1 /*- 2 * Copyright (c) 1992 Keith Muller. 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Keith Muller of the University of California, San Diego. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $Id: tables.c,v 1.3 1995/05/30 00:07:01 rgrimes Exp $ 38 */ 39 40 #ifndef lint 41 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 42 #endif /* not lint */ 43 44 #include <sys/types.h> 45 #include <sys/time.h> 46 #include <sys/stat.h> 47 #include <sys/param.h> 48 #include <sys/fcntl.h> 49 #include <stdio.h> 50 #include <string.h> 51 #include <unistd.h> 52 #include <errno.h> 53 #include <stdlib.h> 54 #include "pax.h" 55 #include "tables.h" 56 #include "extern.h" 57 58 /* 59 * Routines for controlling the contents of all the different databases pax 60 * keeps. Tables are dynamically created only when they are needed. The 61 * goal was speed and the ability to work with HUGE archives. The databases 62 * were kept simple, but do have complex rules for when the contents change. 63 * As of this writing, the posix library functions were more complex than 64 * needed for this application (pax databases have very short lifetimes and 65 * do not survive after pax is finished). Pax is required to handle very 66 * large archives. These database routines carefully combine memory usage and 67 * temporary file storage in ways which will not significantly impact runtime 68 * performance while allowing the largest possible archives to be handled. 69 * Trying to force the fit to the posix databases routines was not considered 70 * time well spent. 71 */ 72 73 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 74 static FTM **ftab = NULL; /* file time table for updating arch */ 75 static NAMT **ntab = NULL; /* interactive rename storage table */ 76 static DEVT **dtab = NULL; /* device/inode mapping tables */ 77 static ATDIR **atab = NULL; /* file tree directory time reset table */ 78 static int dirfd = -1; /* storage for setting created dir time/mode */ 79 static u_long dircnt; /* entries in dir time/mode storage */ 80 static int ffd = -1; /* tmp file for file time table name storage */ 81 82 static DEVT *chk_dev __P((dev_t, int)); 83 84 /* 85 * hard link table routines 86 * 87 * The hard link table tries to detect hard links to files using the device and 88 * inode values. We do this when writing an archive, so we can tell the format 89 * write routine that this file is a hard link to another file. The format 90 * write routine then can store this file in whatever way it wants (as a hard 91 * link if the format supports that like tar, or ignore this info like cpio). 92 * (Actually a field in the format driver table tells us if the format wants 93 * hard link info. if not, we do not waste time looking for them). We also use 94 * the same table when reading an archive. In that situation, this table is 95 * used by the format read routine to detect hard links from stored dev and 96 * inode numbers (like cpio). This will allow pax to create a link when one 97 * can be detected by the archive format. 98 */ 99 100 /* 101 * lnk_start 102 * Creates the hard link table. 103 * Return: 104 * 0 if created, -1 if failure 105 */ 106 107 #if __STDC__ 108 int 109 lnk_start(void) 110 #else 111 int 112 lnk_start() 113 #endif 114 { 115 if (ltab != NULL) 116 return(0); 117 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 118 warn(1, "Cannot allocate memory for hard link table"); 119 return(-1); 120 } 121 return(0); 122 } 123 124 /* 125 * chk_lnk() 126 * Looks up entry in hard link hash table. If found, it copies the name 127 * of the file it is linked to (we already saw that file) into ln_name. 128 * lnkcnt is decremented and if goes to 1 the node is deleted from the 129 * database. (We have seen all the links to this file). If not found, 130 * we add the file to the database if it has the potential for having 131 * hard links to other files we may process (it has a link count > 1) 132 * Return: 133 * if found returns 1; if not found returns 0; -1 on error 134 */ 135 136 #if __STDC__ 137 int 138 chk_lnk(register ARCHD *arcn) 139 #else 140 int 141 chk_lnk(arcn) 142 register ARCHD *arcn; 143 #endif 144 { 145 register HRDLNK *pt; 146 register HRDLNK **ppt; 147 register u_int indx; 148 149 if (ltab == NULL) 150 return(-1); 151 /* 152 * ignore those nodes that cannot have hard links 153 */ 154 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 155 return(0); 156 157 /* 158 * hash inode number and look for this file 159 */ 160 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 161 if ((pt = ltab[indx]) != NULL) { 162 /* 163 * it's hash chain in not empty, walk down looking for it 164 */ 165 ppt = &(ltab[indx]); 166 while (pt != NULL) { 167 if ((pt->ino == arcn->sb.st_ino) && 168 (pt->dev == arcn->sb.st_dev)) 169 break; 170 ppt = &(pt->fow); 171 pt = pt->fow; 172 } 173 174 if (pt != NULL) { 175 /* 176 * found a link. set the node type and copy in the 177 * name of the file it is to link to. we need to 178 * handle hardlinks to regular files differently than 179 * other links. 180 */ 181 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 182 PAXPATHLEN+1); 183 if (arcn->type == PAX_REG) 184 arcn->type = PAX_HRG; 185 else 186 arcn->type = PAX_HLK; 187 188 /* 189 * if we have found all the links to this file, remove 190 * it from the database 191 */ 192 if (--pt->nlink <= 1) { 193 *ppt = pt->fow; 194 (void)free((char *)pt->name); 195 (void)free((char *)pt); 196 } 197 return(1); 198 } 199 } 200 201 /* 202 * we never saw this file before. It has links so we add it to the 203 * front of this hash chain 204 */ 205 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 206 if ((pt->name = strdup(arcn->name)) != NULL) { 207 pt->dev = arcn->sb.st_dev; 208 pt->ino = arcn->sb.st_ino; 209 pt->nlink = arcn->sb.st_nlink; 210 pt->fow = ltab[indx]; 211 ltab[indx] = pt; 212 return(0); 213 } 214 (void)free((char *)pt); 215 } 216 217 warn(1, "Hard link table out of memory"); 218 return(-1); 219 } 220 221 /* 222 * purg_lnk 223 * remove reference for a file that we may have added to the data base as 224 * a potential source for hard links. We ended up not using the file, so 225 * we do not want to accidently point another file at it later on. 226 */ 227 228 #if __STDC__ 229 void 230 purg_lnk(register ARCHD *arcn) 231 #else 232 void 233 purg_lnk(arcn) 234 register ARCHD *arcn; 235 #endif 236 { 237 register HRDLNK *pt; 238 register HRDLNK **ppt; 239 register u_int indx; 240 241 if (ltab == NULL) 242 return; 243 /* 244 * do not bother to look if it could not be in the database 245 */ 246 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 247 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 248 return; 249 250 /* 251 * find the hash chain for this inode value, if empty return 252 */ 253 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 254 if ((pt = ltab[indx]) == NULL) 255 return; 256 257 /* 258 * walk down the list looking for the inode/dev pair, unlink and 259 * free if found 260 */ 261 ppt = &(ltab[indx]); 262 while (pt != NULL) { 263 if ((pt->ino == arcn->sb.st_ino) && 264 (pt->dev == arcn->sb.st_dev)) 265 break; 266 ppt = &(pt->fow); 267 pt = pt->fow; 268 } 269 if (pt == NULL) 270 return; 271 272 /* 273 * remove and free it 274 */ 275 *ppt = pt->fow; 276 (void)free((char *)pt->name); 277 (void)free((char *)pt); 278 } 279 280 /* 281 * lnk_end() 282 * pull apart a existing link table so we can reuse it. We do this between 283 * read and write phases of append with update. (The format may have 284 * used the link table, and we need to start with a fresh table for the 285 * write phase 286 */ 287 288 #if __STDC__ 289 void 290 lnk_end(void) 291 #else 292 void 293 lnk_end() 294 #endif 295 { 296 register int i; 297 register HRDLNK *pt; 298 register HRDLNK *ppt; 299 300 if (ltab == NULL) 301 return; 302 303 for (i = 0; i < L_TAB_SZ; ++i) { 304 if (ltab[i] == NULL) 305 continue; 306 pt = ltab[i]; 307 ltab[i] = NULL; 308 309 /* 310 * free up each entry on this chain 311 */ 312 while (pt != NULL) { 313 ppt = pt; 314 pt = ppt->fow; 315 (void)free((char *)ppt->name); 316 (void)free((char *)ppt); 317 } 318 } 319 return; 320 } 321 322 /* 323 * modification time table routines 324 * 325 * The modification time table keeps track of last modification times for all 326 * files stored in an archive during a write phase when -u is set. We only 327 * add a file to the archive if it is newer than a file with the same name 328 * already stored on the archive (if there is no other file with the same 329 * name on the archive it is added). This applies to writes and appends. 330 * An append with an -u must read the archive and store the modification time 331 * for every file on that archive before starting the write phase. It is clear 332 * that this is one HUGE database. To save memory space, the actual file names 333 * are stored in a scatch file and indexed by an in memory hash table. The 334 * hash table is indexed by hashing the file path. The nodes in the table store 335 * the length of the filename and the lseek offset within the scratch file 336 * where the actual name is stored. Since there are never any deletions to this 337 * table, fragmentation of the scratch file is never a issue. Lookups seem to 338 * not exhibit any locality at all (files in the database are rarely 339 * looked up more than once...). So caching is just a waste of memory. The 340 * only limitation is the amount of scatch file space available to store the 341 * path names. 342 */ 343 344 /* 345 * ftime_start() 346 * create the file time hash table and open for read/write the scratch 347 * file. (after created it is unlinked, so when we exit we leave 348 * no witnesses). 349 * Return: 350 * 0 if the table and file was created ok, -1 otherwise 351 */ 352 353 #if __STDC__ 354 int 355 ftime_start(void) 356 #else 357 int 358 ftime_start() 359 #endif 360 { 361 char *pt; 362 363 if (ftab != NULL) 364 return(0); 365 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 366 warn(1, "Cannot allocate memory for file time table"); 367 return(-1); 368 } 369 370 /* 371 * get random name and create temporary scratch file, unlink name 372 * so it will get removed on exit 373 */ 374 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 375 return(-1); 376 (void)unlink(pt); 377 378 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) { 379 syswarn(1, errno, "Unable to open temporary file: %s", pt); 380 return(-1); 381 } 382 383 (void)unlink(pt); 384 return(0); 385 } 386 387 /* 388 * chk_ftime() 389 * looks up entry in file time hash table. If not found, the file is 390 * added to the hash table and the file named stored in the scratch file. 391 * If a file with the same name is found, the file times are compared and 392 * the most recent file time is retained. If the new file was younger (or 393 * was not in the database) the new file is selected for storage. 394 * Return: 395 * 0 if file should be added to the archive, 1 if it should be skipped, 396 * -1 on error 397 */ 398 399 #if __STDC__ 400 int 401 chk_ftime(register ARCHD *arcn) 402 #else 403 int 404 chk_ftime(arcn) 405 register ARCHD *arcn; 406 #endif 407 { 408 register FTM *pt; 409 register int namelen; 410 register u_int indx; 411 char ckname[PAXPATHLEN+1]; 412 413 /* 414 * no info, go ahead and add to archive 415 */ 416 if (ftab == NULL) 417 return(0); 418 419 /* 420 * hash the pathname and look up in table 421 */ 422 namelen = arcn->nlen; 423 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 424 if ((pt = ftab[indx]) != NULL) { 425 /* 426 * the hash chain is not empty, walk down looking for match 427 * only read up the path names if the lengths match, speeds 428 * up the search a lot 429 */ 430 while (pt != NULL) { 431 if (pt->namelen == namelen) { 432 /* 433 * potential match, have to read the name 434 * from the scratch file. 435 */ 436 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 437 syswarn(1, errno, 438 "Failed ftime table seek"); 439 return(-1); 440 } 441 if (read(ffd, ckname, namelen) != namelen) { 442 syswarn(1, errno, 443 "Failed ftime table read"); 444 return(-1); 445 } 446 447 /* 448 * if the names match, we are done 449 */ 450 if (!strncmp(ckname, arcn->name, namelen)) 451 break; 452 } 453 454 /* 455 * try the next entry on the chain 456 */ 457 pt = pt->fow; 458 } 459 460 if (pt != NULL) { 461 /* 462 * found the file, compare the times, save the newer 463 */ 464 if (arcn->sb.st_mtime > pt->mtime) { 465 /* 466 * file is newer 467 */ 468 pt->mtime = arcn->sb.st_mtime; 469 return(0); 470 } 471 /* 472 * file is older 473 */ 474 return(1); 475 } 476 } 477 478 /* 479 * not in table, add it 480 */ 481 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 482 /* 483 * add the name at the end of the scratch file, saving the 484 * offset. add the file to the head of the hash chain 485 */ 486 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 487 if (write(ffd, arcn->name, namelen) == namelen) { 488 pt->mtime = arcn->sb.st_mtime; 489 pt->namelen = namelen; 490 pt->fow = ftab[indx]; 491 ftab[indx] = pt; 492 return(0); 493 } 494 syswarn(1, errno, "Failed write to file time table"); 495 } else 496 syswarn(1, errno, "Failed seek on file time table"); 497 } else 498 warn(1, "File time table ran out of memory"); 499 500 if (pt != NULL) 501 (void)free((char *)pt); 502 return(-1); 503 } 504 505 /* 506 * Interactive rename table routines 507 * 508 * The interactive rename table keeps track of the new names that the user 509 * assignes to files from tty input. Since this map is unique for each file 510 * we must store it in case there is a reference to the file later in archive 511 * (a link). Otherwise we will be unable to find the file we know was 512 * extracted. The remapping of these files is stored in a memory based hash 513 * table (it is assumed since input must come from /dev/tty, it is unlikely to 514 * be a very large table). 515 */ 516 517 /* 518 * name_start() 519 * create the interactive rename table 520 * Return: 521 * 0 if successful, -1 otherwise 522 */ 523 524 #if __STDC__ 525 int 526 name_start(void) 527 #else 528 int 529 name_start() 530 #endif 531 { 532 if (ntab != NULL) 533 return(0); 534 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 535 warn(1, "Cannot allocate memory for interactive rename table"); 536 return(-1); 537 } 538 return(0); 539 } 540 541 /* 542 * add_name() 543 * add the new name to old name mapping just created by the user. 544 * If an old name mapping is found (there may be duplicate names on an 545 * archive) only the most recent is kept. 546 * Return: 547 * 0 if added, -1 otherwise 548 */ 549 550 #if __STDC__ 551 int 552 add_name(register char *oname, int onamelen, char *nname) 553 #else 554 int 555 add_name(oname, onamelen, nname) 556 register char *oname; 557 int onamelen; 558 char *nname; 559 #endif 560 { 561 register NAMT *pt; 562 register u_int indx; 563 564 if (ntab == NULL) { 565 /* 566 * should never happen 567 */ 568 warn(0, "No interactive rename table, links may fail\n"); 569 return(0); 570 } 571 572 /* 573 * look to see if we have already mapped this file, if so we 574 * will update it 575 */ 576 indx = st_hash(oname, onamelen, N_TAB_SZ); 577 if ((pt = ntab[indx]) != NULL) { 578 /* 579 * look down the has chain for the file 580 */ 581 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 582 pt = pt->fow; 583 584 if (pt != NULL) { 585 /* 586 * found an old mapping, replace it with the new one 587 * the user just input (if it is different) 588 */ 589 if (strcmp(nname, pt->nname) == 0) 590 return(0); 591 592 (void)free((char *)pt->nname); 593 if ((pt->nname = strdup(nname)) == NULL) { 594 warn(1, "Cannot update rename table"); 595 return(-1); 596 } 597 return(0); 598 } 599 } 600 601 /* 602 * this is a new mapping, add it to the table 603 */ 604 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 605 if ((pt->oname = strdup(oname)) != NULL) { 606 if ((pt->nname = strdup(nname)) != NULL) { 607 pt->fow = ntab[indx]; 608 ntab[indx] = pt; 609 return(0); 610 } 611 (void)free((char *)pt->oname); 612 } 613 (void)free((char *)pt); 614 } 615 warn(1, "Interactive rename table out of memory"); 616 return(-1); 617 } 618 619 /* 620 * sub_name() 621 * look up a link name to see if it points at a file that has been 622 * remapped by the user. If found, the link is adjusted to contain the 623 * new name (oname is the link to name) 624 */ 625 626 #if __STDC__ 627 void 628 sub_name(register char *oname, int *onamelen) 629 #else 630 void 631 sub_name(oname, onamelen) 632 register char *oname; 633 int *onamelen; 634 #endif 635 { 636 register NAMT *pt; 637 register u_int indx; 638 639 if (ntab == NULL) 640 return; 641 /* 642 * look the name up in the hash table 643 */ 644 indx = st_hash(oname, *onamelen, N_TAB_SZ); 645 if ((pt = ntab[indx]) == NULL) 646 return; 647 648 while (pt != NULL) { 649 /* 650 * walk down the hash cahin looking for a match 651 */ 652 if (strcmp(oname, pt->oname) == 0) { 653 /* 654 * found it, replace it with the new name 655 * and return (we know that oname has enough space) 656 */ 657 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 658 return; 659 } 660 pt = pt->fow; 661 } 662 663 /* 664 * no match, just return 665 */ 666 return; 667 } 668 669 /* 670 * device/inode mapping table routines 671 * (used with formats that store device and inodes fields) 672 * 673 * device/inode mapping tables remap the device field in a archive header. The 674 * device/inode fields are used to determine when files are hard links to each 675 * other. However these values have very little meaning outside of that. This 676 * database is used to solve one of two different problems. 677 * 678 * 1) when files are appended to an archive, while the new files may have hard 679 * links to each other, you cannot determine if they have hard links to any 680 * file already stored on the archive from a prior run of pax. We must assume 681 * that these inode/device pairs are unique only within a SINGLE run of pax 682 * (which adds a set of files to an archive). So we have to make sure the 683 * inode/dev pairs we add each time are always unique. We do this by observing 684 * while the inode field is very dense, the use of the dev field is fairly 685 * sparse. Within each run of pax, we remap any device number of a new archive 686 * member that has a device number used in a prior run and already stored in a 687 * file on the archive. During the read phase of the append, we store the 688 * device numbers used and mark them to not be used by any file during the 689 * write phase. If during write we go to use one of those old device numbers, 690 * we remap it to a new value. 691 * 692 * 2) Often the fields in the archive header used to store these values are 693 * too small to store the entire value. The result is an inode or device value 694 * which can be truncated. This really can foul up an archive. With truncation 695 * we end up creating links between files that are really not links (after 696 * truncation the inodes are the same value). We address that by detecting 697 * truncation and forcing a remap of the device field to split truncated 698 * inodes away from each other. Each truncation creates a pattern of bits that 699 * are removed. We use this pattern of truncated bits to partition the inodes 700 * on a single device to many different devices (each one represented by the 701 * truncated bit pattern). All inodes on the same device that have the same 702 * truncation pattern are mapped to the same new device. Two inodes that 703 * truncate to the same value clearly will always have different truncation 704 * bit patterns, so they will be split from away each other. When we spot 705 * device truncation we remap the device number to a non truncated value. 706 * (for more info see table.h for the data structures involved). 707 */ 708 709 /* 710 * dev_start() 711 * create the device mapping table 712 * Return: 713 * 0 if successful, -1 otherwise 714 */ 715 716 #if __STDC__ 717 int 718 dev_start(void) 719 #else 720 int 721 dev_start() 722 #endif 723 { 724 if (dtab != NULL) 725 return(0); 726 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 727 warn(1, "Cannot allocate memory for device mapping table"); 728 return(-1); 729 } 730 return(0); 731 } 732 733 /* 734 * add_dev() 735 * add a device number to the table. this will force the device to be 736 * remapped to a new value if it be used during a write phase. This 737 * function is called during the read phase of an append to prohibit the 738 * use of any device number already in the archive. 739 * Return: 740 * 0 if added ok, -1 otherwise 741 */ 742 743 #if __STDC__ 744 int 745 add_dev(register ARCHD *arcn) 746 #else 747 int 748 add_dev(arcn) 749 register ARCHD *arcn; 750 #endif 751 { 752 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 753 return(-1); 754 return(0); 755 } 756 757 /* 758 * chk_dev() 759 * check for a device value in the device table. If not found and the add 760 * flag is set, it is added. This does NOT assign any mapping values, just 761 * adds the device number as one that need to be remapped. If this device 762 * is alread mapped, just return with a pointer to that entry. 763 * Return: 764 * pointer to the entry for this device in the device map table. Null 765 * if the add flag is not set and the device is not in the table (it is 766 * not been seen yet). If add is set and the device cannot be added, null 767 * is returned (indicates an error). 768 */ 769 770 #if __STDC__ 771 static DEVT * 772 chk_dev(dev_t dev, int add) 773 #else 774 static DEVT * 775 chk_dev(dev, add) 776 dev_t dev; 777 int add; 778 #endif 779 { 780 register DEVT *pt; 781 register u_int indx; 782 783 if (dtab == NULL) 784 return(NULL); 785 /* 786 * look to see if this device is already in the table 787 */ 788 indx = ((unsigned)dev) % D_TAB_SZ; 789 if ((pt = dtab[indx]) != NULL) { 790 while ((pt != NULL) && (pt->dev != dev)) 791 pt = pt->fow; 792 793 /* 794 * found it, return a pointer to it 795 */ 796 if (pt != NULL) 797 return(pt); 798 } 799 800 /* 801 * not in table, we add it only if told to as this may just be a check 802 * to see if a device number is being used. 803 */ 804 if (add == 0) 805 return(NULL); 806 807 /* 808 * allocate a node for this device and add it to the front of the hash 809 * chain. Note we do not assign remaps values here, so the pt->list 810 * list must be NULL. 811 */ 812 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 813 warn(1, "Device map table out of memory"); 814 return(NULL); 815 } 816 pt->dev = dev; 817 pt->list = NULL; 818 pt->fow = dtab[indx]; 819 dtab[indx] = pt; 820 return(pt); 821 } 822 /* 823 * map_dev() 824 * given an inode and device storage mask (the mask has a 1 for each bit 825 * the archive format is able to store in a header), we check for inode 826 * and device truncation and remap the device as required. Device mapping 827 * can also occur when during the read phase of append a device number was 828 * seen (and was marked as do not use during the write phase). WE ASSUME 829 * that unsigned longs are the same size or bigger than the fields used 830 * for ino_t and dev_t. If not the types will have to be changed. 831 * Return: 832 * 0 if all ok, -1 otherwise. 833 */ 834 835 #if __STDC__ 836 int 837 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask) 838 #else 839 int 840 map_dev(arcn, dev_mask, ino_mask) 841 register ARCHD *arcn; 842 u_long dev_mask; 843 u_long ino_mask; 844 #endif 845 { 846 register DEVT *pt; 847 register DLIST *dpt; 848 static dev_t lastdev = 0; /* next device number to try */ 849 int trc_ino = 0; 850 int trc_dev = 0; 851 ino_t trunc_bits = 0; 852 ino_t nino; 853 854 if (dtab == NULL) 855 return(0); 856 /* 857 * check for device and inode truncation, and extract the truncated 858 * bit pattern. 859 */ 860 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 861 ++trc_dev; 862 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 863 ++trc_ino; 864 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 865 } 866 867 /* 868 * see if this device is already being mapped, look up the device 869 * then find the truncation bit pattern which applies 870 */ 871 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 872 /* 873 * this device is already marked to be remapped 874 */ 875 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 876 if (dpt->trunc_bits == trunc_bits) 877 break; 878 879 if (dpt != NULL) { 880 /* 881 * we are being remapped for this device and pattern 882 * change the device number to be stored and return 883 */ 884 arcn->sb.st_dev = dpt->dev; 885 arcn->sb.st_ino = nino; 886 return(0); 887 } 888 } else { 889 /* 890 * this device is not being remapped YET. if we do not have any 891 * form of truncation, we do not need a remap 892 */ 893 if (!trc_ino && !trc_dev) 894 return(0); 895 896 /* 897 * we have truncation, have to add this as a device to remap 898 */ 899 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 900 goto bad; 901 902 /* 903 * if we just have a truncated inode, we have to make sure that 904 * all future inodes that do not truncate (they have the 905 * truncation pattern of all 0's) continue to map to the same 906 * device number. We probably have already written inodes with 907 * this device number to the archive with the truncation 908 * pattern of all 0's. So we add the mapping for all 0's to the 909 * same device number. 910 */ 911 if (!trc_dev && (trunc_bits != 0)) { 912 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 913 goto bad; 914 dpt->trunc_bits = 0; 915 dpt->dev = arcn->sb.st_dev; 916 dpt->fow = pt->list; 917 pt->list = dpt; 918 } 919 } 920 921 /* 922 * look for a device number not being used. We must watch for wrap 923 * around on lastdev (so we do not get stuck looking forever!) 924 */ 925 while (++lastdev > 0) { 926 if (chk_dev(lastdev, 0) != NULL) 927 continue; 928 /* 929 * found an unused value. If we have reached truncation point 930 * for this format we are hosed, so we give up. Otherwise we 931 * mark it as being used. 932 */ 933 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 934 (chk_dev(lastdev, 1) == NULL)) 935 goto bad; 936 break; 937 } 938 939 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 940 goto bad; 941 942 /* 943 * got a new device number, store it under this truncation pattern. 944 * change the device number this file is being stored with. 945 */ 946 dpt->trunc_bits = trunc_bits; 947 dpt->dev = lastdev; 948 dpt->fow = pt->list; 949 pt->list = dpt; 950 arcn->sb.st_dev = lastdev; 951 arcn->sb.st_ino = nino; 952 return(0); 953 954 bad: 955 warn(1, "Unable to fix truncated inode/device field when storing %s", 956 arcn->name); 957 warn(0, "Archive may create improper hard links when extracted"); 958 return(0); 959 } 960 961 /* 962 * directory access/mod time reset table routines (for directories READ by pax) 963 * 964 * The pax -t flag requires that access times of archive files to be the same 965 * before being read by pax. For regular files, access time is restored after 966 * the file has been copied. This database provides the same functionality for 967 * directories read during file tree traversal. Restoring directory access time 968 * is more complex than files since directories may be read several times until 969 * all the descendants in their subtree are visited by fts. Directory access 970 * and modification times are stored during the fts pre-order visit (done 971 * before any descendants in the subtree is visited) and restored after the 972 * fts post-order visit (after all the descendants have been visited). In the 973 * case of premature exit from a subtree (like from the effects of -n), any 974 * directory entries left in this database are reset during final cleanup 975 * operations of pax. Entries are hashed by inode number for fast lookup. 976 */ 977 978 /* 979 * atdir_start() 980 * create the directory access time database for directories READ by pax. 981 * Return: 982 * 0 is created ok, -1 otherwise. 983 */ 984 985 #if __STDC__ 986 int 987 atdir_start(void) 988 #else 989 int 990 atdir_start() 991 #endif 992 { 993 if (atab != NULL) 994 return(0); 995 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 996 warn(1,"Cannot allocate space for directory access time table"); 997 return(-1); 998 } 999 return(0); 1000 } 1001 1002 1003 /* 1004 * atdir_end() 1005 * walk through the directory access time table and reset the access time 1006 * of any directory who still has an entry left in the database. These 1007 * entries are for directories READ by pax 1008 */ 1009 1010 #if __STDC__ 1011 void 1012 atdir_end(void) 1013 #else 1014 void 1015 atdir_end() 1016 #endif 1017 { 1018 register ATDIR *pt; 1019 register int i; 1020 1021 if (atab == NULL) 1022 return; 1023 /* 1024 * for each non-empty hash table entry reset all the directories 1025 * chained there. 1026 */ 1027 for (i = 0; i < A_TAB_SZ; ++i) { 1028 if ((pt = atab[i]) == NULL) 1029 continue; 1030 /* 1031 * remember to force the times, set_ftime() looks at pmtime 1032 * and patime, which only applies to things CREATED by pax, 1033 * not read by pax. Read time reset is controlled by -t. 1034 */ 1035 for (; pt != NULL; pt = pt->fow) 1036 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1037 } 1038 } 1039 1040 /* 1041 * add_atdir() 1042 * add a directory to the directory access time table. Table is hashed 1043 * and chained by inode number. This is for directories READ by pax 1044 */ 1045 1046 #if __STDC__ 1047 void 1048 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1049 #else 1050 void 1051 add_atdir(fname, dev, ino, mtime, atime) 1052 char *fname; 1053 dev_t dev; 1054 ino_t ino; 1055 time_t mtime; 1056 time_t atime; 1057 #endif 1058 { 1059 register ATDIR *pt; 1060 register u_int indx; 1061 1062 if (atab == NULL) 1063 return; 1064 1065 /* 1066 * make sure this directory is not already in the table, if so just 1067 * return (the older entry always has the correct time). The only 1068 * way this will happen is when the same subtree can be traversed by 1069 * different args to pax and the -n option is aborting fts out of a 1070 * subtree before all the post-order visits have been made). 1071 */ 1072 indx = ((unsigned)ino) % A_TAB_SZ; 1073 if ((pt = atab[indx]) != NULL) { 1074 while (pt != NULL) { 1075 if ((pt->ino == ino) && (pt->dev == dev)) 1076 break; 1077 pt = pt->fow; 1078 } 1079 1080 /* 1081 * oops, already there. Leave it alone. 1082 */ 1083 if (pt != NULL) 1084 return; 1085 } 1086 1087 /* 1088 * add it to the front of the hash chain 1089 */ 1090 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1091 if ((pt->name = strdup(fname)) != NULL) { 1092 pt->dev = dev; 1093 pt->ino = ino; 1094 pt->mtime = mtime; 1095 pt->atime = atime; 1096 pt->fow = atab[indx]; 1097 atab[indx] = pt; 1098 return; 1099 } 1100 (void)free((char *)pt); 1101 } 1102 1103 warn(1, "Directory access time reset table ran out of memory"); 1104 return; 1105 } 1106 1107 /* 1108 * get_atdir() 1109 * look up a directory by inode and device number to obtain the access 1110 * and modification time you want to set to. If found, the modification 1111 * and access time parameters are set and the entry is removed from the 1112 * table (as it is no longer needed). These are for directories READ by 1113 * pax 1114 * Return: 1115 * 0 if found, -1 if not found. 1116 */ 1117 1118 #if __STDC__ 1119 int 1120 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1121 #else 1122 int 1123 get_atdir(dev, ino, mtime, atime) 1124 dev_t dev; 1125 ino_t ino; 1126 time_t *mtime; 1127 time_t *atime; 1128 #endif 1129 { 1130 register ATDIR *pt; 1131 register ATDIR **ppt; 1132 register u_int indx; 1133 1134 if (atab == NULL) 1135 return(-1); 1136 /* 1137 * hash by inode and search the chain for an inode and device match 1138 */ 1139 indx = ((unsigned)ino) % A_TAB_SZ; 1140 if ((pt = atab[indx]) == NULL) 1141 return(-1); 1142 1143 ppt = &(atab[indx]); 1144 while (pt != NULL) { 1145 if ((pt->ino == ino) && (pt->dev == dev)) 1146 break; 1147 /* 1148 * no match, go to next one 1149 */ 1150 ppt = &(pt->fow); 1151 pt = pt->fow; 1152 } 1153 1154 /* 1155 * return if we did not find it. 1156 */ 1157 if (pt == NULL) 1158 return(-1); 1159 1160 /* 1161 * found it. return the times and remove the entry from the table. 1162 */ 1163 *ppt = pt->fow; 1164 *mtime = pt->mtime; 1165 *atime = pt->atime; 1166 (void)free((char *)pt->name); 1167 (void)free((char *)pt); 1168 return(0); 1169 } 1170 1171 /* 1172 * directory access mode and time storage routines (for directories CREATED 1173 * by pax). 1174 * 1175 * Pax requires that extracted directories, by default, have their access/mod 1176 * times and permissions set to the values specified in the archive. During the 1177 * actions of extracting (and creating the destination subtree during -rw copy) 1178 * directories extracted may be modified after being created. Even worse is 1179 * that these directories may have been created with file permissions which 1180 * prohibits any descendants of these directories from being extracted. When 1181 * directories are created by pax, access rights may be added to permit the 1182 * creation of files in their subtree. Every time pax creates a directory, the 1183 * times and file permissions specified by the archive are stored. After all 1184 * files have been extracted (or copied), these directories have their times 1185 * and file modes reset to the stored values. The directory info is restored in 1186 * reverse order as entries were added to the data file from root to leaf. To 1187 * restore atime properly, we must go backwards. The data file consists of 1188 * records with two parts, the file name followed by a DIRDATA trailer. The 1189 * fixed sized trailer contains the size of the name plus the off_t location in 1190 * the file. To restore we work backwards through the file reading the trailer 1191 * then the file name. 1192 */ 1193 1194 /* 1195 * dir_start() 1196 * set up the directory time and file mode storage for directories CREATED 1197 * by pax. 1198 * Return: 1199 * 0 if ok, -1 otherwise 1200 */ 1201 1202 #if __STDC__ 1203 int 1204 dir_start(void) 1205 #else 1206 int 1207 dir_start() 1208 #endif 1209 { 1210 char *pt; 1211 1212 if (dirfd != -1) 1213 return(0); 1214 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 1215 return(-1); 1216 1217 /* 1218 * unlink the file so it goes away at termination by itself 1219 */ 1220 (void)unlink(pt); 1221 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) { 1222 (void)unlink(pt); 1223 return(0); 1224 } 1225 warn(1, "Unable to create temporary file for directory times: %s", pt); 1226 return(-1); 1227 } 1228 1229 /* 1230 * add_dir() 1231 * add the mode and times for a newly CREATED directory 1232 * name is name of the directory, psb the stat buffer with the data in it, 1233 * frc_mode is a flag that says whether to force the setting of the mode 1234 * (ignoring the user set values for preserving file mode). Frc_mode is 1235 * for the case where we created a file and found that the resulting 1236 * directory was not writeable and the user asked for file modes to NOT 1237 * be preserved. (we have to preserve what was created by default, so we 1238 * have to force the setting at the end. this is stated explicitly in the 1239 * pax spec) 1240 */ 1241 1242 #if __STDC__ 1243 void 1244 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1245 #else 1246 void 1247 add_dir(name, nlen, psb, frc_mode) 1248 char *name; 1249 int nlen; 1250 struct stat *psb; 1251 int frc_mode; 1252 #endif 1253 { 1254 DIRDATA dblk; 1255 1256 if (dirfd < 0) 1257 return; 1258 1259 /* 1260 * get current position (where file name will start) so we can store it 1261 * in the trailer 1262 */ 1263 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1264 warn(1,"Unable to store mode and times for directory: %s",name); 1265 return; 1266 } 1267 1268 /* 1269 * write the file name followed by the trailer 1270 */ 1271 dblk.nlen = nlen + 1; 1272 dblk.mode = psb->st_mode & 0xffff; 1273 dblk.mtime = psb->st_mtime; 1274 dblk.atime = psb->st_atime; 1275 dblk.frc_mode = frc_mode; 1276 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1277 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1278 ++dircnt; 1279 return; 1280 } 1281 1282 warn(1,"Unable to store mode and times for created directory: %s",name); 1283 return; 1284 } 1285 1286 /* 1287 * proc_dir() 1288 * process all file modes and times stored for directories CREATED 1289 * by pax 1290 */ 1291 1292 #if __STDC__ 1293 void 1294 proc_dir(void) 1295 #else 1296 void 1297 proc_dir() 1298 #endif 1299 { 1300 char name[PAXPATHLEN+1]; 1301 DIRDATA dblk; 1302 u_long cnt; 1303 1304 if (dirfd < 0) 1305 return; 1306 /* 1307 * read backwards through the file and process each directory 1308 */ 1309 for (cnt = 0; cnt < dircnt; ++cnt) { 1310 /* 1311 * read the trailer, then the file name, if this fails 1312 * just give up. 1313 */ 1314 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1315 break; 1316 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1317 break; 1318 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1319 break; 1320 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1321 break; 1322 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1323 break; 1324 1325 /* 1326 * frc_mode set, make sure we set the file modes even if 1327 * the user didn't ask for it (see file_subs.c for more info) 1328 */ 1329 if (pmode || dblk.frc_mode) 1330 set_pmode(name, dblk.mode); 1331 if (patime || pmtime) 1332 set_ftime(name, dblk.mtime, dblk.atime, 0); 1333 } 1334 1335 (void)close(dirfd); 1336 dirfd = -1; 1337 if (cnt != dircnt) 1338 warn(1,"Unable to set mode and times for created directories"); 1339 return; 1340 } 1341 1342 /* 1343 * database independent routines 1344 */ 1345 1346 /* 1347 * st_hash() 1348 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1349 * end of file, as this provides far better distribution than any other 1350 * part of the name. For performance reasons we only care about the last 1351 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1352 * name). Was tested on 500,000 name file tree traversal from the root 1353 * and gave almost a perfectly uniform distribution of keys when used with 1354 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1355 * chars at a time and pads with 0 for last addition. 1356 * Return: 1357 * the hash value of the string MOD (%) the table size. 1358 */ 1359 1360 #if __STDC__ 1361 u_int 1362 st_hash(char *name, int len, int tabsz) 1363 #else 1364 u_int 1365 st_hash(name, len, tabsz) 1366 char *name; 1367 int len; 1368 int tabsz; 1369 #endif 1370 { 1371 register char *pt; 1372 register char *dest; 1373 register char *end; 1374 register int i; 1375 register u_int key = 0; 1376 register int steps; 1377 register int res; 1378 u_int val; 1379 1380 /* 1381 * only look at the tail up to MAXKEYLEN, we do not need to waste 1382 * time here (remember these are pathnames, the tail is what will 1383 * spread out the keys) 1384 */ 1385 if (len > MAXKEYLEN) { 1386 pt = &(name[len - MAXKEYLEN]); 1387 len = MAXKEYLEN; 1388 } else 1389 pt = name; 1390 1391 /* 1392 * calculate the number of u_int size steps in the string and if 1393 * there is a runt to deal with 1394 */ 1395 steps = len/sizeof(u_int); 1396 res = len % sizeof(u_int); 1397 1398 /* 1399 * add up the value of the string in unsigned integer sized pieces 1400 * too bad we cannot have unsigned int aligned strings, then we 1401 * could avoid the expensive copy. 1402 */ 1403 for (i = 0; i < steps; ++i) { 1404 end = pt + sizeof(u_int); 1405 dest = (char *)&val; 1406 while (pt < end) 1407 *dest++ = *pt++; 1408 key += val; 1409 } 1410 1411 /* 1412 * add in the runt padded with zero to the right 1413 */ 1414 if (res) { 1415 val = 0; 1416 end = pt + res; 1417 dest = (char *)&val; 1418 while (pt < end) 1419 *dest++ = *pt++; 1420 key += val; 1421 } 1422 1423 /* 1424 * return the result mod the table size 1425 */ 1426 return(key % tabsz); 1427 } 1428