/titanic_51/usr/src/man/man1m/ |
H A D | dd.1m | 29 \fBb\fR, or \fBw\fR to specify multiplication by 1024, 512, or 2, respectively. 30 Numbers may also be separated by \fBx\fR to indicate multiplication. 430 a positive decimal number followed by \fBk\fR, specifying multiplication by 436 a positive decimal number followed by \fBM\fR, specifying multiplication by 442 a positive decimal number followed by \fBG\fR, specifying multiplication by 448 a positive decimal number followed by \fBT\fR, specifying multiplication by 454 a positive decimal number followed by \fBP\fR, specifying multiplication by 460 a positive decimal number followed by \fBE\fR, specifying multiplication by 466 a positive decimal number followed by \fBZ\fR, specifying multiplication by 472 a positive decimal number followed by \fBb\fR, specifying multiplication b [all...] |
/titanic_51/usr/src/lib/libc/sparc/sys/ |
H A D | gettimeofday.s | 47 * algorithms for division based upon multiplication by invariant 51 * Multiplication". SIGPLAN Notices, Vol. 29, June 1994, page 61. 53 * Magenheimer, D.J.; et al: "Integer Multiplication and Division on the HP
|
/titanic_51/usr/src/common/crypto/modes/amd64/ |
H A D | gcm_intel.s | 34 * Galois Field Multiplication implementation. 37 * carry-less multiplication. More information about PCLMULQDQ can be 40 * carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/ 197 * Perform a carry-less multiplication (that is, use XOR instead of the 265 // of the carry-less multiplication of 268 // We shift the result of the multiplication by one bit position
|
/titanic_51/usr/src/common/crypto/ecc/ |
H A D | ec2_mont.c | 58 * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m) 86 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over 116 * using Montgomery point multiplication algorithm Mxy() in appendix of 117 * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over 191 * multiplication on elliptic curves over GF(2^m) without
|
H A D | ecl_mult.c | 55 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, 109 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 161 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + 165 * algorithm 15 (simultaneous multiple point multiplication) from Brown, 314 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
|
H A D | ecl.h | 77 /* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x, 84 /* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
|
H A D | ecp_mont.c | 110 /* Field multiplication using Montgomery reduction. */ 157 * and \ respectively represent multiplication and division in in ec_GFp_div_mont()
|
H A D | ec.c | 83 * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for 243 * point multiplication of that value with the curve's base point. 354 * performing a scalar point multiplication of that value with 427 * the public key is the result of performing a scalar point multiplication 546 ** multiplication of privateValue and publicValue (with or without the
|
/titanic_51/usr/src/lib/storage/libg_fc/common/hdrs/ |
H A D | g_scsi.h | 145 mf : 1, /* Multiplication Factor */ 153 mf : 1, /* Multiplication Factor */
|
/titanic_51/usr/src/uts/common/sys/scsi/impl/ |
H A D | mode.h | 122 mf : 1, /* Multiplication Factor */ 130 mf : 1, /* Multiplication Factor */
|
/titanic_51/usr/src/uts/common/sys/scsi/generic/ |
H A D | dad_mode.h | 227 mf : 1, /* Multiplication Factor */ 243 mf : 1, /* Multiplication Factor */
|
/titanic_51/usr/src/man/man9f/ |
H A D | drv_usectohz.9f | 71 with multiplication, can result in significantly longer durations than
|
/titanic_51/usr/src/lib/libbc/libc/gen/common/ |
H A D | hsearch.c | 94 # define FACTOR 035761254233 /* Magic multiplication factor */ 167 printf("multiplication: %d\n", hashm(line)); in main() 454 * Multiplication hashing scheme
|
/titanic_51/usr/src/lib/libc/port/gen/ |
H A D | hsearch.c | 103 #define FACTOR 035761254233 /* Magic multiplication factor */ 168 printf("multiplication: %d\n", hashm(line)); in main() 493 hashm(POINTER key) /* Multiplication hashing scheme */ in hashm()
|
/titanic_51/usr/src/cmd/dtrace/test/tst/common/offsetof/ |
H A D | tst.OffsetofArith.d | 61 printf("Multiplication of offsets (x*c) = %d\n", mul);
|
/titanic_51/usr/src/uts/sun4/sys/ |
H A D | clock.h | 202 * requires multiplication by a rational number, R, between 0 and 1. 238 * equivalent to multiplying %tick by 2, then by n. Multiplication
|
/titanic_51/usr/src/contrib/ast/src/lib/libast/cdt/ |
H A D | dtstrhash.c | 31 ** the multiplication will distribute the bits in the accumulator well.
|
/titanic_51/usr/src/lib/libast/common/cdt/ |
H A D | dtstrhash.c | 31 ** the multiplication will distribute the bits in the accumulator well.
|
/titanic_51/usr/src/lib/libm/common/Q/ |
H A D | exp10l.c | 38 * If x is an integer <= M then use repeat multiplication. For
|
/titanic_51/usr/src/uts/common/os/ |
H A D | timers.c | 990 * Multiplication by a fixed constant is easy -- you just do the appropriate 1021 * and multiply by each factor. Multiplication by 125 is particularly easy, 1028 * we used for multiplication. However, we can convert the division problem 1029 * into a multiplication problem by pre-computing the binary representation 1115 * All we're really doing here is long multiplication, just like we learned in 1237 * a passable job of optimizing constant multiplication into shifts and adds).
|
/titanic_51/usr/src/man/man3head/ |
H A D | complex.h.3head | 122 multiplication by \fBI\fR provides a sufficiently convenient and more generally
|
/titanic_51/usr/src/lib/libm/common/C/ |
H A D | exp10.c | 37 * If x is an integer < 23 then use repeat multiplication. For
|
/titanic_51/usr/src/cmd/spell/ |
H A D | hash.c | 45 * is to avoid overflow in long multiplication
|
/titanic_51/usr/src/cmd/sh/ |
H A D | hash.c | 38 #define FACTOR 035761254233 /* Magic multiplication factor */
|
/titanic_51/usr/src/lib/libsff/common/ |
H A D | sff.h | 207 * SFF 8636 multiplication factors
|