xref: /freebsd/bin/pax/tables.c (revision 5ebc7e6281887681c3a348a5a4c902e262ccd656)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	$Id: tables.c,v 1.2 1994/09/24 02:56:34 davidg Exp $
38  */
39 
40 #ifndef lint
41 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
42 #endif /* not lint */
43 
44 #include <sys/types.h>
45 #include <sys/time.h>
46 #include <sys/stat.h>
47 #include <sys/param.h>
48 #include <sys/fcntl.h>
49 #include <stdio.h>
50 #include <ctype.h>
51 #include <string.h>
52 #include <unistd.h>
53 #include <errno.h>
54 #include <stdlib.h>
55 #include "pax.h"
56 #include "tables.h"
57 #include "extern.h"
58 
59 /*
60  * Routines for controlling the contents of all the different databases pax
61  * keeps. Tables are dynamically created only when they are needed. The
62  * goal was speed and the ability to work with HUGE archives. The databases
63  * were kept simple, but do have complex rules for when the contents change.
64  * As of this writing, the posix library functions were more complex than
65  * needed for this application (pax databases have very short lifetimes and
66  * do not survive after pax is finished). Pax is required to handle very
67  * large archives. These database routines carefully combine memory usage and
68  * temporary file storage in ways which will not significantly impact runtime
69  * performance while allowing the largest possible archives to be handled.
70  * Trying to force the fit to the posix databases routines was not considered
71  * time well spent.
72  */
73 
74 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75 static FTM **ftab = NULL;	/* file time table for updating arch */
76 static NAMT **ntab = NULL;	/* interactive rename storage table */
77 static DEVT **dtab = NULL;	/* device/inode mapping tables */
78 static ATDIR **atab = NULL;	/* file tree directory time reset table */
79 static int dirfd = -1;		/* storage for setting created dir time/mode */
80 static u_long dircnt;		/* entries in dir time/mode storage */
81 static int ffd = -1;		/* tmp file for file time table name storage */
82 
83 static DEVT *chk_dev __P((dev_t, int));
84 
85 /*
86  * hard link table routines
87  *
88  * The hard link table tries to detect hard links to files using the device and
89  * inode values. We do this when writing an archive, so we can tell the format
90  * write routine that this file is a hard link to another file. The format
91  * write routine then can store this file in whatever way it wants (as a hard
92  * link if the format supports that like tar, or ignore this info like cpio).
93  * (Actually a field in the format driver table tells us if the format wants
94  * hard link info. if not, we do not waste time looking for them). We also use
95  * the same table when reading an archive. In that situation, this table is
96  * used by the format read routine to detect hard links from stored dev and
97  * inode numbers (like cpio). This will allow pax to create a link when one
98  * can be detected by the archive format.
99  */
100 
101 /*
102  * lnk_start
103  *	Creates the hard link table.
104  * Return:
105  *	0 if created, -1 if failure
106  */
107 
108 #if __STDC__
109 int
110 lnk_start(void)
111 #else
112 int
113 lnk_start()
114 #endif
115 {
116 	if (ltab != NULL)
117 		return(0);
118  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
119                 warn(1, "Cannot allocate memory for hard link table");
120                 return(-1);
121         }
122 	return(0);
123 }
124 
125 /*
126  * chk_lnk()
127  *	Looks up entry in hard link hash table. If found, it copies the name
128  *	of the file it is linked to (we already saw that file) into ln_name.
129  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
130  *	database. (We have seen all the links to this file). If not found,
131  *	we add the file to the database if it has the potential for having
132  *	hard links to other files we may process (it has a link count > 1)
133  * Return:
134  *	if found returns 1; if not found returns 0; -1 on error
135  */
136 
137 #if __STDC__
138 int
139 chk_lnk(register ARCHD *arcn)
140 #else
141 int
142 chk_lnk(arcn)
143 	register ARCHD *arcn;
144 #endif
145 {
146 	register HRDLNK *pt;
147 	register HRDLNK **ppt;
148 	register u_int indx;
149 
150 	if (ltab == NULL)
151 		return(-1);
152 	/*
153 	 * ignore those nodes that cannot have hard links
154 	 */
155 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
156 		return(0);
157 
158 	/*
159 	 * hash inode number and look for this file
160 	 */
161 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
162 	if ((pt = ltab[indx]) != NULL) {
163 		/*
164 		 * it's hash chain in not empty, walk down looking for it
165 		 */
166 		ppt = &(ltab[indx]);
167 		while (pt != NULL) {
168 			if ((pt->ino == arcn->sb.st_ino) &&
169 			    (pt->dev == arcn->sb.st_dev))
170 				break;
171 			ppt = &(pt->fow);
172 			pt = pt->fow;
173 		}
174 
175 		if (pt != NULL) {
176 			/*
177 			 * found a link. set the node type and copy in the
178 			 * name of the file it is to link to. we need to
179 			 * handle hardlinks to regular files differently than
180 			 * other links.
181 			 */
182 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
183 				PAXPATHLEN+1);
184 			if (arcn->type == PAX_REG)
185 				arcn->type = PAX_HRG;
186 			else
187 				arcn->type = PAX_HLK;
188 
189 			/*
190 			 * if we have found all the links to this file, remove
191 			 * it from the database
192 			 */
193 			if (--pt->nlink <= 1) {
194 				*ppt = pt->fow;
195 				(void)free((char *)pt->name);
196 				(void)free((char *)pt);
197 			}
198 			return(1);
199 		}
200 	}
201 
202 	/*
203 	 * we never saw this file before. It has links so we add it to the
204 	 * front of this hash chain
205 	 */
206 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
207 		if ((pt->name = strdup(arcn->name)) != NULL) {
208 			pt->dev = arcn->sb.st_dev;
209 			pt->ino = arcn->sb.st_ino;
210 			pt->nlink = arcn->sb.st_nlink;
211 			pt->fow = ltab[indx];
212 			ltab[indx] = pt;
213 			return(0);
214 		}
215 		(void)free((char *)pt);
216 	}
217 
218 	warn(1, "Hard link table out of memory");
219 	return(-1);
220 }
221 
222 /*
223  * purg_lnk
224  *	remove reference for a file that we may have added to the data base as
225  *	a potential source for hard links. We ended up not using the file, so
226  *	we do not want to accidently point another file at it later on.
227  */
228 
229 #if __STDC__
230 void
231 purg_lnk(register ARCHD *arcn)
232 #else
233 void
234 purg_lnk(arcn)
235 	register ARCHD *arcn;
236 #endif
237 {
238 	register HRDLNK *pt;
239 	register HRDLNK **ppt;
240 	register u_int indx;
241 
242 	if (ltab == NULL)
243 		return;
244 	/*
245 	 * do not bother to look if it could not be in the database
246 	 */
247 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
248 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
249 		return;
250 
251 	/*
252 	 * find the hash chain for this inode value, if empty return
253 	 */
254 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
255 	if ((pt = ltab[indx]) == NULL)
256 		return;
257 
258 	/*
259 	 * walk down the list looking for the inode/dev pair, unlink and
260 	 * free if found
261 	 */
262 	ppt = &(ltab[indx]);
263 	while (pt != NULL) {
264 		if ((pt->ino == arcn->sb.st_ino) &&
265 		    (pt->dev == arcn->sb.st_dev))
266 			break;
267 		ppt = &(pt->fow);
268 		pt = pt->fow;
269 	}
270 	if (pt == NULL)
271 		return;
272 
273 	/*
274 	 * remove and free it
275 	 */
276 	*ppt = pt->fow;
277 	(void)free((char *)pt->name);
278 	(void)free((char *)pt);
279 }
280 
281 /*
282  * lnk_end()
283  *	pull apart a existing link table so we can reuse it. We do this between
284  *	read and write phases of append with update. (The format may have
285  *	used the link table, and we need to start with a fresh table for the
286  *	write phase
287  */
288 
289 #if __STDC__
290 void
291 lnk_end(void)
292 #else
293 void
294 lnk_end()
295 #endif
296 {
297 	register int i;
298 	register HRDLNK *pt;
299 	register HRDLNK *ppt;
300 
301 	if (ltab == NULL)
302 		return;
303 
304 	for (i = 0; i < L_TAB_SZ; ++i) {
305 		if (ltab[i] == NULL)
306 			continue;
307 		pt = ltab[i];
308 		ltab[i] = NULL;
309 
310 		/*
311 		 * free up each entry on this chain
312 		 */
313 		while (pt != NULL) {
314 			ppt = pt;
315 			pt = ppt->fow;
316 			(void)free((char *)ppt->name);
317 			(void)free((char *)ppt);
318 		}
319 	}
320 	return;
321 }
322 
323 /*
324  * modification time table routines
325  *
326  * The modification time table keeps track of last modification times for all
327  * files stored in an archive during a write phase when -u is set. We only
328  * add a file to the archive if it is newer than a file with the same name
329  * already stored on the archive (if there is no other file with the same
330  * name on the archive it is added). This applies to writes and appends.
331  * An append with an -u must read the archive and store the modification time
332  * for every file on that archive before starting the write phase. It is clear
333  * that this is one HUGE database. To save memory space, the actual file names
334  * are stored in a scatch file and indexed by an in memory hash table. The
335  * hash table is indexed by hashing the file path. The nodes in the table store
336  * the length of the filename and the lseek offset within the scratch file
337  * where the actual name is stored. Since there are never any deletions to this
338  * table, fragmentation of the scratch file is never a issue. Lookups seem to
339  * not exhibit any locality at all (files in the database are rarely
340  * looked up more than once...). So caching is just a waste of memory. The
341  * only limitation is the amount of scatch file space available to store the
342  * path names.
343  */
344 
345 /*
346  * ftime_start()
347  *	create the file time hash table and open for read/write the scratch
348  *	file. (after created it is unlinked, so when we exit we leave
349  *	no witnesses).
350  * Return:
351  *	0 if the table and file was created ok, -1 otherwise
352  */
353 
354 #if __STDC__
355 int
356 ftime_start(void)
357 #else
358 int
359 ftime_start()
360 #endif
361 {
362 	char *pt;
363 
364 	if (ftab != NULL)
365 		return(0);
366  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
367                 warn(1, "Cannot allocate memory for file time table");
368                 return(-1);
369         }
370 
371 	/*
372 	 * get random name and create temporary scratch file, unlink name
373 	 * so it will get removed on exit
374 	 */
375 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
376 		return(-1);
377 	(void)unlink(pt);
378 
379 	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
380 		syswarn(1, errno, "Unable to open temporary file: %s", pt);
381 		return(-1);
382 	}
383 
384 	(void)unlink(pt);
385 	return(0);
386 }
387 
388 /*
389  * chk_ftime()
390  *	looks up entry in file time hash table. If not found, the file is
391  *	added to the hash table and the file named stored in the scratch file.
392  *	If a file with the same name is found, the file times are compared and
393  *	the most recent file time is retained. If the new file was younger (or
394  *	was not in the database) the new file is selected for storage.
395  * Return:
396  *	0 if file should be added to the archive, 1 if it should be skipped,
397  *	-1 on error
398  */
399 
400 #if __STDC__
401 int
402 chk_ftime(register ARCHD *arcn)
403 #else
404 int
405 chk_ftime(arcn)
406 	register ARCHD *arcn;
407 #endif
408 {
409 	register FTM *pt;
410 	register int namelen;
411 	register u_int indx;
412 	char ckname[PAXPATHLEN+1];
413 
414 	/*
415 	 * no info, go ahead and add to archive
416 	 */
417 	if (ftab == NULL)
418 		return(0);
419 
420 	/*
421 	 * hash the pathname and look up in table
422 	 */
423 	namelen = arcn->nlen;
424 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
425 	if ((pt = ftab[indx]) != NULL) {
426 		/*
427 		 * the hash chain is not empty, walk down looking for match
428 		 * only read up the path names if the lengths match, speeds
429 		 * up the search a lot
430 		 */
431 		while (pt != NULL) {
432 			if (pt->namelen == namelen) {
433 				/*
434 				 * potential match, have to read the name
435 				 * from the scratch file.
436 				 */
437 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
438 					syswarn(1, errno,
439 					    "Failed ftime table seek");
440 					return(-1);
441 				}
442 				if (read(ffd, ckname, namelen) != namelen) {
443 					syswarn(1, errno,
444 					    "Failed ftime table read");
445 					return(-1);
446 				}
447 
448 				/*
449 				 * if the names match, we are done
450 				 */
451 				if (!strncmp(ckname, arcn->name, namelen))
452 					break;
453 			}
454 
455 			/*
456 			 * try the next entry on the chain
457 			 */
458 			pt = pt->fow;
459 		}
460 
461 		if (pt != NULL) {
462 			/*
463 			 * found the file, compare the times, save the newer
464 			 */
465 			if (arcn->sb.st_mtime > pt->mtime) {
466 				/*
467 				 * file is newer
468 				 */
469 				pt->mtime = arcn->sb.st_mtime;
470 				return(0);
471 			}
472 			/*
473 			 * file is older
474 			 */
475 			return(1);
476 		}
477 	}
478 
479 	/*
480 	 * not in table, add it
481 	 */
482 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
483 		/*
484 		 * add the name at the end of the scratch file, saving the
485 		 * offset. add the file to the head of the hash chain
486 		 */
487 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
488 			if (write(ffd, arcn->name, namelen) == namelen) {
489 				pt->mtime = arcn->sb.st_mtime;
490 				pt->namelen = namelen;
491 				pt->fow = ftab[indx];
492 				ftab[indx] = pt;
493 				return(0);
494 			}
495 			syswarn(1, errno, "Failed write to file time table");
496 		} else
497 			syswarn(1, errno, "Failed seek on file time table");
498 	} else
499 		warn(1, "File time table ran out of memory");
500 
501 	if (pt != NULL)
502 		(void)free((char *)pt);
503 	return(-1);
504 }
505 
506 /*
507  * Interactive rename table routines
508  *
509  * The interactive rename table keeps track of the new names that the user
510  * assignes to files from tty input. Since this map is unique for each file
511  * we must store it in case there is a reference to the file later in archive
512  * (a link). Otherwise we will be unable to find the file we know was
513  * extracted. The remapping of these files is stored in a memory based hash
514  * table (it is assumed since input must come from /dev/tty, it is unlikely to
515  * be a very large table).
516  */
517 
518 /*
519  * name_start()
520  *	create the interactive rename table
521  * Return:
522  *	0 if successful, -1 otherwise
523  */
524 
525 #if __STDC__
526 int
527 name_start(void)
528 #else
529 int
530 name_start()
531 #endif
532 {
533 	if (ntab != NULL)
534 		return(0);
535  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
536                 warn(1, "Cannot allocate memory for interactive rename table");
537                 return(-1);
538         }
539 	return(0);
540 }
541 
542 /*
543  * add_name()
544  *	add the new name to old name mapping just created by the user.
545  *	If an old name mapping is found (there may be duplicate names on an
546  *	archive) only the most recent is kept.
547  * Return:
548  *	0 if added, -1 otherwise
549  */
550 
551 #if __STDC__
552 int
553 add_name(register char *oname, int onamelen, char *nname)
554 #else
555 int
556 add_name(oname, onamelen, nname)
557 	register char *oname;
558 	int onamelen;
559 	char *nname;
560 #endif
561 {
562 	register NAMT *pt;
563 	register u_int indx;
564 
565 	if (ntab == NULL) {
566 		/*
567 		 * should never happen
568 		 */
569 		warn(0, "No interactive rename table, links may fail\n");
570 		return(0);
571 	}
572 
573 	/*
574 	 * look to see if we have already mapped this file, if so we
575 	 * will update it
576 	 */
577 	indx = st_hash(oname, onamelen, N_TAB_SZ);
578 	if ((pt = ntab[indx]) != NULL) {
579 		/*
580 		 * look down the has chain for the file
581 		 */
582 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
583 			pt = pt->fow;
584 
585 		if (pt != NULL) {
586 			/*
587 			 * found an old mapping, replace it with the new one
588 			 * the user just input (if it is different)
589 			 */
590 			if (strcmp(nname, pt->nname) == 0)
591 				return(0);
592 
593 			(void)free((char *)pt->nname);
594 			if ((pt->nname = strdup(nname)) == NULL) {
595 				warn(1, "Cannot update rename table");
596 				return(-1);
597 			}
598 			return(0);
599 		}
600 	}
601 
602 	/*
603 	 * this is a new mapping, add it to the table
604 	 */
605 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
606 		if ((pt->oname = strdup(oname)) != NULL) {
607 			if ((pt->nname = strdup(nname)) != NULL) {
608 				pt->fow = ntab[indx];
609 				ntab[indx] = pt;
610 				return(0);
611 			}
612 			(void)free((char *)pt->oname);
613 		}
614 		(void)free((char *)pt);
615 	}
616 	warn(1, "Interactive rename table out of memory");
617 	return(-1);
618 }
619 
620 /*
621  * sub_name()
622  *	look up a link name to see if it points at a file that has been
623  *	remapped by the user. If found, the link is adjusted to contain the
624  *	new name (oname is the link to name)
625  */
626 
627 #if __STDC__
628 void
629 sub_name(register char *oname, int *onamelen)
630 #else
631 void
632 sub_name(oname, onamelen)
633 	register char *oname;
634 	int *onamelen;
635 #endif
636 {
637 	register NAMT *pt;
638 	register u_int indx;
639 
640 	if (ntab == NULL)
641 		return;
642 	/*
643 	 * look the name up in the hash table
644 	 */
645 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
646 	if ((pt = ntab[indx]) == NULL)
647 		return;
648 
649 	while (pt != NULL) {
650 		/*
651 		 * walk down the hash cahin looking for a match
652 		 */
653 		if (strcmp(oname, pt->oname) == 0) {
654 			/*
655 			 * found it, replace it with the new name
656 			 * and return (we know that oname has enough space)
657 			 */
658 			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
659 			return;
660 		}
661 		pt = pt->fow;
662 	}
663 
664 	/*
665 	 * no match, just return
666 	 */
667 	return;
668 }
669 
670 /*
671  * device/inode mapping table routines
672  * (used with formats that store device and inodes fields)
673  *
674  * device/inode mapping tables remap the device field in a archive header. The
675  * device/inode fields are used to determine when files are hard links to each
676  * other. However these values have very little meaning outside of that. This
677  * database is used to solve one of two different problems.
678  *
679  * 1) when files are appended to an archive, while the new files may have hard
680  * links to each other, you cannot determine if they have hard links to any
681  * file already stored on the archive from a prior run of pax. We must assume
682  * that these inode/device pairs are unique only within a SINGLE run of pax
683  * (which adds a set of files to an archive). So we have to make sure the
684  * inode/dev pairs we add each time are always unique. We do this by observing
685  * while the inode field is very dense, the use of the dev field is fairly
686  * sparse. Within each run of pax, we remap any device number of a new archive
687  * member that has a device number used in a prior run and already stored in a
688  * file on the archive. During the read phase of the append, we store the
689  * device numbers used and mark them to not be used by any file during the
690  * write phase. If during write we go to use one of those old device numbers,
691  * we remap it to a new value.
692  *
693  * 2) Often the fields in the archive header used to store these values are
694  * too small to store the entire value. The result is an inode or device value
695  * which can be truncated. This really can foul up an archive. With truncation
696  * we end up creating links between files that are really not links (after
697  * truncation the inodes are the same value). We address that by detecting
698  * truncation and forcing a remap of the device field to split truncated
699  * inodes away from each other. Each truncation creates a pattern of bits that
700  * are removed. We use this pattern of truncated bits to partition the inodes
701  * on a single device to many different devices (each one represented by the
702  * truncated bit pattern). All inodes on the same device that have the same
703  * truncation pattern are mapped to the same new device. Two inodes that
704  * truncate to the same value clearly will always have different truncation
705  * bit patterns, so they will be split from away each other. When we spot
706  * device truncation we remap the device number to a non truncated value.
707  * (for more info see table.h for the data structures involved).
708  */
709 
710 /*
711  * dev_start()
712  *	create the device mapping table
713  * Return:
714  *	0 if successful, -1 otherwise
715  */
716 
717 #if __STDC__
718 int
719 dev_start(void)
720 #else
721 int
722 dev_start()
723 #endif
724 {
725 	if (dtab != NULL)
726 		return(0);
727  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
728                 warn(1, "Cannot allocate memory for device mapping table");
729                 return(-1);
730         }
731 	return(0);
732 }
733 
734 /*
735  * add_dev()
736  *	add a device number to the table. this will force the device to be
737  *	remapped to a new value if it be used during a write phase. This
738  *	function is called during the read phase of an append to prohibit the
739  *	use of any device number already in the archive.
740  * Return:
741  *	0 if added ok, -1 otherwise
742  */
743 
744 #if __STDC__
745 int
746 add_dev(register ARCHD *arcn)
747 #else
748 int
749 add_dev(arcn)
750 	register ARCHD *arcn;
751 #endif
752 {
753 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
754 		return(-1);
755 	return(0);
756 }
757 
758 /*
759  * chk_dev()
760  *	check for a device value in the device table. If not found and the add
761  *	flag is set, it is added. This does NOT assign any mapping values, just
762  *	adds the device number as one that need to be remapped. If this device
763  *	is alread mapped, just return with a pointer to that entry.
764  * Return:
765  *	pointer to the entry for this device in the device map table. Null
766  *	if the add flag is not set and the device is not in the table (it is
767  *	not been seen yet). If add is set and the device cannot be added, null
768  *	is returned (indicates an error).
769  */
770 
771 #if __STDC__
772 static DEVT *
773 chk_dev(dev_t dev, int add)
774 #else
775 static DEVT *
776 chk_dev(dev, add)
777 	dev_t dev;
778 	int add;
779 #endif
780 {
781 	register DEVT *pt;
782 	register u_int indx;
783 
784 	if (dtab == NULL)
785 		return(NULL);
786 	/*
787 	 * look to see if this device is already in the table
788 	 */
789 	indx = ((unsigned)dev) % D_TAB_SZ;
790 	if ((pt = dtab[indx]) != NULL) {
791 		while ((pt != NULL) && (pt->dev != dev))
792 			pt = pt->fow;
793 
794 		/*
795 		 * found it, return a pointer to it
796 		 */
797 		if (pt != NULL)
798 			return(pt);
799 	}
800 
801 	/*
802 	 * not in table, we add it only if told to as this may just be a check
803 	 * to see if a device number is being used.
804 	 */
805 	if (add == 0)
806 		return(NULL);
807 
808 	/*
809 	 * allocate a node for this device and add it to the front of the hash
810 	 * chain. Note we do not assign remaps values here, so the pt->list
811 	 * list must be NULL.
812 	 */
813 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
814 		warn(1, "Device map table out of memory");
815 		return(NULL);
816 	}
817 	pt->dev = dev;
818 	pt->list = NULL;
819 	pt->fow = dtab[indx];
820 	dtab[indx] = pt;
821 	return(pt);
822 }
823 /*
824  * map_dev()
825  *	given an inode and device storage mask (the mask has a 1 for each bit
826  *	the archive format is able to store in a header), we check for inode
827  *	and device truncation and remap the device as required. Device mapping
828  *	can also occur when during the read phase of append a device number was
829  *	seen (and was marked as do not use during the write phase). WE ASSUME
830  *	that unsigned longs are the same size or bigger than the fields used
831  *	for ino_t and dev_t. If not the types will have to be changed.
832  * Return:
833  *	0 if all ok, -1 otherwise.
834  */
835 
836 #if __STDC__
837 int
838 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
839 #else
840 int
841 map_dev(arcn, dev_mask, ino_mask)
842 	register ARCHD *arcn;
843 	u_long dev_mask;
844 	u_long ino_mask;
845 #endif
846 {
847 	register DEVT *pt;
848 	register DLIST *dpt;
849 	static dev_t lastdev = 0;	/* next device number to try */
850 	int trc_ino = 0;
851 	int trc_dev = 0;
852 	ino_t trunc_bits = 0;
853 	ino_t nino;
854 
855 	if (dtab == NULL)
856 		return(0);
857 	/*
858 	 * check for device and inode truncation, and extract the truncated
859 	 * bit pattern.
860 	 */
861 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
862 		++trc_dev;
863 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
864 		++trc_ino;
865 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
866 	}
867 
868 	/*
869 	 * see if this device is already being mapped, look up the device
870 	 * then find the truncation bit pattern which applies
871 	 */
872 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
873 		/*
874 		 * this device is already marked to be remapped
875 		 */
876 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
877 			if (dpt->trunc_bits == trunc_bits)
878 				break;
879 
880 		if (dpt != NULL) {
881 			/*
882 			 * we are being remapped for this device and pattern
883 			 * change the device number to be stored and return
884 			 */
885 			arcn->sb.st_dev = dpt->dev;
886 			arcn->sb.st_ino = nino;
887 			return(0);
888 		}
889 	} else {
890 		/*
891 		 * this device is not being remapped YET. if we do not have any
892 		 * form of truncation, we do not need a remap
893 		 */
894 		if (!trc_ino && !trc_dev)
895 			return(0);
896 
897 		/*
898 		 * we have truncation, have to add this as a device to remap
899 		 */
900 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
901 			goto bad;
902 
903 		/*
904 		 * if we just have a truncated inode, we have to make sure that
905 		 * all future inodes that do not truncate (they have the
906 		 * truncation pattern of all 0's) continue to map to the same
907 		 * device number. We probably have already written inodes with
908 		 * this device number to the archive with the truncation
909 		 * pattern of all 0's. So we add the mapping for all 0's to the
910 		 * same device number.
911 		 */
912 		if (!trc_dev && (trunc_bits != 0)) {
913 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
914 				goto bad;
915 			dpt->trunc_bits = 0;
916 			dpt->dev = arcn->sb.st_dev;
917 			dpt->fow = pt->list;
918 			pt->list = dpt;
919 		}
920 	}
921 
922 	/*
923 	 * look for a device number not being used. We must watch for wrap
924 	 * around on lastdev (so we do not get stuck looking forever!)
925 	 */
926 	while (++lastdev > 0) {
927 		if (chk_dev(lastdev, 0) != NULL)
928 			continue;
929 		/*
930 		 * found an unused value. If we have reached truncation point
931 		 * for this format we are hosed, so we give up. Otherwise we
932 		 * mark it as being used.
933 		 */
934 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
935 		    (chk_dev(lastdev, 1) == NULL))
936 			goto bad;
937 		break;
938 	}
939 
940 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
941 		goto bad;
942 
943 	/*
944 	 * got a new device number, store it under this truncation pattern.
945 	 * change the device number this file is being stored with.
946 	 */
947 	dpt->trunc_bits = trunc_bits;
948 	dpt->dev = lastdev;
949 	dpt->fow = pt->list;
950 	pt->list = dpt;
951 	arcn->sb.st_dev = lastdev;
952 	arcn->sb.st_ino = nino;
953 	return(0);
954 
955     bad:
956 	warn(1, "Unable to fix truncated inode/device field when storing %s",
957 	    arcn->name);
958 	warn(0, "Archive may create improper hard links when extracted");
959 	return(0);
960 }
961 
962 /*
963  * directory access/mod time reset table routines (for directories READ by pax)
964  *
965  * The pax -t flag requires that access times of archive files to be the same
966  * before being read by pax. For regular files, access time is restored after
967  * the file has been copied. This database provides the same functionality for
968  * directories read during file tree traversal. Restoring directory access time
969  * is more complex than files since directories may be read several times until
970  * all the descendants in their subtree are visited by fts. Directory access
971  * and modification times are stored during the fts pre-order visit (done
972  * before any descendants in the subtree is visited) and restored after the
973  * fts post-order visit (after all the descendants have been visited). In the
974  * case of premature exit from a subtree (like from the effects of -n), any
975  * directory entries left in this database are reset during final cleanup
976  * operations of pax. Entries are hashed by inode number for fast lookup.
977  */
978 
979 /*
980  * atdir_start()
981  *	create the directory access time database for directories READ by pax.
982  * Return:
983  *	0 is created ok, -1 otherwise.
984  */
985 
986 #if __STDC__
987 int
988 atdir_start(void)
989 #else
990 int
991 atdir_start()
992 #endif
993 {
994 	if (atab != NULL)
995 		return(0);
996  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
997                 warn(1,"Cannot allocate space for directory access time table");
998                 return(-1);
999         }
1000 	return(0);
1001 }
1002 
1003 
1004 /*
1005  * atdir_end()
1006  *	walk through the directory access time table and reset the access time
1007  *	of any directory who still has an entry left in the database. These
1008  *	entries are for directories READ by pax
1009  */
1010 
1011 #if __STDC__
1012 void
1013 atdir_end(void)
1014 #else
1015 void
1016 atdir_end()
1017 #endif
1018 {
1019 	register ATDIR *pt;
1020 	register int i;
1021 
1022 	if (atab == NULL)
1023 		return;
1024 	/*
1025 	 * for each non-empty hash table entry reset all the directories
1026 	 * chained there.
1027 	 */
1028 	for (i = 0; i < A_TAB_SZ; ++i) {
1029 		if ((pt = atab[i]) == NULL)
1030 			continue;
1031 		/*
1032 		 * remember to force the times, set_ftime() looks at pmtime
1033 		 * and patime, which only applies to things CREATED by pax,
1034 		 * not read by pax. Read time reset is controlled by -t.
1035 		 */
1036 		for (; pt != NULL; pt = pt->fow)
1037 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1038 	}
1039 }
1040 
1041 /*
1042  * add_atdir()
1043  *	add a directory to the directory access time table. Table is hashed
1044  *	and chained by inode number. This is for directories READ by pax
1045  */
1046 
1047 #if __STDC__
1048 void
1049 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1050 #else
1051 void
1052 add_atdir(fname, dev, ino, mtime, atime)
1053 	char *fname;
1054 	dev_t dev;
1055 	ino_t ino;
1056 	time_t mtime;
1057 	time_t atime;
1058 #endif
1059 {
1060 	register ATDIR *pt;
1061 	register u_int indx;
1062 
1063 	if (atab == NULL)
1064 		return;
1065 
1066 	/*
1067 	 * make sure this directory is not already in the table, if so just
1068 	 * return (the older entry always has the correct time). The only
1069 	 * way this will happen is when the same subtree can be traversed by
1070 	 * different args to pax and the -n option is aborting fts out of a
1071 	 * subtree before all the post-order visits have been made).
1072 	 */
1073 	indx = ((unsigned)ino) % A_TAB_SZ;
1074 	if ((pt = atab[indx]) != NULL) {
1075 		while (pt != NULL) {
1076 			if ((pt->ino == ino) && (pt->dev == dev))
1077 				break;
1078 			pt = pt->fow;
1079 		}
1080 
1081 		/*
1082 		 * oops, already there. Leave it alone.
1083 		 */
1084 		if (pt != NULL)
1085 			return;
1086 	}
1087 
1088 	/*
1089 	 * add it to the front of the hash chain
1090 	 */
1091 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1092 		if ((pt->name = strdup(fname)) != NULL) {
1093 			pt->dev = dev;
1094 			pt->ino = ino;
1095 			pt->mtime = mtime;
1096 			pt->atime = atime;
1097 			pt->fow = atab[indx];
1098 			atab[indx] = pt;
1099 			return;
1100 		}
1101 		(void)free((char *)pt);
1102 	}
1103 
1104 	warn(1, "Directory access time reset table ran out of memory");
1105 	return;
1106 }
1107 
1108 /*
1109  * get_atdir()
1110  *	look up a directory by inode and device number to obtain the access
1111  *	and modification time you want to set to. If found, the modification
1112  *	and access time parameters are set and the entry is removed from the
1113  *	table (as it is no longer needed). These are for directories READ by
1114  *	pax
1115  * Return:
1116  *	0 if found, -1 if not found.
1117  */
1118 
1119 #if __STDC__
1120 int
1121 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1122 #else
1123 int
1124 get_atdir(dev, ino, mtime, atime)
1125 	dev_t dev;
1126 	ino_t ino;
1127 	time_t *mtime;
1128 	time_t *atime;
1129 #endif
1130 {
1131 	register ATDIR *pt;
1132 	register ATDIR **ppt;
1133 	register u_int indx;
1134 
1135 	if (atab == NULL)
1136 		return(-1);
1137 	/*
1138 	 * hash by inode and search the chain for an inode and device match
1139 	 */
1140 	indx = ((unsigned)ino) % A_TAB_SZ;
1141 	if ((pt = atab[indx]) == NULL)
1142 		return(-1);
1143 
1144 	ppt = &(atab[indx]);
1145 	while (pt != NULL) {
1146 		if ((pt->ino == ino) && (pt->dev == dev))
1147 			break;
1148 		/*
1149 		 * no match, go to next one
1150 		 */
1151 		ppt = &(pt->fow);
1152 		pt = pt->fow;
1153 	}
1154 
1155 	/*
1156 	 * return if we did not find it.
1157 	 */
1158 	if (pt == NULL)
1159 		return(-1);
1160 
1161 	/*
1162 	 * found it. return the times and remove the entry from the table.
1163 	 */
1164 	*ppt = pt->fow;
1165 	*mtime = pt->mtime;
1166 	*atime = pt->atime;
1167 	(void)free((char *)pt->name);
1168 	(void)free((char *)pt);
1169 	return(0);
1170 }
1171 
1172 /*
1173  * directory access mode and time storage routines (for directories CREATED
1174  * by pax).
1175  *
1176  * Pax requires that extracted directories, by default, have their access/mod
1177  * times and permissions set to the values specified in the archive. During the
1178  * actions of extracting (and creating the destination subtree during -rw copy)
1179  * directories extracted may be modified after being created. Even worse is
1180  * that these directories may have been created with file permissions which
1181  * prohibits any descendants of these directories from being extracted. When
1182  * directories are created by pax, access rights may be added to permit the
1183  * creation of files in their subtree. Every time pax creates a directory, the
1184  * times and file permissions specified by the archive are stored. After all
1185  * files have been extracted (or copied), these directories have their times
1186  * and file modes reset to the stored values. The directory info is restored in
1187  * reverse order as entries were added to the data file from root to leaf. To
1188  * restore atime properly, we must go backwards. The data file consists of
1189  * records with two parts, the file name followed by a DIRDATA trailer. The
1190  * fixed sized trailer contains the size of the name plus the off_t location in
1191  * the file. To restore we work backwards through the file reading the trailer
1192  * then the file name.
1193  */
1194 
1195 /*
1196  * dir_start()
1197  *	set up the directory time and file mode storage for directories CREATED
1198  *	by pax.
1199  * Return:
1200  *	0 if ok, -1 otherwise
1201  */
1202 
1203 #if __STDC__
1204 int
1205 dir_start(void)
1206 #else
1207 int
1208 dir_start()
1209 #endif
1210 {
1211 	char *pt;
1212 
1213 	if (dirfd != -1)
1214 		return(0);
1215 	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1216 		return(-1);
1217 
1218 	/*
1219 	 * unlink the file so it goes away at termination by itself
1220 	 */
1221 	(void)unlink(pt);
1222 	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1223 		(void)unlink(pt);
1224 		return(0);
1225 	}
1226 	warn(1, "Unable to create temporary file for directory times: %s", pt);
1227 	return(-1);
1228 }
1229 
1230 /*
1231  * add_dir()
1232  *	add the mode and times for a newly CREATED directory
1233  *	name is name of the directory, psb the stat buffer with the data in it,
1234  *	frc_mode is a flag that says whether to force the setting of the mode
1235  *	(ignoring the user set values for preserving file mode). Frc_mode is
1236  *	for the case where we created a file and found that the resulting
1237  *	directory was not writeable and the user asked for file modes to NOT
1238  *	be preserved. (we have to preserve what was created by default, so we
1239  *	have to force the setting at the end. this is stated explicitly in the
1240  *	pax spec)
1241  */
1242 
1243 #if __STDC__
1244 void
1245 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1246 #else
1247 void
1248 add_dir(name, nlen, psb, frc_mode)
1249 	char *name;
1250 	int nlen;
1251 	struct stat *psb;
1252 	int frc_mode;
1253 #endif
1254 {
1255 	DIRDATA dblk;
1256 
1257 	if (dirfd < 0)
1258 		return;
1259 
1260 	/*
1261 	 * get current position (where file name will start) so we can store it
1262 	 * in the trailer
1263 	 */
1264 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1265 		warn(1,"Unable to store mode and times for directory: %s",name);
1266 		return;
1267 	}
1268 
1269 	/*
1270 	 * write the file name followed by the trailer
1271 	 */
1272 	dblk.nlen = nlen + 1;
1273 	dblk.mode = psb->st_mode & 0xffff;
1274 	dblk.mtime = psb->st_mtime;
1275 	dblk.atime = psb->st_atime;
1276 	dblk.frc_mode = frc_mode;
1277 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1278 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1279 		++dircnt;
1280 		return;
1281 	}
1282 
1283 	warn(1,"Unable to store mode and times for created directory: %s",name);
1284 	return;
1285 }
1286 
1287 /*
1288  * proc_dir()
1289  *	process all file modes and times stored for directories CREATED
1290  *	by pax
1291  */
1292 
1293 #if __STDC__
1294 void
1295 proc_dir(void)
1296 #else
1297 void
1298 proc_dir()
1299 #endif
1300 {
1301 	char name[PAXPATHLEN+1];
1302 	DIRDATA dblk;
1303 	u_long cnt;
1304 
1305 	if (dirfd < 0)
1306 		return;
1307 	/*
1308 	 * read backwards through the file and process each directory
1309 	 */
1310 	for (cnt = 0; cnt < dircnt; ++cnt) {
1311 		/*
1312 		 * read the trailer, then the file name, if this fails
1313 		 * just give up.
1314 		 */
1315 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1316 			break;
1317 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1318 			break;
1319 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1320 			break;
1321 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1322 			break;
1323 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1324 			break;
1325 
1326 		/*
1327 		 * frc_mode set, make sure we set the file modes even if
1328 		 * the user didn't ask for it (see file_subs.c for more info)
1329 		 */
1330 		if (pmode || dblk.frc_mode)
1331 			set_pmode(name, dblk.mode);
1332 		if (patime || pmtime)
1333 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1334 	}
1335 
1336 	(void)close(dirfd);
1337 	dirfd = -1;
1338 	if (cnt != dircnt)
1339 		warn(1,"Unable to set mode and times for created directories");
1340 	return;
1341 }
1342 
1343 /*
1344  * database independent routines
1345  */
1346 
1347 /*
1348  * st_hash()
1349  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1350  *	end of file, as this provides far better distribution than any other
1351  *	part of the name. For performance reasons we only care about the last
1352  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1353  *	name). Was tested on 500,000 name file tree traversal from the root
1354  *	and gave almost a perfectly uniform distribution of keys when used with
1355  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1356  *	chars at a time and pads with 0 for last addition.
1357  * Return:
1358  *	the hash value of the string MOD (%) the table size.
1359  */
1360 
1361 #if __STDC__
1362 u_int
1363 st_hash(char *name, int len, int tabsz)
1364 #else
1365 u_int
1366 st_hash(name, len, tabsz)
1367 	char *name;
1368 	int len;
1369 	int tabsz;
1370 #endif
1371 {
1372 	register char *pt;
1373 	register char *dest;
1374 	register char *end;
1375 	register int i;
1376 	register u_int key = 0;
1377 	register int steps;
1378 	register int res;
1379 	u_int val;
1380 
1381 	/*
1382 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1383 	 * time here (remember these are pathnames, the tail is what will
1384 	 * spread out the keys)
1385 	 */
1386 	if (len > MAXKEYLEN) {
1387                 pt = &(name[len - MAXKEYLEN]);
1388 		len = MAXKEYLEN;
1389 	} else
1390 		pt = name;
1391 
1392 	/*
1393 	 * calculate the number of u_int size steps in the string and if
1394 	 * there is a runt to deal with
1395 	 */
1396 	steps = len/sizeof(u_int);
1397 	res = len % sizeof(u_int);
1398 
1399 	/*
1400 	 * add up the value of the string in unsigned integer sized pieces
1401 	 * too bad we cannot have unsigned int aligned strings, then we
1402 	 * could avoid the expensive copy.
1403 	 */
1404 	for (i = 0; i < steps; ++i) {
1405 		end = pt + sizeof(u_int);
1406 		dest = (char *)&val;
1407 		while (pt < end)
1408 			*dest++ = *pt++;
1409 		key += val;
1410 	}
1411 
1412 	/*
1413 	 * add in the runt padded with zero to the right
1414 	 */
1415 	if (res) {
1416 		val = 0;
1417 		end = pt + res;
1418 		dest = (char *)&val;
1419 		while (pt < end)
1420 			*dest++ = *pt++;
1421 		key += val;
1422 	}
1423 
1424 	/*
1425 	 * return the result mod the table size
1426 	 */
1427 	return(key % tabsz);
1428 }
1429