xref: /freebsd/bin/pax/tables.c (revision 8e6b01171e30297084bb0b4457c4183c2746aacc)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	$Id: tables.c,v 1.3 1995/05/30 00:07:01 rgrimes Exp $
38  */
39 
40 #ifndef lint
41 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
42 #endif /* not lint */
43 
44 #include <sys/types.h>
45 #include <sys/time.h>
46 #include <sys/stat.h>
47 #include <sys/param.h>
48 #include <sys/fcntl.h>
49 #include <stdio.h>
50 #include <string.h>
51 #include <unistd.h>
52 #include <errno.h>
53 #include <stdlib.h>
54 #include "pax.h"
55 #include "tables.h"
56 #include "extern.h"
57 
58 /*
59  * Routines for controlling the contents of all the different databases pax
60  * keeps. Tables are dynamically created only when they are needed. The
61  * goal was speed and the ability to work with HUGE archives. The databases
62  * were kept simple, but do have complex rules for when the contents change.
63  * As of this writing, the posix library functions were more complex than
64  * needed for this application (pax databases have very short lifetimes and
65  * do not survive after pax is finished). Pax is required to handle very
66  * large archives. These database routines carefully combine memory usage and
67  * temporary file storage in ways which will not significantly impact runtime
68  * performance while allowing the largest possible archives to be handled.
69  * Trying to force the fit to the posix databases routines was not considered
70  * time well spent.
71  */
72 
73 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
74 static FTM **ftab = NULL;	/* file time table for updating arch */
75 static NAMT **ntab = NULL;	/* interactive rename storage table */
76 static DEVT **dtab = NULL;	/* device/inode mapping tables */
77 static ATDIR **atab = NULL;	/* file tree directory time reset table */
78 static int dirfd = -1;		/* storage for setting created dir time/mode */
79 static u_long dircnt;		/* entries in dir time/mode storage */
80 static int ffd = -1;		/* tmp file for file time table name storage */
81 
82 static DEVT *chk_dev __P((dev_t, int));
83 
84 /*
85  * hard link table routines
86  *
87  * The hard link table tries to detect hard links to files using the device and
88  * inode values. We do this when writing an archive, so we can tell the format
89  * write routine that this file is a hard link to another file. The format
90  * write routine then can store this file in whatever way it wants (as a hard
91  * link if the format supports that like tar, or ignore this info like cpio).
92  * (Actually a field in the format driver table tells us if the format wants
93  * hard link info. if not, we do not waste time looking for them). We also use
94  * the same table when reading an archive. In that situation, this table is
95  * used by the format read routine to detect hard links from stored dev and
96  * inode numbers (like cpio). This will allow pax to create a link when one
97  * can be detected by the archive format.
98  */
99 
100 /*
101  * lnk_start
102  *	Creates the hard link table.
103  * Return:
104  *	0 if created, -1 if failure
105  */
106 
107 #if __STDC__
108 int
109 lnk_start(void)
110 #else
111 int
112 lnk_start()
113 #endif
114 {
115 	if (ltab != NULL)
116 		return(0);
117  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
118                 warn(1, "Cannot allocate memory for hard link table");
119                 return(-1);
120         }
121 	return(0);
122 }
123 
124 /*
125  * chk_lnk()
126  *	Looks up entry in hard link hash table. If found, it copies the name
127  *	of the file it is linked to (we already saw that file) into ln_name.
128  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
129  *	database. (We have seen all the links to this file). If not found,
130  *	we add the file to the database if it has the potential for having
131  *	hard links to other files we may process (it has a link count > 1)
132  * Return:
133  *	if found returns 1; if not found returns 0; -1 on error
134  */
135 
136 #if __STDC__
137 int
138 chk_lnk(register ARCHD *arcn)
139 #else
140 int
141 chk_lnk(arcn)
142 	register ARCHD *arcn;
143 #endif
144 {
145 	register HRDLNK *pt;
146 	register HRDLNK **ppt;
147 	register u_int indx;
148 
149 	if (ltab == NULL)
150 		return(-1);
151 	/*
152 	 * ignore those nodes that cannot have hard links
153 	 */
154 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
155 		return(0);
156 
157 	/*
158 	 * hash inode number and look for this file
159 	 */
160 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
161 	if ((pt = ltab[indx]) != NULL) {
162 		/*
163 		 * it's hash chain in not empty, walk down looking for it
164 		 */
165 		ppt = &(ltab[indx]);
166 		while (pt != NULL) {
167 			if ((pt->ino == arcn->sb.st_ino) &&
168 			    (pt->dev == arcn->sb.st_dev))
169 				break;
170 			ppt = &(pt->fow);
171 			pt = pt->fow;
172 		}
173 
174 		if (pt != NULL) {
175 			/*
176 			 * found a link. set the node type and copy in the
177 			 * name of the file it is to link to. we need to
178 			 * handle hardlinks to regular files differently than
179 			 * other links.
180 			 */
181 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
182 				PAXPATHLEN+1);
183 			if (arcn->type == PAX_REG)
184 				arcn->type = PAX_HRG;
185 			else
186 				arcn->type = PAX_HLK;
187 
188 			/*
189 			 * if we have found all the links to this file, remove
190 			 * it from the database
191 			 */
192 			if (--pt->nlink <= 1) {
193 				*ppt = pt->fow;
194 				(void)free((char *)pt->name);
195 				(void)free((char *)pt);
196 			}
197 			return(1);
198 		}
199 	}
200 
201 	/*
202 	 * we never saw this file before. It has links so we add it to the
203 	 * front of this hash chain
204 	 */
205 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
206 		if ((pt->name = strdup(arcn->name)) != NULL) {
207 			pt->dev = arcn->sb.st_dev;
208 			pt->ino = arcn->sb.st_ino;
209 			pt->nlink = arcn->sb.st_nlink;
210 			pt->fow = ltab[indx];
211 			ltab[indx] = pt;
212 			return(0);
213 		}
214 		(void)free((char *)pt);
215 	}
216 
217 	warn(1, "Hard link table out of memory");
218 	return(-1);
219 }
220 
221 /*
222  * purg_lnk
223  *	remove reference for a file that we may have added to the data base as
224  *	a potential source for hard links. We ended up not using the file, so
225  *	we do not want to accidently point another file at it later on.
226  */
227 
228 #if __STDC__
229 void
230 purg_lnk(register ARCHD *arcn)
231 #else
232 void
233 purg_lnk(arcn)
234 	register ARCHD *arcn;
235 #endif
236 {
237 	register HRDLNK *pt;
238 	register HRDLNK **ppt;
239 	register u_int indx;
240 
241 	if (ltab == NULL)
242 		return;
243 	/*
244 	 * do not bother to look if it could not be in the database
245 	 */
246 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
247 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
248 		return;
249 
250 	/*
251 	 * find the hash chain for this inode value, if empty return
252 	 */
253 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
254 	if ((pt = ltab[indx]) == NULL)
255 		return;
256 
257 	/*
258 	 * walk down the list looking for the inode/dev pair, unlink and
259 	 * free if found
260 	 */
261 	ppt = &(ltab[indx]);
262 	while (pt != NULL) {
263 		if ((pt->ino == arcn->sb.st_ino) &&
264 		    (pt->dev == arcn->sb.st_dev))
265 			break;
266 		ppt = &(pt->fow);
267 		pt = pt->fow;
268 	}
269 	if (pt == NULL)
270 		return;
271 
272 	/*
273 	 * remove and free it
274 	 */
275 	*ppt = pt->fow;
276 	(void)free((char *)pt->name);
277 	(void)free((char *)pt);
278 }
279 
280 /*
281  * lnk_end()
282  *	pull apart a existing link table so we can reuse it. We do this between
283  *	read and write phases of append with update. (The format may have
284  *	used the link table, and we need to start with a fresh table for the
285  *	write phase
286  */
287 
288 #if __STDC__
289 void
290 lnk_end(void)
291 #else
292 void
293 lnk_end()
294 #endif
295 {
296 	register int i;
297 	register HRDLNK *pt;
298 	register HRDLNK *ppt;
299 
300 	if (ltab == NULL)
301 		return;
302 
303 	for (i = 0; i < L_TAB_SZ; ++i) {
304 		if (ltab[i] == NULL)
305 			continue;
306 		pt = ltab[i];
307 		ltab[i] = NULL;
308 
309 		/*
310 		 * free up each entry on this chain
311 		 */
312 		while (pt != NULL) {
313 			ppt = pt;
314 			pt = ppt->fow;
315 			(void)free((char *)ppt->name);
316 			(void)free((char *)ppt);
317 		}
318 	}
319 	return;
320 }
321 
322 /*
323  * modification time table routines
324  *
325  * The modification time table keeps track of last modification times for all
326  * files stored in an archive during a write phase when -u is set. We only
327  * add a file to the archive if it is newer than a file with the same name
328  * already stored on the archive (if there is no other file with the same
329  * name on the archive it is added). This applies to writes and appends.
330  * An append with an -u must read the archive and store the modification time
331  * for every file on that archive before starting the write phase. It is clear
332  * that this is one HUGE database. To save memory space, the actual file names
333  * are stored in a scatch file and indexed by an in memory hash table. The
334  * hash table is indexed by hashing the file path. The nodes in the table store
335  * the length of the filename and the lseek offset within the scratch file
336  * where the actual name is stored. Since there are never any deletions to this
337  * table, fragmentation of the scratch file is never a issue. Lookups seem to
338  * not exhibit any locality at all (files in the database are rarely
339  * looked up more than once...). So caching is just a waste of memory. The
340  * only limitation is the amount of scatch file space available to store the
341  * path names.
342  */
343 
344 /*
345  * ftime_start()
346  *	create the file time hash table and open for read/write the scratch
347  *	file. (after created it is unlinked, so when we exit we leave
348  *	no witnesses).
349  * Return:
350  *	0 if the table and file was created ok, -1 otherwise
351  */
352 
353 #if __STDC__
354 int
355 ftime_start(void)
356 #else
357 int
358 ftime_start()
359 #endif
360 {
361 	char *pt;
362 
363 	if (ftab != NULL)
364 		return(0);
365  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
366                 warn(1, "Cannot allocate memory for file time table");
367                 return(-1);
368         }
369 
370 	/*
371 	 * get random name and create temporary scratch file, unlink name
372 	 * so it will get removed on exit
373 	 */
374 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
375 		return(-1);
376 	(void)unlink(pt);
377 
378 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
379 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
380 		return(-1);
381 	}
382 
383 	(void)unlink(pt);
384 	return(0);
385 }
386 
387 /*
388  * chk_ftime()
389  *	looks up entry in file time hash table. If not found, the file is
390  *	added to the hash table and the file named stored in the scratch file.
391  *	If a file with the same name is found, the file times are compared and
392  *	the most recent file time is retained. If the new file was younger (or
393  *	was not in the database) the new file is selected for storage.
394  * Return:
395  *	0 if file should be added to the archive, 1 if it should be skipped,
396  *	-1 on error
397  */
398 
399 #if __STDC__
400 int
401 chk_ftime(register ARCHD *arcn)
402 #else
403 int
404 chk_ftime(arcn)
405 	register ARCHD *arcn;
406 #endif
407 {
408 	register FTM *pt;
409 	register int namelen;
410 	register u_int indx;
411 	char ckname[PAXPATHLEN+1];
412 
413 	/*
414 	 * no info, go ahead and add to archive
415 	 */
416 	if (ftab == NULL)
417 		return(0);
418 
419 	/*
420 	 * hash the pathname and look up in table
421 	 */
422 	namelen = arcn->nlen;
423 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
424 	if ((pt = ftab[indx]) != NULL) {
425 		/*
426 		 * the hash chain is not empty, walk down looking for match
427 		 * only read up the path names if the lengths match, speeds
428 		 * up the search a lot
429 		 */
430 		while (pt != NULL) {
431 			if (pt->namelen == namelen) {
432 				/*
433 				 * potential match, have to read the name
434 				 * from the scratch file.
435 				 */
436 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
437 					syswarn(1, errno,
438 					    "Failed ftime table seek");
439 					return(-1);
440 				}
441 				if (read(ffd, ckname, namelen) != namelen) {
442 					syswarn(1, errno,
443 					    "Failed ftime table read");
444 					return(-1);
445 				}
446 
447 				/*
448 				 * if the names match, we are done
449 				 */
450 				if (!strncmp(ckname, arcn->name, namelen))
451 					break;
452 			}
453 
454 			/*
455 			 * try the next entry on the chain
456 			 */
457 			pt = pt->fow;
458 		}
459 
460 		if (pt != NULL) {
461 			/*
462 			 * found the file, compare the times, save the newer
463 			 */
464 			if (arcn->sb.st_mtime > pt->mtime) {
465 				/*
466 				 * file is newer
467 				 */
468 				pt->mtime = arcn->sb.st_mtime;
469 				return(0);
470 			}
471 			/*
472 			 * file is older
473 			 */
474 			return(1);
475 		}
476 	}
477 
478 	/*
479 	 * not in table, add it
480 	 */
481 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
482 		/*
483 		 * add the name at the end of the scratch file, saving the
484 		 * offset. add the file to the head of the hash chain
485 		 */
486 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
487 			if (write(ffd, arcn->name, namelen) == namelen) {
488 				pt->mtime = arcn->sb.st_mtime;
489 				pt->namelen = namelen;
490 				pt->fow = ftab[indx];
491 				ftab[indx] = pt;
492 				return(0);
493 			}
494 			syswarn(1, errno, "Failed write to file time table");
495 		} else
496 			syswarn(1, errno, "Failed seek on file time table");
497 	} else
498 		warn(1, "File time table ran out of memory");
499 
500 	if (pt != NULL)
501 		(void)free((char *)pt);
502 	return(-1);
503 }
504 
505 /*
506  * Interactive rename table routines
507  *
508  * The interactive rename table keeps track of the new names that the user
509  * assignes to files from tty input. Since this map is unique for each file
510  * we must store it in case there is a reference to the file later in archive
511  * (a link). Otherwise we will be unable to find the file we know was
512  * extracted. The remapping of these files is stored in a memory based hash
513  * table (it is assumed since input must come from /dev/tty, it is unlikely to
514  * be a very large table).
515  */
516 
517 /*
518  * name_start()
519  *	create the interactive rename table
520  * Return:
521  *	0 if successful, -1 otherwise
522  */
523 
524 #if __STDC__
525 int
526 name_start(void)
527 #else
528 int
529 name_start()
530 #endif
531 {
532 	if (ntab != NULL)
533 		return(0);
534  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
535                 warn(1, "Cannot allocate memory for interactive rename table");
536                 return(-1);
537         }
538 	return(0);
539 }
540 
541 /*
542  * add_name()
543  *	add the new name to old name mapping just created by the user.
544  *	If an old name mapping is found (there may be duplicate names on an
545  *	archive) only the most recent is kept.
546  * Return:
547  *	0 if added, -1 otherwise
548  */
549 
550 #if __STDC__
551 int
552 add_name(register char *oname, int onamelen, char *nname)
553 #else
554 int
555 add_name(oname, onamelen, nname)
556 	register char *oname;
557 	int onamelen;
558 	char *nname;
559 #endif
560 {
561 	register NAMT *pt;
562 	register u_int indx;
563 
564 	if (ntab == NULL) {
565 		/*
566 		 * should never happen
567 		 */
568 		warn(0, "No interactive rename table, links may fail\n");
569 		return(0);
570 	}
571 
572 	/*
573 	 * look to see if we have already mapped this file, if so we
574 	 * will update it
575 	 */
576 	indx = st_hash(oname, onamelen, N_TAB_SZ);
577 	if ((pt = ntab[indx]) != NULL) {
578 		/*
579 		 * look down the has chain for the file
580 		 */
581 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
582 			pt = pt->fow;
583 
584 		if (pt != NULL) {
585 			/*
586 			 * found an old mapping, replace it with the new one
587 			 * the user just input (if it is different)
588 			 */
589 			if (strcmp(nname, pt->nname) == 0)
590 				return(0);
591 
592 			(void)free((char *)pt->nname);
593 			if ((pt->nname = strdup(nname)) == NULL) {
594 				warn(1, "Cannot update rename table");
595 				return(-1);
596 			}
597 			return(0);
598 		}
599 	}
600 
601 	/*
602 	 * this is a new mapping, add it to the table
603 	 */
604 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
605 		if ((pt->oname = strdup(oname)) != NULL) {
606 			if ((pt->nname = strdup(nname)) != NULL) {
607 				pt->fow = ntab[indx];
608 				ntab[indx] = pt;
609 				return(0);
610 			}
611 			(void)free((char *)pt->oname);
612 		}
613 		(void)free((char *)pt);
614 	}
615 	warn(1, "Interactive rename table out of memory");
616 	return(-1);
617 }
618 
619 /*
620  * sub_name()
621  *	look up a link name to see if it points at a file that has been
622  *	remapped by the user. If found, the link is adjusted to contain the
623  *	new name (oname is the link to name)
624  */
625 
626 #if __STDC__
627 void
628 sub_name(register char *oname, int *onamelen)
629 #else
630 void
631 sub_name(oname, onamelen)
632 	register char *oname;
633 	int *onamelen;
634 #endif
635 {
636 	register NAMT *pt;
637 	register u_int indx;
638 
639 	if (ntab == NULL)
640 		return;
641 	/*
642 	 * look the name up in the hash table
643 	 */
644 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
645 	if ((pt = ntab[indx]) == NULL)
646 		return;
647 
648 	while (pt != NULL) {
649 		/*
650 		 * walk down the hash cahin looking for a match
651 		 */
652 		if (strcmp(oname, pt->oname) == 0) {
653 			/*
654 			 * found it, replace it with the new name
655 			 * and return (we know that oname has enough space)
656 			 */
657 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
658 			return;
659 		}
660 		pt = pt->fow;
661 	}
662 
663 	/*
664 	 * no match, just return
665 	 */
666 	return;
667 }
668 
669 /*
670  * device/inode mapping table routines
671  * (used with formats that store device and inodes fields)
672  *
673  * device/inode mapping tables remap the device field in a archive header. The
674  * device/inode fields are used to determine when files are hard links to each
675  * other. However these values have very little meaning outside of that. This
676  * database is used to solve one of two different problems.
677  *
678  * 1) when files are appended to an archive, while the new files may have hard
679  * links to each other, you cannot determine if they have hard links to any
680  * file already stored on the archive from a prior run of pax. We must assume
681  * that these inode/device pairs are unique only within a SINGLE run of pax
682  * (which adds a set of files to an archive). So we have to make sure the
683  * inode/dev pairs we add each time are always unique. We do this by observing
684  * while the inode field is very dense, the use of the dev field is fairly
685  * sparse. Within each run of pax, we remap any device number of a new archive
686  * member that has a device number used in a prior run and already stored in a
687  * file on the archive. During the read phase of the append, we store the
688  * device numbers used and mark them to not be used by any file during the
689  * write phase. If during write we go to use one of those old device numbers,
690  * we remap it to a new value.
691  *
692  * 2) Often the fields in the archive header used to store these values are
693  * too small to store the entire value. The result is an inode or device value
694  * which can be truncated. This really can foul up an archive. With truncation
695  * we end up creating links between files that are really not links (after
696  * truncation the inodes are the same value). We address that by detecting
697  * truncation and forcing a remap of the device field to split truncated
698  * inodes away from each other. Each truncation creates a pattern of bits that
699  * are removed. We use this pattern of truncated bits to partition the inodes
700  * on a single device to many different devices (each one represented by the
701  * truncated bit pattern). All inodes on the same device that have the same
702  * truncation pattern are mapped to the same new device. Two inodes that
703  * truncate to the same value clearly will always have different truncation
704  * bit patterns, so they will be split from away each other. When we spot
705  * device truncation we remap the device number to a non truncated value.
706  * (for more info see table.h for the data structures involved).
707  */
708 
709 /*
710  * dev_start()
711  *	create the device mapping table
712  * Return:
713  *	0 if successful, -1 otherwise
714  */
715 
716 #if __STDC__
717 int
718 dev_start(void)
719 #else
720 int
721 dev_start()
722 #endif
723 {
724 	if (dtab != NULL)
725 		return(0);
726  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
727                 warn(1, "Cannot allocate memory for device mapping table");
728                 return(-1);
729         }
730 	return(0);
731 }
732 
733 /*
734  * add_dev()
735  *	add a device number to the table. this will force the device to be
736  *	remapped to a new value if it be used during a write phase. This
737  *	function is called during the read phase of an append to prohibit the
738  *	use of any device number already in the archive.
739  * Return:
740  *	0 if added ok, -1 otherwise
741  */
742 
743 #if __STDC__
744 int
745 add_dev(register ARCHD *arcn)
746 #else
747 int
748 add_dev(arcn)
749 	register ARCHD *arcn;
750 #endif
751 {
752 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
753 		return(-1);
754 	return(0);
755 }
756 
757 /*
758  * chk_dev()
759  *	check for a device value in the device table. If not found and the add
760  *	flag is set, it is added. This does NOT assign any mapping values, just
761  *	adds the device number as one that need to be remapped. If this device
762  *	is alread mapped, just return with a pointer to that entry.
763  * Return:
764  *	pointer to the entry for this device in the device map table. Null
765  *	if the add flag is not set and the device is not in the table (it is
766  *	not been seen yet). If add is set and the device cannot be added, null
767  *	is returned (indicates an error).
768  */
769 
770 #if __STDC__
771 static DEVT *
772 chk_dev(dev_t dev, int add)
773 #else
774 static DEVT *
775 chk_dev(dev, add)
776 	dev_t dev;
777 	int add;
778 #endif
779 {
780 	register DEVT *pt;
781 	register u_int indx;
782 
783 	if (dtab == NULL)
784 		return(NULL);
785 	/*
786 	 * look to see if this device is already in the table
787 	 */
788 	indx = ((unsigned)dev) % D_TAB_SZ;
789 	if ((pt = dtab[indx]) != NULL) {
790 		while ((pt != NULL) && (pt->dev != dev))
791 			pt = pt->fow;
792 
793 		/*
794 		 * found it, return a pointer to it
795 		 */
796 		if (pt != NULL)
797 			return(pt);
798 	}
799 
800 	/*
801 	 * not in table, we add it only if told to as this may just be a check
802 	 * to see if a device number is being used.
803 	 */
804 	if (add == 0)
805 		return(NULL);
806 
807 	/*
808 	 * allocate a node for this device and add it to the front of the hash
809 	 * chain. Note we do not assign remaps values here, so the pt->list
810 	 * list must be NULL.
811 	 */
812 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
813 		warn(1, "Device map table out of memory");
814 		return(NULL);
815 	}
816 	pt->dev = dev;
817 	pt->list = NULL;
818 	pt->fow = dtab[indx];
819 	dtab[indx] = pt;
820 	return(pt);
821 }
822 /*
823  * map_dev()
824  *	given an inode and device storage mask (the mask has a 1 for each bit
825  *	the archive format is able to store in a header), we check for inode
826  *	and device truncation and remap the device as required. Device mapping
827  *	can also occur when during the read phase of append a device number was
828  *	seen (and was marked as do not use during the write phase). WE ASSUME
829  *	that unsigned longs are the same size or bigger than the fields used
830  *	for ino_t and dev_t. If not the types will have to be changed.
831  * Return:
832  *	0 if all ok, -1 otherwise.
833  */
834 
835 #if __STDC__
836 int
837 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
838 #else
839 int
840 map_dev(arcn, dev_mask, ino_mask)
841 	register ARCHD *arcn;
842 	u_long dev_mask;
843 	u_long ino_mask;
844 #endif
845 {
846 	register DEVT *pt;
847 	register DLIST *dpt;
848 	static dev_t lastdev = 0;	/* next device number to try */
849 	int trc_ino = 0;
850 	int trc_dev = 0;
851 	ino_t trunc_bits = 0;
852 	ino_t nino;
853 
854 	if (dtab == NULL)
855 		return(0);
856 	/*
857 	 * check for device and inode truncation, and extract the truncated
858 	 * bit pattern.
859 	 */
860 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
861 		++trc_dev;
862 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
863 		++trc_ino;
864 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
865 	}
866 
867 	/*
868 	 * see if this device is already being mapped, look up the device
869 	 * then find the truncation bit pattern which applies
870 	 */
871 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
872 		/*
873 		 * this device is already marked to be remapped
874 		 */
875 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
876 			if (dpt->trunc_bits == trunc_bits)
877 				break;
878 
879 		if (dpt != NULL) {
880 			/*
881 			 * we are being remapped for this device and pattern
882 			 * change the device number to be stored and return
883 			 */
884 			arcn->sb.st_dev = dpt->dev;
885 			arcn->sb.st_ino = nino;
886 			return(0);
887 		}
888 	} else {
889 		/*
890 		 * this device is not being remapped YET. if we do not have any
891 		 * form of truncation, we do not need a remap
892 		 */
893 		if (!trc_ino && !trc_dev)
894 			return(0);
895 
896 		/*
897 		 * we have truncation, have to add this as a device to remap
898 		 */
899 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
900 			goto bad;
901 
902 		/*
903 		 * if we just have a truncated inode, we have to make sure that
904 		 * all future inodes that do not truncate (they have the
905 		 * truncation pattern of all 0's) continue to map to the same
906 		 * device number. We probably have already written inodes with
907 		 * this device number to the archive with the truncation
908 		 * pattern of all 0's. So we add the mapping for all 0's to the
909 		 * same device number.
910 		 */
911 		if (!trc_dev && (trunc_bits != 0)) {
912 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
913 				goto bad;
914 			dpt->trunc_bits = 0;
915 			dpt->dev = arcn->sb.st_dev;
916 			dpt->fow = pt->list;
917 			pt->list = dpt;
918 		}
919 	}
920 
921 	/*
922 	 * look for a device number not being used. We must watch for wrap
923 	 * around on lastdev (so we do not get stuck looking forever!)
924 	 */
925 	while (++lastdev > 0) {
926 		if (chk_dev(lastdev, 0) != NULL)
927 			continue;
928 		/*
929 		 * found an unused value. If we have reached truncation point
930 		 * for this format we are hosed, so we give up. Otherwise we
931 		 * mark it as being used.
932 		 */
933 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
934 		    (chk_dev(lastdev, 1) == NULL))
935 			goto bad;
936 		break;
937 	}
938 
939 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
940 		goto bad;
941 
942 	/*
943 	 * got a new device number, store it under this truncation pattern.
944 	 * change the device number this file is being stored with.
945 	 */
946 	dpt->trunc_bits = trunc_bits;
947 	dpt->dev = lastdev;
948 	dpt->fow = pt->list;
949 	pt->list = dpt;
950 	arcn->sb.st_dev = lastdev;
951 	arcn->sb.st_ino = nino;
952 	return(0);
953 
954     bad:
955 	warn(1, "Unable to fix truncated inode/device field when storing %s",
956 	    arcn->name);
957 	warn(0, "Archive may create improper hard links when extracted");
958 	return(0);
959 }
960 
961 /*
962  * directory access/mod time reset table routines (for directories READ by pax)
963  *
964  * The pax -t flag requires that access times of archive files to be the same
965  * before being read by pax. For regular files, access time is restored after
966  * the file has been copied. This database provides the same functionality for
967  * directories read during file tree traversal. Restoring directory access time
968  * is more complex than files since directories may be read several times until
969  * all the descendants in their subtree are visited by fts. Directory access
970  * and modification times are stored during the fts pre-order visit (done
971  * before any descendants in the subtree is visited) and restored after the
972  * fts post-order visit (after all the descendants have been visited). In the
973  * case of premature exit from a subtree (like from the effects of -n), any
974  * directory entries left in this database are reset during final cleanup
975  * operations of pax. Entries are hashed by inode number for fast lookup.
976  */
977 
978 /*
979  * atdir_start()
980  *	create the directory access time database for directories READ by pax.
981  * Return:
982  *	0 is created ok, -1 otherwise.
983  */
984 
985 #if __STDC__
986 int
987 atdir_start(void)
988 #else
989 int
990 atdir_start()
991 #endif
992 {
993 	if (atab != NULL)
994 		return(0);
995  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
996                 warn(1,"Cannot allocate space for directory access time table");
997                 return(-1);
998         }
999 	return(0);
1000 }
1001 
1002 
1003 /*
1004  * atdir_end()
1005  *	walk through the directory access time table and reset the access time
1006  *	of any directory who still has an entry left in the database. These
1007  *	entries are for directories READ by pax
1008  */
1009 
1010 #if __STDC__
1011 void
1012 atdir_end(void)
1013 #else
1014 void
1015 atdir_end()
1016 #endif
1017 {
1018 	register ATDIR *pt;
1019 	register int i;
1020 
1021 	if (atab == NULL)
1022 		return;
1023 	/*
1024 	 * for each non-empty hash table entry reset all the directories
1025 	 * chained there.
1026 	 */
1027 	for (i = 0; i < A_TAB_SZ; ++i) {
1028 		if ((pt = atab[i]) == NULL)
1029 			continue;
1030 		/*
1031 		 * remember to force the times, set_ftime() looks at pmtime
1032 		 * and patime, which only applies to things CREATED by pax,
1033 		 * not read by pax. Read time reset is controlled by -t.
1034 		 */
1035 		for (; pt != NULL; pt = pt->fow)
1036 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1037 	}
1038 }
1039 
1040 /*
1041  * add_atdir()
1042  *	add a directory to the directory access time table. Table is hashed
1043  *	and chained by inode number. This is for directories READ by pax
1044  */
1045 
1046 #if __STDC__
1047 void
1048 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1049 #else
1050 void
1051 add_atdir(fname, dev, ino, mtime, atime)
1052 	char *fname;
1053 	dev_t dev;
1054 	ino_t ino;
1055 	time_t mtime;
1056 	time_t atime;
1057 #endif
1058 {
1059 	register ATDIR *pt;
1060 	register u_int indx;
1061 
1062 	if (atab == NULL)
1063 		return;
1064 
1065 	/*
1066 	 * make sure this directory is not already in the table, if so just
1067 	 * return (the older entry always has the correct time). The only
1068 	 * way this will happen is when the same subtree can be traversed by
1069 	 * different args to pax and the -n option is aborting fts out of a
1070 	 * subtree before all the post-order visits have been made).
1071 	 */
1072 	indx = ((unsigned)ino) % A_TAB_SZ;
1073 	if ((pt = atab[indx]) != NULL) {
1074 		while (pt != NULL) {
1075 			if ((pt->ino == ino) && (pt->dev == dev))
1076 				break;
1077 			pt = pt->fow;
1078 		}
1079 
1080 		/*
1081 		 * oops, already there. Leave it alone.
1082 		 */
1083 		if (pt != NULL)
1084 			return;
1085 	}
1086 
1087 	/*
1088 	 * add it to the front of the hash chain
1089 	 */
1090 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1091 		if ((pt->name = strdup(fname)) != NULL) {
1092 			pt->dev = dev;
1093 			pt->ino = ino;
1094 			pt->mtime = mtime;
1095 			pt->atime = atime;
1096 			pt->fow = atab[indx];
1097 			atab[indx] = pt;
1098 			return;
1099 		}
1100 		(void)free((char *)pt);
1101 	}
1102 
1103 	warn(1, "Directory access time reset table ran out of memory");
1104 	return;
1105 }
1106 
1107 /*
1108  * get_atdir()
1109  *	look up a directory by inode and device number to obtain the access
1110  *	and modification time you want to set to. If found, the modification
1111  *	and access time parameters are set and the entry is removed from the
1112  *	table (as it is no longer needed). These are for directories READ by
1113  *	pax
1114  * Return:
1115  *	0 if found, -1 if not found.
1116  */
1117 
1118 #if __STDC__
1119 int
1120 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1121 #else
1122 int
1123 get_atdir(dev, ino, mtime, atime)
1124 	dev_t dev;
1125 	ino_t ino;
1126 	time_t *mtime;
1127 	time_t *atime;
1128 #endif
1129 {
1130 	register ATDIR *pt;
1131 	register ATDIR **ppt;
1132 	register u_int indx;
1133 
1134 	if (atab == NULL)
1135 		return(-1);
1136 	/*
1137 	 * hash by inode and search the chain for an inode and device match
1138 	 */
1139 	indx = ((unsigned)ino) % A_TAB_SZ;
1140 	if ((pt = atab[indx]) == NULL)
1141 		return(-1);
1142 
1143 	ppt = &(atab[indx]);
1144 	while (pt != NULL) {
1145 		if ((pt->ino == ino) && (pt->dev == dev))
1146 			break;
1147 		/*
1148 		 * no match, go to next one
1149 		 */
1150 		ppt = &(pt->fow);
1151 		pt = pt->fow;
1152 	}
1153 
1154 	/*
1155 	 * return if we did not find it.
1156 	 */
1157 	if (pt == NULL)
1158 		return(-1);
1159 
1160 	/*
1161 	 * found it. return the times and remove the entry from the table.
1162 	 */
1163 	*ppt = pt->fow;
1164 	*mtime = pt->mtime;
1165 	*atime = pt->atime;
1166 	(void)free((char *)pt->name);
1167 	(void)free((char *)pt);
1168 	return(0);
1169 }
1170 
1171 /*
1172  * directory access mode and time storage routines (for directories CREATED
1173  * by pax).
1174  *
1175  * Pax requires that extracted directories, by default, have their access/mod
1176  * times and permissions set to the values specified in the archive. During the
1177  * actions of extracting (and creating the destination subtree during -rw copy)
1178  * directories extracted may be modified after being created. Even worse is
1179  * that these directories may have been created with file permissions which
1180  * prohibits any descendants of these directories from being extracted. When
1181  * directories are created by pax, access rights may be added to permit the
1182  * creation of files in their subtree. Every time pax creates a directory, the
1183  * times and file permissions specified by the archive are stored. After all
1184  * files have been extracted (or copied), these directories have their times
1185  * and file modes reset to the stored values. The directory info is restored in
1186  * reverse order as entries were added to the data file from root to leaf. To
1187  * restore atime properly, we must go backwards. The data file consists of
1188  * records with two parts, the file name followed by a DIRDATA trailer. The
1189  * fixed sized trailer contains the size of the name plus the off_t location in
1190  * the file. To restore we work backwards through the file reading the trailer
1191  * then the file name.
1192  */
1193 
1194 /*
1195  * dir_start()
1196  *	set up the directory time and file mode storage for directories CREATED
1197  *	by pax.
1198  * Return:
1199  *	0 if ok, -1 otherwise
1200  */
1201 
1202 #if __STDC__
1203 int
1204 dir_start(void)
1205 #else
1206 int
1207 dir_start()
1208 #endif
1209 {
1210 	char *pt;
1211 
1212 	if (dirfd != -1)
1213 		return(0);
1214 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1215 		return(-1);
1216 
1217 	/*
1218 	 * unlink the file so it goes away at termination by itself
1219 	 */
1220 	(void)unlink(pt);
1221 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1222 		(void)unlink(pt);
1223 		return(0);
1224 	}
1225 	warn(1, "Unable to create temporary file for directory times: %s", pt);
1226 	return(-1);
1227 }
1228 
1229 /*
1230  * add_dir()
1231  *	add the mode and times for a newly CREATED directory
1232  *	name is name of the directory, psb the stat buffer with the data in it,
1233  *	frc_mode is a flag that says whether to force the setting of the mode
1234  *	(ignoring the user set values for preserving file mode). Frc_mode is
1235  *	for the case where we created a file and found that the resulting
1236  *	directory was not writeable and the user asked for file modes to NOT
1237  *	be preserved. (we have to preserve what was created by default, so we
1238  *	have to force the setting at the end. this is stated explicitly in the
1239  *	pax spec)
1240  */
1241 
1242 #if __STDC__
1243 void
1244 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1245 #else
1246 void
1247 add_dir(name, nlen, psb, frc_mode)
1248 	char *name;
1249 	int nlen;
1250 	struct stat *psb;
1251 	int frc_mode;
1252 #endif
1253 {
1254 	DIRDATA dblk;
1255 
1256 	if (dirfd < 0)
1257 		return;
1258 
1259 	/*
1260 	 * get current position (where file name will start) so we can store it
1261 	 * in the trailer
1262 	 */
1263 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1264 		warn(1,"Unable to store mode and times for directory: %s",name);
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * write the file name followed by the trailer
1270 	 */
1271 	dblk.nlen = nlen + 1;
1272 	dblk.mode = psb->st_mode & 0xffff;
1273 	dblk.mtime = psb->st_mtime;
1274 	dblk.atime = psb->st_atime;
1275 	dblk.frc_mode = frc_mode;
1276 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1277 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1278 		++dircnt;
1279 		return;
1280 	}
1281 
1282 	warn(1,"Unable to store mode and times for created directory: %s",name);
1283 	return;
1284 }
1285 
1286 /*
1287  * proc_dir()
1288  *	process all file modes and times stored for directories CREATED
1289  *	by pax
1290  */
1291 
1292 #if __STDC__
1293 void
1294 proc_dir(void)
1295 #else
1296 void
1297 proc_dir()
1298 #endif
1299 {
1300 	char name[PAXPATHLEN+1];
1301 	DIRDATA dblk;
1302 	u_long cnt;
1303 
1304 	if (dirfd < 0)
1305 		return;
1306 	/*
1307 	 * read backwards through the file and process each directory
1308 	 */
1309 	for (cnt = 0; cnt < dircnt; ++cnt) {
1310 		/*
1311 		 * read the trailer, then the file name, if this fails
1312 		 * just give up.
1313 		 */
1314 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1315 			break;
1316 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1317 			break;
1318 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1319 			break;
1320 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1321 			break;
1322 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1323 			break;
1324 
1325 		/*
1326 		 * frc_mode set, make sure we set the file modes even if
1327 		 * the user didn't ask for it (see file_subs.c for more info)
1328 		 */
1329 		if (pmode || dblk.frc_mode)
1330 			set_pmode(name, dblk.mode);
1331 		if (patime || pmtime)
1332 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1333 	}
1334 
1335 	(void)close(dirfd);
1336 	dirfd = -1;
1337 	if (cnt != dircnt)
1338 		warn(1,"Unable to set mode and times for created directories");
1339 	return;
1340 }
1341 
1342 /*
1343  * database independent routines
1344  */
1345 
1346 /*
1347  * st_hash()
1348  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1349  *	end of file, as this provides far better distribution than any other
1350  *	part of the name. For performance reasons we only care about the last
1351  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1352  *	name). Was tested on 500,000 name file tree traversal from the root
1353  *	and gave almost a perfectly uniform distribution of keys when used with
1354  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1355  *	chars at a time and pads with 0 for last addition.
1356  * Return:
1357  *	the hash value of the string MOD (%) the table size.
1358  */
1359 
1360 #if __STDC__
1361 u_int
1362 st_hash(char *name, int len, int tabsz)
1363 #else
1364 u_int
1365 st_hash(name, len, tabsz)
1366 	char *name;
1367 	int len;
1368 	int tabsz;
1369 #endif
1370 {
1371 	register char *pt;
1372 	register char *dest;
1373 	register char *end;
1374 	register int i;
1375 	register u_int key = 0;
1376 	register int steps;
1377 	register int res;
1378 	u_int val;
1379 
1380 	/*
1381 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1382 	 * time here (remember these are pathnames, the tail is what will
1383 	 * spread out the keys)
1384 	 */
1385 	if (len > MAXKEYLEN) {
1386                 pt = &(name[len - MAXKEYLEN]);
1387 		len = MAXKEYLEN;
1388 	} else
1389 		pt = name;
1390 
1391 	/*
1392 	 * calculate the number of u_int size steps in the string and if
1393 	 * there is a runt to deal with
1394 	 */
1395 	steps = len/sizeof(u_int);
1396 	res = len % sizeof(u_int);
1397 
1398 	/*
1399 	 * add up the value of the string in unsigned integer sized pieces
1400 	 * too bad we cannot have unsigned int aligned strings, then we
1401 	 * could avoid the expensive copy.
1402 	 */
1403 	for (i = 0; i < steps; ++i) {
1404 		end = pt + sizeof(u_int);
1405 		dest = (char *)&val;
1406 		while (pt < end)
1407 			*dest++ = *pt++;
1408 		key += val;
1409 	}
1410 
1411 	/*
1412 	 * add in the runt padded with zero to the right
1413 	 */
1414 	if (res) {
1415 		val = 0;
1416 		end = pt + res;
1417 		dest = (char *)&val;
1418 		while (pt < end)
1419 			*dest++ = *pt++;
1420 		key += val;
1421 	}
1422 
1423 	/*
1424 	 * return the result mod the table size
1425 	 */
1426 	return(key % tabsz);
1427 }
1428