xref: /freebsd/cddl/contrib/opensolaris/cmd/lockstat/lockstat.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <stdio.h>
29 #include <stddef.h>
30 #include <stdlib.h>
31 #include <stdarg.h>
32 #include <string.h>
33 #include <strings.h>
34 #include <ctype.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <errno.h>
38 #include <limits.h>
39 #include <sys/types.h>
40 #include <sys/modctl.h>
41 #include <sys/stat.h>
42 #include <sys/wait.h>
43 #include <dtrace.h>
44 #include <sys/lockstat.h>
45 #include <alloca.h>
46 #include <signal.h>
47 #include <assert.h>
48 
49 #ifdef illumos
50 #define	GETOPT_EOF	EOF
51 #else
52 #include <sys/time.h>
53 #include <sys/resource.h>
54 
55 #define	mergesort(a, b, c, d)	lsmergesort(a, b, c, d)
56 #define	GETOPT_EOF		(-1)
57 
58 typedef	uintptr_t	pc_t;
59 #endif
60 
61 #define	LOCKSTAT_OPTSTR	"x:bths:n:d:i:l:f:e:ckwWgCHEATID:RpPo:V"
62 
63 #define	LS_MAX_STACK_DEPTH	50
64 #define	LS_MAX_EVENTS		64
65 
66 typedef struct lsrec {
67 	struct lsrec	*ls_next;	/* next in hash chain */
68 	uintptr_t	ls_lock;	/* lock address */
69 	uintptr_t	ls_caller;	/* caller address */
70 	uint32_t	ls_count;	/* cumulative event count */
71 	uint32_t	ls_event;	/* type of event */
72 	uintptr_t	ls_refcnt;	/* cumulative reference count */
73 	uint64_t	ls_time;	/* cumulative event duration */
74 	uint32_t	ls_hist[64];	/* log2(duration) histogram */
75 	uintptr_t	ls_stack[LS_MAX_STACK_DEPTH];
76 } lsrec_t;
77 
78 typedef struct lsdata {
79 	struct lsrec	*lsd_next;	/* next available */
80 	int		lsd_count;	/* number of records */
81 } lsdata_t;
82 
83 /*
84  * Definitions for the types of experiments which can be run.  They are
85  * listed in increasing order of memory cost and processing time cost.
86  * The numerical value of each type is the number of bytes needed per record.
87  */
88 #define	LS_BASIC	offsetof(lsrec_t, ls_time)
89 #define	LS_TIME		offsetof(lsrec_t, ls_hist[0])
90 #define	LS_HIST		offsetof(lsrec_t, ls_stack[0])
91 #define	LS_STACK(depth)	offsetof(lsrec_t, ls_stack[depth])
92 
93 static void report_stats(FILE *, lsrec_t **, size_t, uint64_t, uint64_t);
94 static void report_trace(FILE *, lsrec_t **);
95 
96 extern int symtab_init(void);
97 extern char *addr_to_sym(uintptr_t, uintptr_t *, size_t *);
98 extern uintptr_t sym_to_addr(char *name);
99 extern size_t sym_size(char *name);
100 extern char *strtok_r(char *, const char *, char **);
101 
102 #define	DEFAULT_NRECS	10000
103 #define	DEFAULT_HZ	97
104 #define	MAX_HZ		1000
105 #define	MIN_AGGSIZE	(16 * 1024)
106 #define	MAX_AGGSIZE	(32 * 1024 * 1024)
107 
108 static int g_stkdepth;
109 static int g_topn = INT_MAX;
110 static hrtime_t g_elapsed;
111 static int g_rates = 0;
112 static int g_pflag = 0;
113 static int g_Pflag = 0;
114 static int g_wflag = 0;
115 static int g_Wflag = 0;
116 static int g_cflag = 0;
117 static int g_kflag = 0;
118 static int g_gflag = 0;
119 static int g_Vflag = 0;
120 static int g_tracing = 0;
121 static size_t g_recsize;
122 static size_t g_nrecs;
123 static int g_nrecs_used;
124 static uchar_t g_enabled[LS_MAX_EVENTS];
125 static hrtime_t g_min_duration[LS_MAX_EVENTS];
126 static dtrace_hdl_t *g_dtp;
127 static char *g_predicate;
128 static char *g_ipredicate;
129 static char *g_prog;
130 static int g_proglen;
131 static int g_dropped;
132 
133 typedef struct ls_event_info {
134 	char	ev_type;
135 	char	ev_lhdr[20];
136 	char	ev_desc[80];
137 	char	ev_units[10];
138 	char	ev_name[DTRACE_NAMELEN];
139 	char	*ev_predicate;
140 	char	*ev_acquire;
141 } ls_event_info_t;
142 
143 static ls_event_info_t g_event_info[LS_MAX_EVENTS] = {
144 	{ 'C',	"Lock",	"Adaptive mutex spin",			"nsec",
145 	    "lockstat:::adaptive-spin" },
146 	{ 'C',	"Lock",	"Adaptive mutex block",			"nsec",
147 	    "lockstat:::adaptive-block" },
148 	{ 'C',	"Lock",	"Spin lock spin",			"nsec",
149 	    "lockstat:::spin-spin" },
150 	{ 'C',	"Lock",	"Thread lock spin",			"nsec",
151 	    "lockstat:::thread-spin" },
152 	{ 'C',	"Lock",	"R/W writer blocked by writer",		"nsec",
153 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 1" },
154 	{ 'C',	"Lock",	"R/W writer blocked by readers",	"nsec",
155 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 0 && arg4" },
156 	{ 'C',	"Lock",	"R/W reader blocked by writer",		"nsec",
157 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 1" },
158 	{ 'C',	"Lock",	"R/W reader blocked by write wanted",	"nsec",
159 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 0 && arg4" },
160 	{ 'C',	"Lock",	"Unknown event (type 8)",		"units"	},
161 	{ 'C',	"Lock",	"Unknown event (type 9)",		"units"	},
162 	{ 'C',	"Lock",	"Unknown event (type 10)",		"units"	},
163 	{ 'C',	"Lock",	"Unknown event (type 11)",		"units"	},
164 	{ 'C',	"Lock",	"Unknown event (type 12)",		"units"	},
165 	{ 'C',	"Lock",	"Unknown event (type 13)",		"units"	},
166 	{ 'C',	"Lock",	"Unknown event (type 14)",		"units"	},
167 	{ 'C',	"Lock",	"Unknown event (type 15)",		"units"	},
168 	{ 'C',	"Lock",	"Unknown event (type 16)",		"units"	},
169 	{ 'C',	"Lock",	"Unknown event (type 17)",		"units"	},
170 	{ 'C',	"Lock",	"Unknown event (type 18)",		"units"	},
171 	{ 'C',	"Lock",	"Unknown event (type 19)",		"units"	},
172 	{ 'C',	"Lock",	"Unknown event (type 20)",		"units"	},
173 	{ 'C',	"Lock",	"Unknown event (type 21)",		"units"	},
174 	{ 'C',	"Lock",	"Unknown event (type 22)",		"units"	},
175 	{ 'C',	"Lock",	"Unknown event (type 23)",		"units"	},
176 	{ 'C',	"Lock",	"Unknown event (type 24)",		"units"	},
177 	{ 'C',	"Lock",	"Unknown event (type 25)",		"units"	},
178 	{ 'C',	"Lock",	"Unknown event (type 26)",		"units"	},
179 	{ 'C',	"Lock",	"Unknown event (type 27)",		"units"	},
180 	{ 'C',	"Lock",	"Unknown event (type 28)",		"units"	},
181 	{ 'C',	"Lock",	"Unknown event (type 29)",		"units"	},
182 	{ 'C',	"Lock",	"Unknown event (type 30)",		"units"	},
183 	{ 'C',	"Lock",	"Unknown event (type 31)",		"units"	},
184 	{ 'H',	"Lock",	"Adaptive mutex hold",			"nsec",
185 	    "lockstat:::adaptive-release", NULL,
186 	    "lockstat:::adaptive-acquire" },
187 	{ 'H',	"Lock",	"Spin lock hold",			"nsec",
188 	    "lockstat:::spin-release", NULL,
189 	    "lockstat:::spin-acquire" },
190 	{ 'H',	"Lock",	"R/W writer hold",			"nsec",
191 	    "lockstat:::rw-release", "arg1 == 0",
192 	    "lockstat:::rw-acquire" },
193 	{ 'H',	"Lock",	"R/W reader hold",			"nsec",
194 	    "lockstat:::rw-release", "arg1 != 0",
195 	    "lockstat:::rw-acquire" },
196 	{ 'H',	"Lock",	"Unknown event (type 36)",		"units"	},
197 	{ 'H',	"Lock",	"Unknown event (type 37)",		"units"	},
198 	{ 'H',	"Lock",	"Unknown event (type 38)",		"units"	},
199 	{ 'H',	"Lock",	"Unknown event (type 39)",		"units"	},
200 	{ 'H',	"Lock",	"Unknown event (type 40)",		"units"	},
201 	{ 'H',	"Lock",	"Unknown event (type 41)",		"units"	},
202 	{ 'H',	"Lock",	"Unknown event (type 42)",		"units"	},
203 	{ 'H',	"Lock",	"Unknown event (type 43)",		"units"	},
204 	{ 'H',	"Lock",	"Unknown event (type 44)",		"units"	},
205 	{ 'H',	"Lock",	"Unknown event (type 45)",		"units"	},
206 	{ 'H',	"Lock",	"Unknown event (type 46)",		"units"	},
207 	{ 'H',	"Lock",	"Unknown event (type 47)",		"units"	},
208 	{ 'H',	"Lock",	"Unknown event (type 48)",		"units"	},
209 	{ 'H',	"Lock",	"Unknown event (type 49)",		"units"	},
210 	{ 'H',	"Lock",	"Unknown event (type 50)",		"units"	},
211 	{ 'H',	"Lock",	"Unknown event (type 51)",		"units"	},
212 	{ 'H',	"Lock",	"Unknown event (type 52)",		"units"	},
213 	{ 'H',	"Lock",	"Unknown event (type 53)",		"units"	},
214 	{ 'H',	"Lock",	"Unknown event (type 54)",		"units"	},
215 	{ 'H',	"Lock",	"Unknown event (type 55)",		"units"	},
216 #ifdef illumos
217 	{ 'I',	"CPU+PIL", "Profiling interrupt",		"nsec",
218 #else
219 	{ 'I',	"CPU+Pri_Class", "Profiling interrupt",		"nsec",
220 #endif
221 	    "profile:::profile-97", NULL },
222 	{ 'I',	"Lock",	"Unknown event (type 57)",		"units"	},
223 	{ 'I',	"Lock",	"Unknown event (type 58)",		"units"	},
224 	{ 'I',	"Lock",	"Unknown event (type 59)",		"units"	},
225 	{ 'E',	"Lock",	"Recursive lock entry detected",	"(N/A)",
226 	    "lockstat:::rw-release", NULL, "lockstat:::rw-acquire" },
227 	{ 'E',	"Lock",	"Lockstat enter failure",		"(N/A)"	},
228 	{ 'E',	"Lock",	"Lockstat exit failure",		"nsec"	},
229 	{ 'E',	"Lock",	"Lockstat record failure",		"(N/A)"	},
230 };
231 
232 #ifndef illumos
233 static char *g_pri_class[] = {
234 	"",
235 	"Intr",
236 	"RealT",
237 	"TShar",
238 	"Idle"
239 };
240 #endif
241 
242 static void
243 fail(int do_perror, const char *message, ...)
244 {
245 	va_list args;
246 	int save_errno = errno;
247 
248 	va_start(args, message);
249 	(void) fprintf(stderr, "lockstat: ");
250 	(void) vfprintf(stderr, message, args);
251 	va_end(args);
252 	if (do_perror)
253 		(void) fprintf(stderr, ": %s", strerror(save_errno));
254 	(void) fprintf(stderr, "\n");
255 	exit(2);
256 }
257 
258 static void
259 dfail(const char *message, ...)
260 {
261 	va_list args;
262 
263 	va_start(args, message);
264 	(void) fprintf(stderr, "lockstat: ");
265 	(void) vfprintf(stderr, message, args);
266 	va_end(args);
267 	(void) fprintf(stderr, ": %s\n",
268 	    dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
269 
270 	exit(2);
271 }
272 
273 static void
274 show_events(char event_type, char *desc)
275 {
276 	int i, first = -1, last;
277 
278 	for (i = 0; i < LS_MAX_EVENTS; i++) {
279 		ls_event_info_t *evp = &g_event_info[i];
280 		if (evp->ev_type != event_type ||
281 		    strncmp(evp->ev_desc, "Unknown event", 13) == 0)
282 			continue;
283 		if (first == -1)
284 			first = i;
285 		last = i;
286 	}
287 
288 	(void) fprintf(stderr,
289 	    "\n%s events (lockstat -%c or lockstat -e %d-%d):\n\n",
290 	    desc, event_type, first, last);
291 
292 	for (i = first; i <= last; i++)
293 		(void) fprintf(stderr,
294 		    "%4d = %s\n", i, g_event_info[i].ev_desc);
295 }
296 
297 static void
298 usage(void)
299 {
300 	(void) fprintf(stderr,
301 	    "Usage: lockstat [options] command [args]\n"
302 	    "\nEvent selection options:\n\n"
303 	    "  -C              watch contention events [on by default]\n"
304 	    "  -E              watch error events [off by default]\n"
305 	    "  -H              watch hold events [off by default]\n"
306 	    "  -I              watch interrupt events [off by default]\n"
307 	    "  -A              watch all lock events [equivalent to -CH]\n"
308 	    "  -e event_list   only watch the specified events (shown below);\n"
309 	    "                  <event_list> is a comma-separated list of\n"
310 	    "                  events or ranges of events, e.g. 1,4-7,35\n"
311 	    "  -i rate         interrupt rate for -I [default: %d Hz]\n"
312 	    "\nData gathering options:\n\n"
313 	    "  -b              basic statistics (lock, caller, event count)\n"
314 	    "  -t              timing for all events [default]\n"
315 	    "  -h              histograms for event times\n"
316 	    "  -s depth        stack traces <depth> deep\n"
317 	    "  -x opt[=val]    enable or modify DTrace options\n"
318 	    "\nData filtering options:\n\n"
319 	    "  -n nrecords     maximum number of data records [default: %d]\n"
320 	    "  -l lock[,size]  only watch <lock>, which can be specified as a\n"
321 	    "                  symbolic name or hex address; <size> defaults\n"
322 	    "                  to the ELF symbol size if available, 1 if not\n"
323 	    "  -f func[,size]  only watch events generated by <func>\n"
324 	    "  -d duration     only watch events longer than <duration>\n"
325 	    "  -T              trace (rather than sample) events\n"
326 	    "\nData reporting options:\n\n"
327 	    "  -c              coalesce lock data for arrays like pse_mutex[]\n"
328 	    "  -k              coalesce PCs within functions\n"
329 	    "  -g              show total events generated by function\n"
330 	    "  -w              wherever: don't distinguish events by caller\n"
331 	    "  -W              whichever: don't distinguish events by lock\n"
332 	    "  -R              display rates rather than counts\n"
333 	    "  -p              parsable output format (awk(1)-friendly)\n"
334 	    "  -P              sort lock data by (count * avg_time) product\n"
335 	    "  -D n            only display top <n> events of each type\n"
336 	    "  -o filename     send output to <filename>\n",
337 	    DEFAULT_HZ, DEFAULT_NRECS);
338 
339 	show_events('C', "Contention");
340 	show_events('H', "Hold-time");
341 	show_events('I', "Interrupt");
342 	show_events('E', "Error");
343 	(void) fprintf(stderr, "\n");
344 
345 	exit(1);
346 }
347 
348 static int
349 lockcmp(lsrec_t *a, lsrec_t *b)
350 {
351 	int i;
352 
353 	if (a->ls_event < b->ls_event)
354 		return (-1);
355 	if (a->ls_event > b->ls_event)
356 		return (1);
357 
358 	for (i = g_stkdepth - 1; i >= 0; i--) {
359 		if (a->ls_stack[i] < b->ls_stack[i])
360 			return (-1);
361 		if (a->ls_stack[i] > b->ls_stack[i])
362 			return (1);
363 	}
364 
365 	if (a->ls_caller < b->ls_caller)
366 		return (-1);
367 	if (a->ls_caller > b->ls_caller)
368 		return (1);
369 
370 	if (a->ls_lock < b->ls_lock)
371 		return (-1);
372 	if (a->ls_lock > b->ls_lock)
373 		return (1);
374 
375 	return (0);
376 }
377 
378 static int
379 countcmp(lsrec_t *a, lsrec_t *b)
380 {
381 	if (a->ls_event < b->ls_event)
382 		return (-1);
383 	if (a->ls_event > b->ls_event)
384 		return (1);
385 
386 	return (b->ls_count - a->ls_count);
387 }
388 
389 static int
390 timecmp(lsrec_t *a, lsrec_t *b)
391 {
392 	if (a->ls_event < b->ls_event)
393 		return (-1);
394 	if (a->ls_event > b->ls_event)
395 		return (1);
396 
397 	if (a->ls_time < b->ls_time)
398 		return (1);
399 	if (a->ls_time > b->ls_time)
400 		return (-1);
401 
402 	return (0);
403 }
404 
405 static int
406 lockcmp_anywhere(lsrec_t *a, lsrec_t *b)
407 {
408 	if (a->ls_event < b->ls_event)
409 		return (-1);
410 	if (a->ls_event > b->ls_event)
411 		return (1);
412 
413 	if (a->ls_lock < b->ls_lock)
414 		return (-1);
415 	if (a->ls_lock > b->ls_lock)
416 		return (1);
417 
418 	return (0);
419 }
420 
421 static int
422 lock_and_count_cmp_anywhere(lsrec_t *a, lsrec_t *b)
423 {
424 	if (a->ls_event < b->ls_event)
425 		return (-1);
426 	if (a->ls_event > b->ls_event)
427 		return (1);
428 
429 	if (a->ls_lock < b->ls_lock)
430 		return (-1);
431 	if (a->ls_lock > b->ls_lock)
432 		return (1);
433 
434 	return (b->ls_count - a->ls_count);
435 }
436 
437 static int
438 sitecmp_anylock(lsrec_t *a, lsrec_t *b)
439 {
440 	int i;
441 
442 	if (a->ls_event < b->ls_event)
443 		return (-1);
444 	if (a->ls_event > b->ls_event)
445 		return (1);
446 
447 	for (i = g_stkdepth - 1; i >= 0; i--) {
448 		if (a->ls_stack[i] < b->ls_stack[i])
449 			return (-1);
450 		if (a->ls_stack[i] > b->ls_stack[i])
451 			return (1);
452 	}
453 
454 	if (a->ls_caller < b->ls_caller)
455 		return (-1);
456 	if (a->ls_caller > b->ls_caller)
457 		return (1);
458 
459 	return (0);
460 }
461 
462 static int
463 site_and_count_cmp_anylock(lsrec_t *a, lsrec_t *b)
464 {
465 	int i;
466 
467 	if (a->ls_event < b->ls_event)
468 		return (-1);
469 	if (a->ls_event > b->ls_event)
470 		return (1);
471 
472 	for (i = g_stkdepth - 1; i >= 0; i--) {
473 		if (a->ls_stack[i] < b->ls_stack[i])
474 			return (-1);
475 		if (a->ls_stack[i] > b->ls_stack[i])
476 			return (1);
477 	}
478 
479 	if (a->ls_caller < b->ls_caller)
480 		return (-1);
481 	if (a->ls_caller > b->ls_caller)
482 		return (1);
483 
484 	return (b->ls_count - a->ls_count);
485 }
486 
487 static void
488 lsmergesort(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **a, lsrec_t **b, int n)
489 {
490 	int m = n / 2;
491 	int i, j;
492 
493 	if (m > 1)
494 		lsmergesort(cmp, a, b, m);
495 	if (n - m > 1)
496 		lsmergesort(cmp, a + m, b + m, n - m);
497 	for (i = m; i > 0; i--)
498 		b[i - 1] = a[i - 1];
499 	for (j = m - 1; j < n - 1; j++)
500 		b[n + m - j - 2] = a[j + 1];
501 	while (i < j)
502 		*a++ = cmp(b[i], b[j]) < 0 ? b[i++] : b[j--];
503 	*a = b[i];
504 }
505 
506 static void
507 coalesce(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **lock, int n)
508 {
509 	int i, j;
510 	lsrec_t *target, *current;
511 
512 	target = lock[0];
513 
514 	for (i = 1; i < n; i++) {
515 		current = lock[i];
516 		if (cmp(current, target) != 0) {
517 			target = current;
518 			continue;
519 		}
520 		current->ls_event = LS_MAX_EVENTS;
521 		target->ls_count += current->ls_count;
522 		target->ls_refcnt += current->ls_refcnt;
523 		if (g_recsize < LS_TIME)
524 			continue;
525 		target->ls_time += current->ls_time;
526 		if (g_recsize < LS_HIST)
527 			continue;
528 		for (j = 0; j < 64; j++)
529 			target->ls_hist[j] += current->ls_hist[j];
530 	}
531 }
532 
533 static void
534 coalesce_symbol(uintptr_t *addrp)
535 {
536 	uintptr_t symoff;
537 	size_t symsize;
538 
539 	if (addr_to_sym(*addrp, &symoff, &symsize) != NULL && symoff < symsize)
540 		*addrp -= symoff;
541 }
542 
543 static void
544 predicate_add(char **pred, char *what, char *cmp, uintptr_t value)
545 {
546 	char *new;
547 	int len, newlen;
548 
549 	if (what == NULL)
550 		return;
551 
552 	if (*pred == NULL) {
553 		*pred = malloc(1);
554 		*pred[0] = '\0';
555 	}
556 
557 	len = strlen(*pred);
558 	newlen = len + strlen(what) + 32 + strlen("( && )");
559 	new = malloc(newlen);
560 
561 	if (*pred[0] != '\0') {
562 		if (cmp != NULL) {
563 			(void) sprintf(new, "(%s) && (%s %s 0x%p)",
564 			    *pred, what, cmp, (void *)value);
565 		} else {
566 			(void) sprintf(new, "(%s) && (%s)", *pred, what);
567 		}
568 	} else {
569 		if (cmp != NULL) {
570 			(void) sprintf(new, "%s %s 0x%p",
571 			    what, cmp, (void *)value);
572 		} else {
573 			(void) sprintf(new, "%s", what);
574 		}
575 	}
576 
577 	free(*pred);
578 	*pred = new;
579 }
580 
581 static void
582 predicate_destroy(char **pred)
583 {
584 	free(*pred);
585 	*pred = NULL;
586 }
587 
588 static void
589 filter_add(char **filt, char *what, uintptr_t base, uintptr_t size)
590 {
591 	char buf[256], *c = buf, *new;
592 	int len, newlen;
593 
594 	if (*filt == NULL) {
595 		*filt = malloc(1);
596 		*filt[0] = '\0';
597 	}
598 
599 #ifdef illumos
600 	(void) sprintf(c, "%s(%s >= 0x%p && %s < 0x%p)", *filt[0] != '\0' ?
601 	    " || " : "", what, (void *)base, what, (void *)(base + size));
602 #else
603 	(void) sprintf(c, "%s(%s >= %p && %s < %p)", *filt[0] != '\0' ?
604 	    " || " : "", what, (void *)base, what, (void *)(base + size));
605 #endif
606 
607 	newlen = (len = strlen(*filt) + 1) + strlen(c);
608 	new = malloc(newlen);
609 	bcopy(*filt, new, len);
610 	(void) strcat(new, c);
611 	free(*filt);
612 	*filt = new;
613 }
614 
615 static void
616 filter_destroy(char **filt)
617 {
618 	free(*filt);
619 	*filt = NULL;
620 }
621 
622 static void
623 dprog_add(const char *fmt, ...)
624 {
625 	va_list args;
626 	int size, offs;
627 	char c;
628 
629 	va_start(args, fmt);
630 	size = vsnprintf(&c, 1, fmt, args) + 1;
631 	va_end(args);
632 
633 	if (g_proglen == 0) {
634 		offs = 0;
635 	} else {
636 		offs = g_proglen - 1;
637 	}
638 
639 	g_proglen = offs + size;
640 
641 	if ((g_prog = realloc(g_prog, g_proglen)) == NULL)
642 		fail(1, "failed to reallocate program text");
643 
644 	va_start(args, fmt);
645 	(void) vsnprintf(&g_prog[offs], size, fmt, args);
646 	va_end(args);
647 }
648 
649 /*
650  * This function may read like an open sewer, but keep in mind that programs
651  * that generate other programs are rarely pretty.  If one has the unenviable
652  * task of maintaining or -- worse -- extending this code, use the -V option
653  * to examine the D program as generated by this function.
654  */
655 static void
656 dprog_addevent(int event)
657 {
658 	ls_event_info_t *info = &g_event_info[event];
659 	char *pred = NULL;
660 	char stack[20];
661 	const char *arg0, *caller;
662 	char *arg1 = "arg1";
663 	char buf[80];
664 	hrtime_t dur;
665 	int depth;
666 
667 	if (info->ev_name[0] == '\0')
668 		return;
669 
670 	if (info->ev_type == 'I') {
671 		/*
672 		 * For interrupt events, arg0 (normally the lock pointer) is
673 		 * the CPU address plus the current pil, and arg1 (normally
674 		 * the number of nanoseconds) is the number of nanoseconds
675 		 * late -- and it's stored in arg2.
676 		 */
677 #ifdef illumos
678 		arg0 = "(uintptr_t)curthread->t_cpu + \n"
679 		    "\t    curthread->t_cpu->cpu_profile_pil";
680 #else
681 		arg0 = "(uintptr_t)(curthread->td_oncpu << 16) + \n"
682 		    "\t    0x01000000 + curthread->td_pri_class";
683 #endif
684 		caller = "(uintptr_t)arg0";
685 		arg1 = "arg2";
686 	} else {
687 		arg0 = "(uintptr_t)arg0";
688 		caller = "caller";
689 	}
690 
691 	if (g_recsize > LS_HIST) {
692 		for (depth = 0; g_recsize > LS_STACK(depth); depth++)
693 			continue;
694 
695 		if (g_tracing) {
696 			(void) sprintf(stack, "\tstack(%d);\n", depth);
697 		} else {
698 			(void) sprintf(stack, ", stack(%d)", depth);
699 		}
700 	} else {
701 		(void) sprintf(stack, "");
702 	}
703 
704 	if (info->ev_acquire != NULL) {
705 		/*
706 		 * If this is a hold event, we need to generate an additional
707 		 * clause for the acquire; the clause for the release will be
708 		 * generated with the aggregating statement, below.
709 		 */
710 		dprog_add("%s\n", info->ev_acquire);
711 		predicate_add(&pred, info->ev_predicate, NULL, 0);
712 		predicate_add(&pred, g_predicate, NULL, 0);
713 		if (pred != NULL)
714 			dprog_add("/%s/\n", pred);
715 
716 		dprog_add("{\n");
717 		(void) sprintf(buf, "self->ev%d[(uintptr_t)arg0]", event);
718 
719 		if (info->ev_type == 'H') {
720 			dprog_add("\t%s = timestamp;\n", buf);
721 		} else {
722 			/*
723 			 * If this isn't a hold event, it's the recursive
724 			 * error event.  For this, we simply bump the
725 			 * thread-local, per-lock count.
726 			 */
727 			dprog_add("\t%s++;\n", buf);
728 		}
729 
730 		dprog_add("}\n\n");
731 		predicate_destroy(&pred);
732 		pred = NULL;
733 
734 		if (info->ev_type == 'E') {
735 			/*
736 			 * If this is the recursive lock error event, we need
737 			 * to generate an additional clause to decrement the
738 			 * thread-local, per-lock count.  This assures that we
739 			 * only execute the aggregating clause if we have
740 			 * recursive entry.
741 			 */
742 			dprog_add("%s\n", info->ev_name);
743 			dprog_add("/%s/\n{\n\t%s--;\n}\n\n", buf, buf);
744 		}
745 
746 		predicate_add(&pred, buf, NULL, 0);
747 
748 		if (info->ev_type == 'H') {
749 			(void) sprintf(buf, "timestamp -\n\t    "
750 			    "self->ev%d[(uintptr_t)arg0]", event);
751 		}
752 
753 		arg1 = buf;
754 	} else {
755 		predicate_add(&pred, info->ev_predicate, NULL, 0);
756 		if (info->ev_type != 'I')
757 			predicate_add(&pred, g_predicate, NULL, 0);
758 		else
759 			predicate_add(&pred, g_ipredicate, NULL, 0);
760 	}
761 
762 	if ((dur = g_min_duration[event]) != 0)
763 		predicate_add(&pred, arg1, ">=", dur);
764 
765 	dprog_add("%s\n", info->ev_name);
766 
767 	if (pred != NULL)
768 		dprog_add("/%s/\n", pred);
769 	predicate_destroy(&pred);
770 
771 	dprog_add("{\n");
772 
773 	if (g_tracing) {
774 		dprog_add("\ttrace(%dULL);\n", event);
775 		dprog_add("\ttrace(%s);\n", arg0);
776 		dprog_add("\ttrace(%s);\n", caller);
777 		dprog_add(stack);
778 	} else {
779 		/*
780 		 * The ordering here is important:  when we process the
781 		 * aggregate, we count on the fact that @avg appears before
782 		 * @hist in program order to assure that @avg is assigned the
783 		 * first aggregation variable ID and @hist assigned the
784 		 * second; see the comment in process_aggregate() for details.
785 		 */
786 		dprog_add("\t@avg[%dULL, %s, %s%s] = avg(%s);\n",
787 		    event, arg0, caller, stack, arg1);
788 
789 		if (g_recsize >= LS_HIST) {
790 			dprog_add("\t@hist[%dULL, %s, %s%s] = quantize"
791 			    "(%s);\n", event, arg0, caller, stack, arg1);
792 		}
793 	}
794 
795 	if (info->ev_acquire != NULL)
796 		dprog_add("\tself->ev%d[arg0] = 0;\n", event);
797 
798 	dprog_add("}\n\n");
799 }
800 
801 static void
802 dprog_compile()
803 {
804 	dtrace_prog_t *prog;
805 	dtrace_proginfo_t info;
806 
807 	if (g_Vflag) {
808 		(void) fprintf(stderr, "lockstat: vvvv D program vvvv\n");
809 		(void) fputs(g_prog, stderr);
810 		(void) fprintf(stderr, "lockstat: ^^^^ D program ^^^^\n");
811 	}
812 
813 	if ((prog = dtrace_program_strcompile(g_dtp, g_prog,
814 	    DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL)
815 		dfail("failed to compile program");
816 
817 	if (dtrace_program_exec(g_dtp, prog, &info) == -1)
818 		dfail("failed to enable probes");
819 
820 	if (dtrace_go(g_dtp) != 0)
821 		dfail("couldn't start tracing");
822 }
823 
824 static void
825 #ifdef illumos
826 status_fire(void)
827 #else
828 status_fire(int i)
829 #endif
830 {}
831 
832 static void
833 status_init(void)
834 {
835 	dtrace_optval_t val, status, agg;
836 	struct sigaction act;
837 	struct itimerspec ts;
838 	struct sigevent ev;
839 	timer_t tid;
840 
841 	if (dtrace_getopt(g_dtp, "statusrate", &status) == -1)
842 		dfail("failed to get 'statusrate'");
843 
844 	if (dtrace_getopt(g_dtp, "aggrate", &agg) == -1)
845 		dfail("failed to get 'statusrate'");
846 
847 	/*
848 	 * We would want to awaken at a rate that is the GCD of the statusrate
849 	 * and the aggrate -- but that seems a bit absurd.  Instead, we'll
850 	 * simply awaken at a rate that is the more frequent of the two, which
851 	 * assures that we're never later than the interval implied by the
852 	 * more frequent rate.
853 	 */
854 	val = status < agg ? status : agg;
855 
856 	(void) sigemptyset(&act.sa_mask);
857 	act.sa_flags = 0;
858 	act.sa_handler = status_fire;
859 	(void) sigaction(SIGUSR1, &act, NULL);
860 
861 	ev.sigev_notify = SIGEV_SIGNAL;
862 	ev.sigev_signo = SIGUSR1;
863 
864 	if (timer_create(CLOCK_REALTIME, &ev, &tid) == -1)
865 		dfail("cannot create CLOCK_REALTIME timer");
866 
867 	ts.it_value.tv_sec = val / NANOSEC;
868 	ts.it_value.tv_nsec = val % NANOSEC;
869 	ts.it_interval = ts.it_value;
870 
871 	if (timer_settime(tid, TIMER_RELTIME, &ts, NULL) == -1)
872 		dfail("cannot set time on CLOCK_REALTIME timer");
873 }
874 
875 static void
876 status_check(void)
877 {
878 	if (!g_tracing && dtrace_aggregate_snap(g_dtp) != 0)
879 		dfail("failed to snap aggregate");
880 
881 	if (dtrace_status(g_dtp) == -1)
882 		dfail("dtrace_status()");
883 }
884 
885 static void
886 lsrec_fill(lsrec_t *lsrec, const dtrace_recdesc_t *rec, int nrecs, caddr_t data)
887 {
888 	bzero(lsrec, g_recsize);
889 	lsrec->ls_count = 1;
890 
891 	if ((g_recsize > LS_HIST && nrecs < 4) || (nrecs < 3))
892 		fail(0, "truncated DTrace record");
893 
894 	if (rec->dtrd_size != sizeof (uint64_t))
895 		fail(0, "bad event size in first record");
896 
897 	/* LINTED - alignment */
898 	lsrec->ls_event = (uint32_t)*((uint64_t *)(data + rec->dtrd_offset));
899 	rec++;
900 
901 	if (rec->dtrd_size != sizeof (uintptr_t))
902 		fail(0, "bad lock address size in second record");
903 
904 	/* LINTED - alignment */
905 	lsrec->ls_lock = *((uintptr_t *)(data + rec->dtrd_offset));
906 	rec++;
907 
908 	if (rec->dtrd_size != sizeof (uintptr_t))
909 		fail(0, "bad caller size in third record");
910 
911 	/* LINTED - alignment */
912 	lsrec->ls_caller = *((uintptr_t *)(data + rec->dtrd_offset));
913 	rec++;
914 
915 	if (g_recsize > LS_HIST) {
916 		int frames, i;
917 		pc_t *stack;
918 
919 		frames = rec->dtrd_size / sizeof (pc_t);
920 		/* LINTED - alignment */
921 		stack = (pc_t *)(data + rec->dtrd_offset);
922 
923 		for (i = 1; i < frames; i++)
924 			lsrec->ls_stack[i - 1] = stack[i];
925 	}
926 }
927 
928 /*ARGSUSED*/
929 static int
930 count_aggregate(const dtrace_aggdata_t *agg, void *arg)
931 {
932 	*((size_t *)arg) += 1;
933 
934 	return (DTRACE_AGGWALK_NEXT);
935 }
936 
937 static int
938 process_aggregate(const dtrace_aggdata_t *agg, void *arg)
939 {
940 	const dtrace_aggdesc_t *aggdesc = agg->dtada_desc;
941 	caddr_t data = agg->dtada_data;
942 	lsdata_t *lsdata = arg;
943 	lsrec_t *lsrec = lsdata->lsd_next;
944 	const dtrace_recdesc_t *rec;
945 	uint64_t *avg, *quantized;
946 	int i, j;
947 
948 	assert(lsdata->lsd_count < g_nrecs);
949 
950 	/*
951 	 * Aggregation variable IDs are guaranteed to be generated in program
952 	 * order, and they are guaranteed to start from DTRACE_AGGVARIDNONE
953 	 * plus one.  As "avg" appears before "hist" in program order, we know
954 	 * that "avg" will be allocated the first aggregation variable ID, and
955 	 * "hist" will be allocated the second aggregation variable ID -- and
956 	 * we therefore use the aggregation variable ID to differentiate the
957 	 * cases.
958 	 */
959 	if (aggdesc->dtagd_varid > DTRACE_AGGVARIDNONE + 1) {
960 		/*
961 		 * If this is the histogram entry.  We'll copy the quantized
962 		 * data into lc_hist, and jump over the rest.
963 		 */
964 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
965 
966 		if (aggdesc->dtagd_varid != DTRACE_AGGVARIDNONE + 2)
967 			fail(0, "bad variable ID in aggregation record");
968 
969 		if (rec->dtrd_size !=
970 		    DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
971 			fail(0, "bad quantize size in aggregation record");
972 
973 		/* LINTED - alignment */
974 		quantized = (uint64_t *)(data + rec->dtrd_offset);
975 
976 		for (i = DTRACE_QUANTIZE_ZEROBUCKET, j = 0;
977 		    i < DTRACE_QUANTIZE_NBUCKETS; i++, j++)
978 			lsrec->ls_hist[j] = quantized[i];
979 
980 		goto out;
981 	}
982 
983 	lsrec_fill(lsrec, &aggdesc->dtagd_rec[1],
984 	    aggdesc->dtagd_nrecs - 1, data);
985 
986 	rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
987 
988 	if (rec->dtrd_size != 2 * sizeof (uint64_t))
989 		fail(0, "bad avg size in aggregation record");
990 
991 	/* LINTED - alignment */
992 	avg = (uint64_t *)(data + rec->dtrd_offset);
993 	lsrec->ls_count = (uint32_t)avg[0];
994 	lsrec->ls_time = (uintptr_t)avg[1];
995 
996 	if (g_recsize >= LS_HIST)
997 		return (DTRACE_AGGWALK_NEXT);
998 
999 out:
1000 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
1001 	lsdata->lsd_count++;
1002 
1003 	return (DTRACE_AGGWALK_NEXT);
1004 }
1005 
1006 static int
1007 process_trace(const dtrace_probedata_t *pdata, void *arg)
1008 {
1009 	lsdata_t *lsdata = arg;
1010 	lsrec_t *lsrec = lsdata->lsd_next;
1011 	dtrace_eprobedesc_t *edesc = pdata->dtpda_edesc;
1012 	caddr_t data = pdata->dtpda_data;
1013 
1014 	if (lsdata->lsd_count >= g_nrecs)
1015 		return (DTRACE_CONSUME_NEXT);
1016 
1017 	lsrec_fill(lsrec, edesc->dtepd_rec, edesc->dtepd_nrecs, data);
1018 
1019 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
1020 	lsdata->lsd_count++;
1021 
1022 	return (DTRACE_CONSUME_NEXT);
1023 }
1024 
1025 static int
1026 process_data(FILE *out, char *data)
1027 {
1028 	lsdata_t lsdata;
1029 
1030 	/* LINTED - alignment */
1031 	lsdata.lsd_next = (lsrec_t *)data;
1032 	lsdata.lsd_count = 0;
1033 
1034 	if (g_tracing) {
1035 		if (dtrace_consume(g_dtp, out,
1036 		    process_trace, NULL, &lsdata) != 0)
1037 			dfail("failed to consume buffer");
1038 
1039 		return (lsdata.lsd_count);
1040 	}
1041 
1042 	if (dtrace_aggregate_walk_keyvarsorted(g_dtp,
1043 	    process_aggregate, &lsdata) != 0)
1044 		dfail("failed to walk aggregate");
1045 
1046 	return (lsdata.lsd_count);
1047 }
1048 
1049 /*ARGSUSED*/
1050 static int
1051 drophandler(const dtrace_dropdata_t *data, void *arg)
1052 {
1053 	g_dropped++;
1054 	(void) fprintf(stderr, "lockstat: warning: %s", data->dtdda_msg);
1055 	return (DTRACE_HANDLE_OK);
1056 }
1057 
1058 int
1059 main(int argc, char **argv)
1060 {
1061 	char *data_buf;
1062 	lsrec_t *lsp, **current, **first, **sort_buf, **merge_buf;
1063 	FILE *out = stdout;
1064 	int c;
1065 	pid_t child;
1066 	int status;
1067 	int i, j;
1068 	hrtime_t duration;
1069 	char *addrp, *offp, *sizep, *evp, *lastp, *p;
1070 	uintptr_t addr;
1071 	size_t size, off;
1072 	int events_specified = 0;
1073 	int exec_errno = 0;
1074 	uint32_t event;
1075 	char *filt = NULL, *ifilt = NULL;
1076 	static uint64_t ev_count[LS_MAX_EVENTS + 1];
1077 	static uint64_t ev_time[LS_MAX_EVENTS + 1];
1078 	dtrace_optval_t aggsize;
1079 	char aggstr[10];
1080 	long ncpus;
1081 	int dynvar = 0;
1082 	int err;
1083 
1084 	if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL) {
1085 		fail(0, "cannot open dtrace library: %s",
1086 		    dtrace_errmsg(NULL, err));
1087 	}
1088 
1089 	if (dtrace_handle_drop(g_dtp, &drophandler, NULL) == -1)
1090 		dfail("couldn't establish drop handler");
1091 
1092 	if (symtab_init() == -1)
1093 		fail(1, "can't load kernel symbols");
1094 
1095 	g_nrecs = DEFAULT_NRECS;
1096 
1097 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != GETOPT_EOF) {
1098 		switch (c) {
1099 		case 'b':
1100 			g_recsize = LS_BASIC;
1101 			break;
1102 
1103 		case 't':
1104 			g_recsize = LS_TIME;
1105 			break;
1106 
1107 		case 'h':
1108 			g_recsize = LS_HIST;
1109 			break;
1110 
1111 		case 's':
1112 			if (!isdigit(optarg[0]))
1113 				usage();
1114 			g_stkdepth = atoi(optarg);
1115 			if (g_stkdepth > LS_MAX_STACK_DEPTH)
1116 				fail(0, "max stack depth is %d",
1117 				    LS_MAX_STACK_DEPTH);
1118 			g_recsize = LS_STACK(g_stkdepth);
1119 			break;
1120 
1121 		case 'n':
1122 			if (!isdigit(optarg[0]))
1123 				usage();
1124 			g_nrecs = atoi(optarg);
1125 			break;
1126 
1127 		case 'd':
1128 			if (!isdigit(optarg[0]))
1129 				usage();
1130 			duration = atoll(optarg);
1131 
1132 			/*
1133 			 * XXX -- durations really should be per event
1134 			 * since the units are different, but it's hard
1135 			 * to express this nicely in the interface.
1136 			 * Not clear yet what the cleanest solution is.
1137 			 */
1138 			for (i = 0; i < LS_MAX_EVENTS; i++)
1139 				if (g_event_info[i].ev_type != 'E')
1140 					g_min_duration[i] = duration;
1141 
1142 			break;
1143 
1144 		case 'i':
1145 			if (!isdigit(optarg[0]))
1146 				usage();
1147 			i = atoi(optarg);
1148 			if (i <= 0)
1149 				usage();
1150 			if (i > MAX_HZ)
1151 				fail(0, "max interrupt rate is %d Hz", MAX_HZ);
1152 
1153 			for (j = 0; j < LS_MAX_EVENTS; j++)
1154 				if (strcmp(g_event_info[j].ev_desc,
1155 				    "Profiling interrupt") == 0)
1156 					break;
1157 
1158 			(void) sprintf(g_event_info[j].ev_name,
1159 			    "profile:::profile-%d", i);
1160 			break;
1161 
1162 		case 'l':
1163 		case 'f':
1164 			addrp = strtok(optarg, ",");
1165 			sizep = strtok(NULL, ",");
1166 			addrp = strtok(optarg, ",+");
1167 			offp = strtok(NULL, ",");
1168 
1169 			size = sizep ? strtoul(sizep, NULL, 0) : 1;
1170 			off = offp ? strtoul(offp, NULL, 0) : 0;
1171 
1172 			if (addrp[0] == '0') {
1173 				addr = strtoul(addrp, NULL, 16) + off;
1174 			} else {
1175 				addr = sym_to_addr(addrp) + off;
1176 				if (sizep == NULL)
1177 					size = sym_size(addrp) - off;
1178 				if (addr - off == 0)
1179 					fail(0, "symbol '%s' not found", addrp);
1180 				if (size == 0)
1181 					size = 1;
1182 			}
1183 
1184 
1185 			if (c == 'l') {
1186 				filter_add(&filt, "arg0", addr, size);
1187 			} else {
1188 				filter_add(&filt, "caller", addr, size);
1189 				filter_add(&ifilt, "arg0", addr, size);
1190 			}
1191 			break;
1192 
1193 		case 'e':
1194 			evp = strtok_r(optarg, ",", &lastp);
1195 			while (evp) {
1196 				int ev1, ev2;
1197 				char *evp2;
1198 
1199 				(void) strtok(evp, "-");
1200 				evp2 = strtok(NULL, "-");
1201 				ev1 = atoi(evp);
1202 				ev2 = evp2 ? atoi(evp2) : ev1;
1203 				if ((uint_t)ev1 >= LS_MAX_EVENTS ||
1204 				    (uint_t)ev2 >= LS_MAX_EVENTS || ev1 > ev2)
1205 					fail(0, "-e events out of range");
1206 				for (i = ev1; i <= ev2; i++)
1207 					g_enabled[i] = 1;
1208 				evp = strtok_r(NULL, ",", &lastp);
1209 			}
1210 			events_specified = 1;
1211 			break;
1212 
1213 		case 'c':
1214 			g_cflag = 1;
1215 			break;
1216 
1217 		case 'k':
1218 			g_kflag = 1;
1219 			break;
1220 
1221 		case 'w':
1222 			g_wflag = 1;
1223 			break;
1224 
1225 		case 'W':
1226 			g_Wflag = 1;
1227 			break;
1228 
1229 		case 'g':
1230 			g_gflag = 1;
1231 			break;
1232 
1233 		case 'C':
1234 		case 'E':
1235 		case 'H':
1236 		case 'I':
1237 			for (i = 0; i < LS_MAX_EVENTS; i++)
1238 				if (g_event_info[i].ev_type == c)
1239 					g_enabled[i] = 1;
1240 			events_specified = 1;
1241 			break;
1242 
1243 		case 'A':
1244 			for (i = 0; i < LS_MAX_EVENTS; i++)
1245 				if (strchr("CH", g_event_info[i].ev_type))
1246 					g_enabled[i] = 1;
1247 			events_specified = 1;
1248 			break;
1249 
1250 		case 'T':
1251 			g_tracing = 1;
1252 			break;
1253 
1254 		case 'D':
1255 			if (!isdigit(optarg[0]))
1256 				usage();
1257 			g_topn = atoi(optarg);
1258 			break;
1259 
1260 		case 'R':
1261 			g_rates = 1;
1262 			break;
1263 
1264 		case 'p':
1265 			g_pflag = 1;
1266 			break;
1267 
1268 		case 'P':
1269 			g_Pflag = 1;
1270 			break;
1271 
1272 		case 'o':
1273 			if ((out = fopen(optarg, "w")) == NULL)
1274 				fail(1, "error opening file");
1275 			break;
1276 
1277 		case 'V':
1278 			g_Vflag = 1;
1279 			break;
1280 
1281 		default:
1282 			if (strchr(LOCKSTAT_OPTSTR, c) == NULL)
1283 				usage();
1284 		}
1285 	}
1286 
1287 	if (filt != NULL) {
1288 		predicate_add(&g_predicate, filt, NULL, 0);
1289 		filter_destroy(&filt);
1290 	}
1291 
1292 	if (ifilt != NULL) {
1293 		predicate_add(&g_ipredicate, ifilt, NULL, 0);
1294 		filter_destroy(&ifilt);
1295 	}
1296 
1297 	if (g_recsize == 0) {
1298 		if (g_gflag) {
1299 			g_stkdepth = LS_MAX_STACK_DEPTH;
1300 			g_recsize = LS_STACK(g_stkdepth);
1301 		} else {
1302 			g_recsize = LS_TIME;
1303 		}
1304 	}
1305 
1306 	if (g_gflag && g_recsize <= LS_STACK(0))
1307 		fail(0, "'-g' requires at least '-s 1' data gathering");
1308 
1309 	/*
1310 	 * Make sure the alignment is reasonable
1311 	 */
1312 	g_recsize = -(-g_recsize & -sizeof (uint64_t));
1313 
1314 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1315 		/*
1316 		 * If no events were specified, enable -C.
1317 		 */
1318 		if (!events_specified && g_event_info[i].ev_type == 'C')
1319 			g_enabled[i] = 1;
1320 	}
1321 
1322 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1323 		if (!g_enabled[i])
1324 			continue;
1325 
1326 		if (g_event_info[i].ev_acquire != NULL) {
1327 			/*
1328 			 * If we've enabled a hold event, we must explicitly
1329 			 * allocate dynamic variable space.
1330 			 */
1331 			dynvar = 1;
1332 		}
1333 
1334 		dprog_addevent(i);
1335 	}
1336 
1337 	/*
1338 	 * Make sure there are remaining arguments to specify a child command
1339 	 * to execute.
1340 	 */
1341 	if (argc <= optind)
1342 		usage();
1343 
1344 	if ((ncpus = sysconf(_SC_NPROCESSORS_ONLN)) == -1)
1345 		dfail("couldn't determine number of online CPUs");
1346 
1347 	/*
1348 	 * By default, we set our data buffer size to be the number of records
1349 	 * multiplied by the size of the record, doubled to account for some
1350 	 * DTrace slop and divided by the number of CPUs.  We silently clamp
1351 	 * the aggregation size at both a minimum and a maximum to prevent
1352 	 * absurdly low or high values.
1353 	 */
1354 	if ((aggsize = (g_nrecs * g_recsize * 2) / ncpus) < MIN_AGGSIZE)
1355 		aggsize = MIN_AGGSIZE;
1356 
1357 	if (aggsize > MAX_AGGSIZE)
1358 		aggsize = MAX_AGGSIZE;
1359 
1360 	(void) sprintf(aggstr, "%lld", (long long)aggsize);
1361 
1362 	if (!g_tracing) {
1363 		if (dtrace_setopt(g_dtp, "bufsize", "4k") == -1)
1364 			dfail("failed to set 'bufsize'");
1365 
1366 		if (dtrace_setopt(g_dtp, "aggsize", aggstr) == -1)
1367 			dfail("failed to set 'aggsize'");
1368 
1369 		if (dynvar) {
1370 			/*
1371 			 * If we're using dynamic variables, we set our
1372 			 * dynamic variable size to be one megabyte per CPU,
1373 			 * with a hard-limit of 32 megabytes.  This may still
1374 			 * be too small in some cases, but it can be tuned
1375 			 * manually via -x if need be.
1376 			 */
1377 			(void) sprintf(aggstr, "%ldm", ncpus < 32 ? ncpus : 32);
1378 
1379 			if (dtrace_setopt(g_dtp, "dynvarsize", aggstr) == -1)
1380 				dfail("failed to set 'dynvarsize'");
1381 		}
1382 	} else {
1383 		if (dtrace_setopt(g_dtp, "bufsize", aggstr) == -1)
1384 			dfail("failed to set 'bufsize'");
1385 	}
1386 
1387 	if (dtrace_setopt(g_dtp, "statusrate", "10sec") == -1)
1388 		dfail("failed to set 'statusrate'");
1389 
1390 	optind = 1;
1391 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != GETOPT_EOF) {
1392 		switch (c) {
1393 		case 'x':
1394 			if ((p = strchr(optarg, '=')) != NULL)
1395 				*p++ = '\0';
1396 
1397 			if (dtrace_setopt(g_dtp, optarg, p) != 0)
1398 				dfail("failed to set -x %s", optarg);
1399 			break;
1400 		}
1401 	}
1402 
1403 	argc -= optind;
1404 	argv += optind;
1405 
1406 	dprog_compile();
1407 	status_init();
1408 
1409 	g_elapsed = -gethrtime();
1410 
1411 	/*
1412 	 * Spawn the specified command and wait for it to complete.
1413 	 */
1414 	child = fork();
1415 	if (child == -1)
1416 		fail(1, "cannot fork");
1417 	if (child == 0) {
1418 		(void) dtrace_close(g_dtp);
1419 		(void) execvp(argv[0], &argv[0]);
1420 		exec_errno = errno;
1421 		exit(127);
1422 	}
1423 
1424 #ifdef illumos
1425 	while (waitpid(child, &status, WEXITED) != child)
1426 #else
1427 	while (waitpid(child, &status, 0) != child)
1428 #endif
1429 		status_check();
1430 
1431 	g_elapsed += gethrtime();
1432 
1433 	if (WIFEXITED(status)) {
1434 		if (WEXITSTATUS(status) != 0) {
1435 			if (exec_errno != 0) {
1436 				errno = exec_errno;
1437 				fail(1, "could not execute %s", argv[0]);
1438 			}
1439 			(void) fprintf(stderr,
1440 			    "lockstat: warning: %s exited with code %d\n",
1441 			    argv[0], WEXITSTATUS(status));
1442 		}
1443 	} else {
1444 		(void) fprintf(stderr,
1445 		    "lockstat: warning: %s died on signal %d\n",
1446 		    argv[0], WTERMSIG(status));
1447 	}
1448 
1449 	if (dtrace_stop(g_dtp) == -1)
1450 		dfail("failed to stop dtrace");
1451 
1452 	/*
1453 	 * Before we read out the results, we need to allocate our buffer.
1454 	 * If we're tracing, then we'll just use the precalculated size.  If
1455 	 * we're not, then we'll take a snapshot of the aggregate, and walk
1456 	 * it to count the number of records.
1457 	 */
1458 	if (!g_tracing) {
1459 		if (dtrace_aggregate_snap(g_dtp) != 0)
1460 			dfail("failed to snap aggregate");
1461 
1462 		g_nrecs = 0;
1463 
1464 		if (dtrace_aggregate_walk(g_dtp,
1465 		    count_aggregate, &g_nrecs) != 0)
1466 			dfail("failed to walk aggregate");
1467 	}
1468 
1469 #ifdef illumos
1470 	if ((data_buf = memalign(sizeof (uint64_t),
1471 	    (g_nrecs + 1) * g_recsize)) == NULL)
1472 #else
1473 	if (posix_memalign((void **)&data_buf, sizeof (uint64_t),
1474 	    (g_nrecs + 1) * g_recsize) )
1475 #endif
1476 		fail(1, "Memory allocation failed");
1477 
1478 	/*
1479 	 * Read out the DTrace data.
1480 	 */
1481 	g_nrecs_used = process_data(out, data_buf);
1482 
1483 	if (g_nrecs_used > g_nrecs || g_dropped)
1484 		(void) fprintf(stderr, "lockstat: warning: "
1485 		    "ran out of data records (use -n for more)\n");
1486 
1487 	/* LINTED - alignment */
1488 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1489 	    /* LINTED - alignment */
1490 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1491 		ev_count[lsp->ls_event] += lsp->ls_count;
1492 		ev_time[lsp->ls_event] += lsp->ls_time;
1493 	}
1494 
1495 	/*
1496 	 * If -g was specified, convert stacks into individual records.
1497 	 */
1498 	if (g_gflag) {
1499 		lsrec_t *newlsp, *oldlsp;
1500 
1501 #ifdef illumos
1502 		newlsp = memalign(sizeof (uint64_t),
1503 		    g_nrecs_used * LS_TIME * (g_stkdepth + 1));
1504 #else
1505 		posix_memalign((void **)&newlsp, sizeof (uint64_t),
1506 		    g_nrecs_used * LS_TIME * (g_stkdepth + 1));
1507 #endif
1508 		if (newlsp == NULL)
1509 			fail(1, "Cannot allocate space for -g processing");
1510 		lsp = newlsp;
1511 		/* LINTED - alignment */
1512 		for (i = 0, oldlsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1513 		    /* LINTED - alignment */
1514 		    oldlsp = (lsrec_t *)((char *)oldlsp + g_recsize)) {
1515 			int fr;
1516 			int caller_in_stack = 0;
1517 
1518 			if (oldlsp->ls_count == 0)
1519 				continue;
1520 
1521 			for (fr = 0; fr < g_stkdepth; fr++) {
1522 				if (oldlsp->ls_stack[fr] == 0)
1523 					break;
1524 				if (oldlsp->ls_stack[fr] == oldlsp->ls_caller)
1525 					caller_in_stack = 1;
1526 				bcopy(oldlsp, lsp, LS_TIME);
1527 				lsp->ls_caller = oldlsp->ls_stack[fr];
1528 				/* LINTED - alignment */
1529 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1530 			}
1531 			if (!caller_in_stack) {
1532 				bcopy(oldlsp, lsp, LS_TIME);
1533 				/* LINTED - alignment */
1534 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1535 			}
1536 		}
1537 		g_nrecs = g_nrecs_used =
1538 		    ((uintptr_t)lsp - (uintptr_t)newlsp) / LS_TIME;
1539 		g_recsize = LS_TIME;
1540 		g_stkdepth = 0;
1541 		free(data_buf);
1542 		data_buf = (char *)newlsp;
1543 	}
1544 
1545 	if ((sort_buf = calloc(2 * (g_nrecs + 1),
1546 	    sizeof (void *))) == NULL)
1547 		fail(1, "Sort buffer allocation failed");
1548 	merge_buf = sort_buf + (g_nrecs + 1);
1549 
1550 	/*
1551 	 * Build the sort buffer, discarding zero-count records along the way.
1552 	 */
1553 	/* LINTED - alignment */
1554 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1555 	    /* LINTED - alignment */
1556 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1557 		if (lsp->ls_count == 0)
1558 			lsp->ls_event = LS_MAX_EVENTS;
1559 		sort_buf[i] = lsp;
1560 	}
1561 
1562 	if (g_nrecs_used == 0)
1563 		exit(0);
1564 
1565 	/*
1566 	 * Add a sentinel after the last record
1567 	 */
1568 	sort_buf[i] = lsp;
1569 	lsp->ls_event = LS_MAX_EVENTS;
1570 
1571 	if (g_tracing) {
1572 		report_trace(out, sort_buf);
1573 		return (0);
1574 	}
1575 
1576 	/*
1577 	 * Application of -g may have resulted in multiple records
1578 	 * with the same signature; coalesce them.
1579 	 */
1580 	if (g_gflag) {
1581 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1582 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1583 	}
1584 
1585 	/*
1586 	 * Coalesce locks within the same symbol if -c option specified.
1587 	 * Coalesce PCs within the same function if -k option specified.
1588 	 */
1589 	if (g_cflag || g_kflag) {
1590 		for (i = 0; i < g_nrecs_used; i++) {
1591 			int fr;
1592 			lsp = sort_buf[i];
1593 			if (g_cflag)
1594 				coalesce_symbol(&lsp->ls_lock);
1595 			if (g_kflag) {
1596 				for (fr = 0; fr < g_stkdepth; fr++)
1597 					coalesce_symbol(&lsp->ls_stack[fr]);
1598 				coalesce_symbol(&lsp->ls_caller);
1599 			}
1600 		}
1601 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1602 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1603 	}
1604 
1605 	/*
1606 	 * Coalesce callers if -w option specified
1607 	 */
1608 	if (g_wflag) {
1609 		mergesort(lock_and_count_cmp_anywhere,
1610 		    sort_buf, merge_buf, g_nrecs_used);
1611 		coalesce(lockcmp_anywhere, sort_buf, g_nrecs_used);
1612 	}
1613 
1614 	/*
1615 	 * Coalesce locks if -W option specified
1616 	 */
1617 	if (g_Wflag) {
1618 		mergesort(site_and_count_cmp_anylock,
1619 		    sort_buf, merge_buf, g_nrecs_used);
1620 		coalesce(sitecmp_anylock, sort_buf, g_nrecs_used);
1621 	}
1622 
1623 	/*
1624 	 * Sort data by contention count (ls_count) or total time (ls_time),
1625 	 * depending on g_Pflag.  Override g_Pflag if time wasn't measured.
1626 	 */
1627 	if (g_recsize < LS_TIME)
1628 		g_Pflag = 0;
1629 
1630 	if (g_Pflag)
1631 		mergesort(timecmp, sort_buf, merge_buf, g_nrecs_used);
1632 	else
1633 		mergesort(countcmp, sort_buf, merge_buf, g_nrecs_used);
1634 
1635 	/*
1636 	 * Display data by event type
1637 	 */
1638 	first = &sort_buf[0];
1639 	while ((event = (*first)->ls_event) < LS_MAX_EVENTS) {
1640 		current = first;
1641 		while ((lsp = *current)->ls_event == event)
1642 			current++;
1643 		report_stats(out, first, current - first, ev_count[event],
1644 		    ev_time[event]);
1645 		first = current;
1646 	}
1647 
1648 	return (0);
1649 }
1650 
1651 static char *
1652 format_symbol(char *buf, uintptr_t addr, int show_size)
1653 {
1654 	uintptr_t symoff;
1655 	char *symname;
1656 	size_t symsize;
1657 
1658 	symname = addr_to_sym(addr, &symoff, &symsize);
1659 
1660 	if (show_size && symoff == 0)
1661 		(void) sprintf(buf, "%s[%ld]", symname, (long)symsize);
1662 	else if (symoff == 0)
1663 		(void) sprintf(buf, "%s", symname);
1664 	else if (symoff < 16 && bcmp(symname, "cpu[", 4) == 0)	/* CPU+PIL */
1665 #ifdef illumos
1666 		(void) sprintf(buf, "%s+%ld", symname, (long)symoff);
1667 #else
1668 		(void) sprintf(buf, "%s+%s", symname, g_pri_class[(int)symoff]);
1669 #endif
1670 	else if (symoff <= symsize || (symoff < 256 && addr != symoff))
1671 		(void) sprintf(buf, "%s+0x%llx", symname,
1672 		    (unsigned long long)symoff);
1673 	else
1674 		(void) sprintf(buf, "0x%llx", (unsigned long long)addr);
1675 	return (buf);
1676 }
1677 
1678 static void
1679 report_stats(FILE *out, lsrec_t **sort_buf, size_t nrecs, uint64_t total_count,
1680 	uint64_t total_time)
1681 {
1682 	uint32_t event = sort_buf[0]->ls_event;
1683 	lsrec_t *lsp;
1684 	double ptotal = 0.0;
1685 	double percent;
1686 	int i, j, fr;
1687 	int displayed;
1688 	int first_bin, last_bin, max_bin_count, total_bin_count;
1689 	int rectype;
1690 	char buf[256];
1691 	char lhdr[80], chdr[80];
1692 
1693 	rectype = g_recsize;
1694 
1695 	if (g_topn == 0) {
1696 		(void) fprintf(out, "%20llu %s\n",
1697 		    g_rates == 0 ? total_count :
1698 		    ((unsigned long long)total_count * NANOSEC) / g_elapsed,
1699 		    g_event_info[event].ev_desc);
1700 		return;
1701 	}
1702 
1703 	(void) sprintf(lhdr, "%s%s",
1704 	    g_Wflag ? "Hottest " : "", g_event_info[event].ev_lhdr);
1705 	(void) sprintf(chdr, "%s%s",
1706 	    g_wflag ? "Hottest " : "", "Caller");
1707 
1708 	if (!g_pflag)
1709 		(void) fprintf(out,
1710 		    "\n%s: %.0f events in %.3f seconds (%.0f events/sec)\n\n",
1711 		    g_event_info[event].ev_desc, (double)total_count,
1712 		    (double)g_elapsed / NANOSEC,
1713 		    (double)total_count * NANOSEC / g_elapsed);
1714 
1715 	if (!g_pflag && rectype < LS_HIST) {
1716 		(void) sprintf(buf, "%s", g_event_info[event].ev_units);
1717 		(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1718 		    g_rates ? "ops/s" : "Count",
1719 		    g_gflag ? "genr" : "indv",
1720 		    "cuml", "rcnt", rectype >= LS_TIME ? buf : "", lhdr, chdr);
1721 		(void) fprintf(out, "---------------------------------"
1722 		    "----------------------------------------------\n");
1723 	}
1724 
1725 	displayed = 0;
1726 	for (i = 0; i < nrecs; i++) {
1727 		lsp = sort_buf[i];
1728 
1729 		if (displayed++ >= g_topn)
1730 			break;
1731 
1732 		if (g_pflag) {
1733 			int j;
1734 
1735 			(void) fprintf(out, "%u %u",
1736 			    lsp->ls_event, lsp->ls_count);
1737 			(void) fprintf(out, " %s",
1738 			    format_symbol(buf, lsp->ls_lock, g_cflag));
1739 			(void) fprintf(out, " %s",
1740 			    format_symbol(buf, lsp->ls_caller, 0));
1741 			(void) fprintf(out, " %f",
1742 			    (double)lsp->ls_refcnt / lsp->ls_count);
1743 			if (rectype >= LS_TIME)
1744 				(void) fprintf(out, " %llu",
1745 				    (unsigned long long)lsp->ls_time);
1746 			if (rectype >= LS_HIST) {
1747 				for (j = 0; j < 64; j++)
1748 					(void) fprintf(out, " %u",
1749 					    lsp->ls_hist[j]);
1750 			}
1751 			for (j = 0; j < LS_MAX_STACK_DEPTH; j++) {
1752 				if (rectype <= LS_STACK(j) ||
1753 				    lsp->ls_stack[j] == 0)
1754 					break;
1755 				(void) fprintf(out, " %s",
1756 				    format_symbol(buf, lsp->ls_stack[j], 0));
1757 			}
1758 			(void) fprintf(out, "\n");
1759 			continue;
1760 		}
1761 
1762 		if (rectype >= LS_HIST) {
1763 			(void) fprintf(out, "---------------------------------"
1764 			    "----------------------------------------------\n");
1765 			(void) sprintf(buf, "%s",
1766 			    g_event_info[event].ev_units);
1767 			(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1768 			    g_rates ? "ops/s" : "Count",
1769 			    g_gflag ? "genr" : "indv",
1770 			    "cuml", "rcnt", buf, lhdr, chdr);
1771 		}
1772 
1773 		if (g_Pflag && total_time != 0)
1774 			percent = (lsp->ls_time * 100.00) / total_time;
1775 		else
1776 			percent = (lsp->ls_count * 100.00) / total_count;
1777 
1778 		ptotal += percent;
1779 
1780 		if (rectype >= LS_TIME)
1781 			(void) sprintf(buf, "%llu",
1782 			    (unsigned long long)(lsp->ls_time / lsp->ls_count));
1783 		else
1784 			buf[0] = '\0';
1785 
1786 		(void) fprintf(out, "%5llu ",
1787 		    g_rates == 0 ? lsp->ls_count :
1788 		    ((uint64_t)lsp->ls_count * NANOSEC) / g_elapsed);
1789 
1790 		(void) fprintf(out, "%3.0f%% ", percent);
1791 
1792 		if (g_gflag)
1793 			(void) fprintf(out, "---- ");
1794 		else
1795 			(void) fprintf(out, "%3.0f%% ", ptotal);
1796 
1797 		(void) fprintf(out, "%4.2f %8s ",
1798 		    (double)lsp->ls_refcnt / lsp->ls_count, buf);
1799 
1800 		(void) fprintf(out, "%-22s ",
1801 		    format_symbol(buf, lsp->ls_lock, g_cflag));
1802 
1803 		(void) fprintf(out, "%-24s\n",
1804 		    format_symbol(buf, lsp->ls_caller, 0));
1805 
1806 		if (rectype < LS_HIST)
1807 			continue;
1808 
1809 		(void) fprintf(out, "\n");
1810 		(void) fprintf(out, "%10s %31s %-9s %-24s\n",
1811 		    g_event_info[event].ev_units,
1812 		    "------ Time Distribution ------",
1813 		    g_rates ? "ops/s" : "count",
1814 		    rectype > LS_STACK(0) ? "Stack" : "");
1815 
1816 		first_bin = 0;
1817 		while (lsp->ls_hist[first_bin] == 0)
1818 			first_bin++;
1819 
1820 		last_bin = 63;
1821 		while (lsp->ls_hist[last_bin] == 0)
1822 			last_bin--;
1823 
1824 		max_bin_count = 0;
1825 		total_bin_count = 0;
1826 		for (j = first_bin; j <= last_bin; j++) {
1827 			total_bin_count += lsp->ls_hist[j];
1828 			if (lsp->ls_hist[j] > max_bin_count)
1829 				max_bin_count = lsp->ls_hist[j];
1830 		}
1831 
1832 		/*
1833 		 * If we went a few frames below the caller, ignore them
1834 		 */
1835 		for (fr = 3; fr > 0; fr--)
1836 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1837 				break;
1838 
1839 		for (j = first_bin; j <= last_bin; j++) {
1840 			uint_t depth = (lsp->ls_hist[j] * 30) / total_bin_count;
1841 			(void) fprintf(out, "%10llu |%s%s %-9u ",
1842 			    1ULL << j,
1843 			    "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" + 30 - depth,
1844 			    "                              " + depth,
1845 			    g_rates == 0 ? lsp->ls_hist[j] :
1846 			    (uint_t)(((uint64_t)lsp->ls_hist[j] * NANOSEC) /
1847 			    g_elapsed));
1848 			if (rectype <= LS_STACK(fr) || lsp->ls_stack[fr] == 0) {
1849 				(void) fprintf(out, "\n");
1850 				continue;
1851 			}
1852 			(void) fprintf(out, "%-24s\n",
1853 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1854 			fr++;
1855 		}
1856 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1857 			(void) fprintf(out, "%15s %-36s %-24s\n", "", "",
1858 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1859 			fr++;
1860 		}
1861 	}
1862 
1863 	if (!g_pflag)
1864 		(void) fprintf(out, "---------------------------------"
1865 		    "----------------------------------------------\n");
1866 
1867 	(void) fflush(out);
1868 }
1869 
1870 static void
1871 report_trace(FILE *out, lsrec_t **sort_buf)
1872 {
1873 	lsrec_t *lsp;
1874 	int i, fr;
1875 	int rectype;
1876 	char buf[256], buf2[256];
1877 
1878 	rectype = g_recsize;
1879 
1880 	if (!g_pflag) {
1881 		(void) fprintf(out, "%5s  %7s  %11s  %-24s  %-24s\n",
1882 		    "Event", "Time", "Owner", "Lock", "Caller");
1883 		(void) fprintf(out, "---------------------------------"
1884 		    "----------------------------------------------\n");
1885 	}
1886 
1887 	for (i = 0; i < g_nrecs_used; i++) {
1888 
1889 		lsp = sort_buf[i];
1890 
1891 		if (lsp->ls_event >= LS_MAX_EVENTS || lsp->ls_count == 0)
1892 			continue;
1893 
1894 		(void) fprintf(out, "%2d  %10llu  %11p  %-24s  %-24s\n",
1895 		    lsp->ls_event, (unsigned long long)lsp->ls_time,
1896 		    (void *)lsp->ls_next,
1897 		    format_symbol(buf, lsp->ls_lock, 0),
1898 		    format_symbol(buf2, lsp->ls_caller, 0));
1899 
1900 		if (rectype <= LS_STACK(0))
1901 			continue;
1902 
1903 		/*
1904 		 * If we went a few frames below the caller, ignore them
1905 		 */
1906 		for (fr = 3; fr > 0; fr--)
1907 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1908 				break;
1909 
1910 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1911 			(void) fprintf(out, "%53s  %-24s\n", "",
1912 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1913 			fr++;
1914 		}
1915 		(void) fprintf(out, "\n");
1916 	}
1917 
1918 	(void) fflush(out);
1919 }
1920