xref: /freebsd/bin/pax/tables.h (revision 4928135658a9d0eaee37003df6137ab363fcb0b4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)tables.h	8.1 (Berkeley) 5/31/93
36  * $FreeBSD$
37  */
38 
39 /*
40  * data structures and constants used by the different databases kept by pax
41  */
42 
43 /*
44  * Hash Table Sizes MUST BE PRIME, if set too small performance suffers.
45  * Probably safe to expect 500000 inodes per tape. Assuming good key
46  * distribution (inodes) chains of under 50 long (worse case) is ok.
47  */
48 #define L_TAB_SZ	2503		/* hard link hash table size */
49 #define F_TAB_SZ	50503		/* file time hash table size */
50 #define N_TAB_SZ	541		/* interactive rename hash table */
51 #define D_TAB_SZ	317		/* unique device mapping table */
52 #define A_TAB_SZ	317		/* ftree dir access time reset table */
53 #define MAXKEYLEN	64		/* max number of chars for hash */
54 
55 /*
56  * file hard link structure (hashed by dev/ino and chained) used to find the
57  * hard links in a file system or with some archive formats (cpio)
58  */
59 typedef struct hrdlnk {
60 	char		*name;	/* name of first file seen with this ino/dev */
61 	dev_t		dev;	/* files device number */
62 	ino_t		ino;	/* files inode number */
63 	u_long		nlink;	/* expected link count */
64 	struct hrdlnk	*fow;
65 } HRDLNK;
66 
67 /*
68  * Archive write update file time table (the -u, -C flag), hashed by filename.
69  * Filenames are stored in a scratch file at seek offset into the file. The
70  * file time (mod time) and the file name length (for a quick check) are
71  * stored in a hash table node. We were forced to use a scratch file because
72  * with -u, the mtime for every node in the archive must always be available
73  * to compare against (and this data can get REALLY large with big archives).
74  * By being careful to read only when we have a good chance of a match, the
75  * performance loss is not measurable (and the size of the archive we can
76  * handle is greatly increased).
77  */
78 typedef struct ftm {
79 	int		namelen;	/* file name length */
80 	time_t		mtime;		/* files last modification time */
81 	off_t		seek;		/* location in scratch file */
82 	struct ftm	*fow;
83 } FTM;
84 
85 /*
86  * Interactive rename table (-i flag), hashed by orig filename.
87  * We assume this will not be a large table as this mapping data can only be
88  * obtained through interactive input by the user. Nobody is going to type in
89  * changes for 500000 files? We use chaining to resolve collisions.
90  */
91 
92 typedef struct namt {
93 	char		*oname;		/* old name */
94 	char		*nname;		/* new name typed in by the user */
95 	struct namt	*fow;
96 } NAMT;
97 
98 /*
99  * Unique device mapping tables. Some protocols (e.g. cpio) require that the
100  * <c_dev,c_ino> pair will uniquely identify a file in an archive unless they
101  * are links to the same file. Appending to archives can break this. For those
102  * protocols that have this requirement we map c_dev to a unique value not seen
103  * in the archive when we append. We also try to handle inode truncation with
104  * this table. (When the inode field in the archive header are too small, we
105  * remap the dev on writes to remove accidental collisions).
106  *
107  * The list is hashed by device number using chain collision resolution. Off of
108  * each DEVT are linked the various remaps for this device based on those bits
109  * in the inode which were truncated. For example if we are just remapping to
110  * avoid a device number during an update append, off the DEVT we would have
111  * only a single DLIST that has a truncation id of 0 (no inode bits were
112  * stripped for this device so far). When we spot inode truncation we create
113  * a new mapping based on the set of bits in the inode which were stripped off.
114  * so if the top four bits of the inode are stripped and they have a pattern of
115  * 0110...... (where . are those bits not truncated) we would have a mapping
116  * assigned for all inodes that has the same 0110.... pattern (with this dev
117  * number of course). This keeps the mapping sparse and should be able to store
118  * close to the limit of files which can be represented by the optimal
119  * combination of dev and inode bits, and without creating a fouled up archive.
120  * Note we also remap truncated devs in the same way (an exercise for the
121  * dedicated reader; always wanted to say that...:)
122  */
123 
124 typedef struct devt {
125 	dev_t		dev;	/* the orig device number we now have to map */
126 	struct devt	*fow;	/* new device map list */
127 	struct dlist	*list;	/* map list based on inode truncation bits */
128 } DEVT;
129 
130 typedef struct dlist {
131 	ino_t trunc_bits;	/* truncation pattern for a specific map */
132 	dev_t dev;		/* the new device id we use */
133 	struct dlist *fow;
134 } DLIST;
135 
136 /*
137  * ftree directory access time reset table. When we are done with with a
138  * subtree we reset the access and mod time of the directory when the tflag is
139  * set. Not really explicitly specified in the pax spec, but easy and fast to
140  * do (and this may have even been intended in the spec, it is not clear).
141  * table is hashed by inode with chaining.
142  */
143 
144 typedef struct atdir {
145 	char *name;	/* name of directory to reset */
146 	dev_t dev;	/* dev and inode for fast lookup */
147 	ino_t ino;
148 	time_t mtime;	/* access and mod time to reset to */
149 	time_t atime;
150 	struct atdir *fow;
151 } ATDIR;
152 
153 /*
154  * created directory time and mode storage entry. After pax is finished during
155  * extraction or copy, we must reset directory access modes and times that
156  * may have been modified after creation (they no longer have the specified
157  * times and/or modes). We must reset time in the reverse order of creation,
158  * because entries are added  from the top of the file tree to the bottom.
159  * We MUST reset times from leaf to root (it will not work the other
160  * direction).  Entries are recorded into a spool file to make reverse
161  * reading faster.
162  */
163 
164 typedef struct dirdata {
165 	int nlen;	/* length of the directory name (includes \0) */
166 	off_t npos;	/* position in file where this dir name starts */
167 	mode_t mode;	/* file mode to restore */
168 	time_t mtime;	/* mtime to set */
169 	time_t atime;	/* atime to set */
170 	int frc_mode;	/* do we force mode settings? */
171 } DIRDATA;
172