xref: /freebsd/bin/pax/tables.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 #if 0
36 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
37 #endif
38 #endif /* not lint */
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/types.h>
43 #include <sys/time.h>
44 #include <sys/stat.h>
45 #include <sys/fcntl.h>
46 #include <errno.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <unistd.h>
51 #include "pax.h"
52 #include "tables.h"
53 #include "extern.h"
54 
55 /*
56  * Routines for controlling the contents of all the different databases pax
57  * keeps. Tables are dynamically created only when they are needed. The
58  * goal was speed and the ability to work with HUGE archives. The databases
59  * were kept simple, but do have complex rules for when the contents change.
60  * As of this writing, the POSIX library functions were more complex than
61  * needed for this application (pax databases have very short lifetimes and
62  * do not survive after pax is finished). Pax is required to handle very
63  * large archives. These database routines carefully combine memory usage and
64  * temporary file storage in ways which will not significantly impact runtime
65  * performance while allowing the largest possible archives to be handled.
66  * Trying to force the fit to the POSIX databases routines was not considered
67  * time well spent.
68  */
69 
70 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
71 static FTM **ftab = NULL;	/* file time table for updating arch */
72 static NAMT **ntab = NULL;	/* interactive rename storage table */
73 static DEVT **dtab = NULL;	/* device/inode mapping tables */
74 static ATDIR **atab = NULL;	/* file tree directory time reset table */
75 static int dirfd = -1;		/* storage for setting created dir time/mode */
76 static u_long dircnt;		/* entries in dir time/mode storage */
77 static int ffd = -1;		/* tmp file for file time table name storage */
78 
79 static DEVT *chk_dev(dev_t, int);
80 
81 /*
82  * hard link table routines
83  *
84  * The hard link table tries to detect hard links to files using the device and
85  * inode values. We do this when writing an archive, so we can tell the format
86  * write routine that this file is a hard link to another file. The format
87  * write routine then can store this file in whatever way it wants (as a hard
88  * link if the format supports that like tar, or ignore this info like cpio).
89  * (Actually a field in the format driver table tells us if the format wants
90  * hard link info. if not, we do not waste time looking for them). We also use
91  * the same table when reading an archive. In that situation, this table is
92  * used by the format read routine to detect hard links from stored dev and
93  * inode numbers (like cpio). This will allow pax to create a link when one
94  * can be detected by the archive format.
95  */
96 
97 /*
98  * lnk_start
99  *	Creates the hard link table.
100  * Return:
101  *	0 if created, -1 if failure
102  */
103 
104 int
105 lnk_start(void)
106 {
107 	if (ltab != NULL)
108 		return(0);
109  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
110 		paxwarn(1, "Cannot allocate memory for hard link table");
111 		return(-1);
112 	}
113 	return(0);
114 }
115 
116 /*
117  * chk_lnk()
118  *	Looks up entry in hard link hash table. If found, it copies the name
119  *	of the file it is linked to (we already saw that file) into ln_name.
120  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
121  *	database. (We have seen all the links to this file). If not found,
122  *	we add the file to the database if it has the potential for having
123  *	hard links to other files we may process (it has a link count > 1)
124  * Return:
125  *	if found returns 1; if not found returns 0; -1 on error
126  */
127 
128 int
129 chk_lnk(ARCHD *arcn)
130 {
131 	HRDLNK *pt;
132 	HRDLNK **ppt;
133 	u_int indx;
134 
135 	if (ltab == NULL)
136 		return(-1);
137 	/*
138 	 * ignore those nodes that cannot have hard links
139 	 */
140 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
141 		return(0);
142 
143 	/*
144 	 * hash inode number and look for this file
145 	 */
146 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
147 	if ((pt = ltab[indx]) != NULL) {
148 		/*
149 		 * it's hash chain in not empty, walk down looking for it
150 		 */
151 		ppt = &(ltab[indx]);
152 		while (pt != NULL) {
153 			if ((pt->ino == arcn->sb.st_ino) &&
154 			    (pt->dev == arcn->sb.st_dev))
155 				break;
156 			ppt = &(pt->fow);
157 			pt = pt->fow;
158 		}
159 
160 		if (pt != NULL) {
161 			/*
162 			 * found a link. set the node type and copy in the
163 			 * name of the file it is to link to. we need to
164 			 * handle hardlinks to regular files differently than
165 			 * other links.
166 			 */
167 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
168 				sizeof(arcn->ln_name) - 1);
169 			arcn->ln_name[arcn->ln_nlen] = '\0';
170 			if (arcn->type == PAX_REG)
171 				arcn->type = PAX_HRG;
172 			else
173 				arcn->type = PAX_HLK;
174 
175 			/*
176 			 * if we have found all the links to this file, remove
177 			 * it from the database
178 			 */
179 			if (--pt->nlink <= 1) {
180 				*ppt = pt->fow;
181 				free(pt->name);
182 				free(pt);
183 			}
184 			return(1);
185 		}
186 	}
187 
188 	/*
189 	 * we never saw this file before. It has links so we add it to the
190 	 * front of this hash chain
191 	 */
192 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
193 		if ((pt->name = strdup(arcn->name)) != NULL) {
194 			pt->dev = arcn->sb.st_dev;
195 			pt->ino = arcn->sb.st_ino;
196 			pt->nlink = arcn->sb.st_nlink;
197 			pt->fow = ltab[indx];
198 			ltab[indx] = pt;
199 			return(0);
200 		}
201 		free(pt);
202 	}
203 
204 	paxwarn(1, "Hard link table out of memory");
205 	return(-1);
206 }
207 
208 /*
209  * purg_lnk
210  *	remove reference for a file that we may have added to the data base as
211  *	a potential source for hard links. We ended up not using the file, so
212  *	we do not want to accidentally point another file at it later on.
213  */
214 
215 void
216 purg_lnk(ARCHD *arcn)
217 {
218 	HRDLNK *pt;
219 	HRDLNK **ppt;
220 	u_int indx;
221 
222 	if (ltab == NULL)
223 		return;
224 	/*
225 	 * do not bother to look if it could not be in the database
226 	 */
227 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
228 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
229 		return;
230 
231 	/*
232 	 * find the hash chain for this inode value, if empty return
233 	 */
234 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
235 	if ((pt = ltab[indx]) == NULL)
236 		return;
237 
238 	/*
239 	 * walk down the list looking for the inode/dev pair, unlink and
240 	 * free if found
241 	 */
242 	ppt = &(ltab[indx]);
243 	while (pt != NULL) {
244 		if ((pt->ino == arcn->sb.st_ino) &&
245 		    (pt->dev == arcn->sb.st_dev))
246 			break;
247 		ppt = &(pt->fow);
248 		pt = pt->fow;
249 	}
250 	if (pt == NULL)
251 		return;
252 
253 	/*
254 	 * remove and free it
255 	 */
256 	*ppt = pt->fow;
257 	free(pt->name);
258 	free(pt);
259 }
260 
261 /*
262  * lnk_end()
263  *	Pull apart an existing link table so we can reuse it. We do this between
264  *	read and write phases of append with update. (The format may have
265  *	used the link table, and we need to start with a fresh table for the
266  *	write phase).
267  */
268 
269 void
270 lnk_end(void)
271 {
272 	int i;
273 	HRDLNK *pt;
274 	HRDLNK *ppt;
275 
276 	if (ltab == NULL)
277 		return;
278 
279 	for (i = 0; i < L_TAB_SZ; ++i) {
280 		if (ltab[i] == NULL)
281 			continue;
282 		pt = ltab[i];
283 		ltab[i] = NULL;
284 
285 		/*
286 		 * free up each entry on this chain
287 		 */
288 		while (pt != NULL) {
289 			ppt = pt;
290 			pt = ppt->fow;
291 			free(ppt->name);
292 			free(ppt);
293 		}
294 	}
295 	return;
296 }
297 
298 /*
299  * modification time table routines
300  *
301  * The modification time table keeps track of last modification times for all
302  * files stored in an archive during a write phase when -u is set. We only
303  * add a file to the archive if it is newer than a file with the same name
304  * already stored on the archive (if there is no other file with the same
305  * name on the archive it is added). This applies to writes and appends.
306  * An append with an -u must read the archive and store the modification time
307  * for every file on that archive before starting the write phase. It is clear
308  * that this is one HUGE database. To save memory space, the actual file names
309  * are stored in a scratch file and indexed by an in memory hash table. The
310  * hash table is indexed by hashing the file path. The nodes in the table store
311  * the length of the filename and the lseek offset within the scratch file
312  * where the actual name is stored. Since there are never any deletions to this
313  * table, fragmentation of the scratch file is never an issue. Lookups seem to
314  * not exhibit any locality at all (files in the database are rarely
315  * looked up more than once...). So caching is just a waste of memory. The
316  * only limitation is the amount of scratch file space available to store the
317  * path names.
318  */
319 
320 /*
321  * ftime_start()
322  *	create the file time hash table and open for read/write the scratch
323  *	file. (after created it is unlinked, so when we exit we leave
324  *	no witnesses).
325  * Return:
326  *	0 if the table and file was created ok, -1 otherwise
327  */
328 
329 int
330 ftime_start(void)
331 {
332 
333 	if (ftab != NULL)
334 		return(0);
335  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
336 		paxwarn(1, "Cannot allocate memory for file time table");
337 		return(-1);
338 	}
339 
340 	/*
341 	 * get random name and create temporary scratch file, unlink name
342 	 * so it will get removed on exit
343 	 */
344 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
345 	if ((ffd = mkstemp(tempfile)) < 0) {
346 		syswarn(1, errno, "Unable to create temporary file: %s",
347 		    tempfile);
348 		return(-1);
349 	}
350 	(void)unlink(tempfile);
351 
352 	return(0);
353 }
354 
355 /*
356  * chk_ftime()
357  *	looks up entry in file time hash table. If not found, the file is
358  *	added to the hash table and the file named stored in the scratch file.
359  *	If a file with the same name is found, the file times are compared and
360  *	the most recent file time is retained. If the new file was younger (or
361  *	was not in the database) the new file is selected for storage.
362  * Return:
363  *	0 if file should be added to the archive, 1 if it should be skipped,
364  *	-1 on error
365  */
366 
367 int
368 chk_ftime(ARCHD *arcn)
369 {
370 	FTM *pt;
371 	int namelen;
372 	u_int indx;
373 	char ckname[PAXPATHLEN+1];
374 
375 	/*
376 	 * no info, go ahead and add to archive
377 	 */
378 	if (ftab == NULL)
379 		return(0);
380 
381 	/*
382 	 * hash the pathname and look up in table
383 	 */
384 	namelen = arcn->nlen;
385 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
386 	if ((pt = ftab[indx]) != NULL) {
387 		/*
388 		 * the hash chain is not empty, walk down looking for match
389 		 * only read up the path names if the lengths match, speeds
390 		 * up the search a lot
391 		 */
392 		while (pt != NULL) {
393 			if (pt->namelen == namelen) {
394 				/*
395 				 * potential match, have to read the name
396 				 * from the scratch file.
397 				 */
398 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
399 					syswarn(1, errno,
400 					    "Failed ftime table seek");
401 					return(-1);
402 				}
403 				if (read(ffd, ckname, namelen) != namelen) {
404 					syswarn(1, errno,
405 					    "Failed ftime table read");
406 					return(-1);
407 				}
408 
409 				/*
410 				 * if the names match, we are done
411 				 */
412 				if (!strncmp(ckname, arcn->name, namelen))
413 					break;
414 			}
415 
416 			/*
417 			 * try the next entry on the chain
418 			 */
419 			pt = pt->fow;
420 		}
421 
422 		if (pt != NULL) {
423 			/*
424 			 * found the file, compare the times, save the newer
425 			 */
426 			if (arcn->sb.st_mtime > pt->mtime) {
427 				/*
428 				 * file is newer
429 				 */
430 				pt->mtime = arcn->sb.st_mtime;
431 				return(0);
432 			}
433 			/*
434 			 * file is older
435 			 */
436 			return(1);
437 		}
438 	}
439 
440 	/*
441 	 * not in table, add it
442 	 */
443 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
444 		/*
445 		 * add the name at the end of the scratch file, saving the
446 		 * offset. add the file to the head of the hash chain
447 		 */
448 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
449 			if (write(ffd, arcn->name, namelen) == namelen) {
450 				pt->mtime = arcn->sb.st_mtime;
451 				pt->namelen = namelen;
452 				pt->fow = ftab[indx];
453 				ftab[indx] = pt;
454 				return(0);
455 			}
456 			syswarn(1, errno, "Failed write to file time table");
457 		} else
458 			syswarn(1, errno, "Failed seek on file time table");
459 	} else
460 		paxwarn(1, "File time table ran out of memory");
461 
462 	if (pt != NULL)
463 		free(pt);
464 	return(-1);
465 }
466 
467 /*
468  * Interactive rename table routines
469  *
470  * The interactive rename table keeps track of the new names that the user
471  * assigns to files from tty input. Since this map is unique for each file
472  * we must store it in case there is a reference to the file later in archive
473  * (a link). Otherwise we will be unable to find the file we know was
474  * extracted. The remapping of these files is stored in a memory based hash
475  * table (it is assumed since input must come from /dev/tty, it is unlikely to
476  * be a very large table).
477  */
478 
479 /*
480  * name_start()
481  *	create the interactive rename table
482  * Return:
483  *	0 if successful, -1 otherwise
484  */
485 
486 int
487 name_start(void)
488 {
489 	if (ntab != NULL)
490 		return(0);
491  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
492 		paxwarn(1, "Cannot allocate memory for interactive rename table");
493 		return(-1);
494 	}
495 	return(0);
496 }
497 
498 /*
499  * add_name()
500  *	add the new name to old name mapping just created by the user.
501  *	If an old name mapping is found (there may be duplicate names on an
502  *	archive) only the most recent is kept.
503  * Return:
504  *	0 if added, -1 otherwise
505  */
506 
507 int
508 add_name(char *oname, int onamelen, char *nname)
509 {
510 	NAMT *pt;
511 	u_int indx;
512 
513 	if (ntab == NULL) {
514 		/*
515 		 * should never happen
516 		 */
517 		paxwarn(0, "No interactive rename table, links may fail\n");
518 		return(0);
519 	}
520 
521 	/*
522 	 * look to see if we have already mapped this file, if so we
523 	 * will update it
524 	 */
525 	indx = st_hash(oname, onamelen, N_TAB_SZ);
526 	if ((pt = ntab[indx]) != NULL) {
527 		/*
528 		 * look down the has chain for the file
529 		 */
530 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
531 			pt = pt->fow;
532 
533 		if (pt != NULL) {
534 			/*
535 			 * found an old mapping, replace it with the new one
536 			 * the user just input (if it is different)
537 			 */
538 			if (strcmp(nname, pt->nname) == 0)
539 				return(0);
540 
541 			free(pt->nname);
542 			if ((pt->nname = strdup(nname)) == NULL) {
543 				paxwarn(1, "Cannot update rename table");
544 				return(-1);
545 			}
546 			return(0);
547 		}
548 	}
549 
550 	/*
551 	 * this is a new mapping, add it to the table
552 	 */
553 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
554 		if ((pt->oname = strdup(oname)) != NULL) {
555 			if ((pt->nname = strdup(nname)) != NULL) {
556 				pt->fow = ntab[indx];
557 				ntab[indx] = pt;
558 				return(0);
559 			}
560 			free(pt->oname);
561 		}
562 		free(pt);
563 	}
564 	paxwarn(1, "Interactive rename table out of memory");
565 	return(-1);
566 }
567 
568 /*
569  * sub_name()
570  *	look up a link name to see if it points at a file that has been
571  *	remapped by the user. If found, the link is adjusted to contain the
572  *	new name (oname is the link to name)
573  */
574 
575 void
576 sub_name(char *oname, int *onamelen, size_t onamesize)
577 {
578 	NAMT *pt;
579 	u_int indx;
580 
581 	if (ntab == NULL)
582 		return;
583 	/*
584 	 * look the name up in the hash table
585 	 */
586 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
587 	if ((pt = ntab[indx]) == NULL)
588 		return;
589 
590 	while (pt != NULL) {
591 		/*
592 		 * walk down the hash chain looking for a match
593 		 */
594 		if (strcmp(oname, pt->oname) == 0) {
595 			/*
596 			 * found it, replace it with the new name
597 			 * and return (we know that oname has enough space)
598 			 */
599 			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
600 			oname[*onamelen] = '\0';
601 			return;
602 		}
603 		pt = pt->fow;
604 	}
605 
606 	/*
607 	 * no match, just return
608 	 */
609 	return;
610 }
611 
612 /*
613  * device/inode mapping table routines
614  * (used with formats that store device and inodes fields)
615  *
616  * device/inode mapping tables remap the device field in an archive header. The
617  * device/inode fields are used to determine when files are hard links to each
618  * other. However these values have very little meaning outside of that. This
619  * database is used to solve one of two different problems.
620  *
621  * 1) when files are appended to an archive, while the new files may have hard
622  * links to each other, you cannot determine if they have hard links to any
623  * file already stored on the archive from a prior run of pax. We must assume
624  * that these inode/device pairs are unique only within a SINGLE run of pax
625  * (which adds a set of files to an archive). So we have to make sure the
626  * inode/dev pairs we add each time are always unique. We do this by observing
627  * while the inode field is very dense, the use of the dev field is fairly
628  * sparse. Within each run of pax, we remap any device number of a new archive
629  * member that has a device number used in a prior run and already stored in a
630  * file on the archive. During the read phase of the append, we store the
631  * device numbers used and mark them to not be used by any file during the
632  * write phase. If during write we go to use one of those old device numbers,
633  * we remap it to a new value.
634  *
635  * 2) Often the fields in the archive header used to store these values are
636  * too small to store the entire value. The result is an inode or device value
637  * which can be truncated. This really can foul up an archive. With truncation
638  * we end up creating links between files that are really not links (after
639  * truncation the inodes are the same value). We address that by detecting
640  * truncation and forcing a remap of the device field to split truncated
641  * inodes away from each other. Each truncation creates a pattern of bits that
642  * are removed. We use this pattern of truncated bits to partition the inodes
643  * on a single device to many different devices (each one represented by the
644  * truncated bit pattern). All inodes on the same device that have the same
645  * truncation pattern are mapped to the same new device. Two inodes that
646  * truncate to the same value clearly will always have different truncation
647  * bit patterns, so they will be split from away each other. When we spot
648  * device truncation we remap the device number to a non truncated value.
649  * (for more info see table.h for the data structures involved).
650  */
651 
652 /*
653  * dev_start()
654  *	create the device mapping table
655  * Return:
656  *	0 if successful, -1 otherwise
657  */
658 
659 int
660 dev_start(void)
661 {
662 	if (dtab != NULL)
663 		return(0);
664  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
665 		paxwarn(1, "Cannot allocate memory for device mapping table");
666 		return(-1);
667 	}
668 	return(0);
669 }
670 
671 /*
672  * add_dev()
673  *	add a device number to the table. this will force the device to be
674  *	remapped to a new value if it be used during a write phase. This
675  *	function is called during the read phase of an append to prohibit the
676  *	use of any device number already in the archive.
677  * Return:
678  *	0 if added ok, -1 otherwise
679  */
680 
681 int
682 add_dev(ARCHD *arcn)
683 {
684 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
685 		return(-1);
686 	return(0);
687 }
688 
689 /*
690  * chk_dev()
691  *	check for a device value in the device table. If not found and the add
692  *	flag is set, it is added. This does NOT assign any mapping values, just
693  *	adds the device number as one that need to be remapped. If this device
694  *	is already mapped, just return with a pointer to that entry.
695  * Return:
696  *	pointer to the entry for this device in the device map table. Null
697  *	if the add flag is not set and the device is not in the table (it is
698  *	not been seen yet). If add is set and the device cannot be added, null
699  *	is returned (indicates an error).
700  */
701 
702 static DEVT *
703 chk_dev(dev_t dev, int add)
704 {
705 	DEVT *pt;
706 	u_int indx;
707 
708 	if (dtab == NULL)
709 		return(NULL);
710 	/*
711 	 * look to see if this device is already in the table
712 	 */
713 	indx = ((unsigned)dev) % D_TAB_SZ;
714 	if ((pt = dtab[indx]) != NULL) {
715 		while ((pt != NULL) && (pt->dev != dev))
716 			pt = pt->fow;
717 
718 		/*
719 		 * found it, return a pointer to it
720 		 */
721 		if (pt != NULL)
722 			return(pt);
723 	}
724 
725 	/*
726 	 * not in table, we add it only if told to as this may just be a check
727 	 * to see if a device number is being used.
728 	 */
729 	if (add == 0)
730 		return(NULL);
731 
732 	/*
733 	 * allocate a node for this device and add it to the front of the hash
734 	 * chain. Note we do not assign remaps values here, so the pt->list
735 	 * list must be NULL.
736 	 */
737 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
738 		paxwarn(1, "Device map table out of memory");
739 		return(NULL);
740 	}
741 	pt->dev = dev;
742 	pt->list = NULL;
743 	pt->fow = dtab[indx];
744 	dtab[indx] = pt;
745 	return(pt);
746 }
747 /*
748  * map_dev()
749  *	given an inode and device storage mask (the mask has a 1 for each bit
750  *	the archive format is able to store in a header), we check for inode
751  *	and device truncation and remap the device as required. Device mapping
752  *	can also occur when during the read phase of append a device number was
753  *	seen (and was marked as do not use during the write phase). WE ASSUME
754  *	that unsigned longs are the same size or bigger than the fields used
755  *	for ino_t and dev_t. If not the types will have to be changed.
756  * Return:
757  *	0 if all ok, -1 otherwise.
758  */
759 
760 int
761 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
762 {
763 	DEVT *pt;
764 	DLIST *dpt;
765 	static dev_t lastdev = 0;	/* next device number to try */
766 	int trc_ino = 0;
767 	int trc_dev = 0;
768 	ino_t trunc_bits = 0;
769 	ino_t nino;
770 
771 	if (dtab == NULL)
772 		return(0);
773 	/*
774 	 * check for device and inode truncation, and extract the truncated
775 	 * bit pattern.
776 	 */
777 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
778 		++trc_dev;
779 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
780 		++trc_ino;
781 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
782 	}
783 
784 	/*
785 	 * see if this device is already being mapped, look up the device
786 	 * then find the truncation bit pattern which applies
787 	 */
788 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
789 		/*
790 		 * this device is already marked to be remapped
791 		 */
792 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
793 			if (dpt->trunc_bits == trunc_bits)
794 				break;
795 
796 		if (dpt != NULL) {
797 			/*
798 			 * we are being remapped for this device and pattern
799 			 * change the device number to be stored and return
800 			 */
801 			arcn->sb.st_dev = dpt->dev;
802 			arcn->sb.st_ino = nino;
803 			return(0);
804 		}
805 	} else {
806 		/*
807 		 * this device is not being remapped YET. if we do not have any
808 		 * form of truncation, we do not need a remap
809 		 */
810 		if (!trc_ino && !trc_dev)
811 			return(0);
812 
813 		/*
814 		 * we have truncation, have to add this as a device to remap
815 		 */
816 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
817 			goto bad;
818 
819 		/*
820 		 * if we just have a truncated inode, we have to make sure that
821 		 * all future inodes that do not truncate (they have the
822 		 * truncation pattern of all 0's) continue to map to the same
823 		 * device number. We probably have already written inodes with
824 		 * this device number to the archive with the truncation
825 		 * pattern of all 0's. So we add the mapping for all 0's to the
826 		 * same device number.
827 		 */
828 		if (!trc_dev && (trunc_bits != 0)) {
829 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
830 				goto bad;
831 			dpt->trunc_bits = 0;
832 			dpt->dev = arcn->sb.st_dev;
833 			dpt->fow = pt->list;
834 			pt->list = dpt;
835 		}
836 	}
837 
838 	/*
839 	 * look for a device number not being used. We must watch for wrap
840 	 * around on lastdev (so we do not get stuck looking forever!)
841 	 */
842 	while (++lastdev > 0) {
843 		if (chk_dev(lastdev, 0) != NULL)
844 			continue;
845 		/*
846 		 * found an unused value. If we have reached truncation point
847 		 * for this format we are hosed, so we give up. Otherwise we
848 		 * mark it as being used.
849 		 */
850 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
851 		    (chk_dev(lastdev, 1) == NULL))
852 			goto bad;
853 		break;
854 	}
855 
856 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
857 		goto bad;
858 
859 	/*
860 	 * got a new device number, store it under this truncation pattern.
861 	 * change the device number this file is being stored with.
862 	 */
863 	dpt->trunc_bits = trunc_bits;
864 	dpt->dev = lastdev;
865 	dpt->fow = pt->list;
866 	pt->list = dpt;
867 	arcn->sb.st_dev = lastdev;
868 	arcn->sb.st_ino = nino;
869 	return(0);
870 
871     bad:
872 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
873 	    arcn->name);
874 	paxwarn(0, "Archive may create improper hard links when extracted");
875 	return(0);
876 }
877 
878 /*
879  * directory access/mod time reset table routines (for directories READ by pax)
880  *
881  * The pax -t flag requires that access times of archive files to be the same
882  * before being read by pax. For regular files, access time is restored after
883  * the file has been copied. This database provides the same functionality for
884  * directories read during file tree traversal. Restoring directory access time
885  * is more complex than files since directories may be read several times until
886  * all the descendants in their subtree are visited by fts. Directory access
887  * and modification times are stored during the fts pre-order visit (done
888  * before any descendants in the subtree is visited) and restored after the
889  * fts post-order visit (after all the descendants have been visited). In the
890  * case of premature exit from a subtree (like from the effects of -n), any
891  * directory entries left in this database are reset during final cleanup
892  * operations of pax. Entries are hashed by inode number for fast lookup.
893  */
894 
895 /*
896  * atdir_start()
897  *	create the directory access time database for directories READ by pax.
898  * Return:
899  *	0 is created ok, -1 otherwise.
900  */
901 
902 int
903 atdir_start(void)
904 {
905 	if (atab != NULL)
906 		return(0);
907  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
908 		paxwarn(1,"Cannot allocate space for directory access time table");
909 		return(-1);
910 	}
911 	return(0);
912 }
913 
914 
915 /*
916  * atdir_end()
917  *	walk through the directory access time table and reset the access time
918  *	of any directory who still has an entry left in the database. These
919  *	entries are for directories READ by pax
920  */
921 
922 void
923 atdir_end(void)
924 {
925 	ATDIR *pt;
926 	int i;
927 
928 	if (atab == NULL)
929 		return;
930 	/*
931 	 * for each non-empty hash table entry reset all the directories
932 	 * chained there.
933 	 */
934 	for (i = 0; i < A_TAB_SZ; ++i) {
935 		if ((pt = atab[i]) == NULL)
936 			continue;
937 		/*
938 		 * remember to force the times, set_ftime() looks at pmtime
939 		 * and patime, which only applies to things CREATED by pax,
940 		 * not read by pax. Read time reset is controlled by -t.
941 		 */
942 		for (; pt != NULL; pt = pt->fow)
943 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
944 	}
945 }
946 
947 /*
948  * add_atdir()
949  *	add a directory to the directory access time table. Table is hashed
950  *	and chained by inode number. This is for directories READ by pax
951  */
952 
953 void
954 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
955 {
956 	ATDIR *pt;
957 	u_int indx;
958 
959 	if (atab == NULL)
960 		return;
961 
962 	/*
963 	 * make sure this directory is not already in the table, if so just
964 	 * return (the older entry always has the correct time). The only
965 	 * way this will happen is when the same subtree can be traversed by
966 	 * different args to pax and the -n option is aborting fts out of a
967 	 * subtree before all the post-order visits have been made).
968 	 */
969 	indx = ((unsigned)ino) % A_TAB_SZ;
970 	if ((pt = atab[indx]) != NULL) {
971 		while (pt != NULL) {
972 			if ((pt->ino == ino) && (pt->dev == dev))
973 				break;
974 			pt = pt->fow;
975 		}
976 
977 		/*
978 		 * oops, already there. Leave it alone.
979 		 */
980 		if (pt != NULL)
981 			return;
982 	}
983 
984 	/*
985 	 * add it to the front of the hash chain
986 	 */
987 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
988 		if ((pt->name = strdup(fname)) != NULL) {
989 			pt->dev = dev;
990 			pt->ino = ino;
991 			pt->mtime = mtime;
992 			pt->atime = atime;
993 			pt->fow = atab[indx];
994 			atab[indx] = pt;
995 			return;
996 		}
997 		free(pt);
998 	}
999 
1000 	paxwarn(1, "Directory access time reset table ran out of memory");
1001 	return;
1002 }
1003 
1004 /*
1005  * get_atdir()
1006  *	look up a directory by inode and device number to obtain the access
1007  *	and modification time you want to set to. If found, the modification
1008  *	and access time parameters are set and the entry is removed from the
1009  *	table (as it is no longer needed). These are for directories READ by
1010  *	pax
1011  * Return:
1012  *	0 if found, -1 if not found.
1013  */
1014 
1015 int
1016 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1017 {
1018 	ATDIR *pt;
1019 	ATDIR **ppt;
1020 	u_int indx;
1021 
1022 	if (atab == NULL)
1023 		return(-1);
1024 	/*
1025 	 * hash by inode and search the chain for an inode and device match
1026 	 */
1027 	indx = ((unsigned)ino) % A_TAB_SZ;
1028 	if ((pt = atab[indx]) == NULL)
1029 		return(-1);
1030 
1031 	ppt = &(atab[indx]);
1032 	while (pt != NULL) {
1033 		if ((pt->ino == ino) && (pt->dev == dev))
1034 			break;
1035 		/*
1036 		 * no match, go to next one
1037 		 */
1038 		ppt = &(pt->fow);
1039 		pt = pt->fow;
1040 	}
1041 
1042 	/*
1043 	 * return if we did not find it.
1044 	 */
1045 	if (pt == NULL)
1046 		return(-1);
1047 
1048 	/*
1049 	 * found it. return the times and remove the entry from the table.
1050 	 */
1051 	*ppt = pt->fow;
1052 	*mtime = pt->mtime;
1053 	*atime = pt->atime;
1054 	free(pt->name);
1055 	free(pt);
1056 	return(0);
1057 }
1058 
1059 /*
1060  * directory access mode and time storage routines (for directories CREATED
1061  * by pax).
1062  *
1063  * Pax requires that extracted directories, by default, have their access/mod
1064  * times and permissions set to the values specified in the archive. During the
1065  * actions of extracting (and creating the destination subtree during -rw copy)
1066  * directories extracted may be modified after being created. Even worse is
1067  * that these directories may have been created with file permissions which
1068  * prohibits any descendants of these directories from being extracted. When
1069  * directories are created by pax, access rights may be added to permit the
1070  * creation of files in their subtree. Every time pax creates a directory, the
1071  * times and file permissions specified by the archive are stored. After all
1072  * files have been extracted (or copied), these directories have their times
1073  * and file modes reset to the stored values. The directory info is restored in
1074  * reverse order as entries were added to the data file from root to leaf. To
1075  * restore atime properly, we must go backwards. The data file consists of
1076  * records with two parts, the file name followed by a DIRDATA trailer. The
1077  * fixed sized trailer contains the size of the name plus the off_t location in
1078  * the file. To restore we work backwards through the file reading the trailer
1079  * then the file name.
1080  */
1081 
1082 /*
1083  * dir_start()
1084  *	set up the directory time and file mode storage for directories CREATED
1085  *	by pax.
1086  * Return:
1087  *	0 if ok, -1 otherwise
1088  */
1089 
1090 int
1091 dir_start(void)
1092 {
1093 
1094 	if (dirfd != -1)
1095 		return(0);
1096 
1097 	/*
1098 	 * unlink the file so it goes away at termination by itself
1099 	 */
1100 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1101 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1102 		(void)unlink(tempfile);
1103 		return(0);
1104 	}
1105 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1106 	    tempfile);
1107 	return(-1);
1108 }
1109 
1110 /*
1111  * add_dir()
1112  *	add the mode and times for a newly CREATED directory
1113  *	name is name of the directory, psb the stat buffer with the data in it,
1114  *	frc_mode is a flag that says whether to force the setting of the mode
1115  *	(ignoring the user set values for preserving file mode). Frc_mode is
1116  *	for the case where we created a file and found that the resulting
1117  *	directory was not writeable and the user asked for file modes to NOT
1118  *	be preserved. (we have to preserve what was created by default, so we
1119  *	have to force the setting at the end. this is stated explicitly in the
1120  *	pax spec)
1121  */
1122 
1123 void
1124 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1125 {
1126 	DIRDATA dblk;
1127 
1128 	if (dirfd < 0)
1129 		return;
1130 
1131 	/*
1132 	 * get current position (where file name will start) so we can store it
1133 	 * in the trailer
1134 	 */
1135 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1136 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1137 		return;
1138 	}
1139 
1140 	/*
1141 	 * write the file name followed by the trailer
1142 	 */
1143 	dblk.nlen = nlen + 1;
1144 	dblk.mode = psb->st_mode & 0xffff;
1145 	dblk.mtime = psb->st_mtime;
1146 	dblk.atime = psb->st_atime;
1147 	dblk.frc_mode = frc_mode;
1148 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1149 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1150 		++dircnt;
1151 		return;
1152 	}
1153 
1154 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1155 	return;
1156 }
1157 
1158 /*
1159  * proc_dir()
1160  *	process all file modes and times stored for directories CREATED
1161  *	by pax
1162  */
1163 
1164 void
1165 proc_dir(void)
1166 {
1167 	char name[PAXPATHLEN+1];
1168 	DIRDATA dblk;
1169 	u_long cnt;
1170 
1171 	if (dirfd < 0)
1172 		return;
1173 	/*
1174 	 * read backwards through the file and process each directory
1175 	 */
1176 	for (cnt = 0; cnt < dircnt; ++cnt) {
1177 		/*
1178 		 * read the trailer, then the file name, if this fails
1179 		 * just give up.
1180 		 */
1181 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1182 			break;
1183 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1184 			break;
1185 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1186 			break;
1187 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1188 			break;
1189 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1190 			break;
1191 
1192 		/*
1193 		 * frc_mode set, make sure we set the file modes even if
1194 		 * the user didn't ask for it (see file_subs.c for more info)
1195 		 */
1196 		if (pmode || dblk.frc_mode)
1197 			set_pmode(name, dblk.mode);
1198 		if (patime || pmtime)
1199 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1200 	}
1201 
1202 	(void)close(dirfd);
1203 	dirfd = -1;
1204 	if (cnt != dircnt)
1205 		paxwarn(1,"Unable to set mode and times for created directories");
1206 	return;
1207 }
1208 
1209 /*
1210  * database independent routines
1211  */
1212 
1213 /*
1214  * st_hash()
1215  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1216  *	end of file, as this provides far better distribution than any other
1217  *	part of the name. For performance reasons we only care about the last
1218  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1219  *	name). Was tested on 500,000 name file tree traversal from the root
1220  *	and gave almost a perfectly uniform distribution of keys when used with
1221  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1222  *	chars at a time and pads with 0 for last addition.
1223  * Return:
1224  *	the hash value of the string MOD (%) the table size.
1225  */
1226 
1227 u_int
1228 st_hash(char *name, int len, int tabsz)
1229 {
1230 	char *pt;
1231 	char *dest;
1232 	char *end;
1233 	int i;
1234 	u_int key = 0;
1235 	int steps;
1236 	int res;
1237 	u_int val;
1238 
1239 	/*
1240 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1241 	 * time here (remember these are pathnames, the tail is what will
1242 	 * spread out the keys)
1243 	 */
1244 	if (len > MAXKEYLEN) {
1245 		pt = &(name[len - MAXKEYLEN]);
1246 		len = MAXKEYLEN;
1247 	} else
1248 		pt = name;
1249 
1250 	/*
1251 	 * calculate the number of u_int size steps in the string and if
1252 	 * there is a runt to deal with
1253 	 */
1254 	steps = len/sizeof(u_int);
1255 	res = len % sizeof(u_int);
1256 
1257 	/*
1258 	 * add up the value of the string in unsigned integer sized pieces
1259 	 * too bad we cannot have unsigned int aligned strings, then we
1260 	 * could avoid the expensive copy.
1261 	 */
1262 	for (i = 0; i < steps; ++i) {
1263 		end = pt + sizeof(u_int);
1264 		dest = (char *)&val;
1265 		while (pt < end)
1266 			*dest++ = *pt++;
1267 		key += val;
1268 	}
1269 
1270 	/*
1271 	 * add in the runt padded with zero to the right
1272 	 */
1273 	if (res) {
1274 		val = 0;
1275 		end = pt + res;
1276 		dest = (char *)&val;
1277 		while (pt < end)
1278 			*dest++ = *pt++;
1279 		key += val;
1280 	}
1281 
1282 	/*
1283 	 * return the result mod the table size
1284 	 */
1285 	return(key % tabsz);
1286 }
1287