }
1034 
1035 void
1036 ctf_setspecific(ctf_file_t *fp, void *data)
1037 {
1038 	fp->ctf_specific = data;
1039 }
1040 
1041 void *
1042 ctf_getspecific(ctf_file_t *fp)
1043 {
1044 	return (fp->ctf_specific);
1045 }
1046