xref: /freebsd/bin/pax/tables.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #ifndef lint
39 #if 0
40 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
41 #endif
42 static const char rcsid[] =
43 	"$Id: tables.c,v 1.11 1998/05/15 06:27:46 charnier Exp $";
44 #endif /* not lint */
45 
46 #include <sys/types.h>
47 #include <sys/time.h>
48 #include <sys/stat.h>
49 #include <sys/fcntl.h>
50 #include <errno.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 #include "pax.h"
56 #include "tables.h"
57 #include "extern.h"
58 
59 /*
60  * Routines for controlling the contents of all the different databases pax
61  * keeps. Tables are dynamically created only when they are needed. The
62  * goal was speed and the ability to work with HUGE archives. The databases
63  * were kept simple, but do have complex rules for when the contents change.
64  * As of this writing, the POSIX library functions were more complex than
65  * needed for this application (pax databases have very short lifetimes and
66  * do not survive after pax is finished). Pax is required to handle very
67  * large archives. These database routines carefully combine memory usage and
68  * temporary file storage in ways which will not significantly impact runtime
69  * performance while allowing the largest possible archives to be handled.
70  * Trying to force the fit to the POSIX databases routines was not considered
71  * time well spent.
72  */
73 
74 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75 static FTM **ftab = NULL;	/* file time table for updating arch */
76 static NAMT **ntab = NULL;	/* interactive rename storage table */
77 static DEVT **dtab = NULL;	/* device/inode mapping tables */
78 static ATDIR **atab = NULL;	/* file tree directory time reset table */
79 static int dirfd = -1;		/* storage for setting created dir time/mode */
80 static u_long dircnt;		/* entries in dir time/mode storage */
81 static int ffd = -1;		/* tmp file for file time table name storage */
82 
83 static DEVT *chk_dev __P((dev_t, int));
84 
85 /*
86  * hard link table routines
87  *
88  * The hard link table tries to detect hard links to files using the device and
89  * inode values. We do this when writing an archive, so we can tell the format
90  * write routine that this file is a hard link to another file. The format
91  * write routine then can store this file in whatever way it wants (as a hard
92  * link if the format supports that like tar, or ignore this info like cpio).
93  * (Actually a field in the format driver table tells us if the format wants
94  * hard link info. if not, we do not waste time looking for them). We also use
95  * the same table when reading an archive. In that situation, this table is
96  * used by the format read routine to detect hard links from stored dev and
97  * inode numbers (like cpio). This will allow pax to create a link when one
98  * can be detected by the archive format.
99  */
100 
101 /*
102  * lnk_start
103  *	Creates the hard link table.
104  * Return:
105  *	0 if created, -1 if failure
106  */
107 
108 #if __STDC__
109 int
110 lnk_start(void)
111 #else
112 int
113 lnk_start()
114 #endif
115 {
116 	if (ltab != NULL)
117 		return(0);
118  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
119                 pax_warn(1, "Cannot allocate memory for hard link table");
120                 return(-1);
121         }
122 	return(0);
123 }
124 
125 /*
126  * chk_lnk()
127  *	Looks up entry in hard link hash table. If found, it copies the name
128  *	of the file it is linked to (we already saw that file) into ln_name.
129  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
130  *	database. (We have seen all the links to this file). If not found,
131  *	we add the file to the database if it has the potential for having
132  *	hard links to other files we may process (it has a link count > 1)
133  * Return:
134  *	if found returns 1; if not found returns 0; -1 on error
135  */
136 
137 #if __STDC__
138 int
139 chk_lnk(register ARCHD *arcn)
140 #else
141 int
142 chk_lnk(arcn)
143 	register ARCHD *arcn;
144 #endif
145 {
146 	register HRDLNK *pt;
147 	register HRDLNK **ppt;
148 	register u_int indx;
149 
150 	if (ltab == NULL)
151 		return(-1);
152 	/*
153 	 * ignore those nodes that cannot have hard links
154 	 */
155 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
156 		return(0);
157 
158 	/*
159 	 * hash inode number and look for this file
160 	 */
161 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
162 	if ((pt = ltab[indx]) != NULL) {
163 		/*
164 		 * it's hash chain in not empty, walk down looking for it
165 		 */
166 		ppt = &(ltab[indx]);
167 		while (pt != NULL) {
168 			if ((pt->ino == arcn->sb.st_ino) &&
169 			    (pt->dev == arcn->sb.st_dev))
170 				break;
171 			ppt = &(pt->fow);
172 			pt = pt->fow;
173 		}
174 
175 		if (pt != NULL) {
176 			/*
177 			 * found a link. set the node type and copy in the
178 			 * name of the file it is to link to. we need to
179 			 * handle hardlinks to regular files differently than
180 			 * other links.
181 			 */
182 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
183 				PAXPATHLEN+1);
184 			arcn->ln_name[PAXPATHLEN] = '\0';
185 			if (arcn->type == PAX_REG)
186 				arcn->type = PAX_HRG;
187 			else
188 				arcn->type = PAX_HLK;
189 
190 			/*
191 			 * if we have found all the links to this file, remove
192 			 * it from the database
193 			 */
194 			if (--pt->nlink <= 1) {
195 				*ppt = pt->fow;
196 				(void)free((char *)pt->name);
197 				(void)free((char *)pt);
198 			}
199 			return(1);
200 		}
201 	}
202 
203 	/*
204 	 * we never saw this file before. It has links so we add it to the
205 	 * front of this hash chain
206 	 */
207 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
208 		if ((pt->name = strdup(arcn->name)) != NULL) {
209 			pt->dev = arcn->sb.st_dev;
210 			pt->ino = arcn->sb.st_ino;
211 			pt->nlink = arcn->sb.st_nlink;
212 			pt->fow = ltab[indx];
213 			ltab[indx] = pt;
214 			return(0);
215 		}
216 		(void)free((char *)pt);
217 	}
218 
219 	pax_warn(1, "Hard link table out of memory");
220 	return(-1);
221 }
222 
223 /*
224  * purg_lnk
225  *	remove reference for a file that we may have added to the data base as
226  *	a potential source for hard links. We ended up not using the file, so
227  *	we do not want to accidently point another file at it later on.
228  */
229 
230 #if __STDC__
231 void
232 purg_lnk(register ARCHD *arcn)
233 #else
234 void
235 purg_lnk(arcn)
236 	register ARCHD *arcn;
237 #endif
238 {
239 	register HRDLNK *pt;
240 	register HRDLNK **ppt;
241 	register u_int indx;
242 
243 	if (ltab == NULL)
244 		return;
245 	/*
246 	 * do not bother to look if it could not be in the database
247 	 */
248 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
249 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
250 		return;
251 
252 	/*
253 	 * find the hash chain for this inode value, if empty return
254 	 */
255 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
256 	if ((pt = ltab[indx]) == NULL)
257 		return;
258 
259 	/*
260 	 * walk down the list looking for the inode/dev pair, unlink and
261 	 * free if found
262 	 */
263 	ppt = &(ltab[indx]);
264 	while (pt != NULL) {
265 		if ((pt->ino == arcn->sb.st_ino) &&
266 		    (pt->dev == arcn->sb.st_dev))
267 			break;
268 		ppt = &(pt->fow);
269 		pt = pt->fow;
270 	}
271 	if (pt == NULL)
272 		return;
273 
274 	/*
275 	 * remove and free it
276 	 */
277 	*ppt = pt->fow;
278 	(void)free((char *)pt->name);
279 	(void)free((char *)pt);
280 }
281 
282 /*
283  * lnk_end()
284  *	pull apart a existing link table so we can reuse it. We do this between
285  *	read and write phases of append with update. (The format may have
286  *	used the link table, and we need to start with a fresh table for the
287  *	write phase
288  */
289 
290 #if __STDC__
291 void
292 lnk_end(void)
293 #else
294 void
295 lnk_end()
296 #endif
297 {
298 	register int i;
299 	register HRDLNK *pt;
300 	register HRDLNK *ppt;
301 
302 	if (ltab == NULL)
303 		return;
304 
305 	for (i = 0; i < L_TAB_SZ; ++i) {
306 		if (ltab[i] == NULL)
307 			continue;
308 		pt = ltab[i];
309 		ltab[i] = NULL;
310 
311 		/*
312 		 * free up each entry on this chain
313 		 */
314 		while (pt != NULL) {
315 			ppt = pt;
316 			pt = ppt->fow;
317 			(void)free((char *)ppt->name);
318 			(void)free((char *)ppt);
319 		}
320 	}
321 	return;
322 }
323 
324 /*
325  * modification time table routines
326  *
327  * The modification time table keeps track of last modification times for all
328  * files stored in an archive during a write phase when -u is set. We only
329  * add a file to the archive if it is newer than a file with the same name
330  * already stored on the archive (if there is no other file with the same
331  * name on the archive it is added). This applies to writes and appends.
332  * An append with an -u must read the archive and store the modification time
333  * for every file on that archive before starting the write phase. It is clear
334  * that this is one HUGE database. To save memory space, the actual file names
335  * are stored in a scatch file and indexed by an in memory hash table. The
336  * hash table is indexed by hashing the file path. The nodes in the table store
337  * the length of the filename and the lseek offset within the scratch file
338  * where the actual name is stored. Since there are never any deletions to this
339  * table, fragmentation of the scratch file is never a issue. Lookups seem to
340  * not exhibit any locality at all (files in the database are rarely
341  * looked up more than once...). So caching is just a waste of memory. The
342  * only limitation is the amount of scatch file space available to store the
343  * path names.
344  */
345 
346 /*
347  * ftime_start()
348  *	create the file time hash table and open for read/write the scratch
349  *	file. (after created it is unlinked, so when we exit we leave
350  *	no witnesses).
351  * Return:
352  *	0 if the table and file was created ok, -1 otherwise
353  */
354 
355 #if __STDC__
356 int
357 ftime_start(void)
358 #else
359 int
360 ftime_start()
361 #endif
362 {
363 	char *pt;
364 
365 	if (ftab != NULL)
366 		return(0);
367  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
368                 pax_warn(1, "Cannot allocate memory for file time table");
369                 return(-1);
370         }
371 
372 	/*
373 	 * get random name and create temporary scratch file, unlink name
374 	 * so it will get removed on exit
375 	 */
376 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
377 		return(-1);
378 	(void)unlink(pt);
379 
380 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
381 		sys_warn(1, errno, "Unable to open temporary file: %s", pt);
382 		return(-1);
383 	}
384 
385 	(void)unlink(pt);
386 	return(0);
387 }
388 
389 /*
390  * chk_ftime()
391  *	looks up entry in file time hash table. If not found, the file is
392  *	added to the hash table and the file named stored in the scratch file.
393  *	If a file with the same name is found, the file times are compared and
394  *	the most recent file time is retained. If the new file was younger (or
395  *	was not in the database) the new file is selected for storage.
396  * Return:
397  *	0 if file should be added to the archive, 1 if it should be skipped,
398  *	-1 on error
399  */
400 
401 #if __STDC__
402 int
403 chk_ftime(register ARCHD *arcn)
404 #else
405 int
406 chk_ftime(arcn)
407 	register ARCHD *arcn;
408 #endif
409 {
410 	register FTM *pt;
411 	register int namelen;
412 	register u_int indx;
413 	char ckname[PAXPATHLEN+1];
414 
415 	/*
416 	 * no info, go ahead and add to archive
417 	 */
418 	if (ftab == NULL)
419 		return(0);
420 
421 	/*
422 	 * hash the pathname and look up in table
423 	 */
424 	namelen = arcn->nlen;
425 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
426 	if ((pt = ftab[indx]) != NULL) {
427 		/*
428 		 * the hash chain is not empty, walk down looking for match
429 		 * only read up the path names if the lengths match, speeds
430 		 * up the search a lot
431 		 */
432 		while (pt != NULL) {
433 			if (pt->namelen == namelen) {
434 				/*
435 				 * potential match, have to read the name
436 				 * from the scratch file.
437 				 */
438 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
439 					sys_warn(1, errno,
440 					    "Failed ftime table seek");
441 					return(-1);
442 				}
443 				if (read(ffd, ckname, namelen) != namelen) {
444 					sys_warn(1, errno,
445 					    "Failed ftime table read");
446 					return(-1);
447 				}
448 
449 				/*
450 				 * if the names match, we are done
451 				 */
452 				if (!strncmp(ckname, arcn->name, namelen))
453 					break;
454 			}
455 
456 			/*
457 			 * try the next entry on the chain
458 			 */
459 			pt = pt->fow;
460 		}
461 
462 		if (pt != NULL) {
463 			/*
464 			 * found the file, compare the times, save the newer
465 			 */
466 			if (arcn->sb.st_mtime > pt->mtime) {
467 				/*
468 				 * file is newer
469 				 */
470 				pt->mtime = arcn->sb.st_mtime;
471 				return(0);
472 			}
473 			/*
474 			 * file is older
475 			 */
476 			return(1);
477 		}
478 	}
479 
480 	/*
481 	 * not in table, add it
482 	 */
483 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
484 		/*
485 		 * add the name at the end of the scratch file, saving the
486 		 * offset. add the file to the head of the hash chain
487 		 */
488 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
489 			if (write(ffd, arcn->name, namelen) == namelen) {
490 				pt->mtime = arcn->sb.st_mtime;
491 				pt->namelen = namelen;
492 				pt->fow = ftab[indx];
493 				ftab[indx] = pt;
494 				return(0);
495 			}
496 			sys_warn(1, errno, "Failed write to file time table");
497 		} else
498 			sys_warn(1, errno, "Failed seek on file time table");
499 	} else
500 		pax_warn(1, "File time table ran out of memory");
501 
502 	if (pt != NULL)
503 		(void)free((char *)pt);
504 	return(-1);
505 }
506 
507 /*
508  * Interactive rename table routines
509  *
510  * The interactive rename table keeps track of the new names that the user
511  * assigns to files from tty input. Since this map is unique for each file
512  * we must store it in case there is a reference to the file later in archive
513  * (a link). Otherwise we will be unable to find the file we know was
514  * extracted. The remapping of these files is stored in a memory based hash
515  * table (it is assumed since input must come from /dev/tty, it is unlikely to
516  * be a very large table).
517  */
518 
519 /*
520  * name_start()
521  *	create the interactive rename table
522  * Return:
523  *	0 if successful, -1 otherwise
524  */
525 
526 #if __STDC__
527 int
528 name_start(void)
529 #else
530 int
531 name_start()
532 #endif
533 {
534 	if (ntab != NULL)
535 		return(0);
536  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
537                 pax_warn(1, "Cannot allocate memory for interactive rename table");
538                 return(-1);
539         }
540 	return(0);
541 }
542 
543 /*
544  * add_name()
545  *	add the new name to old name mapping just created by the user.
546  *	If an old name mapping is found (there may be duplicate names on an
547  *	archive) only the most recent is kept.
548  * Return:
549  *	0 if added, -1 otherwise
550  */
551 
552 #if __STDC__
553 int
554 add_name(register char *oname, int onamelen, char *nname)
555 #else
556 int
557 add_name(oname, onamelen, nname)
558 	register char *oname;
559 	int onamelen;
560 	char *nname;
561 #endif
562 {
563 	register NAMT *pt;
564 	register u_int indx;
565 
566 	if (ntab == NULL) {
567 		/*
568 		 * should never happen
569 		 */
570 		pax_warn(0, "No interactive rename table, links may fail\n");
571 		return(0);
572 	}
573 
574 	/*
575 	 * look to see if we have already mapped this file, if so we
576 	 * will update it
577 	 */
578 	indx = st_hash(oname, onamelen, N_TAB_SZ);
579 	if ((pt = ntab[indx]) != NULL) {
580 		/*
581 		 * look down the has chain for the file
582 		 */
583 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
584 			pt = pt->fow;
585 
586 		if (pt != NULL) {
587 			/*
588 			 * found an old mapping, replace it with the new one
589 			 * the user just input (if it is different)
590 			 */
591 			if (strcmp(nname, pt->nname) == 0)
592 				return(0);
593 
594 			(void)free((char *)pt->nname);
595 			if ((pt->nname = strdup(nname)) == NULL) {
596 				pax_warn(1, "Cannot update rename table");
597 				return(-1);
598 			}
599 			return(0);
600 		}
601 	}
602 
603 	/*
604 	 * this is a new mapping, add it to the table
605 	 */
606 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
607 		if ((pt->oname = strdup(oname)) != NULL) {
608 			if ((pt->nname = strdup(nname)) != NULL) {
609 				pt->fow = ntab[indx];
610 				ntab[indx] = pt;
611 				return(0);
612 			}
613 			(void)free((char *)pt->oname);
614 		}
615 		(void)free((char *)pt);
616 	}
617 	pax_warn(1, "Interactive rename table out of memory");
618 	return(-1);
619 }
620 
621 /*
622  * sub_name()
623  *	look up a link name to see if it points at a file that has been
624  *	remapped by the user. If found, the link is adjusted to contain the
625  *	new name (oname is the link to name)
626  */
627 
628 #if __STDC__
629 void
630 sub_name(register char *oname, int *onamelen)
631 #else
632 void
633 sub_name(oname, onamelen)
634 	register char *oname;
635 	int *onamelen;
636 #endif
637 {
638 	register NAMT *pt;
639 	register u_int indx;
640 
641 	if (ntab == NULL)
642 		return;
643 	/*
644 	 * look the name up in the hash table
645 	 */
646 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
647 	if ((pt = ntab[indx]) == NULL)
648 		return;
649 
650 	while (pt != NULL) {
651 		/*
652 		 * walk down the hash cahin looking for a match
653 		 */
654 		if (strcmp(oname, pt->oname) == 0) {
655 			/*
656 			 * found it, replace it with the new name
657 			 * and return (we know that oname has enough space)
658 			 */
659 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
660 			oname[PAXPATHLEN] = '\0';
661 			return;
662 		}
663 		pt = pt->fow;
664 	}
665 
666 	/*
667 	 * no match, just return
668 	 */
669 	return;
670 }
671 
672 /*
673  * device/inode mapping table routines
674  * (used with formats that store device and inodes fields)
675  *
676  * device/inode mapping tables remap the device field in a archive header. The
677  * device/inode fields are used to determine when files are hard links to each
678  * other. However these values have very little meaning outside of that. This
679  * database is used to solve one of two different problems.
680  *
681  * 1) when files are appended to an archive, while the new files may have hard
682  * links to each other, you cannot determine if they have hard links to any
683  * file already stored on the archive from a prior run of pax. We must assume
684  * that these inode/device pairs are unique only within a SINGLE run of pax
685  * (which adds a set of files to an archive). So we have to make sure the
686  * inode/dev pairs we add each time are always unique. We do this by observing
687  * while the inode field is very dense, the use of the dev field is fairly
688  * sparse. Within each run of pax, we remap any device number of a new archive
689  * member that has a device number used in a prior run and already stored in a
690  * file on the archive. During the read phase of the append, we store the
691  * device numbers used and mark them to not be used by any file during the
692  * write phase. If during write we go to use one of those old device numbers,
693  * we remap it to a new value.
694  *
695  * 2) Often the fields in the archive header used to store these values are
696  * too small to store the entire value. The result is an inode or device value
697  * which can be truncated. This really can foul up an archive. With truncation
698  * we end up creating links between files that are really not links (after
699  * truncation the inodes are the same value). We address that by detecting
700  * truncation and forcing a remap of the device field to split truncated
701  * inodes away from each other. Each truncation creates a pattern of bits that
702  * are removed. We use this pattern of truncated bits to partition the inodes
703  * on a single device to many different devices (each one represented by the
704  * truncated bit pattern). All inodes on the same device that have the same
705  * truncation pattern are mapped to the same new device. Two inodes that
706  * truncate to the same value clearly will always have different truncation
707  * bit patterns, so they will be split from away each other. When we spot
708  * device truncation we remap the device number to a non truncated value.
709  * (for more info see table.h for the data structures involved).
710  */
711 
712 /*
713  * dev_start()
714  *	create the device mapping table
715  * Return:
716  *	0 if successful, -1 otherwise
717  */
718 
719 #if __STDC__
720 int
721 dev_start(void)
722 #else
723 int
724 dev_start()
725 #endif
726 {
727 	if (dtab != NULL)
728 		return(0);
729  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
730                 pax_warn(1, "Cannot allocate memory for device mapping table");
731                 return(-1);
732         }
733 	return(0);
734 }
735 
736 /*
737  * add_dev()
738  *	add a device number to the table. this will force the device to be
739  *	remapped to a new value if it be used during a write phase. This
740  *	function is called during the read phase of an append to prohibit the
741  *	use of any device number already in the archive.
742  * Return:
743  *	0 if added ok, -1 otherwise
744  */
745 
746 #if __STDC__
747 int
748 add_dev(register ARCHD *arcn)
749 #else
750 int
751 add_dev(arcn)
752 	register ARCHD *arcn;
753 #endif
754 {
755 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
756 		return(-1);
757 	return(0);
758 }
759 
760 /*
761  * chk_dev()
762  *	check for a device value in the device table. If not found and the add
763  *	flag is set, it is added. This does NOT assign any mapping values, just
764  *	adds the device number as one that need to be remapped. If this device
765  *	is already mapped, just return with a pointer to that entry.
766  * Return:
767  *	pointer to the entry for this device in the device map table. Null
768  *	if the add flag is not set and the device is not in the table (it is
769  *	not been seen yet). If add is set and the device cannot be added, null
770  *	is returned (indicates an error).
771  */
772 
773 #if __STDC__
774 static DEVT *
775 chk_dev(dev_t dev, int add)
776 #else
777 static DEVT *
778 chk_dev(dev, add)
779 	dev_t dev;
780 	int add;
781 #endif
782 {
783 	register DEVT *pt;
784 	register u_int indx;
785 
786 	if (dtab == NULL)
787 		return(NULL);
788 	/*
789 	 * look to see if this device is already in the table
790 	 */
791 	indx = ((unsigned)dev) % D_TAB_SZ;
792 	if ((pt = dtab[indx]) != NULL) {
793 		while ((pt != NULL) && (pt->dev != dev))
794 			pt = pt->fow;
795 
796 		/*
797 		 * found it, return a pointer to it
798 		 */
799 		if (pt != NULL)
800 			return(pt);
801 	}
802 
803 	/*
804 	 * not in table, we add it only if told to as this may just be a check
805 	 * to see if a device number is being used.
806 	 */
807 	if (add == 0)
808 		return(NULL);
809 
810 	/*
811 	 * allocate a node for this device and add it to the front of the hash
812 	 * chain. Note we do not assign remaps values here, so the pt->list
813 	 * list must be NULL.
814 	 */
815 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
816 		pax_warn(1, "Device map table out of memory");
817 		return(NULL);
818 	}
819 	pt->dev = dev;
820 	pt->list = NULL;
821 	pt->fow = dtab[indx];
822 	dtab[indx] = pt;
823 	return(pt);
824 }
825 /*
826  * map_dev()
827  *	given an inode and device storage mask (the mask has a 1 for each bit
828  *	the archive format is able to store in a header), we check for inode
829  *	and device truncation and remap the device as required. Device mapping
830  *	can also occur when during the read phase of append a device number was
831  *	seen (and was marked as do not use during the write phase). WE ASSUME
832  *	that unsigned longs are the same size or bigger than the fields used
833  *	for ino_t and dev_t. If not the types will have to be changed.
834  * Return:
835  *	0 if all ok, -1 otherwise.
836  */
837 
838 #if __STDC__
839 int
840 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
841 #else
842 int
843 map_dev(arcn, dev_mask, ino_mask)
844 	register ARCHD *arcn;
845 	u_long dev_mask;
846 	u_long ino_mask;
847 #endif
848 {
849 	register DEVT *pt;
850 	register DLIST *dpt;
851 	static dev_t lastdev = 0;	/* next device number to try */
852 	int trc_ino = 0;
853 	int trc_dev = 0;
854 	ino_t trunc_bits = 0;
855 	ino_t nino;
856 
857 	if (dtab == NULL)
858 		return(0);
859 	/*
860 	 * check for device and inode truncation, and extract the truncated
861 	 * bit pattern.
862 	 */
863 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
864 		++trc_dev;
865 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
866 		++trc_ino;
867 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
868 	}
869 
870 	/*
871 	 * see if this device is already being mapped, look up the device
872 	 * then find the truncation bit pattern which applies
873 	 */
874 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
875 		/*
876 		 * this device is already marked to be remapped
877 		 */
878 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
879 			if (dpt->trunc_bits == trunc_bits)
880 				break;
881 
882 		if (dpt != NULL) {
883 			/*
884 			 * we are being remapped for this device and pattern
885 			 * change the device number to be stored and return
886 			 */
887 			arcn->sb.st_dev = dpt->dev;
888 			arcn->sb.st_ino = nino;
889 			return(0);
890 		}
891 	} else {
892 		/*
893 		 * this device is not being remapped YET. if we do not have any
894 		 * form of truncation, we do not need a remap
895 		 */
896 		if (!trc_ino && !trc_dev)
897 			return(0);
898 
899 		/*
900 		 * we have truncation, have to add this as a device to remap
901 		 */
902 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
903 			goto bad;
904 
905 		/*
906 		 * if we just have a truncated inode, we have to make sure that
907 		 * all future inodes that do not truncate (they have the
908 		 * truncation pattern of all 0's) continue to map to the same
909 		 * device number. We probably have already written inodes with
910 		 * this device number to the archive with the truncation
911 		 * pattern of all 0's. So we add the mapping for all 0's to the
912 		 * same device number.
913 		 */
914 		if (!trc_dev && (trunc_bits != 0)) {
915 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
916 				goto bad;
917 			dpt->trunc_bits = 0;
918 			dpt->dev = arcn->sb.st_dev;
919 			dpt->fow = pt->list;
920 			pt->list = dpt;
921 		}
922 	}
923 
924 	/*
925 	 * look for a device number not being used. We must watch for wrap
926 	 * around on lastdev (so we do not get stuck looking forever!)
927 	 */
928 	while (++lastdev > 0) {
929 		if (chk_dev(lastdev, 0) != NULL)
930 			continue;
931 		/*
932 		 * found an unused value. If we have reached truncation point
933 		 * for this format we are hosed, so we give up. Otherwise we
934 		 * mark it as being used.
935 		 */
936 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
937 		    (chk_dev(lastdev, 1) == NULL))
938 			goto bad;
939 		break;
940 	}
941 
942 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
943 		goto bad;
944 
945 	/*
946 	 * got a new device number, store it under this truncation pattern.
947 	 * change the device number this file is being stored with.
948 	 */
949 	dpt->trunc_bits = trunc_bits;
950 	dpt->dev = lastdev;
951 	dpt->fow = pt->list;
952 	pt->list = dpt;
953 	arcn->sb.st_dev = lastdev;
954 	arcn->sb.st_ino = nino;
955 	return(0);
956 
957     bad:
958 	pax_warn(1, "Unable to fix truncated inode/device field when storing %s",
959 	    arcn->name);
960 	pax_warn(0, "Archive may create improper hard links when extracted");
961 	return(0);
962 }
963 
964 /*
965  * directory access/mod time reset table routines (for directories READ by pax)
966  *
967  * The pax -t flag requires that access times of archive files to be the same
968  * before being read by pax. For regular files, access time is restored after
969  * the file has been copied. This database provides the same functionality for
970  * directories read during file tree traversal. Restoring directory access time
971  * is more complex than files since directories may be read several times until
972  * all the descendants in their subtree are visited by fts. Directory access
973  * and modification times are stored during the fts pre-order visit (done
974  * before any descendants in the subtree is visited) and restored after the
975  * fts post-order visit (after all the descendants have been visited). In the
976  * case of premature exit from a subtree (like from the effects of -n), any
977  * directory entries left in this database are reset during final cleanup
978  * operations of pax. Entries are hashed by inode number for fast lookup.
979  */
980 
981 /*
982  * atdir_start()
983  *	create the directory access time database for directories READ by pax.
984  * Return:
985  *	0 is created ok, -1 otherwise.
986  */
987 
988 #if __STDC__
989 int
990 atdir_start(void)
991 #else
992 int
993 atdir_start()
994 #endif
995 {
996 	if (atab != NULL)
997 		return(0);
998  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
999                 pax_warn(1,"Cannot allocate space for directory access time table");
1000                 return(-1);
1001         }
1002 	return(0);
1003 }
1004 
1005 
1006 /*
1007  * atdir_end()
1008  *	walk through the directory access time table and reset the access time
1009  *	of any directory who still has an entry left in the database. These
1010  *	entries are for directories READ by pax
1011  */
1012 
1013 #if __STDC__
1014 void
1015 atdir_end(void)
1016 #else
1017 void
1018 atdir_end()
1019 #endif
1020 {
1021 	register ATDIR *pt;
1022 	register int i;
1023 
1024 	if (atab == NULL)
1025 		return;
1026 	/*
1027 	 * for each non-empty hash table entry reset all the directories
1028 	 * chained there.
1029 	 */
1030 	for (i = 0; i < A_TAB_SZ; ++i) {
1031 		if ((pt = atab[i]) == NULL)
1032 			continue;
1033 		/*
1034 		 * remember to force the times, set_ftime() looks at pmtime
1035 		 * and patime, which only applies to things CREATED by pax,
1036 		 * not read by pax. Read time reset is controlled by -t.
1037 		 */
1038 		for (; pt != NULL; pt = pt->fow)
1039 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1040 	}
1041 }
1042 
1043 /*
1044  * add_atdir()
1045  *	add a directory to the directory access time table. Table is hashed
1046  *	and chained by inode number. This is for directories READ by pax
1047  */
1048 
1049 #if __STDC__
1050 void
1051 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1052 #else
1053 void
1054 add_atdir(fname, dev, ino, mtime, atime)
1055 	char *fname;
1056 	dev_t dev;
1057 	ino_t ino;
1058 	time_t mtime;
1059 	time_t atime;
1060 #endif
1061 {
1062 	register ATDIR *pt;
1063 	register u_int indx;
1064 
1065 	if (atab == NULL)
1066 		return;
1067 
1068 	/*
1069 	 * make sure this directory is not already in the table, if so just
1070 	 * return (the older entry always has the correct time). The only
1071 	 * way this will happen is when the same subtree can be traversed by
1072 	 * different args to pax and the -n option is aborting fts out of a
1073 	 * subtree before all the post-order visits have been made).
1074 	 */
1075 	indx = ((unsigned)ino) % A_TAB_SZ;
1076 	if ((pt = atab[indx]) != NULL) {
1077 		while (pt != NULL) {
1078 			if ((pt->ino == ino) && (pt->dev == dev))
1079 				break;
1080 			pt = pt->fow;
1081 		}
1082 
1083 		/*
1084 		 * oops, already there. Leave it alone.
1085 		 */
1086 		if (pt != NULL)
1087 			return;
1088 	}
1089 
1090 	/*
1091 	 * add it to the front of the hash chain
1092 	 */
1093 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1094 		if ((pt->name = strdup(fname)) != NULL) {
1095 			pt->dev = dev;
1096 			pt->ino = ino;
1097 			pt->mtime = mtime;
1098 			pt->atime = atime;
1099 			pt->fow = atab[indx];
1100 			atab[indx] = pt;
1101 			return;
1102 		}
1103 		(void)free((char *)pt);
1104 	}
1105 
1106 	pax_warn(1, "Directory access time reset table ran out of memory");
1107 	return;
1108 }
1109 
1110 /*
1111  * get_atdir()
1112  *	look up a directory by inode and device number to obtain the access
1113  *	and modification time you want to set to. If found, the modification
1114  *	and access time parameters are set and the entry is removed from the
1115  *	table (as it is no longer needed). These are for directories READ by
1116  *	pax
1117  * Return:
1118  *	0 if found, -1 if not found.
1119  */
1120 
1121 #if __STDC__
1122 int
1123 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1124 #else
1125 int
1126 get_atdir(dev, ino, mtime, atime)
1127 	dev_t dev;
1128 	ino_t ino;
1129 	time_t *mtime;
1130 	time_t *atime;
1131 #endif
1132 {
1133 	register ATDIR *pt;
1134 	register ATDIR **ppt;
1135 	register u_int indx;
1136 
1137 	if (atab == NULL)
1138 		return(-1);
1139 	/*
1140 	 * hash by inode and search the chain for an inode and device match
1141 	 */
1142 	indx = ((unsigned)ino) % A_TAB_SZ;
1143 	if ((pt = atab[indx]) == NULL)
1144 		return(-1);
1145 
1146 	ppt = &(atab[indx]);
1147 	while (pt != NULL) {
1148 		if ((pt->ino == ino) && (pt->dev == dev))
1149 			break;
1150 		/*
1151 		 * no match, go to next one
1152 		 */
1153 		ppt = &(pt->fow);
1154 		pt = pt->fow;
1155 	}
1156 
1157 	/*
1158 	 * return if we did not find it.
1159 	 */
1160 	if (pt == NULL)
1161 		return(-1);
1162 
1163 	/*
1164 	 * found it. return the times and remove the entry from the table.
1165 	 */
1166 	*ppt = pt->fow;
1167 	*mtime = pt->mtime;
1168 	*atime = pt->atime;
1169 	(void)free((char *)pt->name);
1170 	(void)free((char *)pt);
1171 	return(0);
1172 }
1173 
1174 /*
1175  * directory access mode and time storage routines (for directories CREATED
1176  * by pax).
1177  *
1178  * Pax requires that extracted directories, by default, have their access/mod
1179  * times and permissions set to the values specified in the archive. During the
1180  * actions of extracting (and creating the destination subtree during -rw copy)
1181  * directories extracted may be modified after being created. Even worse is
1182  * that these directories may have been created with file permissions which
1183  * prohibits any descendants of these directories from being extracted. When
1184  * directories are created by pax, access rights may be added to permit the
1185  * creation of files in their subtree. Every time pax creates a directory, the
1186  * times and file permissions specified by the archive are stored. After all
1187  * files have been extracted (or copied), these directories have their times
1188  * and file modes reset to the stored values. The directory info is restored in
1189  * reverse order as entries were added to the data file from root to leaf. To
1190  * restore atime properly, we must go backwards. The data file consists of
1191  * records with two parts, the file name followed by a DIRDATA trailer. The
1192  * fixed sized trailer contains the size of the name plus the off_t location in
1193  * the file. To restore we work backwards through the file reading the trailer
1194  * then the file name.
1195  */
1196 
1197 /*
1198  * dir_start()
1199  *	set up the directory time and file mode storage for directories CREATED
1200  *	by pax.
1201  * Return:
1202  *	0 if ok, -1 otherwise
1203  */
1204 
1205 #if __STDC__
1206 int
1207 dir_start(void)
1208 #else
1209 int
1210 dir_start()
1211 #endif
1212 {
1213 	char *pt;
1214 
1215 	if (dirfd != -1)
1216 		return(0);
1217 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1218 		return(-1);
1219 
1220 	/*
1221 	 * unlink the file so it goes away at termination by itself
1222 	 */
1223 	(void)unlink(pt);
1224 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1225 		(void)unlink(pt);
1226 		return(0);
1227 	}
1228 	pax_warn(1, "Unable to create temporary file for directory times: %s", pt);
1229 	return(-1);
1230 }
1231 
1232 /*
1233  * add_dir()
1234  *	add the mode and times for a newly CREATED directory
1235  *	name is name of the directory, psb the stat buffer with the data in it,
1236  *	frc_mode is a flag that says whether to force the setting of the mode
1237  *	(ignoring the user set values for preserving file mode). Frc_mode is
1238  *	for the case where we created a file and found that the resulting
1239  *	directory was not writeable and the user asked for file modes to NOT
1240  *	be preserved. (we have to preserve what was created by default, so we
1241  *	have to force the setting at the end. this is stated explicitly in the
1242  *	pax spec)
1243  */
1244 
1245 #if __STDC__
1246 void
1247 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1248 #else
1249 void
1250 add_dir(name, nlen, psb, frc_mode)
1251 	char *name;
1252 	int nlen;
1253 	struct stat *psb;
1254 	int frc_mode;
1255 #endif
1256 {
1257 	DIRDATA dblk;
1258 
1259 	if (dirfd < 0)
1260 		return;
1261 
1262 	/*
1263 	 * get current position (where file name will start) so we can store it
1264 	 * in the trailer
1265 	 */
1266 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1267 		pax_warn(1,"Unable to store mode and times for directory: %s",name);
1268 		return;
1269 	}
1270 
1271 	/*
1272 	 * write the file name followed by the trailer
1273 	 */
1274 	dblk.nlen = nlen + 1;
1275 	dblk.mode = psb->st_mode & 0xffff;
1276 	dblk.mtime = psb->st_mtime;
1277 	dblk.atime = psb->st_atime;
1278 	dblk.frc_mode = frc_mode;
1279 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1280 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1281 		++dircnt;
1282 		return;
1283 	}
1284 
1285 	pax_warn(1,"Unable to store mode and times for created directory: %s",name);
1286 	return;
1287 }
1288 
1289 /*
1290  * proc_dir()
1291  *	process all file modes and times stored for directories CREATED
1292  *	by pax
1293  */
1294 
1295 #if __STDC__
1296 void
1297 proc_dir(void)
1298 #else
1299 void
1300 proc_dir()
1301 #endif
1302 {
1303 	char name[PAXPATHLEN+1];
1304 	DIRDATA dblk;
1305 	u_long cnt;
1306 
1307 	if (dirfd < 0)
1308 		return;
1309 	/*
1310 	 * read backwards through the file and process each directory
1311 	 */
1312 	for (cnt = 0; cnt < dircnt; ++cnt) {
1313 		/*
1314 		 * read the trailer, then the file name, if this fails
1315 		 * just give up.
1316 		 */
1317 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1318 			break;
1319 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1320 			break;
1321 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322 			break;
1323 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1324 			break;
1325 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1326 			break;
1327 
1328 		/*
1329 		 * frc_mode set, make sure we set the file modes even if
1330 		 * the user didn't ask for it (see file_subs.c for more info)
1331 		 */
1332 		if (pmode || dblk.frc_mode)
1333 			set_pmode(name, dblk.mode);
1334 		if (patime || pmtime)
1335 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1336 	}
1337 
1338 	(void)close(dirfd);
1339 	dirfd = -1;
1340 	if (cnt != dircnt)
1341 		pax_warn(1,"Unable to set mode and times for created directories");
1342 	return;
1343 }
1344 
1345 /*
1346  * database independent routines
1347  */
1348 
1349 /*
1350  * st_hash()
1351  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1352  *	end of file, as this provides far better distribution than any other
1353  *	part of the name. For performance reasons we only care about the last
1354  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1355  *	name). Was tested on 500,000 name file tree traversal from the root
1356  *	and gave almost a perfectly uniform distribution of keys when used with
1357  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1358  *	chars at a time and pads with 0 for last addition.
1359  * Return:
1360  *	the hash value of the string MOD (%) the table size.
1361  */
1362 
1363 #if __STDC__
1364 u_int
1365 st_hash(char *name, int len, int tabsz)
1366 #else
1367 u_int
1368 st_hash(name, len, tabsz)
1369 	char *name;
1370 	int len;
1371 	int tabsz;
1372 #endif
1373 {
1374 	register char *pt;
1375 	register char *dest;
1376 	register char *end;
1377 	register int i;
1378 	register u_int key = 0;
1379 	register int steps;
1380 	register int res;
1381 	u_int val;
1382 
1383 	/*
1384 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1385 	 * time here (remember these are pathnames, the tail is what will
1386 	 * spread out the keys)
1387 	 */
1388 	if (len > MAXKEYLEN) {
1389                 pt = &(name[len - MAXKEYLEN]);
1390 		len = MAXKEYLEN;
1391 	} else
1392 		pt = name;
1393 
1394 	/*
1395 	 * calculate the number of u_int size steps in the string and if
1396 	 * there is a runt to deal with
1397 	 */
1398 	steps = len/sizeof(u_int);
1399 	res = len % sizeof(u_int);
1400 
1401 	/*
1402 	 * add up the value of the string in unsigned integer sized pieces
1403 	 * too bad we cannot have unsigned int aligned strings, then we
1404 	 * could avoid the expensive copy.
1405 	 */
1406 	for (i = 0; i < steps; ++i) {
1407 		end = pt + sizeof(u_int);
1408 		dest = (char *)&val;
1409 		while (pt < end)
1410 			*dest++ = *pt++;
1411 		key += val;
1412 	}
1413 
1414 	/*
1415 	 * add in the runt padded with zero to the right
1416 	 */
1417 	if (res) {
1418 		val = 0;
1419 		end = pt + res;
1420 		dest = (char *)&val;
1421 		while (pt < end)
1422 			*dest++ = *pt++;
1423 		key += val;
1424 	}
1425 
1426 	/*
1427 	 * return the result mod the table size
1428 	 */
1429 	return(key % tabsz);
1430 }
1431