xref: /freebsd/bin/pax/tables.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #ifndef lint
39 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
40 #endif /* not lint */
41 
42 #include <sys/types.h>
43 #include <sys/time.h>
44 #include <sys/stat.h>
45 #include <sys/param.h>
46 #include <sys/fcntl.h>
47 #include <stdio.h>
48 #include <ctype.h>
49 #include <string.h>
50 #include <unistd.h>
51 #include <errno.h>
52 #include <stdlib.h>
53 #include "pax.h"
54 #include "tables.h"
55 #include "extern.h"
56 
57 /*
58  * Routines for controlling the contents of all the different databases pax
59  * keeps. Tables are dynamically created only when they are needed. The
60  * goal was speed and the ability to work with HUGE archives. The databases
61  * were kept simple, but do have complex rules for when the contents change.
62  * As of this writing, the posix library functions were more complex than
63  * needed for this application (pax databases have very short lifetimes and
64  * do not survive after pax is finished). Pax is required to handle very
65  * large archives. These database routines carefully combine memory usage and
66  * temporary file storage in ways which will not significantly impact runtime
67  * performance while allowing the largest possible archives to be handled.
68  * Trying to force the fit to the posix databases routines was not considered
69  * time well spent.
70  */
71 
72 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
73 static FTM **ftab = NULL;	/* file time table for updating arch */
74 static NAMT **ntab = NULL;	/* interactive rename storage table */
75 static DEVT **dtab = NULL;	/* device/inode mapping tables */
76 static ATDIR **atab = NULL;	/* file tree directory time reset table */
77 static int dirfd = -1;		/* storage for setting created dir time/mode */
78 static u_long dircnt;		/* entries in dir time/mode storage */
79 static int ffd = -1;		/* tmp file for file time table name storage */
80 
81 static DEVT *chk_dev __P((dev_t, int));
82 
83 /*
84  * hard link table routines
85  *
86  * The hard link table tries to detect hard links to files using the device and
87  * inode values. We do this when writing an archive, so we can tell the format
88  * write routine that this file is a hard link to another file. The format
89  * write routine then can store this file in whatever way it wants (as a hard
90  * link if the format supports that like tar, or ignore this info like cpio).
91  * (Actually a field in the format driver table tells us if the format wants
92  * hard link info. if not, we do not waste time looking for them). We also use
93  * the same table when reading an archive. In that situation, this table is
94  * used by the format read routine to detect hard links from stored dev and
95  * inode numbers (like cpio). This will allow pax to create a link when one
96  * can be detected by the archive format.
97  */
98 
99 /*
100  * lnk_start
101  *	Creates the hard link table.
102  * Return:
103  *	0 if created, -1 if failure
104  */
105 
106 #if __STDC__
107 int
108 lnk_start(void)
109 #else
110 int
111 lnk_start()
112 #endif
113 {
114 	if (ltab != NULL)
115 		return(0);
116  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
117                 warn(1, "Cannot allocate memory for hard link table");
118                 return(-1);
119         }
120 	return(0);
121 }
122 
123 /*
124  * chk_lnk()
125  *	Looks up entry in hard link hash table. If found, it copies the name
126  *	of the file it is linked to (we already saw that file) into ln_name.
127  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
128  *	database. (We have seen all the links to this file). If not found,
129  *	we add the file to the database if it has the potential for having
130  *	hard links to other files we may process (it has a link count > 1)
131  * Return:
132  *	if found returns 1; if not found returns 0; -1 on error
133  */
134 
135 #if __STDC__
136 int
137 chk_lnk(register ARCHD *arcn)
138 #else
139 int
140 chk_lnk(arcn)
141 	register ARCHD *arcn;
142 #endif
143 {
144 	register HRDLNK *pt;
145 	register HRDLNK **ppt;
146 	register u_int indx;
147 
148 	if (ltab == NULL)
149 		return(-1);
150 	/*
151 	 * ignore those nodes that cannot have hard links
152 	 */
153 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
154 		return(0);
155 
156 	/*
157 	 * hash inode number and look for this file
158 	 */
159 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
160 	if ((pt = ltab[indx]) != NULL) {
161 		/*
162 		 * it's hash chain in not empty, walk down looking for it
163 		 */
164 		ppt = &(ltab[indx]);
165 		while (pt != NULL) {
166 			if ((pt->ino == arcn->sb.st_ino) &&
167 			    (pt->dev == arcn->sb.st_dev))
168 				break;
169 			ppt = &(pt->fow);
170 			pt = pt->fow;
171 		}
172 
173 		if (pt != NULL) {
174 			/*
175 			 * found a link. set the node type and copy in the
176 			 * name of the file it is to link to. we need to
177 			 * handle hardlinks to regular files differently than
178 			 * other links.
179 			 */
180 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
181 				PAXPATHLEN+1);
182 			if (arcn->type == PAX_REG)
183 				arcn->type = PAX_HRG;
184 			else
185 				arcn->type = PAX_HLK;
186 
187 			/*
188 			 * if we have found all the links to this file, remove
189 			 * it from the database
190 			 */
191 			if (--pt->nlink <= 1) {
192 				*ppt = pt->fow;
193 				(void)free((char *)pt->name);
194 				(void)free((char *)pt);
195 			}
196 			return(1);
197 		}
198 	}
199 
200 	/*
201 	 * we never saw this file before. It has links so we add it to the
202 	 * front of this hash chain
203 	 */
204 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
205 		if ((pt->name = strdup(arcn->name)) != NULL) {
206 			pt->dev = arcn->sb.st_dev;
207 			pt->ino = arcn->sb.st_ino;
208 			pt->nlink = arcn->sb.st_nlink;
209 			pt->fow = ltab[indx];
210 			ltab[indx] = pt;
211 			return(0);
212 		}
213 		(void)free((char *)pt);
214 	}
215 
216 	warn(1, "Hard link table out of memory");
217 	return(-1);
218 }
219 
220 /*
221  * purg_lnk
222  *	remove reference for a file that we may have added to the data base as
223  *	a potential source for hard links. We ended up not using the file, so
224  *	we do not want to accidently point another file at it later on.
225  */
226 
227 #if __STDC__
228 void
229 purg_lnk(register ARCHD *arcn)
230 #else
231 void
232 purg_lnk(arcn)
233 	register ARCHD *arcn;
234 #endif
235 {
236 	register HRDLNK *pt;
237 	register HRDLNK **ppt;
238 	register u_int indx;
239 
240 	if (ltab == NULL)
241 		return;
242 	/*
243 	 * do not bother to look if it could not be in the database
244 	 */
245 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
246 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
247 		return;
248 
249 	/*
250 	 * find the hash chain for this inode value, if empty return
251 	 */
252 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
253 	if ((pt = ltab[indx]) == NULL)
254 		return;
255 
256 	/*
257 	 * walk down the list looking for the inode/dev pair, unlink and
258 	 * free if found
259 	 */
260 	ppt = &(ltab[indx]);
261 	while (pt != NULL) {
262 		if ((pt->ino == arcn->sb.st_ino) &&
263 		    (pt->dev == arcn->sb.st_dev))
264 			break;
265 		ppt = &(pt->fow);
266 		pt = pt->fow;
267 	}
268 	if (pt == NULL)
269 		return;
270 
271 	/*
272 	 * remove and free it
273 	 */
274 	*ppt = pt->fow;
275 	(void)free((char *)pt->name);
276 	(void)free((char *)pt);
277 }
278 
279 /*
280  * lnk_end()
281  *	pull apart a existing link table so we can reuse it. We do this between
282  *	read and write phases of append with update. (The format may have
283  *	used the link table, and we need to start with a fresh table for the
284  *	write phase
285  */
286 
287 #if __STDC__
288 void
289 lnk_end(void)
290 #else
291 void
292 lnk_end()
293 #endif
294 {
295 	register int i;
296 	register HRDLNK *pt;
297 	register HRDLNK *ppt;
298 
299 	if (ltab == NULL)
300 		return;
301 
302 	for (i = 0; i < L_TAB_SZ; ++i) {
303 		if (ltab[i] == NULL)
304 			continue;
305 		pt = ltab[i];
306 		ltab[i] = NULL;
307 
308 		/*
309 		 * free up each entry on this chain
310 		 */
311 		while (pt != NULL) {
312 			ppt = pt;
313 			pt = ppt->fow;
314 			(void)free((char *)ppt->name);
315 			(void)free((char *)ppt);
316 		}
317 	}
318 	return;
319 }
320 
321 /*
322  * modification time table routines
323  *
324  * The modification time table keeps track of last modification times for all
325  * files stored in an archive during a write phase when -u is set. We only
326  * add a file to the archive if it is newer than a file with the same name
327  * already stored on the archive (if there is no other file with the same
328  * name on the archive it is added). This applies to writes and appends.
329  * An append with an -u must read the archive and store the modification time
330  * for every file on that archive before starting the write phase. It is clear
331  * that this is one HUGE database. To save memory space, the actual file names
332  * are stored in a scatch file and indexed by an in memory hash table. The
333  * hash table is indexed by hashing the file path. The nodes in the table store
334  * the length of the filename and the lseek offset within the scratch file
335  * where the actual name is stored. Since there are never any deletions to this
336  * table, fragmentation of the scratch file is never a issue. Lookups seem to
337  * not exhibit any locality at all (files in the database are rarely
338  * looked up more than once...). So caching is just a waste of memory. The
339  * only limitation is the amount of scatch file space available to store the
340  * path names.
341  */
342 
343 /*
344  * ftime_start()
345  *	create the file time hash table and open for read/write the scratch
346  *	file. (after created it is unlinked, so when we exit we leave
347  *	no witnesses).
348  * Return:
349  *	0 if the table and file was created ok, -1 otherwise
350  */
351 
352 #if __STDC__
353 int
354 ftime_start(void)
355 #else
356 int
357 ftime_start()
358 #endif
359 {
360 	char *pt;
361 
362 	if (ftab != NULL)
363 		return(0);
364  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
365                 warn(1, "Cannot allocate memory for file time table");
366                 return(-1);
367         }
368 
369 	/*
370 	 * get random name and create temporary scratch file, unlink name
371 	 * so it will get removed on exit
372 	 */
373 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
374 		return(-1);
375 	(void)unlink(pt);
376 
377 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
378 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
379 		return(-1);
380 	}
381 
382 	(void)unlink(pt);
383 	return(0);
384 }
385 
386 /*
387  * chk_ftime()
388  *	looks up entry in file time hash table. If not found, the file is
389  *	added to the hash table and the file named stored in the scratch file.
390  *	If a file with the same name is found, the file times are compared and
391  *	the most recent file time is retained. If the new file was younger (or
392  *	was not in the database) the new file is selected for storage.
393  * Return:
394  *	0 if file should be added to the archive, 1 if it should be skipped,
395  *	-1 on error
396  */
397 
398 #if __STDC__
399 int
400 chk_ftime(register ARCHD *arcn)
401 #else
402 int
403 chk_ftime(arcn)
404 	register ARCHD *arcn;
405 #endif
406 {
407 	register FTM *pt;
408 	register int namelen;
409 	register u_int indx;
410 	char ckname[PAXPATHLEN+1];
411 
412 	/*
413 	 * no info, go ahead and add to archive
414 	 */
415 	if (ftab == NULL)
416 		return(0);
417 
418 	/*
419 	 * hash the pathname and look up in table
420 	 */
421 	namelen = arcn->nlen;
422 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
423 	if ((pt = ftab[indx]) != NULL) {
424 		/*
425 		 * the hash chain is not empty, walk down looking for match
426 		 * only read up the path names if the lengths match, speeds
427 		 * up the search a lot
428 		 */
429 		while (pt != NULL) {
430 			if (pt->namelen == namelen) {
431 				/*
432 				 * potential match, have to read the name
433 				 * from the scratch file.
434 				 */
435 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
436 					syswarn(1, errno,
437 					    "Failed ftime table seek");
438 					return(-1);
439 				}
440 				if (read(ffd, ckname, namelen) != namelen) {
441 					syswarn(1, errno,
442 					    "Failed ftime table read");
443 					return(-1);
444 				}
445 
446 				/*
447 				 * if the names match, we are done
448 				 */
449 				if (!strncmp(ckname, arcn->name, namelen))
450 					break;
451 			}
452 
453 			/*
454 			 * try the next entry on the chain
455 			 */
456 			pt = pt->fow;
457 		}
458 
459 		if (pt != NULL) {
460 			/*
461 			 * found the file, compare the times, save the newer
462 			 */
463 			if (arcn->sb.st_mtime > pt->mtime) {
464 				/*
465 				 * file is newer
466 				 */
467 				pt->mtime = arcn->sb.st_mtime;
468 				return(0);
469 			}
470 			/*
471 			 * file is older
472 			 */
473 			return(1);
474 		}
475 	}
476 
477 	/*
478 	 * not in table, add it
479 	 */
480 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
481 		/*
482 		 * add the name at the end of the scratch file, saving the
483 		 * offset. add the file to the head of the hash chain
484 		 */
485 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
486 			if (write(ffd, arcn->name, namelen) == namelen) {
487 				pt->mtime = arcn->sb.st_mtime;
488 				pt->namelen = namelen;
489 				pt->fow = ftab[indx];
490 				ftab[indx] = pt;
491 				return(0);
492 			}
493 			syswarn(1, errno, "Failed write to file time table");
494 		} else
495 			syswarn(1, errno, "Failed seek on file time table");
496 	} else
497 		warn(1, "File time table ran out of memory");
498 
499 	if (pt != NULL)
500 		(void)free((char *)pt);
501 	return(-1);
502 }
503 
504 /*
505  * Interactive rename table routines
506  *
507  * The interactive rename table keeps track of the new names that the user
508  * assignes to files from tty input. Since this map is unique for each file
509  * we must store it in case there is a reference to the file later in archive
510  * (a link). Otherwise we will be unable to find the file we know was
511  * extracted. The remapping of these files is stored in a memory based hash
512  * table (it is assumed since input must come from /dev/tty, it is unlikely to
513  * be a very large table).
514  */
515 
516 /*
517  * name_start()
518  *	create the interactive rename table
519  * Return:
520  *	0 if successful, -1 otherwise
521  */
522 
523 #if __STDC__
524 int
525 name_start(void)
526 #else
527 int
528 name_start()
529 #endif
530 {
531 	if (ntab != NULL)
532 		return(0);
533  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
534                 warn(1, "Cannot allocate memory for interactive rename table");
535                 return(-1);
536         }
537 	return(0);
538 }
539 
540 /*
541  * add_name()
542  *	add the new name to old name mapping just created by the user.
543  *	If an old name mapping is found (there may be duplicate names on an
544  *	archive) only the most recent is kept.
545  * Return:
546  *	0 if added, -1 otherwise
547  */
548 
549 #if __STDC__
550 int
551 add_name(register char *oname, int onamelen, char *nname)
552 #else
553 int
554 add_name(oname, onamelen, nname)
555 	register char *oname;
556 	int onamelen;
557 	char *nname;
558 #endif
559 {
560 	register NAMT *pt;
561 	register u_int indx;
562 
563 	if (ntab == NULL) {
564 		/*
565 		 * should never happen
566 		 */
567 		warn(0, "No interactive rename table, links may fail\n");
568 		return(0);
569 	}
570 
571 	/*
572 	 * look to see if we have already mapped this file, if so we
573 	 * will update it
574 	 */
575 	indx = st_hash(oname, onamelen, N_TAB_SZ);
576 	if ((pt = ntab[indx]) != NULL) {
577 		/*
578 		 * look down the has chain for the file
579 		 */
580 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
581 			pt = pt->fow;
582 
583 		if (pt != NULL) {
584 			/*
585 			 * found an old mapping, replace it with the new one
586 			 * the user just input (if it is different)
587 			 */
588 			if (strcmp(nname, pt->nname) == 0)
589 				return(0);
590 
591 			(void)free((char *)pt->nname);
592 			if ((pt->nname = strdup(nname)) == NULL) {
593 				warn(1, "Cannot update rename table");
594 				return(-1);
595 			}
596 			return(0);
597 		}
598 	}
599 
600 	/*
601 	 * this is a new mapping, add it to the table
602 	 */
603 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
604 		if ((pt->oname = strdup(oname)) != NULL) {
605 			if ((pt->nname = strdup(nname)) != NULL) {
606 				pt->fow = ntab[indx];
607 				ntab[indx] = pt;
608 				return(0);
609 			}
610 			(void)free((char *)pt->oname);
611 		}
612 		(void)free((char *)pt);
613 	}
614 	warn(1, "Interactive rename table out of memory");
615 	return(-1);
616 }
617 
618 /*
619  * sub_name()
620  *	look up a link name to see if it points at a file that has been
621  *	remapped by the user. If found, the link is adjusted to contain the
622  *	new name (oname is the link to name)
623  */
624 
625 #if __STDC__
626 void
627 sub_name(register char *oname, int *onamelen)
628 #else
629 void
630 sub_name(oname, onamelen)
631 	register char *oname;
632 	int *onamelen;
633 #endif
634 {
635 	register NAMT *pt;
636 	register u_int indx;
637 
638 	if (ntab == NULL)
639 		return;
640 	/*
641 	 * look the name up in the hash table
642 	 */
643 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
644 	if ((pt = ntab[indx]) == NULL)
645 		return;
646 
647 	while (pt != NULL) {
648 		/*
649 		 * walk down the hash cahin looking for a match
650 		 */
651 		if (strcmp(oname, pt->oname) == 0) {
652 			/*
653 			 * found it, replace it with the new name
654 			 * and return (we know that oname has enough space)
655 			 */
656 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
657 			return;
658 		}
659 		pt = pt->fow;
660 	}
661 
662 	/*
663 	 * no match, just return
664 	 */
665 	return;
666 }
667 
668 /*
669  * device/inode mapping table routines
670  * (used with formats that store device and inodes fields)
671  *
672  * device/inode mapping tables remap the device field in a archive header. The
673  * device/inode fields are used to determine when files are hard links to each
674  * other. However these values have very little meaning outside of that. This
675  * database is used to solve one of two different problems.
676  *
677  * 1) when files are appended to an archive, while the new files may have hard
678  * links to each other, you cannot determine if they have hard links to any
679  * file already stored on the archive from a prior run of pax. We must assume
680  * that these inode/device pairs are unique only within a SINGLE run of pax
681  * (which adds a set of files to an archive). So we have to make sure the
682  * inode/dev pairs we add each time are always unique. We do this by observing
683  * while the inode field is very dense, the use of the dev field is fairly
684  * sparse. Within each run of pax, we remap any device number of a new archive
685  * member that has a device number used in a prior run and already stored in a
686  * file on the archive. During the read phase of the append, we store the
687  * device numbers used and mark them to not be used by any file during the
688  * write phase. If during write we go to use one of those old device numbers,
689  * we remap it to a new value.
690  *
691  * 2) Often the fields in the archive header used to store these values are
692  * too small to store the entire value. The result is an inode or device value
693  * which can be truncated. This really can foul up an archive. With truncation
694  * we end up creating links between files that are really not links (after
695  * truncation the inodes are the same value). We address that by detecting
696  * truncation and forcing a remap of the device field to split truncated
697  * inodes away from each other. Each truncation creates a pattern of bits that
698  * are removed. We use this pattern of truncated bits to partition the inodes
699  * on a single device to many different devices (each one represented by the
700  * truncated bit pattern). All inodes on the same device that have the same
701  * truncation pattern are mapped to the same new device. Two inodes that
702  * truncate to the same value clearly will always have different truncation
703  * bit patterns, so they will be split from away each other. When we spot
704  * device truncation we remap the device number to a non truncated value.
705  * (for more info see table.h for the data structures involved).
706  */
707 
708 /*
709  * dev_start()
710  *	create the device mapping table
711  * Return:
712  *	0 if successful, -1 otherwise
713  */
714 
715 #if __STDC__
716 int
717 dev_start(void)
718 #else
719 int
720 dev_start()
721 #endif
722 {
723 	if (dtab != NULL)
724 		return(0);
725  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
726                 warn(1, "Cannot allocate memory for device mapping table");
727                 return(-1);
728         }
729 	return(0);
730 }
731 
732 /*
733  * add_dev()
734  *	add a device number to the table. this will force the device to be
735  *	remapped to a new value if it be used during a write phase. This
736  *	function is called during the read phase of an append to prohibit the
737  *	use of any device number already in the archive.
738  * Return:
739  *	0 if added ok, -1 otherwise
740  */
741 
742 #if __STDC__
743 int
744 add_dev(register ARCHD *arcn)
745 #else
746 int
747 add_dev(arcn)
748 	register ARCHD *arcn;
749 #endif
750 {
751 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
752 		return(-1);
753 	return(0);
754 }
755 
756 /*
757  * chk_dev()
758  *	check for a device value in the device table. If not found and the add
759  *	flag is set, it is added. This does NOT assign any mapping values, just
760  *	adds the device number as one that need to be remapped. If this device
761  *	is alread mapped, just return with a pointer to that entry.
762  * Return:
763  *	pointer to the entry for this device in the device map table. Null
764  *	if the add flag is not set and the device is not in the table (it is
765  *	not been seen yet). If add is set and the device cannot be added, null
766  *	is returned (indicates an error).
767  */
768 
769 #if __STDC__
770 static DEVT *
771 chk_dev(dev_t dev, int add)
772 #else
773 static DEVT *
774 chk_dev(dev, add)
775 	dev_t dev;
776 	int add;
777 #endif
778 {
779 	register DEVT *pt;
780 	register u_int indx;
781 
782 	if (dtab == NULL)
783 		return(NULL);
784 	/*
785 	 * look to see if this device is already in the table
786 	 */
787 	indx = ((unsigned)dev) % D_TAB_SZ;
788 	if ((pt = dtab[indx]) != NULL) {
789 		while ((pt != NULL) && (pt->dev != dev))
790 			pt = pt->fow;
791 
792 		/*
793 		 * found it, return a pointer to it
794 		 */
795 		if (pt != NULL)
796 			return(pt);
797 	}
798 
799 	/*
800 	 * not in table, we add it only if told to as this may just be a check
801 	 * to see if a device number is being used.
802 	 */
803 	if (add == 0)
804 		return(NULL);
805 
806 	/*
807 	 * allocate a node for this device and add it to the front of the hash
808 	 * chain. Note we do not assign remaps values here, so the pt->list
809 	 * list must be NULL.
810 	 */
811 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
812 		warn(1, "Device map table out of memory");
813 		return(NULL);
814 	}
815 	pt->dev = dev;
816 	pt->list = NULL;
817 	pt->fow = dtab[indx];
818 	dtab[indx] = pt;
819 	return(pt);
820 }
821 /*
822  * map_dev()
823  *	given an inode and device storage mask (the mask has a 1 for each bit
824  *	the archive format is able to store in a header), we check for inode
825  *	and device truncation and remap the device as required. Device mapping
826  *	can also occur when during the read phase of append a device number was
827  *	seen (and was marked as do not use during the write phase). WE ASSUME
828  *	that unsigned longs are the same size or bigger than the fields used
829  *	for ino_t and dev_t. If not the types will have to be changed.
830  * Return:
831  *	0 if all ok, -1 otherwise.
832  */
833 
834 #if __STDC__
835 int
836 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
837 #else
838 int
839 map_dev(arcn, dev_mask, ino_mask)
840 	register ARCHD *arcn;
841 	u_long dev_mask;
842 	u_long ino_mask;
843 #endif
844 {
845 	register DEVT *pt;
846 	register DLIST *dpt;
847 	static dev_t lastdev = 0;	/* next device number to try */
848 	int trc_ino = 0;
849 	int trc_dev = 0;
850 	ino_t trunc_bits = 0;
851 	ino_t nino;
852 
853 	if (dtab == NULL)
854 		return(0);
855 	/*
856 	 * check for device and inode truncation, and extract the truncated
857 	 * bit pattern.
858 	 */
859 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
860 		++trc_dev;
861 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
862 		++trc_ino;
863 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
864 	}
865 
866 	/*
867 	 * see if this device is already being mapped, look up the device
868 	 * then find the truncation bit pattern which applies
869 	 */
870 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
871 		/*
872 		 * this device is already marked to be remapped
873 		 */
874 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
875 			if (dpt->trunc_bits == trunc_bits)
876 				break;
877 
878 		if (dpt != NULL) {
879 			/*
880 			 * we are being remapped for this device and pattern
881 			 * change the device number to be stored and return
882 			 */
883 			arcn->sb.st_dev = dpt->dev;
884 			arcn->sb.st_ino = nino;
885 			return(0);
886 		}
887 	} else {
888 		/*
889 		 * this device is not being remapped YET. if we do not have any
890 		 * form of truncation, we do not need a remap
891 		 */
892 		if (!trc_ino && !trc_dev)
893 			return(0);
894 
895 		/*
896 		 * we have truncation, have to add this as a device to remap
897 		 */
898 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
899 			goto bad;
900 
901 		/*
902 		 * if we just have a truncated inode, we have to make sure that
903 		 * all future inodes that do not truncate (they have the
904 		 * truncation pattern of all 0's) continue to map to the same
905 		 * device number. We probably have already written inodes with
906 		 * this device number to the archive with the truncation
907 		 * pattern of all 0's. So we add the mapping for all 0's to the
908 		 * same device number.
909 		 */
910 		if (!trc_dev && (trunc_bits != 0)) {
911 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
912 				goto bad;
913 			dpt->trunc_bits = 0;
914 			dpt->dev = arcn->sb.st_dev;
915 			dpt->fow = pt->list;
916 			pt->list = dpt;
917 		}
918 	}
919 
920 	/*
921 	 * look for a device number not being used. We must watch for wrap
922 	 * around on lastdev (so we do not get stuck looking forever!)
923 	 */
924 	while (++lastdev > 0) {
925 		if (chk_dev(lastdev, 0) != NULL)
926 			continue;
927 		/*
928 		 * found an unused value. If we have reached truncation point
929 		 * for this format we are hosed, so we give up. Otherwise we
930 		 * mark it as being used.
931 		 */
932 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
933 		    (chk_dev(lastdev, 1) == NULL))
934 			goto bad;
935 		break;
936 	}
937 
938 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
939 		goto bad;
940 
941 	/*
942 	 * got a new device number, store it under this truncation pattern.
943 	 * change the device number this file is being stored with.
944 	 */
945 	dpt->trunc_bits = trunc_bits;
946 	dpt->dev = lastdev;
947 	dpt->fow = pt->list;
948 	pt->list = dpt;
949 	arcn->sb.st_dev = lastdev;
950 	arcn->sb.st_ino = nino;
951 	return(0);
952 
953     bad:
954 	warn(1, "Unable to fix truncated inode/device field when storing %s",
955 	    arcn->name);
956 	warn(0, "Archive may create improper hard links when extracted");
957 	return(0);
958 }
959 
960 /*
961  * directory access/mod time reset table routines (for directories READ by pax)
962  *
963  * The pax -t flag requires that access times of archive files to be the same
964  * before being read by pax. For regular files, access time is restored after
965  * the file has been copied. This database provides the same functionality for
966  * directories read during file tree traversal. Restoring directory access time
967  * is more complex than files since directories may be read several times until
968  * all the descendants in their subtree are visited by fts. Directory access
969  * and modification times are stored during the fts pre-order visit (done
970  * before any descendants in the subtree is visited) and restored after the
971  * fts post-order visit (after all the descendants have been visited). In the
972  * case of premature exit from a subtree (like from the effects of -n), any
973  * directory entries left in this database are reset during final cleanup
974  * operations of pax. Entries are hashed by inode number for fast lookup.
975  */
976 
977 /*
978  * atdir_start()
979  *	create the directory access time database for directories READ by pax.
980  * Return:
981  *	0 is created ok, -1 otherwise.
982  */
983 
984 #if __STDC__
985 int
986 atdir_start(void)
987 #else
988 int
989 atdir_start()
990 #endif
991 {
992 	if (atab != NULL)
993 		return(0);
994  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
995                 warn(1,"Cannot allocate space for directory access time table");
996                 return(-1);
997         }
998 	return(0);
999 }
1000 
1001 
1002 /*
1003  * atdir_end()
1004  *	walk through the directory access time table and reset the access time
1005  *	of any directory who still has an entry left in the database. These
1006  *	entries are for directories READ by pax
1007  */
1008 
1009 #if __STDC__
1010 void
1011 atdir_end(void)
1012 #else
1013 void
1014 atdir_end()
1015 #endif
1016 {
1017 	register ATDIR *pt;
1018 	register int i;
1019 
1020 	if (atab == NULL)
1021 		return;
1022 	/*
1023 	 * for each non-empty hash table entry reset all the directories
1024 	 * chained there.
1025 	 */
1026 	for (i = 0; i < A_TAB_SZ; ++i) {
1027 		if ((pt = atab[i]) == NULL)
1028 			continue;
1029 		/*
1030 		 * remember to force the times, set_ftime() looks at pmtime
1031 		 * and patime, which only applies to things CREATED by pax,
1032 		 * not read by pax. Read time reset is controlled by -t.
1033 		 */
1034 		for (; pt != NULL; pt = pt->fow)
1035 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1036 	}
1037 }
1038 
1039 /*
1040  * add_atdir()
1041  *	add a directory to the directory access time table. Table is hashed
1042  *	and chained by inode number. This is for directories READ by pax
1043  */
1044 
1045 #if __STDC__
1046 void
1047 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1048 #else
1049 void
1050 add_atdir(fname, dev, ino, mtime, atime)
1051 	char *fname;
1052 	dev_t dev;
1053 	ino_t ino;
1054 	time_t mtime;
1055 	time_t atime;
1056 #endif
1057 {
1058 	register ATDIR *pt;
1059 	register u_int indx;
1060 
1061 	if (atab == NULL)
1062 		return;
1063 
1064 	/*
1065 	 * make sure this directory is not already in the table, if so just
1066 	 * return (the older entry always has the correct time). The only
1067 	 * way this will happen is when the same subtree can be traversed by
1068 	 * different args to pax and the -n option is aborting fts out of a
1069 	 * subtree before all the post-order visits have been made).
1070 	 */
1071 	indx = ((unsigned)ino) % A_TAB_SZ;
1072 	if ((pt = atab[indx]) != NULL) {
1073 		while (pt != NULL) {
1074 			if ((pt->ino == ino) && (pt->dev == dev))
1075 				break;
1076 			pt = pt->fow;
1077 		}
1078 
1079 		/*
1080 		 * oops, already there. Leave it alone.
1081 		 */
1082 		if (pt != NULL)
1083 			return;
1084 	}
1085 
1086 	/*
1087 	 * add it to the front of the hash chain
1088 	 */
1089 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1090 		if ((pt->name = strdup(fname)) != NULL) {
1091 			pt->dev = dev;
1092 			pt->ino = ino;
1093 			pt->mtime = mtime;
1094 			pt->atime = atime;
1095 			pt->fow = atab[indx];
1096 			atab[indx] = pt;
1097 			return;
1098 		}
1099 		(void)free((char *)pt);
1100 	}
1101 
1102 	warn(1, "Directory access time reset table ran out of memory");
1103 	return;
1104 }
1105 
1106 /*
1107  * get_atdir()
1108  *	look up a directory by inode and device number to obtain the access
1109  *	and modification time you want to set to. If found, the modification
1110  *	and access time parameters are set and the entry is removed from the
1111  *	table (as it is no longer needed). These are for directories READ by
1112  *	pax
1113  * Return:
1114  *	0 if found, -1 if not found.
1115  */
1116 
1117 #if __STDC__
1118 int
1119 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1120 #else
1121 int
1122 get_atdir(dev, ino, mtime, atime)
1123 	dev_t dev;
1124 	ino_t ino;
1125 	time_t *mtime;
1126 	time_t *atime;
1127 #endif
1128 {
1129 	register ATDIR *pt;
1130 	register ATDIR **ppt;
1131 	register u_int indx;
1132 
1133 	if (atab == NULL)
1134 		return(-1);
1135 	/*
1136 	 * hash by inode and search the chain for an inode and device match
1137 	 */
1138 	indx = ((unsigned)ino) % A_TAB_SZ;
1139 	if ((pt = atab[indx]) == NULL)
1140 		return(-1);
1141 
1142 	ppt = &(atab[indx]);
1143 	while (pt != NULL) {
1144 		if ((pt->ino == ino) && (pt->dev == dev))
1145 			break;
1146 		/*
1147 		 * no match, go to next one
1148 		 */
1149 		ppt = &(pt->fow);
1150 		pt = pt->fow;
1151 	}
1152 
1153 	/*
1154 	 * return if we did not find it.
1155 	 */
1156 	if (pt == NULL)
1157 		return(-1);
1158 
1159 	/*
1160 	 * found it. return the times and remove the entry from the table.
1161 	 */
1162 	*ppt = pt->fow;
1163 	*mtime = pt->mtime;
1164 	*atime = pt->atime;
1165 	(void)free((char *)pt->name);
1166 	(void)free((char *)pt);
1167 	return(0);
1168 }
1169 
1170 /*
1171  * directory access mode and time storage routines (for directories CREATED
1172  * by pax).
1173  *
1174  * Pax requires that extracted directories, by default, have their access/mod
1175  * times and permissions set to the values specified in the archive. During the
1176  * actions of extracting (and creating the destination subtree during -rw copy)
1177  * directories extracted may be modified after being created. Even worse is
1178  * that these directories may have been created with file permissions which
1179  * prohibits any descendants of these directories from being extracted. When
1180  * directories are created by pax, access rights may be added to permit the
1181  * creation of files in their subtree. Every time pax creates a directory, the
1182  * times and file permissions specified by the archive are stored. After all
1183  * files have been extracted (or copied), these directories have their times
1184  * and file modes reset to the stored values. The directory info is restored in
1185  * reverse order as entries were added to the data file from root to leaf. To
1186  * restore atime properly, we must go backwards. The data file consists of
1187  * records with two parts, the file name followed by a DIRDATA trailer. The
1188  * fixed sized trailer contains the size of the name plus the off_t location in
1189  * the file. To restore we work backwards through the file reading the trailer
1190  * then the file name.
1191  */
1192 
1193 /*
1194  * dir_start()
1195  *	set up the directory time and file mode storage for directories CREATED
1196  *	by pax.
1197  * Return:
1198  *	0 if ok, -1 otherwise
1199  */
1200 
1201 #if __STDC__
1202 int
1203 dir_start(void)
1204 #else
1205 int
1206 dir_start()
1207 #endif
1208 {
1209 	char *pt;
1210 
1211 	if (dirfd != -1)
1212 		return(0);
1213 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1214 		return(-1);
1215 
1216 	/*
1217 	 * unlink the file so it goes away at termination by itself
1218 	 */
1219 	(void)unlink(pt);
1220 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1221 		(void)unlink(pt);
1222 		return(0);
1223 	}
1224 	warn(1, "Unable to create temporary file for directory times: %s", pt);
1225 	return(-1);
1226 }
1227 
1228 /*
1229  * add_dir()
1230  *	add the mode and times for a newly CREATED directory
1231  *	name is name of the directory, psb the stat buffer with the data in it,
1232  *	frc_mode is a flag that says whether to force the setting of the mode
1233  *	(ignoring the user set values for preserving file mode). Frc_mode is
1234  *	for the case where we created a file and found that the resulting
1235  *	directory was not writeable and the user asked for file modes to NOT
1236  *	be preserved. (we have to preserve what was created by default, so we
1237  *	have to force the setting at the end. this is stated explicitly in the
1238  *	pax spec)
1239  */
1240 
1241 #if __STDC__
1242 void
1243 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1244 #else
1245 void
1246 add_dir(name, nlen, psb, frc_mode)
1247 	char *name;
1248 	int nlen;
1249 	struct stat *psb;
1250 	int frc_mode;
1251 #endif
1252 {
1253 	DIRDATA dblk;
1254 
1255 	if (dirfd < 0)
1256 		return;
1257 
1258 	/*
1259 	 * get current position (where file name will start) so we can store it
1260 	 * in the trailer
1261 	 */
1262 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1263 		warn(1,"Unable to store mode and times for directory: %s",name);
1264 		return;
1265 	}
1266 
1267 	/*
1268 	 * write the file name followed by the trailer
1269 	 */
1270 	dblk.nlen = nlen + 1;
1271 	dblk.mode = psb->st_mode & 0xffff;
1272 	dblk.mtime = psb->st_mtime;
1273 	dblk.atime = psb->st_atime;
1274 	dblk.frc_mode = frc_mode;
1275 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1276 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1277 		++dircnt;
1278 		return;
1279 	}
1280 
1281 	warn(1,"Unable to store mode and times for created directory: %s",name);
1282 	return;
1283 }
1284 
1285 /*
1286  * proc_dir()
1287  *	process all file modes and times stored for directories CREATED
1288  *	by pax
1289  */
1290 
1291 #if __STDC__
1292 void
1293 proc_dir(void)
1294 #else
1295 void
1296 proc_dir()
1297 #endif
1298 {
1299 	char name[PAXPATHLEN+1];
1300 	DIRDATA dblk;
1301 	u_long cnt;
1302 
1303 	if (dirfd < 0)
1304 		return;
1305 	/*
1306 	 * read backwards through the file and process each directory
1307 	 */
1308 	for (cnt = 0; cnt < dircnt; ++cnt) {
1309 		/*
1310 		 * read the trailer, then the file name, if this fails
1311 		 * just give up.
1312 		 */
1313 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1314 			break;
1315 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1316 			break;
1317 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1318 			break;
1319 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1320 			break;
1321 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322 			break;
1323 
1324 		/*
1325 		 * frc_mode set, make sure we set the file modes even if
1326 		 * the user didn't ask for it (see file_subs.c for more info)
1327 		 */
1328 		if (pmode || dblk.frc_mode)
1329 			set_pmode(name, dblk.mode);
1330 		if (patime || pmtime)
1331 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1332 	}
1333 
1334 	(void)close(dirfd);
1335 	dirfd = -1;
1336 	if (cnt != dircnt)
1337 		warn(1,"Unable to set mode and times for created directories");
1338 	return;
1339 }
1340 
1341 /*
1342  * database independent routines
1343  */
1344 
1345 /*
1346  * st_hash()
1347  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1348  *	end of file, as this provides far better distribution than any other
1349  *	part of the name. For performance reasons we only care about the last
1350  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1351  *	name). Was tested on 500,000 name file tree traversal from the root
1352  *	and gave almost a perfectly uniform distribution of keys when used with
1353  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1354  *	chars at a time and pads with 0 for last addition.
1355  * Return:
1356  *	the hash value of the string MOD (%) the table size.
1357  */
1358 
1359 #if __STDC__
1360 u_int
1361 st_hash(char *name, int len, int tabsz)
1362 #else
1363 u_int
1364 st_hash(name, len, tabsz)
1365 	char *name;
1366 	int len;
1367 	int tabsz;
1368 #endif
1369 {
1370 	register char *pt;
1371 	register char *dest;
1372 	register char *end;
1373 	register int i;
1374 	register u_int key = 0;
1375 	register int steps;
1376 	register int res;
1377 	u_int val;
1378 
1379 	/*
1380 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1381 	 * time here (remember these are pathnames, the tail is what will
1382 	 * spread out the keys)
1383 	 */
1384 	if (len > MAXKEYLEN) {
1385                 pt = &(name[len - MAXKEYLEN]);
1386 		len = MAXKEYLEN;
1387 	} else
1388 		pt = name;
1389 
1390 	/*
1391 	 * calculate the number of u_int size steps in the string and if
1392 	 * there is a runt to deal with
1393 	 */
1394 	steps = len/sizeof(u_int);
1395 	res = len % sizeof(u_int);
1396 
1397 	/*
1398 	 * add up the value of the string in unsigned integer sized pieces
1399 	 * too bad we cannot have unsigned int aligned strings, then we
1400 	 * could avoid the expensive copy.
1401 	 */
1402 	for (i = 0; i < steps; ++i) {
1403 		end = pt + sizeof(u_int);
1404 		dest = (char *)&val;
1405 		while (pt < end)
1406 			*dest++ = *pt++;
1407 		key += val;
1408 	}
1409 
1410 	/*
1411 	 * add in the runt padded with zero to the right
1412 	 */
1413 	if (res) {
1414 		val = 0;
1415 		end = pt + res;
1416 		dest = (char *)&val;
1417 		while (pt < end)
1418 			*dest++ = *pt++;
1419 		key += val;
1420 	}
1421 
1422 	/*
1423 	 * return the result mod the table size
1424 	 */
1425 	return(key % tabsz);
1426 }
1427