1 /*- 2 * Copyright (c) 1992 Keith Muller. 3 * Copyright (c) 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Keith Muller of the University of California, San Diego. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #ifndef lint 39 #if 0 40 static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 5/31/93"; 41 #endif 42 static const char rcsid[] = 43 "$Id: tables.c,v 1.11 1998/05/15 06:27:46 charnier Exp $"; 44 #endif /* not lint */ 45 46 #include <sys/types.h> 47 #include <sys/time.h> 48 #include <sys/stat.h> 49 #include <sys/fcntl.h> 50 #include <errno.h> 51 #include <stdio.h> 52 #include <stdlib.h> 53 #include <string.h> 54 #include <unistd.h> 55 #include "pax.h" 56 #include "tables.h" 57 #include "extern.h" 58 59 /* 60 * Routines for controlling the contents of all the different databases pax 61 * keeps. Tables are dynamically created only when they are needed. The 62 * goal was speed and the ability to work with HUGE archives. The databases 63 * were kept simple, but do have complex rules for when the contents change. 64 * As of this writing, the POSIX library functions were more complex than 65 * needed for this application (pax databases have very short lifetimes and 66 * do not survive after pax is finished). Pax is required to handle very 67 * large archives. These database routines carefully combine memory usage and 68 * temporary file storage in ways which will not significantly impact runtime 69 * performance while allowing the largest possible archives to be handled. 70 * Trying to force the fit to the POSIX databases routines was not considered 71 * time well spent. 72 */ 73 74 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 75 static FTM **ftab = NULL; /* file time table for updating arch */ 76 static NAMT **ntab = NULL; /* interactive rename storage table */ 77 static DEVT **dtab = NULL; /* device/inode mapping tables */ 78 static ATDIR **atab = NULL; /* file tree directory time reset table */ 79 static int dirfd = -1; /* storage for setting created dir time/mode */ 80 static u_long dircnt; /* entries in dir time/mode storage */ 81 static int ffd = -1; /* tmp file for file time table name storage */ 82 83 static DEVT *chk_dev __P((dev_t, int)); 84 85 /* 86 * hard link table routines 87 * 88 * The hard link table tries to detect hard links to files using the device and 89 * inode values. We do this when writing an archive, so we can tell the format 90 * write routine that this file is a hard link to another file. The format 91 * write routine then can store this file in whatever way it wants (as a hard 92 * link if the format supports that like tar, or ignore this info like cpio). 93 * (Actually a field in the format driver table tells us if the format wants 94 * hard link info. if not, we do not waste time looking for them). We also use 95 * the same table when reading an archive. In that situation, this table is 96 * used by the format read routine to detect hard links from stored dev and 97 * inode numbers (like cpio). This will allow pax to create a link when one 98 * can be detected by the archive format. 99 */ 100 101 /* 102 * lnk_start 103 * Creates the hard link table. 104 * Return: 105 * 0 if created, -1 if failure 106 */ 107 108 #if __STDC__ 109 int 110 lnk_start(void) 111 #else 112 int 113 lnk_start() 114 #endif 115 { 116 if (ltab != NULL) 117 return(0); 118 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 119 pax_warn(1, "Cannot allocate memory for hard link table"); 120 return(-1); 121 } 122 return(0); 123 } 124 125 /* 126 * chk_lnk() 127 * Looks up entry in hard link hash table. If found, it copies the name 128 * of the file it is linked to (we already saw that file) into ln_name. 129 * lnkcnt is decremented and if goes to 1 the node is deleted from the 130 * database. (We have seen all the links to this file). If not found, 131 * we add the file to the database if it has the potential for having 132 * hard links to other files we may process (it has a link count > 1) 133 * Return: 134 * if found returns 1; if not found returns 0; -1 on error 135 */ 136 137 #if __STDC__ 138 int 139 chk_lnk(register ARCHD *arcn) 140 #else 141 int 142 chk_lnk(arcn) 143 register ARCHD *arcn; 144 #endif 145 { 146 register HRDLNK *pt; 147 register HRDLNK **ppt; 148 register u_int indx; 149 150 if (ltab == NULL) 151 return(-1); 152 /* 153 * ignore those nodes that cannot have hard links 154 */ 155 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 156 return(0); 157 158 /* 159 * hash inode number and look for this file 160 */ 161 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 162 if ((pt = ltab[indx]) != NULL) { 163 /* 164 * it's hash chain in not empty, walk down looking for it 165 */ 166 ppt = &(ltab[indx]); 167 while (pt != NULL) { 168 if ((pt->ino == arcn->sb.st_ino) && 169 (pt->dev == arcn->sb.st_dev)) 170 break; 171 ppt = &(pt->fow); 172 pt = pt->fow; 173 } 174 175 if (pt != NULL) { 176 /* 177 * found a link. set the node type and copy in the 178 * name of the file it is to link to. we need to 179 * handle hardlinks to regular files differently than 180 * other links. 181 */ 182 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 183 PAXPATHLEN+1); 184 arcn->ln_name[PAXPATHLEN] = '\0'; 185 if (arcn->type == PAX_REG) 186 arcn->type = PAX_HRG; 187 else 188 arcn->type = PAX_HLK; 189 190 /* 191 * if we have found all the links to this file, remove 192 * it from the database 193 */ 194 if (--pt->nlink <= 1) { 195 *ppt = pt->fow; 196 (void)free((char *)pt->name); 197 (void)free((char *)pt); 198 } 199 return(1); 200 } 201 } 202 203 /* 204 * we never saw this file before. It has links so we add it to the 205 * front of this hash chain 206 */ 207 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 208 if ((pt->name = strdup(arcn->name)) != NULL) { 209 pt->dev = arcn->sb.st_dev; 210 pt->ino = arcn->sb.st_ino; 211 pt->nlink = arcn->sb.st_nlink; 212 pt->fow = ltab[indx]; 213 ltab[indx] = pt; 214 return(0); 215 } 216 (void)free((char *)pt); 217 } 218 219 pax_warn(1, "Hard link table out of memory"); 220 return(-1); 221 } 222 223 /* 224 * purg_lnk 225 * remove reference for a file that we may have added to the data base as 226 * a potential source for hard links. We ended up not using the file, so 227 * we do not want to accidently point another file at it later on. 228 */ 229 230 #if __STDC__ 231 void 232 purg_lnk(register ARCHD *arcn) 233 #else 234 void 235 purg_lnk(arcn) 236 register ARCHD *arcn; 237 #endif 238 { 239 register HRDLNK *pt; 240 register HRDLNK **ppt; 241 register u_int indx; 242 243 if (ltab == NULL) 244 return; 245 /* 246 * do not bother to look if it could not be in the database 247 */ 248 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 249 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 250 return; 251 252 /* 253 * find the hash chain for this inode value, if empty return 254 */ 255 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 256 if ((pt = ltab[indx]) == NULL) 257 return; 258 259 /* 260 * walk down the list looking for the inode/dev pair, unlink and 261 * free if found 262 */ 263 ppt = &(ltab[indx]); 264 while (pt != NULL) { 265 if ((pt->ino == arcn->sb.st_ino) && 266 (pt->dev == arcn->sb.st_dev)) 267 break; 268 ppt = &(pt->fow); 269 pt = pt->fow; 270 } 271 if (pt == NULL) 272 return; 273 274 /* 275 * remove and free it 276 */ 277 *ppt = pt->fow; 278 (void)free((char *)pt->name); 279 (void)free((char *)pt); 280 } 281 282 /* 283 * lnk_end() 284 * pull apart a existing link table so we can reuse it. We do this between 285 * read and write phases of append with update. (The format may have 286 * used the link table, and we need to start with a fresh table for the 287 * write phase 288 */ 289 290 #if __STDC__ 291 void 292 lnk_end(void) 293 #else 294 void 295 lnk_end() 296 #endif 297 { 298 register int i; 299 register HRDLNK *pt; 300 register HRDLNK *ppt; 301 302 if (ltab == NULL) 303 return; 304 305 for (i = 0; i < L_TAB_SZ; ++i) { 306 if (ltab[i] == NULL) 307 continue; 308 pt = ltab[i]; 309 ltab[i] = NULL; 310 311 /* 312 * free up each entry on this chain 313 */ 314 while (pt != NULL) { 315 ppt = pt; 316 pt = ppt->fow; 317 (void)free((char *)ppt->name); 318 (void)free((char *)ppt); 319 } 320 } 321 return; 322 } 323 324 /* 325 * modification time table routines 326 * 327 * The modification time table keeps track of last modification times for all 328 * files stored in an archive during a write phase when -u is set. We only 329 * add a file to the archive if it is newer than a file with the same name 330 * already stored on the archive (if there is no other file with the same 331 * name on the archive it is added). This applies to writes and appends. 332 * An append with an -u must read the archive and store the modification time 333 * for every file on that archive before starting the write phase. It is clear 334 * that this is one HUGE database. To save memory space, the actual file names 335 * are stored in a scatch file and indexed by an in memory hash table. The 336 * hash table is indexed by hashing the file path. The nodes in the table store 337 * the length of the filename and the lseek offset within the scratch file 338 * where the actual name is stored. Since there are never any deletions to this 339 * table, fragmentation of the scratch file is never a issue. Lookups seem to 340 * not exhibit any locality at all (files in the database are rarely 341 * looked up more than once...). So caching is just a waste of memory. The 342 * only limitation is the amount of scatch file space available to store the 343 * path names. 344 */ 345 346 /* 347 * ftime_start() 348 * create the file time hash table and open for read/write the scratch 349 * file. (after created it is unlinked, so when we exit we leave 350 * no witnesses). 351 * Return: 352 * 0 if the table and file was created ok, -1 otherwise 353 */ 354 355 #if __STDC__ 356 int 357 ftime_start(void) 358 #else 359 int 360 ftime_start() 361 #endif 362 { 363 char *pt; 364 365 if (ftab != NULL) 366 return(0); 367 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 368 pax_warn(1, "Cannot allocate memory for file time table"); 369 return(-1); 370 } 371 372 /* 373 * get random name and create temporary scratch file, unlink name 374 * so it will get removed on exit 375 */ 376 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 377 return(-1); 378 (void)unlink(pt); 379 380 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) { 381 sys_warn(1, errno, "Unable to open temporary file: %s", pt); 382 return(-1); 383 } 384 385 (void)unlink(pt); 386 return(0); 387 } 388 389 /* 390 * chk_ftime() 391 * looks up entry in file time hash table. If not found, the file is 392 * added to the hash table and the file named stored in the scratch file. 393 * If a file with the same name is found, the file times are compared and 394 * the most recent file time is retained. If the new file was younger (or 395 * was not in the database) the new file is selected for storage. 396 * Return: 397 * 0 if file should be added to the archive, 1 if it should be skipped, 398 * -1 on error 399 */ 400 401 #if __STDC__ 402 int 403 chk_ftime(register ARCHD *arcn) 404 #else 405 int 406 chk_ftime(arcn) 407 register ARCHD *arcn; 408 #endif 409 { 410 register FTM *pt; 411 register int namelen; 412 register u_int indx; 413 char ckname[PAXPATHLEN+1]; 414 415 /* 416 * no info, go ahead and add to archive 417 */ 418 if (ftab == NULL) 419 return(0); 420 421 /* 422 * hash the pathname and look up in table 423 */ 424 namelen = arcn->nlen; 425 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 426 if ((pt = ftab[indx]) != NULL) { 427 /* 428 * the hash chain is not empty, walk down looking for match 429 * only read up the path names if the lengths match, speeds 430 * up the search a lot 431 */ 432 while (pt != NULL) { 433 if (pt->namelen == namelen) { 434 /* 435 * potential match, have to read the name 436 * from the scratch file. 437 */ 438 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 439 sys_warn(1, errno, 440 "Failed ftime table seek"); 441 return(-1); 442 } 443 if (read(ffd, ckname, namelen) != namelen) { 444 sys_warn(1, errno, 445 "Failed ftime table read"); 446 return(-1); 447 } 448 449 /* 450 * if the names match, we are done 451 */ 452 if (!strncmp(ckname, arcn->name, namelen)) 453 break; 454 } 455 456 /* 457 * try the next entry on the chain 458 */ 459 pt = pt->fow; 460 } 461 462 if (pt != NULL) { 463 /* 464 * found the file, compare the times, save the newer 465 */ 466 if (arcn->sb.st_mtime > pt->mtime) { 467 /* 468 * file is newer 469 */ 470 pt->mtime = arcn->sb.st_mtime; 471 return(0); 472 } 473 /* 474 * file is older 475 */ 476 return(1); 477 } 478 } 479 480 /* 481 * not in table, add it 482 */ 483 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 484 /* 485 * add the name at the end of the scratch file, saving the 486 * offset. add the file to the head of the hash chain 487 */ 488 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 489 if (write(ffd, arcn->name, namelen) == namelen) { 490 pt->mtime = arcn->sb.st_mtime; 491 pt->namelen = namelen; 492 pt->fow = ftab[indx]; 493 ftab[indx] = pt; 494 return(0); 495 } 496 sys_warn(1, errno, "Failed write to file time table"); 497 } else 498 sys_warn(1, errno, "Failed seek on file time table"); 499 } else 500 pax_warn(1, "File time table ran out of memory"); 501 502 if (pt != NULL) 503 (void)free((char *)pt); 504 return(-1); 505 } 506 507 /* 508 * Interactive rename table routines 509 * 510 * The interactive rename table keeps track of the new names that the user 511 * assigns to files from tty input. Since this map is unique for each file 512 * we must store it in case there is a reference to the file later in archive 513 * (a link). Otherwise we will be unable to find the file we know was 514 * extracted. The remapping of these files is stored in a memory based hash 515 * table (it is assumed since input must come from /dev/tty, it is unlikely to 516 * be a very large table). 517 */ 518 519 /* 520 * name_start() 521 * create the interactive rename table 522 * Return: 523 * 0 if successful, -1 otherwise 524 */ 525 526 #if __STDC__ 527 int 528 name_start(void) 529 #else 530 int 531 name_start() 532 #endif 533 { 534 if (ntab != NULL) 535 return(0); 536 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 537 pax_warn(1, "Cannot allocate memory for interactive rename table"); 538 return(-1); 539 } 540 return(0); 541 } 542 543 /* 544 * add_name() 545 * add the new name to old name mapping just created by the user. 546 * If an old name mapping is found (there may be duplicate names on an 547 * archive) only the most recent is kept. 548 * Return: 549 * 0 if added, -1 otherwise 550 */ 551 552 #if __STDC__ 553 int 554 add_name(register char *oname, int onamelen, char *nname) 555 #else 556 int 557 add_name(oname, onamelen, nname) 558 register char *oname; 559 int onamelen; 560 char *nname; 561 #endif 562 { 563 register NAMT *pt; 564 register u_int indx; 565 566 if (ntab == NULL) { 567 /* 568 * should never happen 569 */ 570 pax_warn(0, "No interactive rename table, links may fail\n"); 571 return(0); 572 } 573 574 /* 575 * look to see if we have already mapped this file, if so we 576 * will update it 577 */ 578 indx = st_hash(oname, onamelen, N_TAB_SZ); 579 if ((pt = ntab[indx]) != NULL) { 580 /* 581 * look down the has chain for the file 582 */ 583 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 584 pt = pt->fow; 585 586 if (pt != NULL) { 587 /* 588 * found an old mapping, replace it with the new one 589 * the user just input (if it is different) 590 */ 591 if (strcmp(nname, pt->nname) == 0) 592 return(0); 593 594 (void)free((char *)pt->nname); 595 if ((pt->nname = strdup(nname)) == NULL) { 596 pax_warn(1, "Cannot update rename table"); 597 return(-1); 598 } 599 return(0); 600 } 601 } 602 603 /* 604 * this is a new mapping, add it to the table 605 */ 606 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 607 if ((pt->oname = strdup(oname)) != NULL) { 608 if ((pt->nname = strdup(nname)) != NULL) { 609 pt->fow = ntab[indx]; 610 ntab[indx] = pt; 611 return(0); 612 } 613 (void)free((char *)pt->oname); 614 } 615 (void)free((char *)pt); 616 } 617 pax_warn(1, "Interactive rename table out of memory"); 618 return(-1); 619 } 620 621 /* 622 * sub_name() 623 * look up a link name to see if it points at a file that has been 624 * remapped by the user. If found, the link is adjusted to contain the 625 * new name (oname is the link to name) 626 */ 627 628 #if __STDC__ 629 void 630 sub_name(register char *oname, int *onamelen) 631 #else 632 void 633 sub_name(oname, onamelen) 634 register char *oname; 635 int *onamelen; 636 #endif 637 { 638 register NAMT *pt; 639 register u_int indx; 640 641 if (ntab == NULL) 642 return; 643 /* 644 * look the name up in the hash table 645 */ 646 indx = st_hash(oname, *onamelen, N_TAB_SZ); 647 if ((pt = ntab[indx]) == NULL) 648 return; 649 650 while (pt != NULL) { 651 /* 652 * walk down the hash cahin looking for a match 653 */ 654 if (strcmp(oname, pt->oname) == 0) { 655 /* 656 * found it, replace it with the new name 657 * and return (we know that oname has enough space) 658 */ 659 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 660 oname[PAXPATHLEN] = '\0'; 661 return; 662 } 663 pt = pt->fow; 664 } 665 666 /* 667 * no match, just return 668 */ 669 return; 670 } 671 672 /* 673 * device/inode mapping table routines 674 * (used with formats that store device and inodes fields) 675 * 676 * device/inode mapping tables remap the device field in a archive header. The 677 * device/inode fields are used to determine when files are hard links to each 678 * other. However these values have very little meaning outside of that. This 679 * database is used to solve one of two different problems. 680 * 681 * 1) when files are appended to an archive, while the new files may have hard 682 * links to each other, you cannot determine if they have hard links to any 683 * file already stored on the archive from a prior run of pax. We must assume 684 * that these inode/device pairs are unique only within a SINGLE run of pax 685 * (which adds a set of files to an archive). So we have to make sure the 686 * inode/dev pairs we add each time are always unique. We do this by observing 687 * while the inode field is very dense, the use of the dev field is fairly 688 * sparse. Within each run of pax, we remap any device number of a new archive 689 * member that has a device number used in a prior run and already stored in a 690 * file on the archive. During the read phase of the append, we store the 691 * device numbers used and mark them to not be used by any file during the 692 * write phase. If during write we go to use one of those old device numbers, 693 * we remap it to a new value. 694 * 695 * 2) Often the fields in the archive header used to store these values are 696 * too small to store the entire value. The result is an inode or device value 697 * which can be truncated. This really can foul up an archive. With truncation 698 * we end up creating links between files that are really not links (after 699 * truncation the inodes are the same value). We address that by detecting 700 * truncation and forcing a remap of the device field to split truncated 701 * inodes away from each other. Each truncation creates a pattern of bits that 702 * are removed. We use this pattern of truncated bits to partition the inodes 703 * on a single device to many different devices (each one represented by the 704 * truncated bit pattern). All inodes on the same device that have the same 705 * truncation pattern are mapped to the same new device. Two inodes that 706 * truncate to the same value clearly will always have different truncation 707 * bit patterns, so they will be split from away each other. When we spot 708 * device truncation we remap the device number to a non truncated value. 709 * (for more info see table.h for the data structures involved). 710 */ 711 712 /* 713 * dev_start() 714 * create the device mapping table 715 * Return: 716 * 0 if successful, -1 otherwise 717 */ 718 719 #if __STDC__ 720 int 721 dev_start(void) 722 #else 723 int 724 dev_start() 725 #endif 726 { 727 if (dtab != NULL) 728 return(0); 729 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 730 pax_warn(1, "Cannot allocate memory for device mapping table"); 731 return(-1); 732 } 733 return(0); 734 } 735 736 /* 737 * add_dev() 738 * add a device number to the table. this will force the device to be 739 * remapped to a new value if it be used during a write phase. This 740 * function is called during the read phase of an append to prohibit the 741 * use of any device number already in the archive. 742 * Return: 743 * 0 if added ok, -1 otherwise 744 */ 745 746 #if __STDC__ 747 int 748 add_dev(register ARCHD *arcn) 749 #else 750 int 751 add_dev(arcn) 752 register ARCHD *arcn; 753 #endif 754 { 755 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 756 return(-1); 757 return(0); 758 } 759 760 /* 761 * chk_dev() 762 * check for a device value in the device table. If not found and the add 763 * flag is set, it is added. This does NOT assign any mapping values, just 764 * adds the device number as one that need to be remapped. If this device 765 * is already mapped, just return with a pointer to that entry. 766 * Return: 767 * pointer to the entry for this device in the device map table. Null 768 * if the add flag is not set and the device is not in the table (it is 769 * not been seen yet). If add is set and the device cannot be added, null 770 * is returned (indicates an error). 771 */ 772 773 #if __STDC__ 774 static DEVT * 775 chk_dev(dev_t dev, int add) 776 #else 777 static DEVT * 778 chk_dev(dev, add) 779 dev_t dev; 780 int add; 781 #endif 782 { 783 register DEVT *pt; 784 register u_int indx; 785 786 if (dtab == NULL) 787 return(NULL); 788 /* 789 * look to see if this device is already in the table 790 */ 791 indx = ((unsigned)dev) % D_TAB_SZ; 792 if ((pt = dtab[indx]) != NULL) { 793 while ((pt != NULL) && (pt->dev != dev)) 794 pt = pt->fow; 795 796 /* 797 * found it, return a pointer to it 798 */ 799 if (pt != NULL) 800 return(pt); 801 } 802 803 /* 804 * not in table, we add it only if told to as this may just be a check 805 * to see if a device number is being used. 806 */ 807 if (add == 0) 808 return(NULL); 809 810 /* 811 * allocate a node for this device and add it to the front of the hash 812 * chain. Note we do not assign remaps values here, so the pt->list 813 * list must be NULL. 814 */ 815 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 816 pax_warn(1, "Device map table out of memory"); 817 return(NULL); 818 } 819 pt->dev = dev; 820 pt->list = NULL; 821 pt->fow = dtab[indx]; 822 dtab[indx] = pt; 823 return(pt); 824 } 825 /* 826 * map_dev() 827 * given an inode and device storage mask (the mask has a 1 for each bit 828 * the archive format is able to store in a header), we check for inode 829 * and device truncation and remap the device as required. Device mapping 830 * can also occur when during the read phase of append a device number was 831 * seen (and was marked as do not use during the write phase). WE ASSUME 832 * that unsigned longs are the same size or bigger than the fields used 833 * for ino_t and dev_t. If not the types will have to be changed. 834 * Return: 835 * 0 if all ok, -1 otherwise. 836 */ 837 838 #if __STDC__ 839 int 840 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask) 841 #else 842 int 843 map_dev(arcn, dev_mask, ino_mask) 844 register ARCHD *arcn; 845 u_long dev_mask; 846 u_long ino_mask; 847 #endif 848 { 849 register DEVT *pt; 850 register DLIST *dpt; 851 static dev_t lastdev = 0; /* next device number to try */ 852 int trc_ino = 0; 853 int trc_dev = 0; 854 ino_t trunc_bits = 0; 855 ino_t nino; 856 857 if (dtab == NULL) 858 return(0); 859 /* 860 * check for device and inode truncation, and extract the truncated 861 * bit pattern. 862 */ 863 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 864 ++trc_dev; 865 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 866 ++trc_ino; 867 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 868 } 869 870 /* 871 * see if this device is already being mapped, look up the device 872 * then find the truncation bit pattern which applies 873 */ 874 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 875 /* 876 * this device is already marked to be remapped 877 */ 878 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 879 if (dpt->trunc_bits == trunc_bits) 880 break; 881 882 if (dpt != NULL) { 883 /* 884 * we are being remapped for this device and pattern 885 * change the device number to be stored and return 886 */ 887 arcn->sb.st_dev = dpt->dev; 888 arcn->sb.st_ino = nino; 889 return(0); 890 } 891 } else { 892 /* 893 * this device is not being remapped YET. if we do not have any 894 * form of truncation, we do not need a remap 895 */ 896 if (!trc_ino && !trc_dev) 897 return(0); 898 899 /* 900 * we have truncation, have to add this as a device to remap 901 */ 902 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 903 goto bad; 904 905 /* 906 * if we just have a truncated inode, we have to make sure that 907 * all future inodes that do not truncate (they have the 908 * truncation pattern of all 0's) continue to map to the same 909 * device number. We probably have already written inodes with 910 * this device number to the archive with the truncation 911 * pattern of all 0's. So we add the mapping for all 0's to the 912 * same device number. 913 */ 914 if (!trc_dev && (trunc_bits != 0)) { 915 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 916 goto bad; 917 dpt->trunc_bits = 0; 918 dpt->dev = arcn->sb.st_dev; 919 dpt->fow = pt->list; 920 pt->list = dpt; 921 } 922 } 923 924 /* 925 * look for a device number not being used. We must watch for wrap 926 * around on lastdev (so we do not get stuck looking forever!) 927 */ 928 while (++lastdev > 0) { 929 if (chk_dev(lastdev, 0) != NULL) 930 continue; 931 /* 932 * found an unused value. If we have reached truncation point 933 * for this format we are hosed, so we give up. Otherwise we 934 * mark it as being used. 935 */ 936 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 937 (chk_dev(lastdev, 1) == NULL)) 938 goto bad; 939 break; 940 } 941 942 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 943 goto bad; 944 945 /* 946 * got a new device number, store it under this truncation pattern. 947 * change the device number this file is being stored with. 948 */ 949 dpt->trunc_bits = trunc_bits; 950 dpt->dev = lastdev; 951 dpt->fow = pt->list; 952 pt->list = dpt; 953 arcn->sb.st_dev = lastdev; 954 arcn->sb.st_ino = nino; 955 return(0); 956 957 bad: 958 pax_warn(1, "Unable to fix truncated inode/device field when storing %s", 959 arcn->name); 960 pax_warn(0, "Archive may create improper hard links when extracted"); 961 return(0); 962 } 963 964 /* 965 * directory access/mod time reset table routines (for directories READ by pax) 966 * 967 * The pax -t flag requires that access times of archive files to be the same 968 * before being read by pax. For regular files, access time is restored after 969 * the file has been copied. This database provides the same functionality for 970 * directories read during file tree traversal. Restoring directory access time 971 * is more complex than files since directories may be read several times until 972 * all the descendants in their subtree are visited by fts. Directory access 973 * and modification times are stored during the fts pre-order visit (done 974 * before any descendants in the subtree is visited) and restored after the 975 * fts post-order visit (after all the descendants have been visited). In the 976 * case of premature exit from a subtree (like from the effects of -n), any 977 * directory entries left in this database are reset during final cleanup 978 * operations of pax. Entries are hashed by inode number for fast lookup. 979 */ 980 981 /* 982 * atdir_start() 983 * create the directory access time database for directories READ by pax. 984 * Return: 985 * 0 is created ok, -1 otherwise. 986 */ 987 988 #if __STDC__ 989 int 990 atdir_start(void) 991 #else 992 int 993 atdir_start() 994 #endif 995 { 996 if (atab != NULL) 997 return(0); 998 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 999 pax_warn(1,"Cannot allocate space for directory access time table"); 1000 return(-1); 1001 } 1002 return(0); 1003 } 1004 1005 1006 /* 1007 * atdir_end() 1008 * walk through the directory access time table and reset the access time 1009 * of any directory who still has an entry left in the database. These 1010 * entries are for directories READ by pax 1011 */ 1012 1013 #if __STDC__ 1014 void 1015 atdir_end(void) 1016 #else 1017 void 1018 atdir_end() 1019 #endif 1020 { 1021 register ATDIR *pt; 1022 register int i; 1023 1024 if (atab == NULL) 1025 return; 1026 /* 1027 * for each non-empty hash table entry reset all the directories 1028 * chained there. 1029 */ 1030 for (i = 0; i < A_TAB_SZ; ++i) { 1031 if ((pt = atab[i]) == NULL) 1032 continue; 1033 /* 1034 * remember to force the times, set_ftime() looks at pmtime 1035 * and patime, which only applies to things CREATED by pax, 1036 * not read by pax. Read time reset is controlled by -t. 1037 */ 1038 for (; pt != NULL; pt = pt->fow) 1039 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1040 } 1041 } 1042 1043 /* 1044 * add_atdir() 1045 * add a directory to the directory access time table. Table is hashed 1046 * and chained by inode number. This is for directories READ by pax 1047 */ 1048 1049 #if __STDC__ 1050 void 1051 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1052 #else 1053 void 1054 add_atdir(fname, dev, ino, mtime, atime) 1055 char *fname; 1056 dev_t dev; 1057 ino_t ino; 1058 time_t mtime; 1059 time_t atime; 1060 #endif 1061 { 1062 register ATDIR *pt; 1063 register u_int indx; 1064 1065 if (atab == NULL) 1066 return; 1067 1068 /* 1069 * make sure this directory is not already in the table, if so just 1070 * return (the older entry always has the correct time). The only 1071 * way this will happen is when the same subtree can be traversed by 1072 * different args to pax and the -n option is aborting fts out of a 1073 * subtree before all the post-order visits have been made). 1074 */ 1075 indx = ((unsigned)ino) % A_TAB_SZ; 1076 if ((pt = atab[indx]) != NULL) { 1077 while (pt != NULL) { 1078 if ((pt->ino == ino) && (pt->dev == dev)) 1079 break; 1080 pt = pt->fow; 1081 } 1082 1083 /* 1084 * oops, already there. Leave it alone. 1085 */ 1086 if (pt != NULL) 1087 return; 1088 } 1089 1090 /* 1091 * add it to the front of the hash chain 1092 */ 1093 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1094 if ((pt->name = strdup(fname)) != NULL) { 1095 pt->dev = dev; 1096 pt->ino = ino; 1097 pt->mtime = mtime; 1098 pt->atime = atime; 1099 pt->fow = atab[indx]; 1100 atab[indx] = pt; 1101 return; 1102 } 1103 (void)free((char *)pt); 1104 } 1105 1106 pax_warn(1, "Directory access time reset table ran out of memory"); 1107 return; 1108 } 1109 1110 /* 1111 * get_atdir() 1112 * look up a directory by inode and device number to obtain the access 1113 * and modification time you want to set to. If found, the modification 1114 * and access time parameters are set and the entry is removed from the 1115 * table (as it is no longer needed). These are for directories READ by 1116 * pax 1117 * Return: 1118 * 0 if found, -1 if not found. 1119 */ 1120 1121 #if __STDC__ 1122 int 1123 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1124 #else 1125 int 1126 get_atdir(dev, ino, mtime, atime) 1127 dev_t dev; 1128 ino_t ino; 1129 time_t *mtime; 1130 time_t *atime; 1131 #endif 1132 { 1133 register ATDIR *pt; 1134 register ATDIR **ppt; 1135 register u_int indx; 1136 1137 if (atab == NULL) 1138 return(-1); 1139 /* 1140 * hash by inode and search the chain for an inode and device match 1141 */ 1142 indx = ((unsigned)ino) % A_TAB_SZ; 1143 if ((pt = atab[indx]) == NULL) 1144 return(-1); 1145 1146 ppt = &(atab[indx]); 1147 while (pt != NULL) { 1148 if ((pt->ino == ino) && (pt->dev == dev)) 1149 break; 1150 /* 1151 * no match, go to next one 1152 */ 1153 ppt = &(pt->fow); 1154 pt = pt->fow; 1155 } 1156 1157 /* 1158 * return if we did not find it. 1159 */ 1160 if (pt == NULL) 1161 return(-1); 1162 1163 /* 1164 * found it. return the times and remove the entry from the table. 1165 */ 1166 *ppt = pt->fow; 1167 *mtime = pt->mtime; 1168 *atime = pt->atime; 1169 (void)free((char *)pt->name); 1170 (void)free((char *)pt); 1171 return(0); 1172 } 1173 1174 /* 1175 * directory access mode and time storage routines (for directories CREATED 1176 * by pax). 1177 * 1178 * Pax requires that extracted directories, by default, have their access/mod 1179 * times and permissions set to the values specified in the archive. During the 1180 * actions of extracting (and creating the destination subtree during -rw copy) 1181 * directories extracted may be modified after being created. Even worse is 1182 * that these directories may have been created with file permissions which 1183 * prohibits any descendants of these directories from being extracted. When 1184 * directories are created by pax, access rights may be added to permit the 1185 * creation of files in their subtree. Every time pax creates a directory, the 1186 * times and file permissions specified by the archive are stored. After all 1187 * files have been extracted (or copied), these directories have their times 1188 * and file modes reset to the stored values. The directory info is restored in 1189 * reverse order as entries were added to the data file from root to leaf. To 1190 * restore atime properly, we must go backwards. The data file consists of 1191 * records with two parts, the file name followed by a DIRDATA trailer. The 1192 * fixed sized trailer contains the size of the name plus the off_t location in 1193 * the file. To restore we work backwards through the file reading the trailer 1194 * then the file name. 1195 */ 1196 1197 /* 1198 * dir_start() 1199 * set up the directory time and file mode storage for directories CREATED 1200 * by pax. 1201 * Return: 1202 * 0 if ok, -1 otherwise 1203 */ 1204 1205 #if __STDC__ 1206 int 1207 dir_start(void) 1208 #else 1209 int 1210 dir_start() 1211 #endif 1212 { 1213 char *pt; 1214 1215 if (dirfd != -1) 1216 return(0); 1217 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 1218 return(-1); 1219 1220 /* 1221 * unlink the file so it goes away at termination by itself 1222 */ 1223 (void)unlink(pt); 1224 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) { 1225 (void)unlink(pt); 1226 return(0); 1227 } 1228 pax_warn(1, "Unable to create temporary file for directory times: %s", pt); 1229 return(-1); 1230 } 1231 1232 /* 1233 * add_dir() 1234 * add the mode and times for a newly CREATED directory 1235 * name is name of the directory, psb the stat buffer with the data in it, 1236 * frc_mode is a flag that says whether to force the setting of the mode 1237 * (ignoring the user set values for preserving file mode). Frc_mode is 1238 * for the case where we created a file and found that the resulting 1239 * directory was not writeable and the user asked for file modes to NOT 1240 * be preserved. (we have to preserve what was created by default, so we 1241 * have to force the setting at the end. this is stated explicitly in the 1242 * pax spec) 1243 */ 1244 1245 #if __STDC__ 1246 void 1247 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1248 #else 1249 void 1250 add_dir(name, nlen, psb, frc_mode) 1251 char *name; 1252 int nlen; 1253 struct stat *psb; 1254 int frc_mode; 1255 #endif 1256 { 1257 DIRDATA dblk; 1258 1259 if (dirfd < 0) 1260 return; 1261 1262 /* 1263 * get current position (where file name will start) so we can store it 1264 * in the trailer 1265 */ 1266 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1267 pax_warn(1,"Unable to store mode and times for directory: %s",name); 1268 return; 1269 } 1270 1271 /* 1272 * write the file name followed by the trailer 1273 */ 1274 dblk.nlen = nlen + 1; 1275 dblk.mode = psb->st_mode & 0xffff; 1276 dblk.mtime = psb->st_mtime; 1277 dblk.atime = psb->st_atime; 1278 dblk.frc_mode = frc_mode; 1279 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1280 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1281 ++dircnt; 1282 return; 1283 } 1284 1285 pax_warn(1,"Unable to store mode and times for created directory: %s",name); 1286 return; 1287 } 1288 1289 /* 1290 * proc_dir() 1291 * process all file modes and times stored for directories CREATED 1292 * by pax 1293 */ 1294 1295 #if __STDC__ 1296 void 1297 proc_dir(void) 1298 #else 1299 void 1300 proc_dir() 1301 #endif 1302 { 1303 char name[PAXPATHLEN+1]; 1304 DIRDATA dblk; 1305 u_long cnt; 1306 1307 if (dirfd < 0) 1308 return; 1309 /* 1310 * read backwards through the file and process each directory 1311 */ 1312 for (cnt = 0; cnt < dircnt; ++cnt) { 1313 /* 1314 * read the trailer, then the file name, if this fails 1315 * just give up. 1316 */ 1317 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1318 break; 1319 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1320 break; 1321 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1322 break; 1323 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1324 break; 1325 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1326 break; 1327 1328 /* 1329 * frc_mode set, make sure we set the file modes even if 1330 * the user didn't ask for it (see file_subs.c for more info) 1331 */ 1332 if (pmode || dblk.frc_mode) 1333 set_pmode(name, dblk.mode); 1334 if (patime || pmtime) 1335 set_ftime(name, dblk.mtime, dblk.atime, 0); 1336 } 1337 1338 (void)close(dirfd); 1339 dirfd = -1; 1340 if (cnt != dircnt) 1341 pax_warn(1,"Unable to set mode and times for created directories"); 1342 return; 1343 } 1344 1345 /* 1346 * database independent routines 1347 */ 1348 1349 /* 1350 * st_hash() 1351 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1352 * end of file, as this provides far better distribution than any other 1353 * part of the name. For performance reasons we only care about the last 1354 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1355 * name). Was tested on 500,000 name file tree traversal from the root 1356 * and gave almost a perfectly uniform distribution of keys when used with 1357 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1358 * chars at a time and pads with 0 for last addition. 1359 * Return: 1360 * the hash value of the string MOD (%) the table size. 1361 */ 1362 1363 #if __STDC__ 1364 u_int 1365 st_hash(char *name, int len, int tabsz) 1366 #else 1367 u_int 1368 st_hash(name, len, tabsz) 1369 char *name; 1370 int len; 1371 int tabsz; 1372 #endif 1373 { 1374 register char *pt; 1375 register char *dest; 1376 register char *end; 1377 register int i; 1378 register u_int key = 0; 1379 register int steps; 1380 register int res; 1381 u_int val; 1382 1383 /* 1384 * only look at the tail up to MAXKEYLEN, we do not need to waste 1385 * time here (remember these are pathnames, the tail is what will 1386 * spread out the keys) 1387 */ 1388 if (len > MAXKEYLEN) { 1389 pt = &(name[len - MAXKEYLEN]); 1390 len = MAXKEYLEN; 1391 } else 1392 pt = name; 1393 1394 /* 1395 * calculate the number of u_int size steps in the string and if 1396 * there is a runt to deal with 1397 */ 1398 steps = len/sizeof(u_int); 1399 res = len % sizeof(u_int); 1400 1401 /* 1402 * add up the value of the string in unsigned integer sized pieces 1403 * too bad we cannot have unsigned int aligned strings, then we 1404 * could avoid the expensive copy. 1405 */ 1406 for (i = 0; i < steps; ++i) { 1407 end = pt + sizeof(u_int); 1408 dest = (char *)&val; 1409 while (pt < end) 1410 *dest++ = *pt++; 1411 key += val; 1412 } 1413 1414 /* 1415 * add in the runt padded with zero to the right 1416 */ 1417 if (res) { 1418 val = 0; 1419 end = pt + res; 1420 dest = (char *)&val; 1421 while (pt < end) 1422 *dest++ = *pt++; 1423 key += val; 1424 } 1425 1426 /* 1427 * return the result mod the table size 1428 */ 1429 return(key % tabsz); 1430 } 1431