1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <ctf_impl.h> 32 #include <sys/mman.h> 33 #include <sys/zmod.h> 34 35 static const ctf_dmodel_t _libctf_models[] = { 36 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, 37 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, 38 { NULL, 0, 0, 0, 0, 0, 0 } 39 }; 40 41 const char _CTF_SECTION[] = ".SUNW_ctf"; 42 const char _CTF_NULLSTR[] = ""; 43 44 int _libctf_version = CTF_VERSION; /* library client version */ 45 int _libctf_debug = 0; /* debugging messages enabled */ 46 47 static ushort_t 48 get_kind_v2(ushort_t info) 49 { 50 return (CTF_INFO_KIND(info)); 51 } 52 53 static ushort_t 54 get_root_v2(ushort_t info) 55 { 56 return (CTF_INFO_ISROOT(info)); 57 } 58 59 static ushort_t 60 get_vlen_v2(ushort_t info) 61 { 62 return (CTF_INFO_VLEN(info)); 63 } 64 65 static const ctf_fileops_t ctf_fileops[] = { 66 { NULL, NULL }, 67 { NULL, NULL }, 68 { get_kind_v2, get_root_v2, get_vlen_v2 }, 69 }; 70 71 /* 72 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. 73 */ 74 static Elf64_Sym * 75 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) 76 { 77 dst->st_name = src->st_name; 78 dst->st_value = src->st_value; 79 dst->st_size = src->st_size; 80 dst->st_info = src->st_info; 81 dst->st_other = src->st_other; 82 dst->st_shndx = src->st_shndx; 83 84 return (dst); 85 } 86 87 /* 88 * Initialize the symtab translation table by filling each entry with the 89 * offset of the CTF type or function data corresponding to each STT_FUNC or 90 * STT_OBJECT entry in the symbol table. 91 */ 92 static int 93 init_symtab(ctf_file_t *fp, const ctf_header_t *hp, 94 const ctf_sect_t *sp, const ctf_sect_t *strp) 95 { 96 const uchar_t *symp = sp->cts_data; 97 uint_t *xp = fp->ctf_sxlate; 98 uint_t *xend = xp + fp->ctf_nsyms; 99 100 uint_t objtoff = hp->cth_objtoff; 101 uint_t funcoff = hp->cth_funcoff; 102 103 ushort_t info, vlen; 104 Elf64_Sym sym, *gsp; 105 const char *name; 106 107 /* 108 * The CTF data object and function type sections are ordered to match 109 * the relative order of the respective symbol types in the symtab. 110 * If no type information is available for a symbol table entry, a 111 * pad is inserted in the CTF section. As a further optimization, 112 * anonymous or undefined symbols are omitted from the CTF data. 113 */ 114 for (; xp < xend; xp++, symp += sp->cts_entsize) { 115 if (sp->cts_entsize == sizeof (Elf32_Sym)) 116 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); 117 else 118 gsp = (Elf64_Sym *)(uintptr_t)symp; 119 120 if (gsp->st_name < strp->cts_size) 121 name = (const char *)strp->cts_data + gsp->st_name; 122 else 123 name = _CTF_NULLSTR; 124 125 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || 126 strcmp(name, "_START_") == 0 || 127 strcmp(name, "_END_") == 0) { 128 *xp = -1u; 129 continue; 130 } 131 132 switch (ELF64_ST_TYPE(gsp->st_info)) { 133 case STT_OBJECT: 134 if (objtoff >= hp->cth_funcoff || 135 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { 136 *xp = -1u; 137 break; 138 } 139 140 *xp = objtoff; 141 objtoff += sizeof (ushort_t); 142 break; 143 144 case STT_FUNC: 145 if (funcoff >= hp->cth_typeoff) { 146 *xp = -1u; 147 break; 148 } 149 150 *xp = funcoff; 151 152 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); 153 vlen = LCTF_INFO_VLEN(fp, info); 154 155 /* 156 * If we encounter a zero pad at the end, just skip it. 157 * Otherwise skip over the function and its return type 158 * (+2) and the argument list (vlen). 159 */ 160 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && 161 vlen == 0) 162 funcoff += sizeof (ushort_t); /* skip pad */ 163 else 164 funcoff += sizeof (ushort_t) * (vlen + 2); 165 break; 166 167 default: 168 *xp = -1u; 169 break; 170 } 171 } 172 173 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); 174 return (0); 175 } 176 177 /* 178 * Initialize the type ID translation table with the byte offset of each type, 179 * and initialize the hash tables of each named type. 180 */ 181 static int 182 init_types(ctf_file_t *fp, const ctf_header_t *cth) 183 { 184 /* LINTED - pointer alignment */ 185 const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); 186 /* LINTED - pointer alignment */ 187 const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); 188 189 ulong_t pop[CTF_K_MAX + 1] = { 0 }; 190 const ctf_type_t *tp; 191 ctf_hash_t *hp; 192 ushort_t id, dst; 193 uint_t *xp; 194 195 /* 196 * We initially determine whether the container is a child or a parent 197 * based on the value of cth_parname. To support containers that pre- 198 * date cth_parname, we also scan the types themselves for references 199 * to values in the range reserved for child types in our first pass. 200 */ 201 int child = cth->cth_parname != 0; 202 int nlstructs = 0, nlunions = 0; 203 int err; 204 205 /* 206 * We make two passes through the entire type section. In this first 207 * pass, we count the number of each type and the total number of types. 208 */ 209 for (tp = tbuf; tp < tend; fp->ctf_typemax++) { 210 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 211 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 212 ssize_t size, increment; 213 214 size_t vbytes; 215 uint_t n; 216 217 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 218 219 switch (kind) { 220 case CTF_K_INTEGER: 221 case CTF_K_FLOAT: 222 vbytes = sizeof (uint_t); 223 break; 224 case CTF_K_ARRAY: 225 vbytes = sizeof (ctf_array_t); 226 break; 227 case CTF_K_FUNCTION: 228 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 229 break; 230 case CTF_K_STRUCT: 231 case CTF_K_UNION: 232 if (size < CTF_LSTRUCT_THRESH) { 233 ctf_member_t *mp = (ctf_member_t *) 234 ((uintptr_t)tp + increment); 235 236 vbytes = sizeof (ctf_member_t) * vlen; 237 for (n = vlen; n != 0; n--, mp++) 238 child |= CTF_TYPE_ISCHILD(mp->ctm_type); 239 } else { 240 ctf_lmember_t *lmp = (ctf_lmember_t *) 241 ((uintptr_t)tp + increment); 242 243 vbytes = sizeof (ctf_lmember_t) * vlen; 244 for (n = vlen; n != 0; n--, lmp++) 245 child |= 246 CTF_TYPE_ISCHILD(lmp->ctlm_type); 247 } 248 break; 249 case CTF_K_ENUM: 250 vbytes = sizeof (ctf_enum_t) * vlen; 251 break; 252 case CTF_K_FORWARD: 253 /* 254 * For forward declarations, ctt_type is the CTF_K_* 255 * kind for the tag, so bump that population count too. 256 * If ctt_type is unknown, treat the tag as a struct. 257 */ 258 if (tp->ctt_type == CTF_K_UNKNOWN || 259 tp->ctt_type >= CTF_K_MAX) 260 pop[CTF_K_STRUCT]++; 261 else 262 pop[tp->ctt_type]++; 263 /*FALLTHRU*/ 264 case CTF_K_UNKNOWN: 265 vbytes = 0; 266 break; 267 case CTF_K_POINTER: 268 case CTF_K_TYPEDEF: 269 case CTF_K_VOLATILE: 270 case CTF_K_CONST: 271 case CTF_K_RESTRICT: 272 child |= CTF_TYPE_ISCHILD(tp->ctt_type); 273 vbytes = 0; 274 break; 275 default: 276 ctf_dprintf("detected invalid CTF kind -- %u\n", kind); 277 return (ECTF_CORRUPT); 278 } 279 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 280 pop[kind]++; 281 } 282 283 /* 284 * If we detected a reference to a child type ID, then we know this 285 * container is a child and may have a parent's types imported later. 286 */ 287 if (child) { 288 ctf_dprintf("CTF container %p is a child\n", (void *)fp); 289 fp->ctf_flags |= LCTF_CHILD; 290 } else 291 ctf_dprintf("CTF container %p is a parent\n", (void *)fp); 292 293 /* 294 * Now that we've counted up the number of each type, we can allocate 295 * the hash tables, type translation table, and pointer table. 296 */ 297 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) 298 return (err); 299 300 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) 301 return (err); 302 303 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) 304 return (err); 305 306 if ((err = ctf_hash_create(&fp->ctf_names, 307 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + 308 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + 309 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) 310 return (err); 311 312 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); 313 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); 314 315 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) 316 return (EAGAIN); /* memory allocation failed */ 317 318 xp = fp->ctf_txlate; 319 *xp++ = 0; /* type id 0 is used as a sentinel value */ 320 321 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); 322 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); 323 324 /* 325 * In the second pass through the types, we fill in each entry of the 326 * type and pointer tables and add names to the appropriate hashes. 327 */ 328 for (id = 1, tp = tbuf; tp < tend; xp++, id++) { 329 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 330 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 331 ssize_t size, increment; 332 333 const char *name; 334 size_t vbytes; 335 ctf_helem_t *hep; 336 ctf_encoding_t cte; 337 338 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 339 name = ctf_strptr(fp, tp->ctt_name); 340 341 switch (kind) { 342 case CTF_K_INTEGER: 343 case CTF_K_FLOAT: 344 /* 345 * Only insert a new integer base type definition if 346 * this type name has not been defined yet. We re-use 347 * the names with different encodings for bit-fields. 348 */ 349 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, 350 name, strlen(name))) == NULL) { 351 err = ctf_hash_insert(&fp->ctf_names, fp, 352 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 353 if (err != 0 && err != ECTF_STRTAB) 354 return (err); 355 } else if (ctf_type_encoding(fp, hep->h_type, 356 &cte) == 0 && cte.cte_bits == 0) { 357 /* 358 * Work-around SOS8 stabs bug: replace existing 359 * intrinsic w/ same name if it was zero bits. 360 */ 361 hep->h_type = CTF_INDEX_TO_TYPE(id, child); 362 } 363 vbytes = sizeof (uint_t); 364 break; 365 366 case CTF_K_ARRAY: 367 vbytes = sizeof (ctf_array_t); 368 break; 369 370 case CTF_K_FUNCTION: 371 err = ctf_hash_insert(&fp->ctf_names, fp, 372 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 373 if (err != 0 && err != ECTF_STRTAB) 374 return (err); 375 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 376 break; 377 378 case CTF_K_STRUCT: 379 err = ctf_hash_define(&fp->ctf_structs, fp, 380 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 381 382 if (err != 0 && err != ECTF_STRTAB) 383 return (err); 384 385 if (size < CTF_LSTRUCT_THRESH) 386 vbytes = sizeof (ctf_member_t) * vlen; 387 else { 388 vbytes = sizeof (ctf_lmember_t) * vlen; 389 nlstructs++; 390 } 391 break; 392 393 case CTF_K_UNION: 394 err = ctf_hash_define(&fp->ctf_unions, fp, 395 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 396 397 if (err != 0 && err != ECTF_STRTAB) 398 return (err); 399 400 if (size < CTF_LSTRUCT_THRESH) 401 vbytes = sizeof (ctf_member_t) * vlen; 402 else { 403 vbytes = sizeof (ctf_lmember_t) * vlen; 404 nlunions++; 405 } 406 break; 407 408 case CTF_K_ENUM: 409 err = ctf_hash_define(&fp->ctf_enums, fp, 410 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 411 412 if (err != 0 && err != ECTF_STRTAB) 413 return (err); 414 415 vbytes = sizeof (ctf_enum_t) * vlen; 416 break; 417 418 case CTF_K_TYPEDEF: 419 err = ctf_hash_insert(&fp->ctf_names, fp, 420 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 421 if (err != 0 && err != ECTF_STRTAB) 422 return (err); 423 vbytes = 0; 424 break; 425 426 case CTF_K_FORWARD: 427 /* 428 * Only insert forward tags into the given hash if the 429 * type or tag name is not already present. 430 */ 431 switch (tp->ctt_type) { 432 case CTF_K_STRUCT: 433 hp = &fp->ctf_structs; 434 break; 435 case CTF_K_UNION: 436 hp = &fp->ctf_unions; 437 break; 438 case CTF_K_ENUM: 439 hp = &fp->ctf_enums; 440 break; 441 default: 442 hp = &fp->ctf_structs; 443 } 444 445 if (ctf_hash_lookup(hp, fp, 446 name, strlen(name)) == NULL) { 447 err = ctf_hash_insert(hp, fp, 448 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 449 if (err != 0 && err != ECTF_STRTAB) 450 return (err); 451 } 452 vbytes = 0; 453 break; 454 455 case CTF_K_POINTER: 456 /* 457 * If the type referenced by the pointer is in this CTF 458 * container, then store the index of the pointer type 459 * in fp->ctf_ptrtab[ index of referenced type ]. 460 */ 461 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && 462 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 463 fp->ctf_ptrtab[ 464 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; 465 /*FALLTHRU*/ 466 467 case CTF_K_VOLATILE: 468 case CTF_K_CONST: 469 case CTF_K_RESTRICT: 470 err = ctf_hash_insert(&fp->ctf_names, fp, 471 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 472 if (err != 0 && err != ECTF_STRTAB) 473 return (err); 474 /*FALLTHRU*/ 475 476 default: 477 vbytes = 0; 478 break; 479 } 480 481 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); 482 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 483 } 484 485 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); 486 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); 487 ctf_dprintf("%u struct names hashed (%d long)\n", 488 ctf_hash_size(&fp->ctf_structs), nlstructs); 489 ctf_dprintf("%u union names hashed (%d long)\n", 490 ctf_hash_size(&fp->ctf_unions), nlunions); 491 ctf_dprintf("%u base type names hashed\n", 492 ctf_hash_size(&fp->ctf_names)); 493 494 /* 495 * Make an additional pass through the pointer table to find pointers 496 * that point to anonymous typedef nodes. If we find one, modify the 497 * pointer table so that the pointer is also known to point to the 498 * node that is referenced by the anonymous typedef node. 499 */ 500 for (id = 1; id <= fp->ctf_typemax; id++) { 501 if ((dst = fp->ctf_ptrtab[id]) != 0) { 502 tp = LCTF_INDEX_TO_TYPEPTR(fp, id); 503 504 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && 505 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && 506 CTF_TYPE_ISCHILD(tp->ctt_type) == child && 507 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 508 fp->ctf_ptrtab[ 509 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; 510 } 511 } 512 513 return (0); 514 } 515 516 /* 517 * Decode the specified CTF buffer and optional symbol table and create a new 518 * CTF container representing the symbolic debugging information. This code 519 * can be used directly by the debugger, or it can be used as the engine for 520 * ctf_fdopen() or ctf_open(), below. 521 */ 522 ctf_file_t * 523 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, 524 const ctf_sect_t *strsect, int *errp) 525 { 526 const ctf_preamble_t *pp; 527 ctf_header_t hp; 528 ctf_file_t *fp; 529 void *buf, *base; 530 size_t size, hdrsz; 531 int err; 532 533 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) 534 return (ctf_set_open_errno(errp, EINVAL)); 535 536 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && 537 symsect->cts_entsize != sizeof (Elf64_Sym)) 538 return (ctf_set_open_errno(errp, ECTF_SYMTAB)); 539 540 if (symsect != NULL && symsect->cts_data == NULL) 541 return (ctf_set_open_errno(errp, ECTF_SYMBAD)); 542 543 if (strsect != NULL && strsect->cts_data == NULL) 544 return (ctf_set_open_errno(errp, ECTF_STRBAD)); 545 546 if (ctfsect->cts_size < sizeof (ctf_preamble_t)) 547 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 548 549 pp = (const ctf_preamble_t *)ctfsect->cts_data; 550 551 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", 552 pp->ctp_magic, pp->ctp_version); 553 554 /* 555 * Validate each part of the CTF header (either V1 or V2). 556 * First, we validate the preamble (common to all versions). At that 557 * point, we know specific header version, and can validate the 558 * version-specific parts including section offsets and alignments. 559 */ 560 if (pp->ctp_magic != CTF_MAGIC) 561 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 562 563 if (pp->ctp_version == CTF_VERSION_2) { 564 if (ctfsect->cts_size < sizeof (ctf_header_t)) 565 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 566 567 bcopy(ctfsect->cts_data, &hp, sizeof (hp)); 568 hdrsz = sizeof (ctf_header_t); 569 570 } else 571 return (ctf_set_open_errno(errp, ECTF_CTFVERS)); 572 573 size = hp.cth_stroff + hp.cth_strlen; 574 575 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); 576 577 if (hp.cth_lbloff > size || hp.cth_objtoff > size || 578 hp.cth_funcoff > size || hp.cth_typeoff > size || 579 hp.cth_stroff > size) 580 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 581 582 if (hp.cth_lbloff > hp.cth_objtoff || 583 hp.cth_objtoff > hp.cth_funcoff || 584 hp.cth_funcoff > hp.cth_typeoff || 585 hp.cth_typeoff > hp.cth_stroff) 586 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 587 588 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || 589 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) 590 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 591 592 /* 593 * Once everything is determined to be valid, attempt to decompress 594 * the CTF data buffer if it is compressed. Otherwise we just put 595 * the data section's buffer pointer into ctf_buf, below. 596 */ 597 if (hp.cth_flags & CTF_F_COMPRESS) { 598 size_t srclen, dstlen; 599 const void *src; 600 int rc = Z_OK; 601 602 if (ctf_zopen(errp) == NULL) 603 return (NULL); /* errp is set for us */ 604 605 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) 606 return (ctf_set_open_errno(errp, ECTF_ZALLOC)); 607 608 bcopy(ctfsect->cts_data, base, hdrsz); 609 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; 610 buf = (uchar_t *)base + hdrsz; 611 612 src = (uchar_t *)ctfsect->cts_data + hdrsz; 613 srclen = ctfsect->cts_size - hdrsz; 614 dstlen = size; 615 616 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { 617 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); 618 ctf_data_free(base, size + hdrsz); 619 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); 620 } 621 622 if (dstlen != size) { 623 ctf_dprintf("zlib inflate short -- got %lu of %lu " 624 "bytes\n", (ulong_t)dstlen, (ulong_t)size); 625 ctf_data_free(base, size + hdrsz); 626 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 627 } 628 629 ctf_data_protect(base, size + hdrsz); 630 631 } else { 632 base = (void *)ctfsect->cts_data; 633 buf = (uchar_t *)base + hdrsz; 634 } 635 636 /* 637 * Once we have uncompressed and validated the CTF data buffer, we can 638 * proceed with allocating a ctf_file_t and initializing it. 639 */ 640 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) 641 return (ctf_set_open_errno(errp, EAGAIN)); 642 643 bzero(fp, sizeof (ctf_file_t)); 644 fp->ctf_version = hp.cth_version; 645 fp->ctf_fileops = &ctf_fileops[hp.cth_version]; 646 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); 647 648 if (symsect != NULL) { 649 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); 650 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); 651 } 652 653 if (fp->ctf_data.cts_name != NULL) 654 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); 655 if (fp->ctf_symtab.cts_name != NULL) 656 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); 657 if (fp->ctf_strtab.cts_name != NULL) 658 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); 659 660 if (fp->ctf_data.cts_name == NULL) 661 fp->ctf_data.cts_name = _CTF_NULLSTR; 662 if (fp->ctf_symtab.cts_name == NULL) 663 fp->ctf_symtab.cts_name = _CTF_NULLSTR; 664 if (fp->ctf_strtab.cts_name == NULL) 665 fp->ctf_strtab.cts_name = _CTF_NULLSTR; 666 667 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; 668 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; 669 670 if (strsect != NULL) { 671 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; 672 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; 673 } 674 675 fp->ctf_base = base; 676 fp->ctf_buf = buf; 677 fp->ctf_size = size + hdrsz; 678 679 /* 680 * If we have a parent container name and label, store the relocated 681 * string pointers in the CTF container for easy access later. 682 */ 683 if (hp.cth_parlabel != 0) 684 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); 685 if (hp.cth_parname != 0) 686 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); 687 688 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", 689 fp->ctf_parname ? fp->ctf_parname : "<NULL>", 690 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); 691 692 /* 693 * If we have a symbol table section, allocate and initialize 694 * the symtab translation table, pointed to by ctf_sxlate. 695 */ 696 if (symsect != NULL) { 697 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; 698 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); 699 700 if (fp->ctf_sxlate == NULL) { 701 (void) ctf_set_open_errno(errp, EAGAIN); 702 goto bad; 703 } 704 705 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { 706 (void) ctf_set_open_errno(errp, err); 707 goto bad; 708 } 709 } 710 711 if ((err = init_types(fp, &hp)) != 0) { 712 (void) ctf_set_open_errno(errp, err); 713 goto bad; 714 } 715 716 /* 717 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an 718 * array of type name prefixes and the corresponding ctf_hash to use. 719 * NOTE: This code must be kept in sync with the code in ctf_update(). 720 */ 721 fp->ctf_lookups[0].ctl_prefix = "struct"; 722 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); 723 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; 724 fp->ctf_lookups[1].ctl_prefix = "union"; 725 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); 726 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; 727 fp->ctf_lookups[2].ctl_prefix = "enum"; 728 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); 729 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; 730 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; 731 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); 732 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; 733 fp->ctf_lookups[4].ctl_prefix = NULL; 734 fp->ctf_lookups[4].ctl_len = 0; 735 fp->ctf_lookups[4].ctl_hash = NULL; 736 737 if (symsect != NULL) { 738 if (symsect->cts_entsize == sizeof (Elf64_Sym)) 739 (void) ctf_setmodel(fp, CTF_MODEL_LP64); 740 else 741 (void) ctf_setmodel(fp, CTF_MODEL_ILP32); 742 } else 743 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); 744 745 fp->ctf_refcnt = 1; 746 return (fp); 747 748 bad: 749 ctf_close(fp); 750 return (NULL); 751 } 752 753 /* 754 * Dupliate a ctf_file_t and its underlying section information into a new 755 * container. This works by copying the three ctf_sect_t's of the original 756 * container if they exist and passing those into ctf_bufopen. To copy those, we 757 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not 758 * the cheapest thing, but it's what we've got. 759 */ 760 ctf_file_t * 761 ctf_dup(ctf_file_t *ofp) 762 { 763 ctf_file_t *fp; 764 ctf_sect_t ctfsect, symsect, strsect; 765 ctf_sect_t *ctp, *symp, *strp; 766 void *cbuf, *symbuf, *strbuf; 767 int err; 768 769 cbuf = symbuf = strbuf = NULL; 770 /* 771 * The ctfsect isn't allowed to not exist, but the symbol and string 772 * section might not. We only need to copy the data of the section, not 773 * the name, as ctf_bufopen will take care of that. 774 */ 775 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); 776 cbuf = ctf_data_alloc(ctfsect.cts_size); 777 if (cbuf == NULL) { 778 (void) ctf_set_errno(ofp, ECTF_MMAP); 779 return (NULL); 780 } 781 782 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); 783 ctf_data_protect(cbuf, ctfsect.cts_size); 784 ctfsect.cts_data = cbuf; 785 ctfsect.cts_offset = 0; 786 ctp = &ctfsect; 787 788 if (ofp->ctf_symtab.cts_data != NULL) { 789 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); 790 symbuf = ctf_data_alloc(symsect.cts_size); 791 if (symbuf == NULL) { 792 (void) ctf_set_errno(ofp, ECTF_MMAP); 793 goto err; 794 } 795 bcopy(symsect.cts_data, symbuf, symsect.cts_size); 796 ctf_data_protect(symbuf, symsect.cts_size); 797 symsect.cts_data = symbuf; 798 symsect.cts_offset = 0; 799 symp = &symsect; 800 } else { 801 symp = NULL; 802 } 803 804 if (ofp->ctf_strtab.cts_data != NULL) { 805 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); 806 strbuf = ctf_data_alloc(strsect.cts_size); 807 if (strbuf == NULL) { 808 (void) ctf_set_errno(ofp, ECTF_MMAP); 809 goto err; 810 } 811 bcopy(strsect.cts_data, strbuf, strsect.cts_size); 812 ctf_data_protect(strbuf, strsect.cts_size); 813 strsect.cts_data = strbuf; 814 strsect.cts_offset = 0; 815 strp = &strsect; 816 } else { 817 strp = NULL; 818 } 819 820 fp = ctf_bufopen(ctp, symp, strp, &err); 821 if (fp == NULL) { 822 (void) ctf_set_errno(ofp, err); 823 goto err; 824 } 825 826 fp->ctf_flags |= LCTF_MMAP; 827 828 return (fp); 829 830 err: 831 ctf_data_free(cbuf, ctfsect.cts_size); 832 if (symbuf != NULL) 833 ctf_data_free(symbuf, symsect.cts_size); 834 if (strbuf != NULL) 835 ctf_data_free(strbuf, strsect.cts_size); 836 return (NULL); 837 } 838 839 /* 840 * Close the specified CTF container and free associated data structures. Note 841 * that ctf_close() is a reference counted operation: if the specified file is 842 * the parent of other active containers, its reference count will be greater 843 * than one and it will be freed later when no active children exist. 844 */ 845 void 846 ctf_close(ctf_file_t *fp) 847 { 848 ctf_dtdef_t *dtd, *ntd; 849 850 if (fp == NULL) 851 return; /* allow ctf_close(NULL) to simplify caller code */ 852 853 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); 854 855 if (fp->ctf_refcnt > 1) { 856 fp->ctf_refcnt--; 857 return; 858 } 859 860 if (fp->ctf_parent != NULL) 861 ctf_close(fp->ctf_parent); 862 863 /* 864 * Note, to work properly with reference counting on the dynamic 865 * section, we must delete the list in reverse. 866 */ 867 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { 868 ntd = ctf_list_prev(dtd); 869 ctf_dtd_delete(fp, dtd); 870 } 871 872 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); 873 874 if (fp->ctf_flags & LCTF_MMAP) { 875 if (fp->ctf_data.cts_data != NULL) 876 ctf_sect_munmap(&fp->ctf_data); 877 if (fp->ctf_symtab.cts_data != NULL) 878 ctf_sect_munmap(&fp->ctf_symtab); 879 if (fp->ctf_strtab.cts_data != NULL) 880 ctf_sect_munmap(&fp->ctf_strtab); 881 } 882 883 if (fp->ctf_data.cts_name != _CTF_NULLSTR && 884 fp->ctf_data.cts_name != NULL) { 885 ctf_free((char *)fp->ctf_data.cts_name, 886 strlen(fp->ctf_data.cts_name) + 1); 887 } 888 889 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && 890 fp->ctf_symtab.cts_name != NULL) { 891 ctf_free((char *)fp->ctf_symtab.cts_name, 892 strlen(fp->ctf_symtab.cts_name) + 1); 893 } 894 895 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && 896 fp->ctf_strtab.cts_name != NULL) { 897 ctf_free((char *)fp->ctf_strtab.cts_name, 898 strlen(fp->ctf_strtab.cts_name) + 1); 899 } 900 901 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) 902 ctf_data_free((void *)fp->ctf_base, fp->ctf_size); 903 904 if (fp->ctf_sxlate != NULL) 905 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); 906 907 if (fp->ctf_txlate != NULL) { 908 ctf_free(fp->ctf_txlate, 909 sizeof (uint_t) * (fp->ctf_typemax + 1)); 910 } 911 912 if (fp->ctf_ptrtab != NULL) { 913 ctf_free(fp->ctf_ptrtab, 914 sizeof (ushort_t) * (fp->ctf_typemax + 1)); 915 } 916 917 ctf_hash_destroy(&fp->ctf_structs); 918 ctf_hash_destroy(&fp->ctf_unions); 919 ctf_hash_destroy(&fp->ctf_enums); 920 ctf_hash_destroy(&fp->ctf_names); 921 922 ctf_free(fp, sizeof (ctf_file_t)); 923 } 924 925 /* 926 * Return the CTF handle for the parent CTF container, if one exists. 927 * Otherwise return NULL to indicate this container has no imported parent. 928 */ 929 ctf_file_t * 930 ctf_parent_file(ctf_file_t *fp) 931 { 932 return (fp->ctf_parent); 933 } 934 935 /* 936 * Return the name of the parent CTF container, if one exists. Otherwise 937 * return NULL to indicate this container is a root container. 938 */ 939 const char * 940 ctf_parent_name(ctf_file_t *fp) 941 { 942 return (fp->ctf_parname); 943 } 944 945 /* 946 * Import the types from the specified parent container by storing a pointer 947 * to it in ctf_parent and incrementing its reference count. Only one parent 948 * is allowed: if a parent already exists, it is replaced by the new parent. 949 */ 950 int 951 ctf_import(ctf_file_t *fp, ctf_file_t *pfp) 952 { 953 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) 954 return (ctf_set_errno(fp, EINVAL)); 955 956 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) 957 return (ctf_set_errno(fp, ECTF_DMODEL)); 958 959 if (fp->ctf_parent != NULL) 960 ctf_close(fp->ctf_parent); 961 962 if (pfp != NULL) { 963 fp->ctf_flags |= LCTF_CHILD; 964 pfp->ctf_refcnt++; 965 } 966 967 fp->ctf_parent = pfp; 968 return (0); 969 } 970 971 /* 972 * Set the data model constant for the CTF container. 973 */ 974 int 975 ctf_setmodel(ctf_file_t *fp, int model) 976 { 977 const ctf_dmodel_t *dp; 978 979 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { 980 if (dp->ctd_code == model) { 981 fp->ctf_dmodel = dp; 982 return (0); 983 } 984 } 985 986 return (ctf_set_errno(fp, EINVAL)); 987 } 988 989 /* 990 * Return the data model constant for the CTF container. 991 */ 992 int 993 ctf_getmodel(ctf_file_t *fp) 994 { 995 return (fp->ctf_dmodel->ctd_code); 996 } 997 998 void 999 ctf_setspecific(ctf_file_t *fp, void *data) 1000 { 1001 fp->ctf_specific = data; 1002 } 1003 1004 void * 1005 ctf_getspecific(ctf_file_t *fp) 1006 { 1007 return (fp->ctf_specific); 1008 } 1009