1 /*- 2 * Copyright (c) 1992 Keith Muller. 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Keith Muller of the University of California, San Diego. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #ifndef lint 39 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 40 #endif /* not lint */ 41 42 #include <sys/types.h> 43 #include <sys/time.h> 44 #include <sys/stat.h> 45 #include <sys/param.h> 46 #include <sys/fcntl.h> 47 #include <stdio.h> 48 #include <ctype.h> 49 #include <string.h> 50 #include <unistd.h> 51 #include <errno.h> 52 #include <stdlib.h> 53 #include "pax.h" 54 #include "tables.h" 55 #include "extern.h" 56 57 /* 58 * Routines for controlling the contents of all the different databases pax 59 * keeps. Tables are dynamically created only when they are needed. The 60 * goal was speed and the ability to work with HUGE archives. The databases 61 * were kept simple, but do have complex rules for when the contents change. 62 * As of this writing, the posix library functions were more complex than 63 * needed for this application (pax databases have very short lifetimes and 64 * do not survive after pax is finished). Pax is required to handle very 65 * large archives. These database routines carefully combine memory usage and 66 * temporary file storage in ways which will not significantly impact runtime 67 * performance while allowing the largest possible archives to be handled. 68 * Trying to force the fit to the posix databases routines was not considered 69 * time well spent. 70 */ 71 72 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 73 static FTM **ftab = NULL; /* file time table for updating arch */ 74 static NAMT **ntab = NULL; /* interactive rename storage table */ 75 static DEVT **dtab = NULL; /* device/inode mapping tables */ 76 static ATDIR **atab = NULL; /* file tree directory time reset table */ 77 static int dirfd = -1; /* storage for setting created dir time/mode */ 78 static u_long dircnt; /* entries in dir time/mode storage */ 79 static int ffd = -1; /* tmp file for file time table name storage */ 80 81 static DEVT *chk_dev __P((dev_t, int)); 82 83 /* 84 * hard link table routines 85 * 86 * The hard link table tries to detect hard links to files using the device and 87 * inode values. We do this when writing an archive, so we can tell the format 88 * write routine that this file is a hard link to another file. The format 89 * write routine then can store this file in whatever way it wants (as a hard 90 * link if the format supports that like tar, or ignore this info like cpio). 91 * (Actually a field in the format driver table tells us if the format wants 92 * hard link info. if not, we do not waste time looking for them). We also use 93 * the same table when reading an archive. In that situation, this table is 94 * used by the format read routine to detect hard links from stored dev and 95 * inode numbers (like cpio). This will allow pax to create a link when one 96 * can be detected by the archive format. 97 */ 98 99 /* 100 * lnk_start 101 * Creates the hard link table. 102 * Return: 103 * 0 if created, -1 if failure 104 */ 105 106 #if __STDC__ 107 int 108 lnk_start(void) 109 #else 110 int 111 lnk_start() 112 #endif 113 { 114 if (ltab != NULL) 115 return(0); 116 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 117 warn(1, "Cannot allocate memory for hard link table"); 118 return(-1); 119 } 120 return(0); 121 } 122 123 /* 124 * chk_lnk() 125 * Looks up entry in hard link hash table. If found, it copies the name 126 * of the file it is linked to (we already saw that file) into ln_name. 127 * lnkcnt is decremented and if goes to 1 the node is deleted from the 128 * database. (We have seen all the links to this file). If not found, 129 * we add the file to the database if it has the potential for having 130 * hard links to other files we may process (it has a link count > 1) 131 * Return: 132 * if found returns 1; if not found returns 0; -1 on error 133 */ 134 135 #if __STDC__ 136 int 137 chk_lnk(register ARCHD *arcn) 138 #else 139 int 140 chk_lnk(arcn) 141 register ARCHD *arcn; 142 #endif 143 { 144 register HRDLNK *pt; 145 register HRDLNK **ppt; 146 register u_int indx; 147 148 if (ltab == NULL) 149 return(-1); 150 /* 151 * ignore those nodes that cannot have hard links 152 */ 153 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 154 return(0); 155 156 /* 157 * hash inode number and look for this file 158 */ 159 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 160 if ((pt = ltab[indx]) != NULL) { 161 /* 162 * it's hash chain in not empty, walk down looking for it 163 */ 164 ppt = &(ltab[indx]); 165 while (pt != NULL) { 166 if ((pt->ino == arcn->sb.st_ino) && 167 (pt->dev == arcn->sb.st_dev)) 168 break; 169 ppt = &(pt->fow); 170 pt = pt->fow; 171 } 172 173 if (pt != NULL) { 174 /* 175 * found a link. set the node type and copy in the 176 * name of the file it is to link to. we need to 177 * handle hardlinks to regular files differently than 178 * other links. 179 */ 180 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 181 PAXPATHLEN+1); 182 if (arcn->type == PAX_REG) 183 arcn->type = PAX_HRG; 184 else 185 arcn->type = PAX_HLK; 186 187 /* 188 * if we have found all the links to this file, remove 189 * it from the database 190 */ 191 if (--pt->nlink <= 1) { 192 *ppt = pt->fow; 193 (void)free((char *)pt->name); 194 (void)free((char *)pt); 195 } 196 return(1); 197 } 198 } 199 200 /* 201 * we never saw this file before. It has links so we add it to the 202 * front of this hash chain 203 */ 204 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 205 if ((pt->name = strdup(arcn->name)) != NULL) { 206 pt->dev = arcn->sb.st_dev; 207 pt->ino = arcn->sb.st_ino; 208 pt->nlink = arcn->sb.st_nlink; 209 pt->fow = ltab[indx]; 210 ltab[indx] = pt; 211 return(0); 212 } 213 (void)free((char *)pt); 214 } 215 216 warn(1, "Hard link table out of memory"); 217 return(-1); 218 } 219 220 /* 221 * purg_lnk 222 * remove reference for a file that we may have added to the data base as 223 * a potential source for hard links. We ended up not using the file, so 224 * we do not want to accidently point another file at it later on. 225 */ 226 227 #if __STDC__ 228 void 229 purg_lnk(register ARCHD *arcn) 230 #else 231 void 232 purg_lnk(arcn) 233 register ARCHD *arcn; 234 #endif 235 { 236 register HRDLNK *pt; 237 register HRDLNK **ppt; 238 register u_int indx; 239 240 if (ltab == NULL) 241 return; 242 /* 243 * do not bother to look if it could not be in the database 244 */ 245 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 246 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 247 return; 248 249 /* 250 * find the hash chain for this inode value, if empty return 251 */ 252 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 253 if ((pt = ltab[indx]) == NULL) 254 return; 255 256 /* 257 * walk down the list looking for the inode/dev pair, unlink and 258 * free if found 259 */ 260 ppt = &(ltab[indx]); 261 while (pt != NULL) { 262 if ((pt->ino == arcn->sb.st_ino) && 263 (pt->dev == arcn->sb.st_dev)) 264 break; 265 ppt = &(pt->fow); 266 pt = pt->fow; 267 } 268 if (pt == NULL) 269 return; 270 271 /* 272 * remove and free it 273 */ 274 *ppt = pt->fow; 275 (void)free((char *)pt->name); 276 (void)free((char *)pt); 277 } 278 279 /* 280 * lnk_end() 281 * pull apart a existing link table so we can reuse it. We do this between 282 * read and write phases of append with update. (The format may have 283 * used the link table, and we need to start with a fresh table for the 284 * write phase 285 */ 286 287 #if __STDC__ 288 void 289 lnk_end(void) 290 #else 291 void 292 lnk_end() 293 #endif 294 { 295 register int i; 296 register HRDLNK *pt; 297 register HRDLNK *ppt; 298 299 if (ltab == NULL) 300 return; 301 302 for (i = 0; i < L_TAB_SZ; ++i) { 303 if (ltab[i] == NULL) 304 continue; 305 pt = ltab[i]; 306 ltab[i] = NULL; 307 308 /* 309 * free up each entry on this chain 310 */ 311 while (pt != NULL) { 312 ppt = pt; 313 pt = ppt->fow; 314 (void)free((char *)ppt->name); 315 (void)free((char *)ppt); 316 } 317 } 318 return; 319 } 320 321 /* 322 * modification time table routines 323 * 324 * The modification time table keeps track of last modification times for all 325 * files stored in an archive during a write phase when -u is set. We only 326 * add a file to the archive if it is newer than a file with the same name 327 * already stored on the archive (if there is no other file with the same 328 * name on the archive it is added). This applies to writes and appends. 329 * An append with an -u must read the archive and store the modification time 330 * for every file on that archive before starting the write phase. It is clear 331 * that this is one HUGE database. To save memory space, the actual file names 332 * are stored in a scatch file and indexed by an in memory hash table. The 333 * hash table is indexed by hashing the file path. The nodes in the table store 334 * the length of the filename and the lseek offset within the scratch file 335 * where the actual name is stored. Since there are never any deletions to this 336 * table, fragmentation of the scratch file is never a issue. Lookups seem to 337 * not exhibit any locality at all (files in the database are rarely 338 * looked up more than once...). So caching is just a waste of memory. The 339 * only limitation is the amount of scatch file space available to store the 340 * path names. 341 */ 342 343 /* 344 * ftime_start() 345 * create the file time hash table and open for read/write the scratch 346 * file. (after created it is unlinked, so when we exit we leave 347 * no witnesses). 348 * Return: 349 * 0 if the table and file was created ok, -1 otherwise 350 */ 351 352 #if __STDC__ 353 int 354 ftime_start(void) 355 #else 356 int 357 ftime_start() 358 #endif 359 { 360 char *pt; 361 362 if (ftab != NULL) 363 return(0); 364 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 365 warn(1, "Cannot allocate memory for file time table"); 366 return(-1); 367 } 368 369 /* 370 * get random name and create temporary scratch file, unlink name 371 * so it will get removed on exit 372 */ 373 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 374 return(-1); 375 (void)unlink(pt); 376 377 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) { 378 syswarn(1, errno, "Unable to open temporary file: %s", pt); 379 return(-1); 380 } 381 382 (void)unlink(pt); 383 return(0); 384 } 385 386 /* 387 * chk_ftime() 388 * looks up entry in file time hash table. If not found, the file is 389 * added to the hash table and the file named stored in the scratch file. 390 * If a file with the same name is found, the file times are compared and 391 * the most recent file time is retained. If the new file was younger (or 392 * was not in the database) the new file is selected for storage. 393 * Return: 394 * 0 if file should be added to the archive, 1 if it should be skipped, 395 * -1 on error 396 */ 397 398 #if __STDC__ 399 int 400 chk_ftime(register ARCHD *arcn) 401 #else 402 int 403 chk_ftime(arcn) 404 register ARCHD *arcn; 405 #endif 406 { 407 register FTM *pt; 408 register int namelen; 409 register u_int indx; 410 char ckname[PAXPATHLEN+1]; 411 412 /* 413 * no info, go ahead and add to archive 414 */ 415 if (ftab == NULL) 416 return(0); 417 418 /* 419 * hash the pathname and look up in table 420 */ 421 namelen = arcn->nlen; 422 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 423 if ((pt = ftab[indx]) != NULL) { 424 /* 425 * the hash chain is not empty, walk down looking for match 426 * only read up the path names if the lengths match, speeds 427 * up the search a lot 428 */ 429 while (pt != NULL) { 430 if (pt->namelen == namelen) { 431 /* 432 * potential match, have to read the name 433 * from the scratch file. 434 */ 435 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 436 syswarn(1, errno, 437 "Failed ftime table seek"); 438 return(-1); 439 } 440 if (read(ffd, ckname, namelen) != namelen) { 441 syswarn(1, errno, 442 "Failed ftime table read"); 443 return(-1); 444 } 445 446 /* 447 * if the names match, we are done 448 */ 449 if (!strncmp(ckname, arcn->name, namelen)) 450 break; 451 } 452 453 /* 454 * try the next entry on the chain 455 */ 456 pt = pt->fow; 457 } 458 459 if (pt != NULL) { 460 /* 461 * found the file, compare the times, save the newer 462 */ 463 if (arcn->sb.st_mtime > pt->mtime) { 464 /* 465 * file is newer 466 */ 467 pt->mtime = arcn->sb.st_mtime; 468 return(0); 469 } 470 /* 471 * file is older 472 */ 473 return(1); 474 } 475 } 476 477 /* 478 * not in table, add it 479 */ 480 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 481 /* 482 * add the name at the end of the scratch file, saving the 483 * offset. add the file to the head of the hash chain 484 */ 485 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 486 if (write(ffd, arcn->name, namelen) == namelen) { 487 pt->mtime = arcn->sb.st_mtime; 488 pt->namelen = namelen; 489 pt->fow = ftab[indx]; 490 ftab[indx] = pt; 491 return(0); 492 } 493 syswarn(1, errno, "Failed write to file time table"); 494 } else 495 syswarn(1, errno, "Failed seek on file time table"); 496 } else 497 warn(1, "File time table ran out of memory"); 498 499 if (pt != NULL) 500 (void)free((char *)pt); 501 return(-1); 502 } 503 504 /* 505 * Interactive rename table routines 506 * 507 * The interactive rename table keeps track of the new names that the user 508 * assignes to files from tty input. Since this map is unique for each file 509 * we must store it in case there is a reference to the file later in archive 510 * (a link). Otherwise we will be unable to find the file we know was 511 * extracted. The remapping of these files is stored in a memory based hash 512 * table (it is assumed since input must come from /dev/tty, it is unlikely to 513 * be a very large table). 514 */ 515 516 /* 517 * name_start() 518 * create the interactive rename table 519 * Return: 520 * 0 if successful, -1 otherwise 521 */ 522 523 #if __STDC__ 524 int 525 name_start(void) 526 #else 527 int 528 name_start() 529 #endif 530 { 531 if (ntab != NULL) 532 return(0); 533 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 534 warn(1, "Cannot allocate memory for interactive rename table"); 535 return(-1); 536 } 537 return(0); 538 } 539 540 /* 541 * add_name() 542 * add the new name to old name mapping just created by the user. 543 * If an old name mapping is found (there may be duplicate names on an 544 * archive) only the most recent is kept. 545 * Return: 546 * 0 if added, -1 otherwise 547 */ 548 549 #if __STDC__ 550 int 551 add_name(register char *oname, int onamelen, char *nname) 552 #else 553 int 554 add_name(oname, onamelen, nname) 555 register char *oname; 556 int onamelen; 557 char *nname; 558 #endif 559 { 560 register NAMT *pt; 561 register u_int indx; 562 563 if (ntab == NULL) { 564 /* 565 * should never happen 566 */ 567 warn(0, "No interactive rename table, links may fail\n"); 568 return(0); 569 } 570 571 /* 572 * look to see if we have already mapped this file, if so we 573 * will update it 574 */ 575 indx = st_hash(oname, onamelen, N_TAB_SZ); 576 if ((pt = ntab[indx]) != NULL) { 577 /* 578 * look down the has chain for the file 579 */ 580 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 581 pt = pt->fow; 582 583 if (pt != NULL) { 584 /* 585 * found an old mapping, replace it with the new one 586 * the user just input (if it is different) 587 */ 588 if (strcmp(nname, pt->nname) == 0) 589 return(0); 590 591 (void)free((char *)pt->nname); 592 if ((pt->nname = strdup(nname)) == NULL) { 593 warn(1, "Cannot update rename table"); 594 return(-1); 595 } 596 return(0); 597 } 598 } 599 600 /* 601 * this is a new mapping, add it to the table 602 */ 603 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 604 if ((pt->oname = strdup(oname)) != NULL) { 605 if ((pt->nname = strdup(nname)) != NULL) { 606 pt->fow = ntab[indx]; 607 ntab[indx] = pt; 608 return(0); 609 } 610 (void)free((char *)pt->oname); 611 } 612 (void)free((char *)pt); 613 } 614 warn(1, "Interactive rename table out of memory"); 615 return(-1); 616 } 617 618 /* 619 * sub_name() 620 * look up a link name to see if it points at a file that has been 621 * remapped by the user. If found, the link is adjusted to contain the 622 * new name (oname is the link to name) 623 */ 624 625 #if __STDC__ 626 void 627 sub_name(register char *oname, int *onamelen) 628 #else 629 void 630 sub_name(oname, onamelen) 631 register char *oname; 632 int *onamelen; 633 #endif 634 { 635 register NAMT *pt; 636 register u_int indx; 637 638 if (ntab == NULL) 639 return; 640 /* 641 * look the name up in the hash table 642 */ 643 indx = st_hash(oname, *onamelen, N_TAB_SZ); 644 if ((pt = ntab[indx]) == NULL) 645 return; 646 647 while (pt != NULL) { 648 /* 649 * walk down the hash cahin looking for a match 650 */ 651 if (strcmp(oname, pt->oname) == 0) { 652 /* 653 * found it, replace it with the new name 654 * and return (we know that oname has enough space) 655 */ 656 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 657 return; 658 } 659 pt = pt->fow; 660 } 661 662 /* 663 * no match, just return 664 */ 665 return; 666 } 667 668 /* 669 * device/inode mapping table routines 670 * (used with formats that store device and inodes fields) 671 * 672 * device/inode mapping tables remap the device field in a archive header. The 673 * device/inode fields are used to determine when files are hard links to each 674 * other. However these values have very little meaning outside of that. This 675 * database is used to solve one of two different problems. 676 * 677 * 1) when files are appended to an archive, while the new files may have hard 678 * links to each other, you cannot determine if they have hard links to any 679 * file already stored on the archive from a prior run of pax. We must assume 680 * that these inode/device pairs are unique only within a SINGLE run of pax 681 * (which adds a set of files to an archive). So we have to make sure the 682 * inode/dev pairs we add each time are always unique. We do this by observing 683 * while the inode field is very dense, the use of the dev field is fairly 684 * sparse. Within each run of pax, we remap any device number of a new archive 685 * member that has a device number used in a prior run and already stored in a 686 * file on the archive. During the read phase of the append, we store the 687 * device numbers used and mark them to not be used by any file during the 688 * write phase. If during write we go to use one of those old device numbers, 689 * we remap it to a new value. 690 * 691 * 2) Often the fields in the archive header used to store these values are 692 * too small to store the entire value. The result is an inode or device value 693 * which can be truncated. This really can foul up an archive. With truncation 694 * we end up creating links between files that are really not links (after 695 * truncation the inodes are the same value). We address that by detecting 696 * truncation and forcing a remap of the device field to split truncated 697 * inodes away from each other. Each truncation creates a pattern of bits that 698 * are removed. We use this pattern of truncated bits to partition the inodes 699 * on a single device to many different devices (each one represented by the 700 * truncated bit pattern). All inodes on the same device that have the same 701 * truncation pattern are mapped to the same new device. Two inodes that 702 * truncate to the same value clearly will always have different truncation 703 * bit patterns, so they will be split from away each other. When we spot 704 * device truncation we remap the device number to a non truncated value. 705 * (for more info see table.h for the data structures involved). 706 */ 707 708 /* 709 * dev_start() 710 * create the device mapping table 711 * Return: 712 * 0 if successful, -1 otherwise 713 */ 714 715 #if __STDC__ 716 int 717 dev_start(void) 718 #else 719 int 720 dev_start() 721 #endif 722 { 723 if (dtab != NULL) 724 return(0); 725 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 726 warn(1, "Cannot allocate memory for device mapping table"); 727 return(-1); 728 } 729 return(0); 730 } 731 732 /* 733 * add_dev() 734 * add a device number to the table. this will force the device to be 735 * remapped to a new value if it be used during a write phase. This 736 * function is called during the read phase of an append to prohibit the 737 * use of any device number already in the archive. 738 * Return: 739 * 0 if added ok, -1 otherwise 740 */ 741 742 #if __STDC__ 743 int 744 add_dev(register ARCHD *arcn) 745 #else 746 int 747 add_dev(arcn) 748 register ARCHD *arcn; 749 #endif 750 { 751 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 752 return(-1); 753 return(0); 754 } 755 756 /* 757 * chk_dev() 758 * check for a device value in the device table. If not found and the add 759 * flag is set, it is added. This does NOT assign any mapping values, just 760 * adds the device number as one that need to be remapped. If this device 761 * is alread mapped, just return with a pointer to that entry. 762 * Return: 763 * pointer to the entry for this device in the device map table. Null 764 * if the add flag is not set and the device is not in the table (it is 765 * not been seen yet). If add is set and the device cannot be added, null 766 * is returned (indicates an error). 767 */ 768 769 #if __STDC__ 770 static DEVT * 771 chk_dev(dev_t dev, int add) 772 #else 773 static DEVT * 774 chk_dev(dev, add) 775 dev_t dev; 776 int add; 777 #endif 778 { 779 register DEVT *pt; 780 register u_int indx; 781 782 if (dtab == NULL) 783 return(NULL); 784 /* 785 * look to see if this device is already in the table 786 */ 787 indx = ((unsigned)dev) % D_TAB_SZ; 788 if ((pt = dtab[indx]) != NULL) { 789 while ((pt != NULL) && (pt->dev != dev)) 790 pt = pt->fow; 791 792 /* 793 * found it, return a pointer to it 794 */ 795 if (pt != NULL) 796 return(pt); 797 } 798 799 /* 800 * not in table, we add it only if told to as this may just be a check 801 * to see if a device number is being used. 802 */ 803 if (add == 0) 804 return(NULL); 805 806 /* 807 * allocate a node for this device and add it to the front of the hash 808 * chain. Note we do not assign remaps values here, so the pt->list 809 * list must be NULL. 810 */ 811 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 812 warn(1, "Device map table out of memory"); 813 return(NULL); 814 } 815 pt->dev = dev; 816 pt->list = NULL; 817 pt->fow = dtab[indx]; 818 dtab[indx] = pt; 819 return(pt); 820 } 821 /* 822 * map_dev() 823 * given an inode and device storage mask (the mask has a 1 for each bit 824 * the archive format is able to store in a header), we check for inode 825 * and device truncation and remap the device as required. Device mapping 826 * can also occur when during the read phase of append a device number was 827 * seen (and was marked as do not use during the write phase). WE ASSUME 828 * that unsigned longs are the same size or bigger than the fields used 829 * for ino_t and dev_t. If not the types will have to be changed. 830 * Return: 831 * 0 if all ok, -1 otherwise. 832 */ 833 834 #if __STDC__ 835 int 836 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask) 837 #else 838 int 839 map_dev(arcn, dev_mask, ino_mask) 840 register ARCHD *arcn; 841 u_long dev_mask; 842 u_long ino_mask; 843 #endif 844 { 845 register DEVT *pt; 846 register DLIST *dpt; 847 static dev_t lastdev = 0; /* next device number to try */ 848 int trc_ino = 0; 849 int trc_dev = 0; 850 ino_t trunc_bits = 0; 851 ino_t nino; 852 853 if (dtab == NULL) 854 return(0); 855 /* 856 * check for device and inode truncation, and extract the truncated 857 * bit pattern. 858 */ 859 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 860 ++trc_dev; 861 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 862 ++trc_ino; 863 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 864 } 865 866 /* 867 * see if this device is already being mapped, look up the device 868 * then find the truncation bit pattern which applies 869 */ 870 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 871 /* 872 * this device is already marked to be remapped 873 */ 874 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 875 if (dpt->trunc_bits == trunc_bits) 876 break; 877 878 if (dpt != NULL) { 879 /* 880 * we are being remapped for this device and pattern 881 * change the device number to be stored and return 882 */ 883 arcn->sb.st_dev = dpt->dev; 884 arcn->sb.st_ino = nino; 885 return(0); 886 } 887 } else { 888 /* 889 * this device is not being remapped YET. if we do not have any 890 * form of truncation, we do not need a remap 891 */ 892 if (!trc_ino && !trc_dev) 893 return(0); 894 895 /* 896 * we have truncation, have to add this as a device to remap 897 */ 898 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 899 goto bad; 900 901 /* 902 * if we just have a truncated inode, we have to make sure that 903 * all future inodes that do not truncate (they have the 904 * truncation pattern of all 0's) continue to map to the same 905 * device number. We probably have already written inodes with 906 * this device number to the archive with the truncation 907 * pattern of all 0's. So we add the mapping for all 0's to the 908 * same device number. 909 */ 910 if (!trc_dev && (trunc_bits != 0)) { 911 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 912 goto bad; 913 dpt->trunc_bits = 0; 914 dpt->dev = arcn->sb.st_dev; 915 dpt->fow = pt->list; 916 pt->list = dpt; 917 } 918 } 919 920 /* 921 * look for a device number not being used. We must watch for wrap 922 * around on lastdev (so we do not get stuck looking forever!) 923 */ 924 while (++lastdev > 0) { 925 if (chk_dev(lastdev, 0) != NULL) 926 continue; 927 /* 928 * found an unused value. If we have reached truncation point 929 * for this format we are hosed, so we give up. Otherwise we 930 * mark it as being used. 931 */ 932 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 933 (chk_dev(lastdev, 1) == NULL)) 934 goto bad; 935 break; 936 } 937 938 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 939 goto bad; 940 941 /* 942 * got a new device number, store it under this truncation pattern. 943 * change the device number this file is being stored with. 944 */ 945 dpt->trunc_bits = trunc_bits; 946 dpt->dev = lastdev; 947 dpt->fow = pt->list; 948 pt->list = dpt; 949 arcn->sb.st_dev = lastdev; 950 arcn->sb.st_ino = nino; 951 return(0); 952 953 bad: 954 warn(1, "Unable to fix truncated inode/device field when storing %s", 955 arcn->name); 956 warn(0, "Archive may create improper hard links when extracted"); 957 return(0); 958 } 959 960 /* 961 * directory access/mod time reset table routines (for directories READ by pax) 962 * 963 * The pax -t flag requires that access times of archive files to be the same 964 * before being read by pax. For regular files, access time is restored after 965 * the file has been copied. This database provides the same functionality for 966 * directories read during file tree traversal. Restoring directory access time 967 * is more complex than files since directories may be read several times until 968 * all the descendants in their subtree are visited by fts. Directory access 969 * and modification times are stored during the fts pre-order visit (done 970 * before any descendants in the subtree is visited) and restored after the 971 * fts post-order visit (after all the descendants have been visited). In the 972 * case of premature exit from a subtree (like from the effects of -n), any 973 * directory entries left in this database are reset during final cleanup 974 * operations of pax. Entries are hashed by inode number for fast lookup. 975 */ 976 977 /* 978 * atdir_start() 979 * create the directory access time database for directories READ by pax. 980 * Return: 981 * 0 is created ok, -1 otherwise. 982 */ 983 984 #if __STDC__ 985 int 986 atdir_start(void) 987 #else 988 int 989 atdir_start() 990 #endif 991 { 992 if (atab != NULL) 993 return(0); 994 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 995 warn(1,"Cannot allocate space for directory access time table"); 996 return(-1); 997 } 998 return(0); 999 } 1000 1001 1002 /* 1003 * atdir_end() 1004 * walk through the directory access time table and reset the access time 1005 * of any directory who still has an entry left in the database. These 1006 * entries are for directories READ by pax 1007 */ 1008 1009 #if __STDC__ 1010 void 1011 atdir_end(void) 1012 #else 1013 void 1014 atdir_end() 1015 #endif 1016 { 1017 register ATDIR *pt; 1018 register int i; 1019 1020 if (atab == NULL) 1021 return; 1022 /* 1023 * for each non-empty hash table entry reset all the directories 1024 * chained there. 1025 */ 1026 for (i = 0; i < A_TAB_SZ; ++i) { 1027 if ((pt = atab[i]) == NULL) 1028 continue; 1029 /* 1030 * remember to force the times, set_ftime() looks at pmtime 1031 * and patime, which only applies to things CREATED by pax, 1032 * not read by pax. Read time reset is controlled by -t. 1033 */ 1034 for (; pt != NULL; pt = pt->fow) 1035 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1036 } 1037 } 1038 1039 /* 1040 * add_atdir() 1041 * add a directory to the directory access time table. Table is hashed 1042 * and chained by inode number. This is for directories READ by pax 1043 */ 1044 1045 #if __STDC__ 1046 void 1047 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1048 #else 1049 void 1050 add_atdir(fname, dev, ino, mtime, atime) 1051 char *fname; 1052 dev_t dev; 1053 ino_t ino; 1054 time_t mtime; 1055 time_t atime; 1056 #endif 1057 { 1058 register ATDIR *pt; 1059 register u_int indx; 1060 1061 if (atab == NULL) 1062 return; 1063 1064 /* 1065 * make sure this directory is not already in the table, if so just 1066 * return (the older entry always has the correct time). The only 1067 * way this will happen is when the same subtree can be traversed by 1068 * different args to pax and the -n option is aborting fts out of a 1069 * subtree before all the post-order visits have been made). 1070 */ 1071 indx = ((unsigned)ino) % A_TAB_SZ; 1072 if ((pt = atab[indx]) != NULL) { 1073 while (pt != NULL) { 1074 if ((pt->ino == ino) && (pt->dev == dev)) 1075 break; 1076 pt = pt->fow; 1077 } 1078 1079 /* 1080 * oops, already there. Leave it alone. 1081 */ 1082 if (pt != NULL) 1083 return; 1084 } 1085 1086 /* 1087 * add it to the front of the hash chain 1088 */ 1089 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1090 if ((pt->name = strdup(fname)) != NULL) { 1091 pt->dev = dev; 1092 pt->ino = ino; 1093 pt->mtime = mtime; 1094 pt->atime = atime; 1095 pt->fow = atab[indx]; 1096 atab[indx] = pt; 1097 return; 1098 } 1099 (void)free((char *)pt); 1100 } 1101 1102 warn(1, "Directory access time reset table ran out of memory"); 1103 return; 1104 } 1105 1106 /* 1107 * get_atdir() 1108 * look up a directory by inode and device number to obtain the access 1109 * and modification time you want to set to. If found, the modification 1110 * and access time parameters are set and the entry is removed from the 1111 * table (as it is no longer needed). These are for directories READ by 1112 * pax 1113 * Return: 1114 * 0 if found, -1 if not found. 1115 */ 1116 1117 #if __STDC__ 1118 int 1119 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1120 #else 1121 int 1122 get_atdir(dev, ino, mtime, atime) 1123 dev_t dev; 1124 ino_t ino; 1125 time_t *mtime; 1126 time_t *atime; 1127 #endif 1128 { 1129 register ATDIR *pt; 1130 register ATDIR **ppt; 1131 register u_int indx; 1132 1133 if (atab == NULL) 1134 return(-1); 1135 /* 1136 * hash by inode and search the chain for an inode and device match 1137 */ 1138 indx = ((unsigned)ino) % A_TAB_SZ; 1139 if ((pt = atab[indx]) == NULL) 1140 return(-1); 1141 1142 ppt = &(atab[indx]); 1143 while (pt != NULL) { 1144 if ((pt->ino == ino) && (pt->dev == dev)) 1145 break; 1146 /* 1147 * no match, go to next one 1148 */ 1149 ppt = &(pt->fow); 1150 pt = pt->fow; 1151 } 1152 1153 /* 1154 * return if we did not find it. 1155 */ 1156 if (pt == NULL) 1157 return(-1); 1158 1159 /* 1160 * found it. return the times and remove the entry from the table. 1161 */ 1162 *ppt = pt->fow; 1163 *mtime = pt->mtime; 1164 *atime = pt->atime; 1165 (void)free((char *)pt->name); 1166 (void)free((char *)pt); 1167 return(0); 1168 } 1169 1170 /* 1171 * directory access mode and time storage routines (for directories CREATED 1172 * by pax). 1173 * 1174 * Pax requires that extracted directories, by default, have their access/mod 1175 * times and permissions set to the values specified in the archive. During the 1176 * actions of extracting (and creating the destination subtree during -rw copy) 1177 * directories extracted may be modified after being created. Even worse is 1178 * that these directories may have been created with file permissions which 1179 * prohibits any descendants of these directories from being extracted. When 1180 * directories are created by pax, access rights may be added to permit the 1181 * creation of files in their subtree. Every time pax creates a directory, the 1182 * times and file permissions specified by the archive are stored. After all 1183 * files have been extracted (or copied), these directories have their times 1184 * and file modes reset to the stored values. The directory info is restored in 1185 * reverse order as entries were added to the data file from root to leaf. To 1186 * restore atime properly, we must go backwards. The data file consists of 1187 * records with two parts, the file name followed by a DIRDATA trailer. The 1188 * fixed sized trailer contains the size of the name plus the off_t location in 1189 * the file. To restore we work backwards through the file reading the trailer 1190 * then the file name. 1191 */ 1192 1193 /* 1194 * dir_start() 1195 * set up the directory time and file mode storage for directories CREATED 1196 * by pax. 1197 * Return: 1198 * 0 if ok, -1 otherwise 1199 */ 1200 1201 #if __STDC__ 1202 int 1203 dir_start(void) 1204 #else 1205 int 1206 dir_start() 1207 #endif 1208 { 1209 char *pt; 1210 1211 if (dirfd != -1) 1212 return(0); 1213 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 1214 return(-1); 1215 1216 /* 1217 * unlink the file so it goes away at termination by itself 1218 */ 1219 (void)unlink(pt); 1220 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) { 1221 (void)unlink(pt); 1222 return(0); 1223 } 1224 warn(1, "Unable to create temporary file for directory times: %s", pt); 1225 return(-1); 1226 } 1227 1228 /* 1229 * add_dir() 1230 * add the mode and times for a newly CREATED directory 1231 * name is name of the directory, psb the stat buffer with the data in it, 1232 * frc_mode is a flag that says whether to force the setting of the mode 1233 * (ignoring the user set values for preserving file mode). Frc_mode is 1234 * for the case where we created a file and found that the resulting 1235 * directory was not writeable and the user asked for file modes to NOT 1236 * be preserved. (we have to preserve what was created by default, so we 1237 * have to force the setting at the end. this is stated explicitly in the 1238 * pax spec) 1239 */ 1240 1241 #if __STDC__ 1242 void 1243 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1244 #else 1245 void 1246 add_dir(name, nlen, psb, frc_mode) 1247 char *name; 1248 int nlen; 1249 struct stat *psb; 1250 int frc_mode; 1251 #endif 1252 { 1253 DIRDATA dblk; 1254 1255 if (dirfd < 0) 1256 return; 1257 1258 /* 1259 * get current position (where file name will start) so we can store it 1260 * in the trailer 1261 */ 1262 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1263 warn(1,"Unable to store mode and times for directory: %s",name); 1264 return; 1265 } 1266 1267 /* 1268 * write the file name followed by the trailer 1269 */ 1270 dblk.nlen = nlen + 1; 1271 dblk.mode = psb->st_mode & 0xffff; 1272 dblk.mtime = psb->st_mtime; 1273 dblk.atime = psb->st_atime; 1274 dblk.frc_mode = frc_mode; 1275 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1276 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1277 ++dircnt; 1278 return; 1279 } 1280 1281 warn(1,"Unable to store mode and times for created directory: %s",name); 1282 return; 1283 } 1284 1285 /* 1286 * proc_dir() 1287 * process all file modes and times stored for directories CREATED 1288 * by pax 1289 */ 1290 1291 #if __STDC__ 1292 void 1293 proc_dir(void) 1294 #else 1295 void 1296 proc_dir() 1297 #endif 1298 { 1299 char name[PAXPATHLEN+1]; 1300 DIRDATA dblk; 1301 u_long cnt; 1302 1303 if (dirfd < 0) 1304 return; 1305 /* 1306 * read backwards through the file and process each directory 1307 */ 1308 for (cnt = 0; cnt < dircnt; ++cnt) { 1309 /* 1310 * read the trailer, then the file name, if this fails 1311 * just give up. 1312 */ 1313 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1314 break; 1315 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1316 break; 1317 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1318 break; 1319 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1320 break; 1321 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1322 break; 1323 1324 /* 1325 * frc_mode set, make sure we set the file modes even if 1326 * the user didn't ask for it (see file_subs.c for more info) 1327 */ 1328 if (pmode || dblk.frc_mode) 1329 set_pmode(name, dblk.mode); 1330 if (patime || pmtime) 1331 set_ftime(name, dblk.mtime, dblk.atime, 0); 1332 } 1333 1334 (void)close(dirfd); 1335 dirfd = -1; 1336 if (cnt != dircnt) 1337 warn(1,"Unable to set mode and times for created directories"); 1338 return; 1339 } 1340 1341 /* 1342 * database independent routines 1343 */ 1344 1345 /* 1346 * st_hash() 1347 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1348 * end of file, as this provides far better distribution than any other 1349 * part of the name. For performance reasons we only care about the last 1350 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1351 * name). Was tested on 500,000 name file tree traversal from the root 1352 * and gave almost a perfectly uniform distribution of keys when used with 1353 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1354 * chars at a time and pads with 0 for last addition. 1355 * Return: 1356 * the hash value of the string MOD (%) the table size. 1357 */ 1358 1359 #if __STDC__ 1360 u_int 1361 st_hash(char *name, int len, int tabsz) 1362 #else 1363 u_int 1364 st_hash(name, len, tabsz) 1365 char *name; 1366 int len; 1367 int tabsz; 1368 #endif 1369 { 1370 register char *pt; 1371 register char *dest; 1372 register char *end; 1373 register int i; 1374 register u_int key = 0; 1375 register int steps; 1376 register int res; 1377 u_int val; 1378 1379 /* 1380 * only look at the tail up to MAXKEYLEN, we do not need to waste 1381 * time here (remember these are pathnames, the tail is what will 1382 * spread out the keys) 1383 */ 1384 if (len > MAXKEYLEN) { 1385 pt = &(name[len - MAXKEYLEN]); 1386 len = MAXKEYLEN; 1387 } else 1388 pt = name; 1389 1390 /* 1391 * calculate the number of u_int size steps in the string and if 1392 * there is a runt to deal with 1393 */ 1394 steps = len/sizeof(u_int); 1395 res = len % sizeof(u_int); 1396 1397 /* 1398 * add up the value of the string in unsigned integer sized pieces 1399 * too bad we cannot have unsigned int aligned strings, then we 1400 * could avoid the expensive copy. 1401 */ 1402 for (i = 0; i < steps; ++i) { 1403 end = pt + sizeof(u_int); 1404 dest = (char *)&val; 1405 while (pt < end) 1406 *dest++ = *pt++; 1407 key += val; 1408 } 1409 1410 /* 1411 * add in the runt padded with zero to the right 1412 */ 1413 if (res) { 1414 val = 0; 1415 end = pt + res; 1416 dest = (char *)&val; 1417 while (pt < end) 1418 *dest++ = *pt++; 1419 key += val; 1420 } 1421 1422 /* 1423 * return the result mod the table size 1424 */ 1425 return(key % tabsz); 1426 } 1427