Home
last modified time | relevance | path

Searched full:multiplication (Results 1 – 25 of 117) sorted by relevance

12345

/titanic_51/usr/src/man/man1m/
H A Ddd.1m29 \fBb\fR, or \fBw\fR to specify multiplication by 1024, 512, or 2, respectively.
30 Numbers may also be separated by \fBx\fR to indicate multiplication.
430 a positive decimal number followed by \fBk\fR, specifying multiplication by
436 a positive decimal number followed by \fBM\fR, specifying multiplication by
442 a positive decimal number followed by \fBG\fR, specifying multiplication by
448 a positive decimal number followed by \fBT\fR, specifying multiplication by
454 a positive decimal number followed by \fBP\fR, specifying multiplication by
460 a positive decimal number followed by \fBE\fR, specifying multiplication by
466 a positive decimal number followed by \fBZ\fR, specifying multiplication by
472 a positive decimal number followed by \fBb\fR, specifying multiplication b
[all...]
/titanic_51/usr/src/lib/libc/sparc/sys/
H A Dgettimeofday.s47 * algorithms for division based upon multiplication by invariant
51 * Multiplication". SIGPLAN Notices, Vol. 29, June 1994, page 61.
53 * Magenheimer, D.J.; et al: "Integer Multiplication and Division on the HP
/titanic_51/usr/src/common/crypto/modes/amd64/
H A Dgcm_intel.s34 * Galois Field Multiplication implementation.
37 * carry-less multiplication. More information about PCLMULQDQ can be
40 * carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
197 * Perform a carry-less multiplication (that is, use XOR instead of the
265 // of the carry-less multiplication of
268 // We shift the result of the multiplication by one bit position
/titanic_51/usr/src/common/crypto/ecc/
H A Dec2_mont.c58 * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m)
86 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
116 * using Montgomery point multiplication algorithm Mxy() in appendix of
117 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
191 * multiplication on elliptic curves over GF(2^m) without
H A Decl_mult.c55 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
109 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
161 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
165 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
314 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
H A Decl.h77 /* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x,
84 /* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
H A Decp_mont.c110 /* Field multiplication using Montgomery reduction. */
157 * and \ respectively represent multiplication and division in in ec_GFp_div_mont()
H A Dec.c83 * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for
243 * point multiplication of that value with the curve's base point.
354 * performing a scalar point multiplication of that value with
427 * the public key is the result of performing a scalar point multiplication
546 ** multiplication of privateValue and publicValue (with or without the
/titanic_51/usr/src/lib/storage/libg_fc/common/hdrs/
H A Dg_scsi.h145 mf : 1, /* Multiplication Factor */
153 mf : 1, /* Multiplication Factor */
/titanic_51/usr/src/uts/common/sys/scsi/impl/
H A Dmode.h122 mf : 1, /* Multiplication Factor */
130 mf : 1, /* Multiplication Factor */
/titanic_51/usr/src/uts/common/sys/scsi/generic/
H A Ddad_mode.h227 mf : 1, /* Multiplication Factor */
243 mf : 1, /* Multiplication Factor */
/titanic_51/usr/src/man/man9f/
H A Ddrv_usectohz.9f71 with multiplication, can result in significantly longer durations than
/titanic_51/usr/src/lib/libbc/libc/gen/common/
H A Dhsearch.c94 # define FACTOR 035761254233 /* Magic multiplication factor */
167 printf("multiplication: %d\n", hashm(line)); in main()
454 * Multiplication hashing scheme
/titanic_51/usr/src/lib/libc/port/gen/
H A Dhsearch.c103 #define FACTOR 035761254233 /* Magic multiplication factor */
168 printf("multiplication: %d\n", hashm(line)); in main()
493 hashm(POINTER key) /* Multiplication hashing scheme */ in hashm()
/titanic_51/usr/src/cmd/dtrace/test/tst/common/offsetof/
H A Dtst.OffsetofArith.d61 printf("Multiplication of offsets (x*c) = %d\n", mul);
/titanic_51/usr/src/uts/sun4/sys/
H A Dclock.h202 * requires multiplication by a rational number, R, between 0 and 1.
238 * equivalent to multiplying %tick by 2, then by n. Multiplication
/titanic_51/usr/src/contrib/ast/src/lib/libast/cdt/
H A Ddtstrhash.c31 ** the multiplication will distribute the bits in the accumulator well.
/titanic_51/usr/src/lib/libast/common/cdt/
H A Ddtstrhash.c31 ** the multiplication will distribute the bits in the accumulator well.
/titanic_51/usr/src/lib/libm/common/Q/
H A Dexp10l.c38 * If x is an integer <= M then use repeat multiplication. For
/titanic_51/usr/src/uts/common/os/
H A Dtimers.c990 * Multiplication by a fixed constant is easy -- you just do the appropriate
1021 * and multiply by each factor. Multiplication by 125 is particularly easy,
1028 * we used for multiplication. However, we can convert the division problem
1029 * into a multiplication problem by pre-computing the binary representation
1115 * All we're really doing here is long multiplication, just like we learned in
1237 * a passable job of optimizing constant multiplication into shifts and adds).
/titanic_51/usr/src/man/man3head/
H A Dcomplex.h.3head122 multiplication by \fBI\fR provides a sufficiently convenient and more generally
/titanic_51/usr/src/lib/libm/common/C/
H A Dexp10.c37 * If x is an integer < 23 then use repeat multiplication. For
/titanic_51/usr/src/cmd/spell/
H A Dhash.c45 * is to avoid overflow in long multiplication
/titanic_51/usr/src/cmd/sh/
H A Dhash.c38 #define FACTOR 035761254233 /* Magic multiplication factor */
/titanic_51/usr/src/lib/libsff/common/
H A Dsff.h207 * SFF 8636 multiplication factors

12345