xref: /freebsd/bin/pax/tables.c (revision 2a4a1db342263067035ce69a4017c645da63455d)
1 /*-
2  * Copyright (c) 1992 Keith Muller.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Keith Muller of the University of California, San Diego.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #ifndef lint
39 #if 0
40 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
41 #endif
42 static const char rcsid[] =
43   "$FreeBSD$";
44 #endif /* not lint */
45 
46 #include <sys/types.h>
47 #include <sys/time.h>
48 #include <sys/stat.h>
49 #include <sys/fcntl.h>
50 #include <errno.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 #include "pax.h"
56 #include "tables.h"
57 #include "extern.h"
58 
59 /*
60  * Routines for controlling the contents of all the different databases pax
61  * keeps. Tables are dynamically created only when they are needed. The
62  * goal was speed and the ability to work with HUGE archives. The databases
63  * were kept simple, but do have complex rules for when the contents change.
64  * As of this writing, the POSIX library functions were more complex than
65  * needed for this application (pax databases have very short lifetimes and
66  * do not survive after pax is finished). Pax is required to handle very
67  * large archives. These database routines carefully combine memory usage and
68  * temporary file storage in ways which will not significantly impact runtime
69  * performance while allowing the largest possible archives to be handled.
70  * Trying to force the fit to the POSIX databases routines was not considered
71  * time well spent.
72  */
73 
74 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75 static FTM **ftab = NULL;	/* file time table for updating arch */
76 static NAMT **ntab = NULL;	/* interactive rename storage table */
77 static DEVT **dtab = NULL;	/* device/inode mapping tables */
78 static ATDIR **atab = NULL;	/* file tree directory time reset table */
79 static int dirfd = -1;		/* storage for setting created dir time/mode */
80 static u_long dircnt;		/* entries in dir time/mode storage */
81 static int ffd = -1;		/* tmp file for file time table name storage */
82 
83 static DEVT *chk_dev(dev_t, int);
84 
85 /*
86  * hard link table routines
87  *
88  * The hard link table tries to detect hard links to files using the device and
89  * inode values. We do this when writing an archive, so we can tell the format
90  * write routine that this file is a hard link to another file. The format
91  * write routine then can store this file in whatever way it wants (as a hard
92  * link if the format supports that like tar, or ignore this info like cpio).
93  * (Actually a field in the format driver table tells us if the format wants
94  * hard link info. if not, we do not waste time looking for them). We also use
95  * the same table when reading an archive. In that situation, this table is
96  * used by the format read routine to detect hard links from stored dev and
97  * inode numbers (like cpio). This will allow pax to create a link when one
98  * can be detected by the archive format.
99  */
100 
101 /*
102  * lnk_start
103  *	Creates the hard link table.
104  * Return:
105  *	0 if created, -1 if failure
106  */
107 
108 int
109 lnk_start(void)
110 {
111 	if (ltab != NULL)
112 		return(0);
113  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
114 		paxwarn(1, "Cannot allocate memory for hard link table");
115 		return(-1);
116 	}
117 	return(0);
118 }
119 
120 /*
121  * chk_lnk()
122  *	Looks up entry in hard link hash table. If found, it copies the name
123  *	of the file it is linked to (we already saw that file) into ln_name.
124  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
125  *	database. (We have seen all the links to this file). If not found,
126  *	we add the file to the database if it has the potential for having
127  *	hard links to other files we may process (it has a link count > 1)
128  * Return:
129  *	if found returns 1; if not found returns 0; -1 on error
130  */
131 
132 int
133 chk_lnk(ARCHD *arcn)
134 {
135 	HRDLNK *pt;
136 	HRDLNK **ppt;
137 	u_int indx;
138 
139 	if (ltab == NULL)
140 		return(-1);
141 	/*
142 	 * ignore those nodes that cannot have hard links
143 	 */
144 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
145 		return(0);
146 
147 	/*
148 	 * hash inode number and look for this file
149 	 */
150 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
151 	if ((pt = ltab[indx]) != NULL) {
152 		/*
153 		 * it's hash chain in not empty, walk down looking for it
154 		 */
155 		ppt = &(ltab[indx]);
156 		while (pt != NULL) {
157 			if ((pt->ino == arcn->sb.st_ino) &&
158 			    (pt->dev == arcn->sb.st_dev))
159 				break;
160 			ppt = &(pt->fow);
161 			pt = pt->fow;
162 		}
163 
164 		if (pt != NULL) {
165 			/*
166 			 * found a link. set the node type and copy in the
167 			 * name of the file it is to link to. we need to
168 			 * handle hardlinks to regular files differently than
169 			 * other links.
170 			 */
171 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
172 				sizeof(arcn->ln_name) - 1);
173 			arcn->ln_name[arcn->ln_nlen] = '\0';
174 			if (arcn->type == PAX_REG)
175 				arcn->type = PAX_HRG;
176 			else
177 				arcn->type = PAX_HLK;
178 
179 			/*
180 			 * if we have found all the links to this file, remove
181 			 * it from the database
182 			 */
183 			if (--pt->nlink <= 1) {
184 				*ppt = pt->fow;
185 				(void)free((char *)pt->name);
186 				(void)free((char *)pt);
187 			}
188 			return(1);
189 		}
190 	}
191 
192 	/*
193 	 * we never saw this file before. It has links so we add it to the
194 	 * front of this hash chain
195 	 */
196 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
197 		if ((pt->name = strdup(arcn->name)) != NULL) {
198 			pt->dev = arcn->sb.st_dev;
199 			pt->ino = arcn->sb.st_ino;
200 			pt->nlink = arcn->sb.st_nlink;
201 			pt->fow = ltab[indx];
202 			ltab[indx] = pt;
203 			return(0);
204 		}
205 		(void)free((char *)pt);
206 	}
207 
208 	paxwarn(1, "Hard link table out of memory");
209 	return(-1);
210 }
211 
212 /*
213  * purg_lnk
214  *	remove reference for a file that we may have added to the data base as
215  *	a potential source for hard links. We ended up not using the file, so
216  *	we do not want to accidently point another file at it later on.
217  */
218 
219 void
220 purg_lnk(ARCHD *arcn)
221 {
222 	HRDLNK *pt;
223 	HRDLNK **ppt;
224 	u_int indx;
225 
226 	if (ltab == NULL)
227 		return;
228 	/*
229 	 * do not bother to look if it could not be in the database
230 	 */
231 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
232 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
233 		return;
234 
235 	/*
236 	 * find the hash chain for this inode value, if empty return
237 	 */
238 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
239 	if ((pt = ltab[indx]) == NULL)
240 		return;
241 
242 	/*
243 	 * walk down the list looking for the inode/dev pair, unlink and
244 	 * free if found
245 	 */
246 	ppt = &(ltab[indx]);
247 	while (pt != NULL) {
248 		if ((pt->ino == arcn->sb.st_ino) &&
249 		    (pt->dev == arcn->sb.st_dev))
250 			break;
251 		ppt = &(pt->fow);
252 		pt = pt->fow;
253 	}
254 	if (pt == NULL)
255 		return;
256 
257 	/*
258 	 * remove and free it
259 	 */
260 	*ppt = pt->fow;
261 	(void)free((char *)pt->name);
262 	(void)free((char *)pt);
263 }
264 
265 /*
266  * lnk_end()
267  *	pull apart a existing link table so we can reuse it. We do this between
268  *	read and write phases of append with update. (The format may have
269  *	used the link table, and we need to start with a fresh table for the
270  *	write phase
271  */
272 
273 void
274 lnk_end(void)
275 {
276 	int i;
277 	HRDLNK *pt;
278 	HRDLNK *ppt;
279 
280 	if (ltab == NULL)
281 		return;
282 
283 	for (i = 0; i < L_TAB_SZ; ++i) {
284 		if (ltab[i] == NULL)
285 			continue;
286 		pt = ltab[i];
287 		ltab[i] = NULL;
288 
289 		/*
290 		 * free up each entry on this chain
291 		 */
292 		while (pt != NULL) {
293 			ppt = pt;
294 			pt = ppt->fow;
295 			(void)free((char *)ppt->name);
296 			(void)free((char *)ppt);
297 		}
298 	}
299 	return;
300 }
301 
302 /*
303  * modification time table routines
304  *
305  * The modification time table keeps track of last modification times for all
306  * files stored in an archive during a write phase when -u is set. We only
307  * add a file to the archive if it is newer than a file with the same name
308  * already stored on the archive (if there is no other file with the same
309  * name on the archive it is added). This applies to writes and appends.
310  * An append with an -u must read the archive and store the modification time
311  * for every file on that archive before starting the write phase. It is clear
312  * that this is one HUGE database. To save memory space, the actual file names
313  * are stored in a scatch file and indexed by an in memory hash table. The
314  * hash table is indexed by hashing the file path. The nodes in the table store
315  * the length of the filename and the lseek offset within the scratch file
316  * where the actual name is stored. Since there are never any deletions to this
317  * table, fragmentation of the scratch file is never a issue. Lookups seem to
318  * not exhibit any locality at all (files in the database are rarely
319  * looked up more than once...). So caching is just a waste of memory. The
320  * only limitation is the amount of scatch file space available to store the
321  * path names.
322  */
323 
324 /*
325  * ftime_start()
326  *	create the file time hash table and open for read/write the scratch
327  *	file. (after created it is unlinked, so when we exit we leave
328  *	no witnesses).
329  * Return:
330  *	0 if the table and file was created ok, -1 otherwise
331  */
332 
333 int
334 ftime_start(void)
335 {
336 
337 	if (ftab != NULL)
338 		return(0);
339  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
340 		paxwarn(1, "Cannot allocate memory for file time table");
341 		return(-1);
342 	}
343 
344 	/*
345 	 * get random name and create temporary scratch file, unlink name
346 	 * so it will get removed on exit
347 	 */
348 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
349 	if ((ffd = mkstemp(tempfile)) < 0) {
350 		syswarn(1, errno, "Unable to create temporary file: %s",
351 		    tempfile);
352 		return(-1);
353 	}
354 	(void)unlink(tempfile);
355 
356 	return(0);
357 }
358 
359 /*
360  * chk_ftime()
361  *	looks up entry in file time hash table. If not found, the file is
362  *	added to the hash table and the file named stored in the scratch file.
363  *	If a file with the same name is found, the file times are compared and
364  *	the most recent file time is retained. If the new file was younger (or
365  *	was not in the database) the new file is selected for storage.
366  * Return:
367  *	0 if file should be added to the archive, 1 if it should be skipped,
368  *	-1 on error
369  */
370 
371 int
372 chk_ftime(ARCHD *arcn)
373 {
374 	FTM *pt;
375 	int namelen;
376 	u_int indx;
377 	char ckname[PAXPATHLEN+1];
378 
379 	/*
380 	 * no info, go ahead and add to archive
381 	 */
382 	if (ftab == NULL)
383 		return(0);
384 
385 	/*
386 	 * hash the pathname and look up in table
387 	 */
388 	namelen = arcn->nlen;
389 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
390 	if ((pt = ftab[indx]) != NULL) {
391 		/*
392 		 * the hash chain is not empty, walk down looking for match
393 		 * only read up the path names if the lengths match, speeds
394 		 * up the search a lot
395 		 */
396 		while (pt != NULL) {
397 			if (pt->namelen == namelen) {
398 				/*
399 				 * potential match, have to read the name
400 				 * from the scratch file.
401 				 */
402 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
403 					syswarn(1, errno,
404 					    "Failed ftime table seek");
405 					return(-1);
406 				}
407 				if (read(ffd, ckname, namelen) != namelen) {
408 					syswarn(1, errno,
409 					    "Failed ftime table read");
410 					return(-1);
411 				}
412 
413 				/*
414 				 * if the names match, we are done
415 				 */
416 				if (!strncmp(ckname, arcn->name, namelen))
417 					break;
418 			}
419 
420 			/*
421 			 * try the next entry on the chain
422 			 */
423 			pt = pt->fow;
424 		}
425 
426 		if (pt != NULL) {
427 			/*
428 			 * found the file, compare the times, save the newer
429 			 */
430 			if (arcn->sb.st_mtime > pt->mtime) {
431 				/*
432 				 * file is newer
433 				 */
434 				pt->mtime = arcn->sb.st_mtime;
435 				return(0);
436 			}
437 			/*
438 			 * file is older
439 			 */
440 			return(1);
441 		}
442 	}
443 
444 	/*
445 	 * not in table, add it
446 	 */
447 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
448 		/*
449 		 * add the name at the end of the scratch file, saving the
450 		 * offset. add the file to the head of the hash chain
451 		 */
452 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
453 			if (write(ffd, arcn->name, namelen) == namelen) {
454 				pt->mtime = arcn->sb.st_mtime;
455 				pt->namelen = namelen;
456 				pt->fow = ftab[indx];
457 				ftab[indx] = pt;
458 				return(0);
459 			}
460 			syswarn(1, errno, "Failed write to file time table");
461 		} else
462 			syswarn(1, errno, "Failed seek on file time table");
463 	} else
464 		paxwarn(1, "File time table ran out of memory");
465 
466 	if (pt != NULL)
467 		(void)free((char *)pt);
468 	return(-1);
469 }
470 
471 /*
472  * Interactive rename table routines
473  *
474  * The interactive rename table keeps track of the new names that the user
475  * assigns to files from tty input. Since this map is unique for each file
476  * we must store it in case there is a reference to the file later in archive
477  * (a link). Otherwise we will be unable to find the file we know was
478  * extracted. The remapping of these files is stored in a memory based hash
479  * table (it is assumed since input must come from /dev/tty, it is unlikely to
480  * be a very large table).
481  */
482 
483 /*
484  * name_start()
485  *	create the interactive rename table
486  * Return:
487  *	0 if successful, -1 otherwise
488  */
489 
490 int
491 name_start(void)
492 {
493 	if (ntab != NULL)
494 		return(0);
495  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
496 		paxwarn(1, "Cannot allocate memory for interactive rename table");
497 		return(-1);
498 	}
499 	return(0);
500 }
501 
502 /*
503  * add_name()
504  *	add the new name to old name mapping just created by the user.
505  *	If an old name mapping is found (there may be duplicate names on an
506  *	archive) only the most recent is kept.
507  * Return:
508  *	0 if added, -1 otherwise
509  */
510 
511 int
512 add_name(char *oname, int onamelen, char *nname)
513 {
514 	NAMT *pt;
515 	u_int indx;
516 
517 	if (ntab == NULL) {
518 		/*
519 		 * should never happen
520 		 */
521 		paxwarn(0, "No interactive rename table, links may fail\n");
522 		return(0);
523 	}
524 
525 	/*
526 	 * look to see if we have already mapped this file, if so we
527 	 * will update it
528 	 */
529 	indx = st_hash(oname, onamelen, N_TAB_SZ);
530 	if ((pt = ntab[indx]) != NULL) {
531 		/*
532 		 * look down the has chain for the file
533 		 */
534 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
535 			pt = pt->fow;
536 
537 		if (pt != NULL) {
538 			/*
539 			 * found an old mapping, replace it with the new one
540 			 * the user just input (if it is different)
541 			 */
542 			if (strcmp(nname, pt->nname) == 0)
543 				return(0);
544 
545 			(void)free((char *)pt->nname);
546 			if ((pt->nname = strdup(nname)) == NULL) {
547 				paxwarn(1, "Cannot update rename table");
548 				return(-1);
549 			}
550 			return(0);
551 		}
552 	}
553 
554 	/*
555 	 * this is a new mapping, add it to the table
556 	 */
557 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
558 		if ((pt->oname = strdup(oname)) != NULL) {
559 			if ((pt->nname = strdup(nname)) != NULL) {
560 				pt->fow = ntab[indx];
561 				ntab[indx] = pt;
562 				return(0);
563 			}
564 			(void)free((char *)pt->oname);
565 		}
566 		(void)free((char *)pt);
567 	}
568 	paxwarn(1, "Interactive rename table out of memory");
569 	return(-1);
570 }
571 
572 /*
573  * sub_name()
574  *	look up a link name to see if it points at a file that has been
575  *	remapped by the user. If found, the link is adjusted to contain the
576  *	new name (oname is the link to name)
577  */
578 
579 void
580 sub_name(char *oname, int *onamelen, size_t onamesize)
581 {
582 	NAMT *pt;
583 	u_int indx;
584 
585 	if (ntab == NULL)
586 		return;
587 	/*
588 	 * look the name up in the hash table
589 	 */
590 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
591 	if ((pt = ntab[indx]) == NULL)
592 		return;
593 
594 	while (pt != NULL) {
595 		/*
596 		 * walk down the hash chain looking for a match
597 		 */
598 		if (strcmp(oname, pt->oname) == 0) {
599 			/*
600 			 * found it, replace it with the new name
601 			 * and return (we know that oname has enough space)
602 			 */
603 			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
604 			oname[*onamelen] = '\0';
605 			return;
606 		}
607 		pt = pt->fow;
608 	}
609 
610 	/*
611 	 * no match, just return
612 	 */
613 	return;
614 }
615 
616 /*
617  * device/inode mapping table routines
618  * (used with formats that store device and inodes fields)
619  *
620  * device/inode mapping tables remap the device field in a archive header. The
621  * device/inode fields are used to determine when files are hard links to each
622  * other. However these values have very little meaning outside of that. This
623  * database is used to solve one of two different problems.
624  *
625  * 1) when files are appended to an archive, while the new files may have hard
626  * links to each other, you cannot determine if they have hard links to any
627  * file already stored on the archive from a prior run of pax. We must assume
628  * that these inode/device pairs are unique only within a SINGLE run of pax
629  * (which adds a set of files to an archive). So we have to make sure the
630  * inode/dev pairs we add each time are always unique. We do this by observing
631  * while the inode field is very dense, the use of the dev field is fairly
632  * sparse. Within each run of pax, we remap any device number of a new archive
633  * member that has a device number used in a prior run and already stored in a
634  * file on the archive. During the read phase of the append, we store the
635  * device numbers used and mark them to not be used by any file during the
636  * write phase. If during write we go to use one of those old device numbers,
637  * we remap it to a new value.
638  *
639  * 2) Often the fields in the archive header used to store these values are
640  * too small to store the entire value. The result is an inode or device value
641  * which can be truncated. This really can foul up an archive. With truncation
642  * we end up creating links between files that are really not links (after
643  * truncation the inodes are the same value). We address that by detecting
644  * truncation and forcing a remap of the device field to split truncated
645  * inodes away from each other. Each truncation creates a pattern of bits that
646  * are removed. We use this pattern of truncated bits to partition the inodes
647  * on a single device to many different devices (each one represented by the
648  * truncated bit pattern). All inodes on the same device that have the same
649  * truncation pattern are mapped to the same new device. Two inodes that
650  * truncate to the same value clearly will always have different truncation
651  * bit patterns, so they will be split from away each other. When we spot
652  * device truncation we remap the device number to a non truncated value.
653  * (for more info see table.h for the data structures involved).
654  */
655 
656 /*
657  * dev_start()
658  *	create the device mapping table
659  * Return:
660  *	0 if successful, -1 otherwise
661  */
662 
663 int
664 dev_start(void)
665 {
666 	if (dtab != NULL)
667 		return(0);
668  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
669 		paxwarn(1, "Cannot allocate memory for device mapping table");
670 		return(-1);
671 	}
672 	return(0);
673 }
674 
675 /*
676  * add_dev()
677  *	add a device number to the table. this will force the device to be
678  *	remapped to a new value if it be used during a write phase. This
679  *	function is called during the read phase of an append to prohibit the
680  *	use of any device number already in the archive.
681  * Return:
682  *	0 if added ok, -1 otherwise
683  */
684 
685 int
686 add_dev(ARCHD *arcn)
687 {
688 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
689 		return(-1);
690 	return(0);
691 }
692 
693 /*
694  * chk_dev()
695  *	check for a device value in the device table. If not found and the add
696  *	flag is set, it is added. This does NOT assign any mapping values, just
697  *	adds the device number as one that need to be remapped. If this device
698  *	is already mapped, just return with a pointer to that entry.
699  * Return:
700  *	pointer to the entry for this device in the device map table. Null
701  *	if the add flag is not set and the device is not in the table (it is
702  *	not been seen yet). If add is set and the device cannot be added, null
703  *	is returned (indicates an error).
704  */
705 
706 static DEVT *
707 chk_dev(dev_t dev, int add)
708 {
709 	DEVT *pt;
710 	u_int indx;
711 
712 	if (dtab == NULL)
713 		return(NULL);
714 	/*
715 	 * look to see if this device is already in the table
716 	 */
717 	indx = ((unsigned)dev) % D_TAB_SZ;
718 	if ((pt = dtab[indx]) != NULL) {
719 		while ((pt != NULL) && (pt->dev != dev))
720 			pt = pt->fow;
721 
722 		/*
723 		 * found it, return a pointer to it
724 		 */
725 		if (pt != NULL)
726 			return(pt);
727 	}
728 
729 	/*
730 	 * not in table, we add it only if told to as this may just be a check
731 	 * to see if a device number is being used.
732 	 */
733 	if (add == 0)
734 		return(NULL);
735 
736 	/*
737 	 * allocate a node for this device and add it to the front of the hash
738 	 * chain. Note we do not assign remaps values here, so the pt->list
739 	 * list must be NULL.
740 	 */
741 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
742 		paxwarn(1, "Device map table out of memory");
743 		return(NULL);
744 	}
745 	pt->dev = dev;
746 	pt->list = NULL;
747 	pt->fow = dtab[indx];
748 	dtab[indx] = pt;
749 	return(pt);
750 }
751 /*
752  * map_dev()
753  *	given an inode and device storage mask (the mask has a 1 for each bit
754  *	the archive format is able to store in a header), we check for inode
755  *	and device truncation and remap the device as required. Device mapping
756  *	can also occur when during the read phase of append a device number was
757  *	seen (and was marked as do not use during the write phase). WE ASSUME
758  *	that unsigned longs are the same size or bigger than the fields used
759  *	for ino_t and dev_t. If not the types will have to be changed.
760  * Return:
761  *	0 if all ok, -1 otherwise.
762  */
763 
764 int
765 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
766 {
767 	DEVT *pt;
768 	DLIST *dpt;
769 	static dev_t lastdev = 0;	/* next device number to try */
770 	int trc_ino = 0;
771 	int trc_dev = 0;
772 	ino_t trunc_bits = 0;
773 	ino_t nino;
774 
775 	if (dtab == NULL)
776 		return(0);
777 	/*
778 	 * check for device and inode truncation, and extract the truncated
779 	 * bit pattern.
780 	 */
781 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
782 		++trc_dev;
783 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
784 		++trc_ino;
785 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
786 	}
787 
788 	/*
789 	 * see if this device is already being mapped, look up the device
790 	 * then find the truncation bit pattern which applies
791 	 */
792 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
793 		/*
794 		 * this device is already marked to be remapped
795 		 */
796 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
797 			if (dpt->trunc_bits == trunc_bits)
798 				break;
799 
800 		if (dpt != NULL) {
801 			/*
802 			 * we are being remapped for this device and pattern
803 			 * change the device number to be stored and return
804 			 */
805 			arcn->sb.st_dev = dpt->dev;
806 			arcn->sb.st_ino = nino;
807 			return(0);
808 		}
809 	} else {
810 		/*
811 		 * this device is not being remapped YET. if we do not have any
812 		 * form of truncation, we do not need a remap
813 		 */
814 		if (!trc_ino && !trc_dev)
815 			return(0);
816 
817 		/*
818 		 * we have truncation, have to add this as a device to remap
819 		 */
820 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
821 			goto bad;
822 
823 		/*
824 		 * if we just have a truncated inode, we have to make sure that
825 		 * all future inodes that do not truncate (they have the
826 		 * truncation pattern of all 0's) continue to map to the same
827 		 * device number. We probably have already written inodes with
828 		 * this device number to the archive with the truncation
829 		 * pattern of all 0's. So we add the mapping for all 0's to the
830 		 * same device number.
831 		 */
832 		if (!trc_dev && (trunc_bits != 0)) {
833 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
834 				goto bad;
835 			dpt->trunc_bits = 0;
836 			dpt->dev = arcn->sb.st_dev;
837 			dpt->fow = pt->list;
838 			pt->list = dpt;
839 		}
840 	}
841 
842 	/*
843 	 * look for a device number not being used. We must watch for wrap
844 	 * around on lastdev (so we do not get stuck looking forever!)
845 	 */
846 	while (++lastdev > 0) {
847 		if (chk_dev(lastdev, 0) != NULL)
848 			continue;
849 		/*
850 		 * found an unused value. If we have reached truncation point
851 		 * for this format we are hosed, so we give up. Otherwise we
852 		 * mark it as being used.
853 		 */
854 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
855 		    (chk_dev(lastdev, 1) == NULL))
856 			goto bad;
857 		break;
858 	}
859 
860 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
861 		goto bad;
862 
863 	/*
864 	 * got a new device number, store it under this truncation pattern.
865 	 * change the device number this file is being stored with.
866 	 */
867 	dpt->trunc_bits = trunc_bits;
868 	dpt->dev = lastdev;
869 	dpt->fow = pt->list;
870 	pt->list = dpt;
871 	arcn->sb.st_dev = lastdev;
872 	arcn->sb.st_ino = nino;
873 	return(0);
874 
875     bad:
876 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
877 	    arcn->name);
878 	paxwarn(0, "Archive may create improper hard links when extracted");
879 	return(0);
880 }
881 
882 /*
883  * directory access/mod time reset table routines (for directories READ by pax)
884  *
885  * The pax -t flag requires that access times of archive files to be the same
886  * before being read by pax. For regular files, access time is restored after
887  * the file has been copied. This database provides the same functionality for
888  * directories read during file tree traversal. Restoring directory access time
889  * is more complex than files since directories may be read several times until
890  * all the descendants in their subtree are visited by fts. Directory access
891  * and modification times are stored during the fts pre-order visit (done
892  * before any descendants in the subtree is visited) and restored after the
893  * fts post-order visit (after all the descendants have been visited). In the
894  * case of premature exit from a subtree (like from the effects of -n), any
895  * directory entries left in this database are reset during final cleanup
896  * operations of pax. Entries are hashed by inode number for fast lookup.
897  */
898 
899 /*
900  * atdir_start()
901  *	create the directory access time database for directories READ by pax.
902  * Return:
903  *	0 is created ok, -1 otherwise.
904  */
905 
906 int
907 atdir_start(void)
908 {
909 	if (atab != NULL)
910 		return(0);
911  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
912 		paxwarn(1,"Cannot allocate space for directory access time table");
913 		return(-1);
914 	}
915 	return(0);
916 }
917 
918 
919 /*
920  * atdir_end()
921  *	walk through the directory access time table and reset the access time
922  *	of any directory who still has an entry left in the database. These
923  *	entries are for directories READ by pax
924  */
925 
926 void
927 atdir_end(void)
928 {
929 	ATDIR *pt;
930 	int i;
931 
932 	if (atab == NULL)
933 		return;
934 	/*
935 	 * for each non-empty hash table entry reset all the directories
936 	 * chained there.
937 	 */
938 	for (i = 0; i < A_TAB_SZ; ++i) {
939 		if ((pt = atab[i]) == NULL)
940 			continue;
941 		/*
942 		 * remember to force the times, set_ftime() looks at pmtime
943 		 * and patime, which only applies to things CREATED by pax,
944 		 * not read by pax. Read time reset is controlled by -t.
945 		 */
946 		for (; pt != NULL; pt = pt->fow)
947 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
948 	}
949 }
950 
951 /*
952  * add_atdir()
953  *	add a directory to the directory access time table. Table is hashed
954  *	and chained by inode number. This is for directories READ by pax
955  */
956 
957 void
958 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
959 {
960 	ATDIR *pt;
961 	u_int indx;
962 
963 	if (atab == NULL)
964 		return;
965 
966 	/*
967 	 * make sure this directory is not already in the table, if so just
968 	 * return (the older entry always has the correct time). The only
969 	 * way this will happen is when the same subtree can be traversed by
970 	 * different args to pax and the -n option is aborting fts out of a
971 	 * subtree before all the post-order visits have been made).
972 	 */
973 	indx = ((unsigned)ino) % A_TAB_SZ;
974 	if ((pt = atab[indx]) != NULL) {
975 		while (pt != NULL) {
976 			if ((pt->ino == ino) && (pt->dev == dev))
977 				break;
978 			pt = pt->fow;
979 		}
980 
981 		/*
982 		 * oops, already there. Leave it alone.
983 		 */
984 		if (pt != NULL)
985 			return;
986 	}
987 
988 	/*
989 	 * add it to the front of the hash chain
990 	 */
991 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
992 		if ((pt->name = strdup(fname)) != NULL) {
993 			pt->dev = dev;
994 			pt->ino = ino;
995 			pt->mtime = mtime;
996 			pt->atime = atime;
997 			pt->fow = atab[indx];
998 			atab[indx] = pt;
999 			return;
1000 		}
1001 		(void)free((char *)pt);
1002 	}
1003 
1004 	paxwarn(1, "Directory access time reset table ran out of memory");
1005 	return;
1006 }
1007 
1008 /*
1009  * get_atdir()
1010  *	look up a directory by inode and device number to obtain the access
1011  *	and modification time you want to set to. If found, the modification
1012  *	and access time parameters are set and the entry is removed from the
1013  *	table (as it is no longer needed). These are for directories READ by
1014  *	pax
1015  * Return:
1016  *	0 if found, -1 if not found.
1017  */
1018 
1019 int
1020 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1021 {
1022 	ATDIR *pt;
1023 	ATDIR **ppt;
1024 	u_int indx;
1025 
1026 	if (atab == NULL)
1027 		return(-1);
1028 	/*
1029 	 * hash by inode and search the chain for an inode and device match
1030 	 */
1031 	indx = ((unsigned)ino) % A_TAB_SZ;
1032 	if ((pt = atab[indx]) == NULL)
1033 		return(-1);
1034 
1035 	ppt = &(atab[indx]);
1036 	while (pt != NULL) {
1037 		if ((pt->ino == ino) && (pt->dev == dev))
1038 			break;
1039 		/*
1040 		 * no match, go to next one
1041 		 */
1042 		ppt = &(pt->fow);
1043 		pt = pt->fow;
1044 	}
1045 
1046 	/*
1047 	 * return if we did not find it.
1048 	 */
1049 	if (pt == NULL)
1050 		return(-1);
1051 
1052 	/*
1053 	 * found it. return the times and remove the entry from the table.
1054 	 */
1055 	*ppt = pt->fow;
1056 	*mtime = pt->mtime;
1057 	*atime = pt->atime;
1058 	(void)free((char *)pt->name);
1059 	(void)free((char *)pt);
1060 	return(0);
1061 }
1062 
1063 /*
1064  * directory access mode and time storage routines (for directories CREATED
1065  * by pax).
1066  *
1067  * Pax requires that extracted directories, by default, have their access/mod
1068  * times and permissions set to the values specified in the archive. During the
1069  * actions of extracting (and creating the destination subtree during -rw copy)
1070  * directories extracted may be modified after being created. Even worse is
1071  * that these directories may have been created with file permissions which
1072  * prohibits any descendants of these directories from being extracted. When
1073  * directories are created by pax, access rights may be added to permit the
1074  * creation of files in their subtree. Every time pax creates a directory, the
1075  * times and file permissions specified by the archive are stored. After all
1076  * files have been extracted (or copied), these directories have their times
1077  * and file modes reset to the stored values. The directory info is restored in
1078  * reverse order as entries were added to the data file from root to leaf. To
1079  * restore atime properly, we must go backwards. The data file consists of
1080  * records with two parts, the file name followed by a DIRDATA trailer. The
1081  * fixed sized trailer contains the size of the name plus the off_t location in
1082  * the file. To restore we work backwards through the file reading the trailer
1083  * then the file name.
1084  */
1085 
1086 /*
1087  * dir_start()
1088  *	set up the directory time and file mode storage for directories CREATED
1089  *	by pax.
1090  * Return:
1091  *	0 if ok, -1 otherwise
1092  */
1093 
1094 int
1095 dir_start(void)
1096 {
1097 
1098 	if (dirfd != -1)
1099 		return(0);
1100 
1101 	/*
1102 	 * unlink the file so it goes away at termination by itself
1103 	 */
1104 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1105 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1106 		(void)unlink(tempfile);
1107 		return(0);
1108 	}
1109 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1110 	    tempfile);
1111 	return(-1);
1112 }
1113 
1114 /*
1115  * add_dir()
1116  *	add the mode and times for a newly CREATED directory
1117  *	name is name of the directory, psb the stat buffer with the data in it,
1118  *	frc_mode is a flag that says whether to force the setting of the mode
1119  *	(ignoring the user set values for preserving file mode). Frc_mode is
1120  *	for the case where we created a file and found that the resulting
1121  *	directory was not writeable and the user asked for file modes to NOT
1122  *	be preserved. (we have to preserve what was created by default, so we
1123  *	have to force the setting at the end. this is stated explicitly in the
1124  *	pax spec)
1125  */
1126 
1127 void
1128 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1129 {
1130 	DIRDATA dblk;
1131 
1132 	if (dirfd < 0)
1133 		return;
1134 
1135 	/*
1136 	 * get current position (where file name will start) so we can store it
1137 	 * in the trailer
1138 	 */
1139 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1140 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1141 		return;
1142 	}
1143 
1144 	/*
1145 	 * write the file name followed by the trailer
1146 	 */
1147 	dblk.nlen = nlen + 1;
1148 	dblk.mode = psb->st_mode & 0xffff;
1149 	dblk.mtime = psb->st_mtime;
1150 	dblk.atime = psb->st_atime;
1151 	dblk.frc_mode = frc_mode;
1152 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1153 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1154 		++dircnt;
1155 		return;
1156 	}
1157 
1158 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1159 	return;
1160 }
1161 
1162 /*
1163  * proc_dir()
1164  *	process all file modes and times stored for directories CREATED
1165  *	by pax
1166  */
1167 
1168 void
1169 proc_dir(void)
1170 {
1171 	char name[PAXPATHLEN+1];
1172 	DIRDATA dblk;
1173 	u_long cnt;
1174 
1175 	if (dirfd < 0)
1176 		return;
1177 	/*
1178 	 * read backwards through the file and process each directory
1179 	 */
1180 	for (cnt = 0; cnt < dircnt; ++cnt) {
1181 		/*
1182 		 * read the trailer, then the file name, if this fails
1183 		 * just give up.
1184 		 */
1185 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1186 			break;
1187 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1188 			break;
1189 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1190 			break;
1191 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1192 			break;
1193 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1194 			break;
1195 
1196 		/*
1197 		 * frc_mode set, make sure we set the file modes even if
1198 		 * the user didn't ask for it (see file_subs.c for more info)
1199 		 */
1200 		if (pmode || dblk.frc_mode)
1201 			set_pmode(name, dblk.mode);
1202 		if (patime || pmtime)
1203 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1204 	}
1205 
1206 	(void)close(dirfd);
1207 	dirfd = -1;
1208 	if (cnt != dircnt)
1209 		paxwarn(1,"Unable to set mode and times for created directories");
1210 	return;
1211 }
1212 
1213 /*
1214  * database independent routines
1215  */
1216 
1217 /*
1218  * st_hash()
1219  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1220  *	end of file, as this provides far better distribution than any other
1221  *	part of the name. For performance reasons we only care about the last
1222  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1223  *	name). Was tested on 500,000 name file tree traversal from the root
1224  *	and gave almost a perfectly uniform distribution of keys when used with
1225  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1226  *	chars at a time and pads with 0 for last addition.
1227  * Return:
1228  *	the hash value of the string MOD (%) the table size.
1229  */
1230 
1231 u_int
1232 st_hash(char *name, int len, int tabsz)
1233 {
1234 	char *pt;
1235 	char *dest;
1236 	char *end;
1237 	int i;
1238 	u_int key = 0;
1239 	int steps;
1240 	int res;
1241 	u_int val;
1242 
1243 	/*
1244 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1245 	 * time here (remember these are pathnames, the tail is what will
1246 	 * spread out the keys)
1247 	 */
1248 	if (len > MAXKEYLEN) {
1249 		pt = &(name[len - MAXKEYLEN]);
1250 		len = MAXKEYLEN;
1251 	} else
1252 		pt = name;
1253 
1254 	/*
1255 	 * calculate the number of u_int size steps in the string and if
1256 	 * there is a runt to deal with
1257 	 */
1258 	steps = len/sizeof(u_int);
1259 	res = len % sizeof(u_int);
1260 
1261 	/*
1262 	 * add up the value of the string in unsigned integer sized pieces
1263 	 * too bad we cannot have unsigned int aligned strings, then we
1264 	 * could avoid the expensive copy.
1265 	 */
1266 	for (i = 0; i < steps; ++i) {
1267 		end = pt + sizeof(u_int);
1268 		dest = (char *)&val;
1269 		while (pt < end)
1270 			*dest++ = *pt++;
1271 		key += val;
1272 	}
1273 
1274 	/*
1275 	 * add in the runt padded with zero to the right
1276 	 */
1277 	if (res) {
1278 		val = 0;
1279 		end = pt + res;
1280 		dest = (char *)&val;
1281 		while (pt < end)
1282 			*dest++ = *pt++;
1283 		key += val;
1284 	}
1285 
1286 	/*
1287 	 * return the result mod the table size
1288 	 */
1289 	return(key % tabsz);
1290 }
1291