1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, Datto, Inc.
30 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
31 */
32
33 #include <sys/sysmacros.h>
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa.h>
37 #include <sys/txg.h>
38 #include <sys/spa_impl.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_trim.h>
41 #include <sys/zio_impl.h>
42 #include <sys/zio_compress.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/arc.h>
46 #include <sys/brt.h>
47 #include <sys/ddt.h>
48 #include <sys/blkptr.h>
49 #include <sys/zfeature.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/time.h>
53 #include <sys/trace_zfs.h>
54 #include <sys/abd.h>
55 #include <sys/dsl_crypt.h>
56 #include <cityhash.h>
57
58 /*
59 * ==========================================================================
60 * I/O type descriptions
61 * ==========================================================================
62 */
63 const char *const zio_type_name[ZIO_TYPES] = {
64 /*
65 * Note: Linux kernel thread name length is limited
66 * so these names will differ from upstream open zfs.
67 */
68 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
69 };
70
71 int zio_dva_throttle_enabled = B_TRUE;
72 static int zio_deadman_log_all = B_FALSE;
73
74 /*
75 * ==========================================================================
76 * I/O kmem caches
77 * ==========================================================================
78 */
79 static kmem_cache_t *zio_cache;
80 static kmem_cache_t *zio_link_cache;
81 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
84 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
85 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
86 #endif
87
88 /* Mark IOs as "slow" if they take longer than 30 seconds */
89 static uint_t zio_slow_io_ms = (30 * MILLISEC);
90
91 #define BP_SPANB(indblkshift, level) \
92 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
93 #define COMPARE_META_LEVEL 0x80000000ul
94 /*
95 * The following actions directly effect the spa's sync-to-convergence logic.
96 * The values below define the sync pass when we start performing the action.
97 * Care should be taken when changing these values as they directly impact
98 * spa_sync() performance. Tuning these values may introduce subtle performance
99 * pathologies and should only be done in the context of performance analysis.
100 * These tunables will eventually be removed and replaced with #defines once
101 * enough analysis has been done to determine optimal values.
102 *
103 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
104 * regular blocks are not deferred.
105 *
106 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
107 * compression (including of metadata). In practice, we don't have this
108 * many sync passes, so this has no effect.
109 *
110 * The original intent was that disabling compression would help the sync
111 * passes to converge. However, in practice disabling compression increases
112 * the average number of sync passes, because when we turn compression off, a
113 * lot of block's size will change and thus we have to re-allocate (not
114 * overwrite) them. It also increases the number of 128KB allocations (e.g.
115 * for indirect blocks and spacemaps) because these will not be compressed.
116 * The 128K allocations are especially detrimental to performance on highly
117 * fragmented systems, which may have very few free segments of this size,
118 * and may need to load new metaslabs to satisfy 128K allocations.
119 */
120
121 /* defer frees starting in this pass */
122 uint_t zfs_sync_pass_deferred_free = 2;
123
124 /* don't compress starting in this pass */
125 static uint_t zfs_sync_pass_dont_compress = 8;
126
127 /* rewrite new bps starting in this pass */
128 static uint_t zfs_sync_pass_rewrite = 2;
129
130 /*
131 * An allocating zio is one that either currently has the DVA allocate
132 * stage set or will have it later in its lifetime.
133 */
134 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
135
136 /*
137 * Enable smaller cores by excluding metadata
138 * allocations as well.
139 */
140 int zio_exclude_metadata = 0;
141 static int zio_requeue_io_start_cut_in_line = 1;
142
143 #ifdef ZFS_DEBUG
144 static const int zio_buf_debug_limit = 16384;
145 #else
146 static const int zio_buf_debug_limit = 0;
147 #endif
148
149 typedef struct zio_stats {
150 kstat_named_t ziostat_total_allocations;
151 kstat_named_t ziostat_alloc_class_fallbacks;
152 kstat_named_t ziostat_gang_writes;
153 kstat_named_t ziostat_gang_multilevel;
154 } zio_stats_t;
155
156 static zio_stats_t zio_stats = {
157 { "total_allocations", KSTAT_DATA_UINT64 },
158 { "alloc_class_fallbacks", KSTAT_DATA_UINT64 },
159 { "gang_writes", KSTAT_DATA_UINT64 },
160 { "gang_multilevel", KSTAT_DATA_UINT64 },
161 };
162
163 struct {
164 wmsum_t ziostat_total_allocations;
165 wmsum_t ziostat_alloc_class_fallbacks;
166 wmsum_t ziostat_gang_writes;
167 wmsum_t ziostat_gang_multilevel;
168 } ziostat_sums;
169
170 #define ZIOSTAT_BUMP(stat) wmsum_add(&ziostat_sums.stat, 1);
171
172 static kstat_t *zio_ksp;
173
174 static inline void __zio_execute(zio_t *zio);
175
176 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
177
178 static int
zio_kstats_update(kstat_t * ksp,int rw)179 zio_kstats_update(kstat_t *ksp, int rw)
180 {
181 zio_stats_t *zs = ksp->ks_data;
182 if (rw == KSTAT_WRITE)
183 return (EACCES);
184
185 zs->ziostat_total_allocations.value.ui64 =
186 wmsum_value(&ziostat_sums.ziostat_total_allocations);
187 zs->ziostat_alloc_class_fallbacks.value.ui64 =
188 wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks);
189 zs->ziostat_gang_writes.value.ui64 =
190 wmsum_value(&ziostat_sums.ziostat_gang_writes);
191 zs->ziostat_gang_multilevel.value.ui64 =
192 wmsum_value(&ziostat_sums.ziostat_gang_multilevel);
193 return (0);
194 }
195
196 void
zio_init(void)197 zio_init(void)
198 {
199 size_t c;
200
201 zio_cache = kmem_cache_create("zio_cache",
202 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
203 zio_link_cache = kmem_cache_create("zio_link_cache",
204 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
205
206 wmsum_init(&ziostat_sums.ziostat_total_allocations, 0);
207 wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0);
208 wmsum_init(&ziostat_sums.ziostat_gang_writes, 0);
209 wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0);
210 zio_ksp = kstat_create("zfs", 0, "zio_stats",
211 "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) /
212 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
213 if (zio_ksp != NULL) {
214 zio_ksp->ks_data = &zio_stats;
215 zio_ksp->ks_update = zio_kstats_update;
216 kstat_install(zio_ksp);
217 }
218
219 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
220 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
221 size_t align, cflags, data_cflags;
222 char name[32];
223
224 /*
225 * Create cache for each half-power of 2 size, starting from
226 * SPA_MINBLOCKSIZE. It should give us memory space efficiency
227 * of ~7/8, sufficient for transient allocations mostly using
228 * these caches.
229 */
230 size_t p2 = size;
231 while (!ISP2(p2))
232 p2 &= p2 - 1;
233 if (!IS_P2ALIGNED(size, p2 / 2))
234 continue;
235
236 #ifndef _KERNEL
237 /*
238 * If we are using watchpoints, put each buffer on its own page,
239 * to eliminate the performance overhead of trapping to the
240 * kernel when modifying a non-watched buffer that shares the
241 * page with a watched buffer.
242 */
243 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
244 continue;
245 #endif
246
247 if (IS_P2ALIGNED(size, PAGESIZE))
248 align = PAGESIZE;
249 else
250 align = 1 << (highbit64(size ^ (size - 1)) - 1);
251
252 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
253 KMC_NODEBUG : 0;
254 data_cflags = KMC_NODEBUG;
255 if (abd_size_alloc_linear(size)) {
256 cflags |= KMC_RECLAIMABLE;
257 data_cflags |= KMC_RECLAIMABLE;
258 }
259 if (cflags == data_cflags) {
260 /*
261 * Resulting kmem caches would be identical.
262 * Save memory by creating only one.
263 */
264 (void) snprintf(name, sizeof (name),
265 "zio_buf_comb_%lu", (ulong_t)size);
266 zio_buf_cache[c] = kmem_cache_create(name, size, align,
267 NULL, NULL, NULL, NULL, NULL, cflags);
268 zio_data_buf_cache[c] = zio_buf_cache[c];
269 continue;
270 }
271 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
272 (ulong_t)size);
273 zio_buf_cache[c] = kmem_cache_create(name, size, align,
274 NULL, NULL, NULL, NULL, NULL, cflags);
275
276 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
277 (ulong_t)size);
278 zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
279 NULL, NULL, NULL, NULL, NULL, data_cflags);
280 }
281
282 while (--c != 0) {
283 ASSERT(zio_buf_cache[c] != NULL);
284 if (zio_buf_cache[c - 1] == NULL)
285 zio_buf_cache[c - 1] = zio_buf_cache[c];
286
287 ASSERT(zio_data_buf_cache[c] != NULL);
288 if (zio_data_buf_cache[c - 1] == NULL)
289 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
290 }
291
292 zio_inject_init();
293
294 lz4_init();
295 }
296
297 void
zio_fini(void)298 zio_fini(void)
299 {
300 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
301
302 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
303 for (size_t i = 0; i < n; i++) {
304 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
305 (void) printf("zio_fini: [%d] %llu != %llu\n",
306 (int)((i + 1) << SPA_MINBLOCKSHIFT),
307 (long long unsigned)zio_buf_cache_allocs[i],
308 (long long unsigned)zio_buf_cache_frees[i]);
309 }
310 #endif
311
312 /*
313 * The same kmem cache can show up multiple times in both zio_buf_cache
314 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
315 * sort it out.
316 */
317 for (size_t i = 0; i < n; i++) {
318 kmem_cache_t *cache = zio_buf_cache[i];
319 if (cache == NULL)
320 continue;
321 for (size_t j = i; j < n; j++) {
322 if (cache == zio_buf_cache[j])
323 zio_buf_cache[j] = NULL;
324 if (cache == zio_data_buf_cache[j])
325 zio_data_buf_cache[j] = NULL;
326 }
327 kmem_cache_destroy(cache);
328 }
329
330 for (size_t i = 0; i < n; i++) {
331 kmem_cache_t *cache = zio_data_buf_cache[i];
332 if (cache == NULL)
333 continue;
334 for (size_t j = i; j < n; j++) {
335 if (cache == zio_data_buf_cache[j])
336 zio_data_buf_cache[j] = NULL;
337 }
338 kmem_cache_destroy(cache);
339 }
340
341 for (size_t i = 0; i < n; i++) {
342 VERIFY3P(zio_buf_cache[i], ==, NULL);
343 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
344 }
345
346 if (zio_ksp != NULL) {
347 kstat_delete(zio_ksp);
348 zio_ksp = NULL;
349 }
350
351 wmsum_fini(&ziostat_sums.ziostat_total_allocations);
352 wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks);
353 wmsum_fini(&ziostat_sums.ziostat_gang_writes);
354 wmsum_fini(&ziostat_sums.ziostat_gang_multilevel);
355
356 kmem_cache_destroy(zio_link_cache);
357 kmem_cache_destroy(zio_cache);
358
359 zio_inject_fini();
360
361 lz4_fini();
362 }
363
364 /*
365 * ==========================================================================
366 * Allocate and free I/O buffers
367 * ==========================================================================
368 */
369
370 #if defined(ZFS_DEBUG) && defined(_KERNEL)
371 #define ZFS_ZIO_BUF_CANARY 1
372 #endif
373
374 #ifdef ZFS_ZIO_BUF_CANARY
375 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
376
377 /*
378 * Use empty space after the buffer to detect overflows.
379 *
380 * Since zio_init() creates kmem caches only for certain set of buffer sizes,
381 * allocations of different sizes may have some unused space after the data.
382 * Filling part of that space with a known pattern on allocation and checking
383 * it on free should allow us to detect some buffer overflows.
384 */
385 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)386 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
387 {
388 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
389 ulong_t *canary = p + off / sizeof (ulong_t);
390 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
391 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
392 cache[c] == cache[c + 1])
393 asize = (c + 2) << SPA_MINBLOCKSHIFT;
394 for (; off < asize; canary++, off += sizeof (ulong_t))
395 *canary = zio_buf_canary;
396 }
397
398 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)399 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
400 {
401 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
402 ulong_t *canary = p + off / sizeof (ulong_t);
403 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
404 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
405 cache[c] == cache[c + 1])
406 asize = (c + 2) << SPA_MINBLOCKSHIFT;
407 for (; off < asize; canary++, off += sizeof (ulong_t)) {
408 if (unlikely(*canary != zio_buf_canary)) {
409 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
410 p, size, (canary - p) * sizeof (ulong_t),
411 *canary, zio_buf_canary);
412 }
413 }
414 }
415 #endif
416
417 /*
418 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
419 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
420 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
421 * excess / transient data in-core during a crashdump.
422 */
423 void *
zio_buf_alloc(size_t size)424 zio_buf_alloc(size_t size)
425 {
426 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
427
428 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
429 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
430 atomic_add_64(&zio_buf_cache_allocs[c], 1);
431 #endif
432
433 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
434 #ifdef ZFS_ZIO_BUF_CANARY
435 zio_buf_put_canary(p, size, zio_buf_cache, c);
436 #endif
437 return (p);
438 }
439
440 /*
441 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
442 * crashdump if the kernel panics. This exists so that we will limit the amount
443 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
444 * of kernel heap dumped to disk when the kernel panics)
445 */
446 void *
zio_data_buf_alloc(size_t size)447 zio_data_buf_alloc(size_t size)
448 {
449 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
450
451 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
452
453 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
454 #ifdef ZFS_ZIO_BUF_CANARY
455 zio_buf_put_canary(p, size, zio_data_buf_cache, c);
456 #endif
457 return (p);
458 }
459
460 void
zio_buf_free(void * buf,size_t size)461 zio_buf_free(void *buf, size_t size)
462 {
463 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
464
465 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
466 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
467 atomic_add_64(&zio_buf_cache_frees[c], 1);
468 #endif
469
470 #ifdef ZFS_ZIO_BUF_CANARY
471 zio_buf_check_canary(buf, size, zio_buf_cache, c);
472 #endif
473 kmem_cache_free(zio_buf_cache[c], buf);
474 }
475
476 void
zio_data_buf_free(void * buf,size_t size)477 zio_data_buf_free(void *buf, size_t size)
478 {
479 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
480
481 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
482
483 #ifdef ZFS_ZIO_BUF_CANARY
484 zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
485 #endif
486 kmem_cache_free(zio_data_buf_cache[c], buf);
487 }
488
489 static void
zio_abd_free(void * abd,size_t size)490 zio_abd_free(void *abd, size_t size)
491 {
492 (void) size;
493 abd_free((abd_t *)abd);
494 }
495
496 /*
497 * ==========================================================================
498 * Push and pop I/O transform buffers
499 * ==========================================================================
500 */
501 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)502 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
503 zio_transform_func_t *transform)
504 {
505 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
506
507 zt->zt_orig_abd = zio->io_abd;
508 zt->zt_orig_size = zio->io_size;
509 zt->zt_bufsize = bufsize;
510 zt->zt_transform = transform;
511
512 zt->zt_next = zio->io_transform_stack;
513 zio->io_transform_stack = zt;
514
515 zio->io_abd = data;
516 zio->io_size = size;
517 }
518
519 void
zio_pop_transforms(zio_t * zio)520 zio_pop_transforms(zio_t *zio)
521 {
522 zio_transform_t *zt;
523
524 while ((zt = zio->io_transform_stack) != NULL) {
525 if (zt->zt_transform != NULL)
526 zt->zt_transform(zio,
527 zt->zt_orig_abd, zt->zt_orig_size);
528
529 if (zt->zt_bufsize != 0)
530 abd_free(zio->io_abd);
531
532 zio->io_abd = zt->zt_orig_abd;
533 zio->io_size = zt->zt_orig_size;
534 zio->io_transform_stack = zt->zt_next;
535
536 kmem_free(zt, sizeof (zio_transform_t));
537 }
538 }
539
540 /*
541 * ==========================================================================
542 * I/O transform callbacks for subblocks, decompression, and decryption
543 * ==========================================================================
544 */
545 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)546 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
547 {
548 ASSERT(zio->io_size > size);
549
550 if (zio->io_type == ZIO_TYPE_READ)
551 abd_copy(data, zio->io_abd, size);
552 }
553
554 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)555 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
556 {
557 if (zio->io_error == 0) {
558 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
559 zio->io_abd, data, zio->io_size, size,
560 &zio->io_prop.zp_complevel);
561
562 if (zio_injection_enabled && ret == 0)
563 ret = zio_handle_fault_injection(zio, EINVAL);
564
565 if (ret != 0)
566 zio->io_error = SET_ERROR(EIO);
567 }
568 }
569
570 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)571 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
572 {
573 int ret;
574 void *tmp;
575 blkptr_t *bp = zio->io_bp;
576 spa_t *spa = zio->io_spa;
577 uint64_t dsobj = zio->io_bookmark.zb_objset;
578 uint64_t lsize = BP_GET_LSIZE(bp);
579 dmu_object_type_t ot = BP_GET_TYPE(bp);
580 uint8_t salt[ZIO_DATA_SALT_LEN];
581 uint8_t iv[ZIO_DATA_IV_LEN];
582 uint8_t mac[ZIO_DATA_MAC_LEN];
583 boolean_t no_crypt = B_FALSE;
584
585 ASSERT(BP_USES_CRYPT(bp));
586 ASSERT3U(size, !=, 0);
587
588 if (zio->io_error != 0)
589 return;
590
591 /*
592 * Verify the cksum of MACs stored in an indirect bp. It will always
593 * be possible to verify this since it does not require an encryption
594 * key.
595 */
596 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
597 zio_crypt_decode_mac_bp(bp, mac);
598
599 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
600 /*
601 * We haven't decompressed the data yet, but
602 * zio_crypt_do_indirect_mac_checksum() requires
603 * decompressed data to be able to parse out the MACs
604 * from the indirect block. We decompress it now and
605 * throw away the result after we are finished.
606 */
607 abd_t *abd = abd_alloc_linear(lsize, B_TRUE);
608 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
609 zio->io_abd, abd, zio->io_size, lsize,
610 &zio->io_prop.zp_complevel);
611 if (ret != 0) {
612 abd_free(abd);
613 ret = SET_ERROR(EIO);
614 goto error;
615 }
616 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
617 abd, lsize, BP_SHOULD_BYTESWAP(bp), mac);
618 abd_free(abd);
619 } else {
620 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
621 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
622 }
623 abd_copy(data, zio->io_abd, size);
624
625 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
626 ret = zio_handle_decrypt_injection(spa,
627 &zio->io_bookmark, ot, ECKSUM);
628 }
629 if (ret != 0)
630 goto error;
631
632 return;
633 }
634
635 /*
636 * If this is an authenticated block, just check the MAC. It would be
637 * nice to separate this out into its own flag, but when this was done,
638 * we had run out of bits in what is now zio_flag_t. Future cleanup
639 * could make this a flag bit.
640 */
641 if (BP_IS_AUTHENTICATED(bp)) {
642 if (ot == DMU_OT_OBJSET) {
643 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
644 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
645 } else {
646 zio_crypt_decode_mac_bp(bp, mac);
647 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
648 zio->io_abd, size, mac);
649 if (zio_injection_enabled && ret == 0) {
650 ret = zio_handle_decrypt_injection(spa,
651 &zio->io_bookmark, ot, ECKSUM);
652 }
653 }
654 abd_copy(data, zio->io_abd, size);
655
656 if (ret != 0)
657 goto error;
658
659 return;
660 }
661
662 zio_crypt_decode_params_bp(bp, salt, iv);
663
664 if (ot == DMU_OT_INTENT_LOG) {
665 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
666 zio_crypt_decode_mac_zil(tmp, mac);
667 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
668 } else {
669 zio_crypt_decode_mac_bp(bp, mac);
670 }
671
672 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
673 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
674 zio->io_abd, &no_crypt);
675 if (no_crypt)
676 abd_copy(data, zio->io_abd, size);
677
678 if (ret != 0)
679 goto error;
680
681 return;
682
683 error:
684 /* assert that the key was found unless this was speculative */
685 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
686
687 /*
688 * If there was a decryption / authentication error return EIO as
689 * the io_error. If this was not a speculative zio, create an ereport.
690 */
691 if (ret == ECKSUM) {
692 zio->io_error = SET_ERROR(EIO);
693 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
694 spa_log_error(spa, &zio->io_bookmark,
695 BP_GET_PHYSICAL_BIRTH(zio->io_bp));
696 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
697 spa, NULL, &zio->io_bookmark, zio, 0);
698 }
699 } else {
700 zio->io_error = ret;
701 }
702 }
703
704 /*
705 * ==========================================================================
706 * I/O parent/child relationships and pipeline interlocks
707 * ==========================================================================
708 */
709 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)710 zio_walk_parents(zio_t *cio, zio_link_t **zl)
711 {
712 list_t *pl = &cio->io_parent_list;
713
714 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
715 if (*zl == NULL)
716 return (NULL);
717
718 ASSERT((*zl)->zl_child == cio);
719 return ((*zl)->zl_parent);
720 }
721
722 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)723 zio_walk_children(zio_t *pio, zio_link_t **zl)
724 {
725 list_t *cl = &pio->io_child_list;
726
727 ASSERT(MUTEX_HELD(&pio->io_lock));
728
729 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
730 if (*zl == NULL)
731 return (NULL);
732
733 ASSERT((*zl)->zl_parent == pio);
734 return ((*zl)->zl_child);
735 }
736
737 zio_t *
zio_unique_parent(zio_t * cio)738 zio_unique_parent(zio_t *cio)
739 {
740 zio_link_t *zl = NULL;
741 zio_t *pio = zio_walk_parents(cio, &zl);
742
743 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
744 return (pio);
745 }
746
747 static void
zio_add_child_impl(zio_t * pio,zio_t * cio,boolean_t first)748 zio_add_child_impl(zio_t *pio, zio_t *cio, boolean_t first)
749 {
750 /*
751 * Logical I/Os can have logical, gang, or vdev children.
752 * Gang I/Os can have gang or vdev children.
753 * Vdev I/Os can only have vdev children.
754 * The following ASSERT captures all of these constraints.
755 */
756 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
757
758 /* Parent should not have READY stage if child doesn't have it. */
759 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
760 (cio->io_child_type != ZIO_CHILD_VDEV),
761 (pio->io_pipeline & ZIO_STAGE_READY) == 0);
762
763 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
764 zl->zl_parent = pio;
765 zl->zl_child = cio;
766
767 mutex_enter(&pio->io_lock);
768
769 if (first)
770 ASSERT(list_is_empty(&cio->io_parent_list));
771 else
772 mutex_enter(&cio->io_lock);
773
774 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
775
776 uint64_t *countp = pio->io_children[cio->io_child_type];
777 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
778 countp[w] += !cio->io_state[w];
779
780 list_insert_head(&pio->io_child_list, zl);
781 list_insert_head(&cio->io_parent_list, zl);
782
783 if (!first)
784 mutex_exit(&cio->io_lock);
785
786 mutex_exit(&pio->io_lock);
787 }
788
789 void
zio_add_child(zio_t * pio,zio_t * cio)790 zio_add_child(zio_t *pio, zio_t *cio)
791 {
792 zio_add_child_impl(pio, cio, B_FALSE);
793 }
794
795 static void
zio_add_child_first(zio_t * pio,zio_t * cio)796 zio_add_child_first(zio_t *pio, zio_t *cio)
797 {
798 zio_add_child_impl(pio, cio, B_TRUE);
799 }
800
801 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)802 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
803 {
804 ASSERT(zl->zl_parent == pio);
805 ASSERT(zl->zl_child == cio);
806
807 mutex_enter(&pio->io_lock);
808 mutex_enter(&cio->io_lock);
809
810 list_remove(&pio->io_child_list, zl);
811 list_remove(&cio->io_parent_list, zl);
812
813 mutex_exit(&cio->io_lock);
814 mutex_exit(&pio->io_lock);
815 kmem_cache_free(zio_link_cache, zl);
816 }
817
818 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)819 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
820 {
821 boolean_t waiting = B_FALSE;
822
823 mutex_enter(&zio->io_lock);
824 ASSERT(zio->io_stall == NULL);
825 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
826 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
827 continue;
828
829 uint64_t *countp = &zio->io_children[c][wait];
830 if (*countp != 0) {
831 zio->io_stage >>= 1;
832 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
833 zio->io_stall = countp;
834 waiting = B_TRUE;
835 break;
836 }
837 }
838 mutex_exit(&zio->io_lock);
839 return (waiting);
840 }
841
842 __attribute__((always_inline))
843 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)844 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
845 zio_t **next_to_executep)
846 {
847 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
848 int *errorp = &pio->io_child_error[zio->io_child_type];
849
850 mutex_enter(&pio->io_lock);
851 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
852 *errorp = zio_worst_error(*errorp, zio->io_error);
853 pio->io_post |= zio->io_post;
854 ASSERT3U(*countp, >, 0);
855
856 (*countp)--;
857
858 if (*countp == 0 && pio->io_stall == countp) {
859 zio_taskq_type_t type =
860 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
861 ZIO_TASKQ_INTERRUPT;
862 pio->io_stall = NULL;
863 mutex_exit(&pio->io_lock);
864
865 /*
866 * If we can tell the caller to execute this parent next, do
867 * so. We do this if the parent's zio type matches the child's
868 * type, or if it's a zio_null() with no done callback, and so
869 * has no actual work to do. Otherwise dispatch the parent zio
870 * in its own taskq.
871 *
872 * Having the caller execute the parent when possible reduces
873 * locking on the zio taskq's, reduces context switch
874 * overhead, and has no recursion penalty. Note that one
875 * read from disk typically causes at least 3 zio's: a
876 * zio_null(), the logical zio_read(), and then a physical
877 * zio. When the physical ZIO completes, we are able to call
878 * zio_done() on all 3 of these zio's from one invocation of
879 * zio_execute() by returning the parent back to
880 * zio_execute(). Since the parent isn't executed until this
881 * thread returns back to zio_execute(), the caller should do
882 * so promptly.
883 *
884 * In other cases, dispatching the parent prevents
885 * overflowing the stack when we have deeply nested
886 * parent-child relationships, as we do with the "mega zio"
887 * of writes for spa_sync(), and the chain of ZIL blocks.
888 */
889 if (next_to_executep != NULL && *next_to_executep == NULL &&
890 (pio->io_type == zio->io_type ||
891 (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
892 *next_to_executep = pio;
893 } else {
894 zio_taskq_dispatch(pio, type, B_FALSE);
895 }
896 } else {
897 mutex_exit(&pio->io_lock);
898 }
899 }
900
901 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)902 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
903 {
904 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
905 zio->io_error = zio->io_child_error[c];
906 }
907
908 int
zio_bookmark_compare(const void * x1,const void * x2)909 zio_bookmark_compare(const void *x1, const void *x2)
910 {
911 const zio_t *z1 = x1;
912 const zio_t *z2 = x2;
913
914 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
915 return (-1);
916 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
917 return (1);
918
919 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
920 return (-1);
921 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
922 return (1);
923
924 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
925 return (-1);
926 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
927 return (1);
928
929 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
930 return (-1);
931 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
932 return (1);
933
934 if (z1 < z2)
935 return (-1);
936 if (z1 > z2)
937 return (1);
938
939 return (0);
940 }
941
942 /*
943 * ==========================================================================
944 * Create the various types of I/O (read, write, free, etc)
945 * ==========================================================================
946 */
947 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)948 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
949 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
950 void *private, zio_type_t type, zio_priority_t priority,
951 zio_flag_t flags, vdev_t *vd, uint64_t offset,
952 const zbookmark_phys_t *zb, enum zio_stage stage,
953 enum zio_stage pipeline)
954 {
955 zio_t *zio;
956
957 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
958 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
959 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
960
961 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
962 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
963 ASSERT(vd || stage == ZIO_STAGE_OPEN);
964
965 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
966
967 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
968 memset(zio, 0, sizeof (zio_t));
969
970 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
971 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
972
973 list_create(&zio->io_parent_list, sizeof (zio_link_t),
974 offsetof(zio_link_t, zl_parent_node));
975 list_create(&zio->io_child_list, sizeof (zio_link_t),
976 offsetof(zio_link_t, zl_child_node));
977 metaslab_trace_init(&zio->io_alloc_list);
978
979 if (vd != NULL)
980 zio->io_child_type = ZIO_CHILD_VDEV;
981 else if (flags & ZIO_FLAG_GANG_CHILD)
982 zio->io_child_type = ZIO_CHILD_GANG;
983 else if (flags & ZIO_FLAG_DDT_CHILD)
984 zio->io_child_type = ZIO_CHILD_DDT;
985 else
986 zio->io_child_type = ZIO_CHILD_LOGICAL;
987
988 if (bp != NULL) {
989 if (type != ZIO_TYPE_WRITE ||
990 zio->io_child_type == ZIO_CHILD_DDT) {
991 zio->io_bp_copy = *bp;
992 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
993 } else {
994 zio->io_bp = (blkptr_t *)bp;
995 }
996 zio->io_bp_orig = *bp;
997 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
998 zio->io_logical = zio;
999 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
1000 pipeline |= ZIO_GANG_STAGES;
1001 if (flags & ZIO_FLAG_PREALLOCATED) {
1002 BP_ZERO_DVAS(zio->io_bp);
1003 BP_SET_BIRTH(zio->io_bp, 0, 0);
1004 }
1005 }
1006
1007 zio->io_spa = spa;
1008 zio->io_txg = txg;
1009 zio->io_done = done;
1010 zio->io_private = private;
1011 zio->io_type = type;
1012 zio->io_priority = priority;
1013 zio->io_vd = vd;
1014 zio->io_offset = offset;
1015 zio->io_orig_abd = zio->io_abd = data;
1016 zio->io_orig_size = zio->io_size = psize;
1017 zio->io_lsize = lsize;
1018 zio->io_orig_flags = zio->io_flags = flags;
1019 zio->io_orig_stage = zio->io_stage = stage;
1020 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
1021 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
1022 zio->io_allocator = ZIO_ALLOCATOR_NONE;
1023
1024 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
1025 (pipeline & ZIO_STAGE_READY) == 0;
1026 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
1027
1028 if (zb != NULL)
1029 zio->io_bookmark = *zb;
1030
1031 if (pio != NULL) {
1032 zio->io_metaslab_class = pio->io_metaslab_class;
1033 if (zio->io_logical == NULL)
1034 zio->io_logical = pio->io_logical;
1035 if (zio->io_child_type == ZIO_CHILD_GANG)
1036 zio->io_gang_leader = pio->io_gang_leader;
1037 zio_add_child_first(pio, zio);
1038 }
1039
1040 taskq_init_ent(&zio->io_tqent);
1041
1042 return (zio);
1043 }
1044
1045 void
zio_destroy(zio_t * zio)1046 zio_destroy(zio_t *zio)
1047 {
1048 metaslab_trace_fini(&zio->io_alloc_list);
1049 list_destroy(&zio->io_parent_list);
1050 list_destroy(&zio->io_child_list);
1051 mutex_destroy(&zio->io_lock);
1052 cv_destroy(&zio->io_cv);
1053 kmem_cache_free(zio_cache, zio);
1054 }
1055
1056 /*
1057 * ZIO intended to be between others. Provides synchronization at READY
1058 * and DONE pipeline stages and calls the respective callbacks.
1059 */
1060 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)1061 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1062 void *private, zio_flag_t flags)
1063 {
1064 zio_t *zio;
1065
1066 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1067 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1068 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1069
1070 return (zio);
1071 }
1072
1073 /*
1074 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a
1075 * READY pipeline stage (is ready on creation), so it should not be used
1076 * as child of any ZIO that may need waiting for grandchildren READY stage
1077 * (any other ZIO type).
1078 */
1079 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1080 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1081 {
1082 zio_t *zio;
1083
1084 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1085 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1086 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1087
1088 return (zio);
1089 }
1090
1091 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1092 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1093 enum blk_verify_flag blk_verify, const char *fmt, ...)
1094 {
1095 va_list adx;
1096 char buf[256];
1097
1098 va_start(adx, fmt);
1099 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
1100 va_end(adx);
1101
1102 zfs_dbgmsg("bad blkptr at %px: "
1103 "DVA[0]=%#llx/%#llx "
1104 "DVA[1]=%#llx/%#llx "
1105 "DVA[2]=%#llx/%#llx "
1106 "prop=%#llx "
1107 "prop2=%#llx "
1108 "pad=%#llx "
1109 "phys_birth=%#llx "
1110 "birth=%#llx "
1111 "fill=%#llx "
1112 "cksum=%#llx/%#llx/%#llx/%#llx",
1113 bp,
1114 (long long)bp->blk_dva[0].dva_word[0],
1115 (long long)bp->blk_dva[0].dva_word[1],
1116 (long long)bp->blk_dva[1].dva_word[0],
1117 (long long)bp->blk_dva[1].dva_word[1],
1118 (long long)bp->blk_dva[2].dva_word[0],
1119 (long long)bp->blk_dva[2].dva_word[1],
1120 (long long)bp->blk_prop,
1121 (long long)bp->blk_prop2,
1122 (long long)bp->blk_pad,
1123 (long long)BP_GET_RAW_PHYSICAL_BIRTH(bp),
1124 (long long)BP_GET_LOGICAL_BIRTH(bp),
1125 (long long)bp->blk_fill,
1126 (long long)bp->blk_cksum.zc_word[0],
1127 (long long)bp->blk_cksum.zc_word[1],
1128 (long long)bp->blk_cksum.zc_word[2],
1129 (long long)bp->blk_cksum.zc_word[3]);
1130 switch (blk_verify) {
1131 case BLK_VERIFY_HALT:
1132 zfs_panic_recover("%s: %s", spa_name(spa), buf);
1133 break;
1134 case BLK_VERIFY_LOG:
1135 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1136 break;
1137 case BLK_VERIFY_ONLY:
1138 break;
1139 }
1140
1141 return (1);
1142 }
1143
1144 /*
1145 * Verify the block pointer fields contain reasonable values. This means
1146 * it only contains known object types, checksum/compression identifiers,
1147 * block sizes within the maximum allowed limits, valid DVAs, etc.
1148 *
1149 * If everything checks out 0 is returned. The zfs_blkptr_verify
1150 * argument controls the behavior when an invalid field is detected.
1151 *
1152 * Values for blk_verify_flag:
1153 * BLK_VERIFY_ONLY: evaluate the block
1154 * BLK_VERIFY_LOG: evaluate the block and log problems
1155 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1156 *
1157 * Values for blk_config_flag:
1158 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1159 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1160 * obtained for reader
1161 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1162 * performance
1163 */
1164 int
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1165 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1166 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1167 {
1168 int errors = 0;
1169
1170 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1171 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1172 "blkptr at %px has invalid TYPE %llu",
1173 bp, (longlong_t)BP_GET_TYPE(bp));
1174 }
1175 if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1176 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1177 "blkptr at %px has invalid COMPRESS %llu",
1178 bp, (longlong_t)BP_GET_COMPRESS(bp));
1179 }
1180 if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1181 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1182 "blkptr at %px has invalid LSIZE %llu",
1183 bp, (longlong_t)BP_GET_LSIZE(bp));
1184 }
1185 if (BP_IS_EMBEDDED(bp)) {
1186 if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1187 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1188 "blkptr at %px has invalid ETYPE %llu",
1189 bp, (longlong_t)BPE_GET_ETYPE(bp));
1190 }
1191 if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1192 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1193 "blkptr at %px has invalid PSIZE %llu",
1194 bp, (longlong_t)BPE_GET_PSIZE(bp));
1195 }
1196 return (errors ? ECKSUM : 0);
1197 } else if (BP_IS_HOLE(bp)) {
1198 /*
1199 * Holes are allowed (expected, even) to have no DVAs, no
1200 * checksum, and no psize.
1201 */
1202 return (errors ? ECKSUM : 0);
1203 } else if (unlikely(!DVA_IS_VALID(&bp->blk_dva[0]))) {
1204 /* Non-hole, non-embedded BPs _must_ have at least one DVA */
1205 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1206 "blkptr at %px has no valid DVAs", bp);
1207 }
1208 if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1209 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1210 "blkptr at %px has invalid CHECKSUM %llu",
1211 bp, (longlong_t)BP_GET_CHECKSUM(bp));
1212 }
1213 if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1214 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1215 "blkptr at %px has invalid PSIZE %llu",
1216 bp, (longlong_t)BP_GET_PSIZE(bp));
1217 }
1218
1219 /*
1220 * Do not verify individual DVAs if the config is not trusted. This
1221 * will be done once the zio is executed in vdev_mirror_map_alloc.
1222 */
1223 if (unlikely(!spa->spa_trust_config))
1224 return (errors ? ECKSUM : 0);
1225
1226 switch (blk_config) {
1227 case BLK_CONFIG_HELD:
1228 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1229 break;
1230 case BLK_CONFIG_NEEDED:
1231 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1232 break;
1233 case BLK_CONFIG_NEEDED_TRY:
1234 if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER))
1235 return (EBUSY);
1236 break;
1237 case BLK_CONFIG_SKIP:
1238 return (errors ? ECKSUM : 0);
1239 default:
1240 panic("invalid blk_config %u", blk_config);
1241 }
1242
1243 /*
1244 * Pool-specific checks.
1245 *
1246 * Note: it would be nice to verify that the logical birth
1247 * and physical birth are not too large. However,
1248 * spa_freeze() allows the birth time of log blocks (and
1249 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1250 * large.
1251 */
1252 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1253 const dva_t *dva = &bp->blk_dva[i];
1254 uint64_t vdevid = DVA_GET_VDEV(dva);
1255
1256 if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1257 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1258 "blkptr at %px DVA %u has invalid VDEV %llu",
1259 bp, i, (longlong_t)vdevid);
1260 continue;
1261 }
1262 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1263 if (unlikely(vd == NULL)) {
1264 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1265 "blkptr at %px DVA %u has invalid VDEV %llu",
1266 bp, i, (longlong_t)vdevid);
1267 continue;
1268 }
1269 if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1270 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1271 "blkptr at %px DVA %u has hole VDEV %llu",
1272 bp, i, (longlong_t)vdevid);
1273 continue;
1274 }
1275 if (vd->vdev_ops == &vdev_missing_ops) {
1276 /*
1277 * "missing" vdevs are valid during import, but we
1278 * don't have their detailed info (e.g. asize), so
1279 * we can't perform any more checks on them.
1280 */
1281 continue;
1282 }
1283 uint64_t offset = DVA_GET_OFFSET(dva);
1284 uint64_t asize = DVA_GET_ASIZE(dva);
1285 if (DVA_GET_GANG(dva))
1286 asize = vdev_gang_header_asize(vd);
1287 if (unlikely(offset + asize > vd->vdev_asize)) {
1288 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1289 "blkptr at %px DVA %u has invalid OFFSET %llu",
1290 bp, i, (longlong_t)offset);
1291 }
1292 }
1293 if (blk_config == BLK_CONFIG_NEEDED || blk_config ==
1294 BLK_CONFIG_NEEDED_TRY)
1295 spa_config_exit(spa, SCL_VDEV, bp);
1296
1297 return (errors ? ECKSUM : 0);
1298 }
1299
1300 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1301 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1302 {
1303 (void) bp;
1304 uint64_t vdevid = DVA_GET_VDEV(dva);
1305
1306 if (vdevid >= spa->spa_root_vdev->vdev_children)
1307 return (B_FALSE);
1308
1309 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1310 if (vd == NULL)
1311 return (B_FALSE);
1312
1313 if (vd->vdev_ops == &vdev_hole_ops)
1314 return (B_FALSE);
1315
1316 if (vd->vdev_ops == &vdev_missing_ops) {
1317 return (B_FALSE);
1318 }
1319
1320 uint64_t offset = DVA_GET_OFFSET(dva);
1321 uint64_t asize = DVA_GET_ASIZE(dva);
1322
1323 if (DVA_GET_GANG(dva))
1324 asize = vdev_gang_header_asize(vd);
1325 if (offset + asize > vd->vdev_asize)
1326 return (B_FALSE);
1327
1328 return (B_TRUE);
1329 }
1330
1331 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1332 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1333 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1334 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1335 {
1336 zio_t *zio;
1337
1338 zio = zio_create(pio, spa, BP_GET_PHYSICAL_BIRTH(bp), bp,
1339 data, size, size, done, private,
1340 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1341 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1342 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1343
1344 return (zio);
1345 }
1346
1347 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1348 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1349 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1350 zio_done_func_t *ready, zio_done_func_t *children_ready,
1351 zio_done_func_t *done, void *private, zio_priority_t priority,
1352 zio_flag_t flags, const zbookmark_phys_t *zb)
1353 {
1354 zio_t *zio;
1355 enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ?
1356 ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ?
1357 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE;
1358
1359
1360 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1361 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1362 ZIO_STAGE_OPEN, pipeline);
1363
1364 zio->io_ready = ready;
1365 zio->io_children_ready = children_ready;
1366 zio->io_prop = *zp;
1367
1368 /*
1369 * Data can be NULL if we are going to call zio_write_override() to
1370 * provide the already-allocated BP. But we may need the data to
1371 * verify a dedup hit (if requested). In this case, don't try to
1372 * dedup (just take the already-allocated BP verbatim). Encrypted
1373 * dedup blocks need data as well so we also disable dedup in this
1374 * case.
1375 */
1376 if (data == NULL &&
1377 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1378 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1379 }
1380
1381 return (zio);
1382 }
1383
1384 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1385 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1386 uint64_t size, zio_done_func_t *done, void *private,
1387 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1388 {
1389 zio_t *zio;
1390
1391 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1392 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1393 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1394
1395 return (zio);
1396 }
1397
1398 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,int gang_copies,boolean_t nopwrite,boolean_t brtwrite)1399 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, int gang_copies,
1400 boolean_t nopwrite, boolean_t brtwrite)
1401 {
1402 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1403 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1404 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1405 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1406 ASSERT(!brtwrite || !nopwrite);
1407
1408 /*
1409 * We must reset the io_prop to match the values that existed
1410 * when the bp was first written by dmu_sync() keeping in mind
1411 * that nopwrite and dedup are mutually exclusive.
1412 */
1413 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1414 zio->io_prop.zp_nopwrite = nopwrite;
1415 zio->io_prop.zp_brtwrite = brtwrite;
1416 zio->io_prop.zp_copies = copies;
1417 zio->io_prop.zp_gang_copies = gang_copies;
1418 zio->io_bp_override = bp;
1419 }
1420
1421 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1422 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1423 {
1424
1425 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1426
1427 /*
1428 * The check for EMBEDDED is a performance optimization. We
1429 * process the free here (by ignoring it) rather than
1430 * putting it on the list and then processing it in zio_free_sync().
1431 */
1432 if (BP_IS_EMBEDDED(bp))
1433 return;
1434
1435 /*
1436 * Frees that are for the currently-syncing txg, are not going to be
1437 * deferred, and which will not need to do a read (i.e. not GANG or
1438 * DEDUP), can be processed immediately. Otherwise, put them on the
1439 * in-memory list for later processing.
1440 *
1441 * Note that we only defer frees after zfs_sync_pass_deferred_free
1442 * when the log space map feature is disabled. [see relevant comment
1443 * in spa_sync_iterate_to_convergence()]
1444 */
1445 if (BP_IS_GANG(bp) ||
1446 BP_GET_DEDUP(bp) ||
1447 txg != spa->spa_syncing_txg ||
1448 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1449 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1450 brt_maybe_exists(spa, bp)) {
1451 metaslab_check_free(spa, bp);
1452 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1453 } else {
1454 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1455 }
1456 }
1457
1458 /*
1459 * To improve performance, this function may return NULL if we were able
1460 * to do the free immediately. This avoids the cost of creating a zio
1461 * (and linking it to the parent, etc).
1462 */
1463 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1464 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1465 zio_flag_t flags)
1466 {
1467 ASSERT(!BP_IS_HOLE(bp));
1468 ASSERT(spa_syncing_txg(spa) == txg);
1469
1470 if (BP_IS_EMBEDDED(bp))
1471 return (NULL);
1472
1473 metaslab_check_free(spa, bp);
1474 arc_freed(spa, bp);
1475 dsl_scan_freed(spa, bp);
1476
1477 if (BP_IS_GANG(bp) ||
1478 BP_GET_DEDUP(bp) ||
1479 brt_maybe_exists(spa, bp)) {
1480 /*
1481 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1482 * block header, the DDT or the BRT), so issue them
1483 * asynchronously so that this thread is not tied up.
1484 */
1485 enum zio_stage stage =
1486 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1487
1488 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1489 BP_GET_PSIZE(bp), NULL, NULL,
1490 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1491 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1492 } else {
1493 metaslab_free(spa, bp, txg, B_FALSE);
1494 return (NULL);
1495 }
1496 }
1497
1498 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1499 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1500 zio_done_func_t *done, void *private, zio_flag_t flags)
1501 {
1502 zio_t *zio;
1503
1504 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1505 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1506
1507 if (BP_IS_EMBEDDED(bp))
1508 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1509
1510 /*
1511 * A claim is an allocation of a specific block. Claims are needed
1512 * to support immediate writes in the intent log. The issue is that
1513 * immediate writes contain committed data, but in a txg that was
1514 * *not* committed. Upon opening the pool after an unclean shutdown,
1515 * the intent log claims all blocks that contain immediate write data
1516 * so that the SPA knows they're in use.
1517 *
1518 * All claims *must* be resolved in the first txg -- before the SPA
1519 * starts allocating blocks -- so that nothing is allocated twice.
1520 * If txg == 0 we just verify that the block is claimable.
1521 */
1522 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1523 spa_min_claim_txg(spa));
1524 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1525 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1526
1527 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1528 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1529 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1530 ASSERT0(zio->io_queued_timestamp);
1531
1532 return (zio);
1533 }
1534
1535 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1536 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1537 zio_done_func_t *done, void *private, zio_priority_t priority,
1538 zio_flag_t flags, enum trim_flag trim_flags)
1539 {
1540 zio_t *zio;
1541
1542 ASSERT0(vd->vdev_children);
1543 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1544 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1545 ASSERT3U(size, !=, 0);
1546
1547 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1548 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1549 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1550 zio->io_trim_flags = trim_flags;
1551
1552 return (zio);
1553 }
1554
1555 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1556 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1557 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1558 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1559 {
1560 zio_t *zio;
1561
1562 ASSERT(vd->vdev_children == 0);
1563 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1564 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1565 ASSERT3U(offset + size, <=, vd->vdev_psize);
1566
1567 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1568 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1569 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1570
1571 zio->io_prop.zp_checksum = checksum;
1572
1573 return (zio);
1574 }
1575
1576 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1577 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1578 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1579 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1580 {
1581 zio_t *zio;
1582
1583 ASSERT(vd->vdev_children == 0);
1584 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1585 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1586 ASSERT3U(offset + size, <=, vd->vdev_psize);
1587
1588 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1589 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1590 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1591
1592 zio->io_prop.zp_checksum = checksum;
1593
1594 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1595 /*
1596 * zec checksums are necessarily destructive -- they modify
1597 * the end of the write buffer to hold the verifier/checksum.
1598 * Therefore, we must make a local copy in case the data is
1599 * being written to multiple places in parallel.
1600 */
1601 abd_t *wbuf = abd_alloc_sametype(data, size);
1602 abd_copy(wbuf, data, size);
1603
1604 zio_push_transform(zio, wbuf, size, size, NULL);
1605 }
1606
1607 return (zio);
1608 }
1609
1610 /*
1611 * Create a child I/O to do some work for us.
1612 */
1613 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1614 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1615 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1616 zio_flag_t flags, zio_done_func_t *done, void *private)
1617 {
1618 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1619 zio_t *zio;
1620
1621 /*
1622 * vdev child I/Os do not propagate their error to the parent.
1623 * Therefore, for correct operation the caller *must* check for
1624 * and handle the error in the child i/o's done callback.
1625 * The only exceptions are i/os that we don't care about
1626 * (OPTIONAL or REPAIR).
1627 */
1628 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1629 done != NULL);
1630
1631 if (type == ZIO_TYPE_READ && bp != NULL) {
1632 /*
1633 * If we have the bp, then the child should perform the
1634 * checksum and the parent need not. This pushes error
1635 * detection as close to the leaves as possible and
1636 * eliminates redundant checksums in the interior nodes.
1637 */
1638 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1639 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1640 /*
1641 * We never allow the mirror VDEV to attempt reading from any
1642 * additional data copies after the first Direct I/O checksum
1643 * verify failure. This is to avoid bad data being written out
1644 * through the mirror during self healing. See comment in
1645 * vdev_mirror_io_done() for more details.
1646 */
1647 ASSERT0(pio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
1648 } else if (type == ZIO_TYPE_WRITE &&
1649 pio->io_prop.zp_direct_write == B_TRUE) {
1650 /*
1651 * By default we only will verify checksums for Direct I/O
1652 * writes for Linux. FreeBSD is able to place user pages under
1653 * write protection before issuing them to the ZIO pipeline.
1654 *
1655 * Checksum validation errors will only be reported through
1656 * the top-level VDEV, which is set by this child ZIO.
1657 */
1658 ASSERT3P(bp, !=, NULL);
1659 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
1660 pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY;
1661 }
1662
1663 if (vd->vdev_ops->vdev_op_leaf) {
1664 ASSERT0(vd->vdev_children);
1665 offset += VDEV_LABEL_START_SIZE;
1666 }
1667
1668 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1669
1670 /*
1671 * If we've decided to do a repair, the write is not speculative --
1672 * even if the original read was.
1673 */
1674 if (flags & ZIO_FLAG_IO_REPAIR)
1675 flags &= ~ZIO_FLAG_SPECULATIVE;
1676
1677 /*
1678 * If we're creating a child I/O that is not associated with a
1679 * top-level vdev, then the child zio is not an allocating I/O.
1680 * If this is a retried I/O then we ignore it since we will
1681 * have already processed the original allocating I/O.
1682 */
1683 if (flags & ZIO_FLAG_ALLOC_THROTTLED &&
1684 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1685 ASSERT(pio->io_metaslab_class != NULL);
1686 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1687 ASSERT(type == ZIO_TYPE_WRITE);
1688 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1689 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1690 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1691 pio->io_child_type == ZIO_CHILD_GANG);
1692
1693 flags &= ~ZIO_FLAG_ALLOC_THROTTLED;
1694 }
1695
1696 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1697 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1698 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1699 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1700
1701 return (zio);
1702 }
1703
1704 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1705 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1706 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1707 zio_done_func_t *done, void *private)
1708 {
1709 zio_t *zio;
1710
1711 ASSERT(vd->vdev_ops->vdev_op_leaf);
1712
1713 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1714 data, size, size, done, private, type, priority,
1715 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1716 vd, offset, NULL,
1717 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1718
1719 return (zio);
1720 }
1721
1722
1723 /*
1724 * Send a flush command to the given vdev. Unlike most zio creation functions,
1725 * the flush zios are issued immediately. You can wait on pio to pause until
1726 * the flushes complete.
1727 */
1728 void
zio_flush(zio_t * pio,vdev_t * vd)1729 zio_flush(zio_t *pio, vdev_t *vd)
1730 {
1731 const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1732 ZIO_FLAG_DONT_RETRY;
1733
1734 if (vd->vdev_nowritecache)
1735 return;
1736
1737 if (vd->vdev_children == 0) {
1738 zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1739 NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1740 NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1741 } else {
1742 for (uint64_t c = 0; c < vd->vdev_children; c++)
1743 zio_flush(pio, vd->vdev_child[c]);
1744 }
1745 }
1746
1747 void
zio_shrink(zio_t * zio,uint64_t size)1748 zio_shrink(zio_t *zio, uint64_t size)
1749 {
1750 ASSERT3P(zio->io_executor, ==, NULL);
1751 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1752 ASSERT3U(size, <=, zio->io_size);
1753
1754 /*
1755 * We don't shrink for raidz because of problems with the
1756 * reconstruction when reading back less than the block size.
1757 * Note, BP_IS_RAIDZ() assumes no compression.
1758 */
1759 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1760 if (!BP_IS_RAIDZ(zio->io_bp)) {
1761 /* we are not doing a raw write */
1762 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1763 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1764 }
1765 }
1766
1767 /*
1768 * Round provided allocation size up to a value that can be allocated
1769 * by at least some vdev(s) in the pool with minimum or no additional
1770 * padding and without extra space usage on others
1771 */
1772 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1773 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1774 {
1775 if (size > spa->spa_min_alloc)
1776 return (roundup(size, spa->spa_gcd_alloc));
1777 return (spa->spa_min_alloc);
1778 }
1779
1780 size_t
zio_get_compression_max_size(enum zio_compress compress,uint64_t gcd_alloc,uint64_t min_alloc,size_t s_len)1781 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc,
1782 uint64_t min_alloc, size_t s_len)
1783 {
1784 size_t d_len;
1785
1786 /* minimum 12.5% must be saved (legacy value, may be changed later) */
1787 d_len = s_len - (s_len >> 3);
1788
1789 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1790 if (compress == ZIO_COMPRESS_ZLE)
1791 return (d_len);
1792
1793 d_len = d_len - d_len % gcd_alloc;
1794
1795 if (d_len < min_alloc)
1796 return (BPE_PAYLOAD_SIZE);
1797 return (d_len);
1798 }
1799
1800 /*
1801 * ==========================================================================
1802 * Prepare to read and write logical blocks
1803 * ==========================================================================
1804 */
1805
1806 static zio_t *
zio_read_bp_init(zio_t * zio)1807 zio_read_bp_init(zio_t *zio)
1808 {
1809 blkptr_t *bp = zio->io_bp;
1810 uint64_t psize =
1811 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1812
1813 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1814
1815 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1816 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1817 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1818 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1819 psize, psize, zio_decompress);
1820 }
1821
1822 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1823 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1824 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1825 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1826 psize, psize, zio_decrypt);
1827 }
1828
1829 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1830 int psize = BPE_GET_PSIZE(bp);
1831 void *data = abd_borrow_buf(zio->io_abd, psize);
1832
1833 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1834 decode_embedded_bp_compressed(bp, data);
1835 abd_return_buf_copy(zio->io_abd, data, psize);
1836 } else {
1837 ASSERT(!BP_IS_EMBEDDED(bp));
1838 }
1839
1840 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1841 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1842
1843 return (zio);
1844 }
1845
1846 static zio_t *
zio_write_bp_init(zio_t * zio)1847 zio_write_bp_init(zio_t *zio)
1848 {
1849 if (!IO_IS_ALLOCATING(zio))
1850 return (zio);
1851
1852 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1853
1854 if (zio->io_bp_override) {
1855 blkptr_t *bp = zio->io_bp;
1856 zio_prop_t *zp = &zio->io_prop;
1857
1858 ASSERT(BP_GET_BIRTH(bp) != zio->io_txg);
1859
1860 *bp = *zio->io_bp_override;
1861 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1862
1863 if (zp->zp_brtwrite)
1864 return (zio);
1865
1866 ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1867
1868 if (BP_IS_EMBEDDED(bp))
1869 return (zio);
1870
1871 /*
1872 * If we've been overridden and nopwrite is set then
1873 * set the flag accordingly to indicate that a nopwrite
1874 * has already occurred.
1875 */
1876 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1877 ASSERT(!zp->zp_dedup);
1878 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1879 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1880 return (zio);
1881 }
1882
1883 ASSERT(!zp->zp_nopwrite);
1884
1885 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1886 return (zio);
1887
1888 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1889 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1890
1891 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1892 !zp->zp_encrypt) {
1893 BP_SET_DEDUP(bp, 1);
1894 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1895 return (zio);
1896 }
1897
1898 /*
1899 * We were unable to handle this as an override bp, treat
1900 * it as a regular write I/O.
1901 */
1902 zio->io_bp_override = NULL;
1903 *bp = zio->io_bp_orig;
1904 zio->io_pipeline = zio->io_orig_pipeline;
1905 }
1906
1907 return (zio);
1908 }
1909
1910 static zio_t *
zio_write_compress(zio_t * zio)1911 zio_write_compress(zio_t *zio)
1912 {
1913 spa_t *spa = zio->io_spa;
1914 zio_prop_t *zp = &zio->io_prop;
1915 enum zio_compress compress = zp->zp_compress;
1916 blkptr_t *bp = zio->io_bp;
1917 uint64_t lsize = zio->io_lsize;
1918 uint64_t psize = zio->io_size;
1919 uint32_t pass = 1;
1920
1921 /*
1922 * If our children haven't all reached the ready stage,
1923 * wait for them and then repeat this pipeline stage.
1924 */
1925 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1926 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1927 return (NULL);
1928 }
1929
1930 if (!IO_IS_ALLOCATING(zio))
1931 return (zio);
1932
1933 if (zio->io_children_ready != NULL) {
1934 /*
1935 * Now that all our children are ready, run the callback
1936 * associated with this zio in case it wants to modify the
1937 * data to be written.
1938 */
1939 ASSERT3U(zp->zp_level, >, 0);
1940 zio->io_children_ready(zio);
1941 }
1942
1943 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1944 ASSERT(zio->io_bp_override == NULL);
1945
1946 if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg) {
1947 /*
1948 * We're rewriting an existing block, which means we're
1949 * working on behalf of spa_sync(). For spa_sync() to
1950 * converge, it must eventually be the case that we don't
1951 * have to allocate new blocks. But compression changes
1952 * the blocksize, which forces a reallocate, and makes
1953 * convergence take longer. Therefore, after the first
1954 * few passes, stop compressing to ensure convergence.
1955 */
1956 pass = spa_sync_pass(spa);
1957
1958 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1959 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1960 ASSERT(!BP_GET_DEDUP(bp));
1961
1962 if (pass >= zfs_sync_pass_dont_compress)
1963 compress = ZIO_COMPRESS_OFF;
1964
1965 /* Make sure someone doesn't change their mind on overwrites */
1966 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1967 MIN(zp->zp_copies, spa_max_replication(spa))
1968 == BP_GET_NDVAS(bp));
1969 }
1970
1971 /* If it's a compressed write that is not raw, compress the buffer. */
1972 if (compress != ZIO_COMPRESS_OFF &&
1973 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1974 abd_t *cabd = NULL;
1975 if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1976 psize = 0;
1977 else if (compress == ZIO_COMPRESS_EMPTY)
1978 psize = lsize;
1979 else
1980 psize = zio_compress_data(compress, zio->io_abd, &cabd,
1981 lsize,
1982 zio_get_compression_max_size(compress,
1983 spa->spa_gcd_alloc, spa->spa_min_alloc, lsize),
1984 zp->zp_complevel);
1985 if (psize == 0) {
1986 compress = ZIO_COMPRESS_OFF;
1987 } else if (psize >= lsize) {
1988 compress = ZIO_COMPRESS_OFF;
1989 if (cabd != NULL)
1990 abd_free(cabd);
1991 } else if (psize <= BPE_PAYLOAD_SIZE && !zp->zp_encrypt &&
1992 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1993 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1994 void *cbuf = abd_borrow_buf_copy(cabd, lsize);
1995 encode_embedded_bp_compressed(bp,
1996 cbuf, compress, lsize, psize);
1997 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1998 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1999 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
2000 abd_return_buf(cabd, cbuf, lsize);
2001 abd_free(cabd);
2002 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
2003 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2004 ASSERT(spa_feature_is_active(spa,
2005 SPA_FEATURE_EMBEDDED_DATA));
2006 return (zio);
2007 } else {
2008 /*
2009 * Round compressed size up to the minimum allocation
2010 * size of the smallest-ashift device, and zero the
2011 * tail. This ensures that the compressed size of the
2012 * BP (and thus compressratio property) are correct,
2013 * in that we charge for the padding used to fill out
2014 * the last sector.
2015 */
2016 size_t rounded = (size_t)zio_roundup_alloc_size(spa,
2017 psize);
2018 if (rounded >= lsize) {
2019 compress = ZIO_COMPRESS_OFF;
2020 abd_free(cabd);
2021 psize = lsize;
2022 } else {
2023 abd_zero_off(cabd, psize, rounded - psize);
2024 psize = rounded;
2025 zio_push_transform(zio, cabd,
2026 psize, lsize, NULL);
2027 }
2028 }
2029
2030 /*
2031 * We were unable to handle this as an override bp, treat
2032 * it as a regular write I/O.
2033 */
2034 zio->io_bp_override = NULL;
2035 *bp = zio->io_bp_orig;
2036 zio->io_pipeline = zio->io_orig_pipeline;
2037
2038 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
2039 zp->zp_type == DMU_OT_DNODE) {
2040 /*
2041 * The DMU actually relies on the zio layer's compression
2042 * to free metadnode blocks that have had all contained
2043 * dnodes freed. As a result, even when doing a raw
2044 * receive, we must check whether the block can be compressed
2045 * to a hole.
2046 */
2047 if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
2048 psize = 0;
2049 compress = ZIO_COMPRESS_OFF;
2050 } else {
2051 psize = lsize;
2052 }
2053 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
2054 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
2055 /*
2056 * If we are raw receiving an encrypted dataset we should not
2057 * take this codepath because it will change the on-disk block
2058 * and decryption will fail.
2059 */
2060 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
2061 lsize);
2062
2063 if (rounded != psize) {
2064 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
2065 abd_zero_off(cdata, psize, rounded - psize);
2066 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
2067 psize = rounded;
2068 zio_push_transform(zio, cdata,
2069 psize, rounded, NULL);
2070 }
2071 } else {
2072 ASSERT3U(psize, !=, 0);
2073 }
2074
2075 /*
2076 * The final pass of spa_sync() must be all rewrites, but the first
2077 * few passes offer a trade-off: allocating blocks defers convergence,
2078 * but newly allocated blocks are sequential, so they can be written
2079 * to disk faster. Therefore, we allow the first few passes of
2080 * spa_sync() to allocate new blocks, but force rewrites after that.
2081 * There should only be a handful of blocks after pass 1 in any case.
2082 */
2083 if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg &&
2084 BP_GET_PSIZE(bp) == psize &&
2085 pass >= zfs_sync_pass_rewrite) {
2086 VERIFY3U(psize, !=, 0);
2087 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
2088
2089 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
2090 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
2091 } else {
2092 BP_ZERO(bp);
2093 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2094 }
2095
2096 if (psize == 0) {
2097 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
2098 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
2099 BP_SET_LSIZE(bp, lsize);
2100 BP_SET_TYPE(bp, zp->zp_type);
2101 BP_SET_LEVEL(bp, zp->zp_level);
2102 BP_SET_BIRTH(bp, zio->io_txg, 0);
2103 }
2104 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2105 } else {
2106 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
2107 BP_SET_LSIZE(bp, lsize);
2108 BP_SET_TYPE(bp, zp->zp_type);
2109 BP_SET_LEVEL(bp, zp->zp_level);
2110 BP_SET_PSIZE(bp, psize);
2111 BP_SET_COMPRESS(bp, compress);
2112 BP_SET_CHECKSUM(bp, zp->zp_checksum);
2113 BP_SET_DEDUP(bp, zp->zp_dedup);
2114 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2115 if (zp->zp_dedup) {
2116 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2117 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2118 ASSERT(!zp->zp_encrypt ||
2119 DMU_OT_IS_ENCRYPTED(zp->zp_type));
2120 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2121 }
2122 if (zp->zp_nopwrite) {
2123 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2124 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2125 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2126 }
2127 }
2128 return (zio);
2129 }
2130
2131 static zio_t *
zio_free_bp_init(zio_t * zio)2132 zio_free_bp_init(zio_t *zio)
2133 {
2134 blkptr_t *bp = zio->io_bp;
2135
2136 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2137 if (BP_GET_DEDUP(bp))
2138 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2139 }
2140
2141 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2142
2143 return (zio);
2144 }
2145
2146 /*
2147 * ==========================================================================
2148 * Execute the I/O pipeline
2149 * ==========================================================================
2150 */
2151
2152 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2153 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2154 {
2155 spa_t *spa = zio->io_spa;
2156 zio_type_t t = zio->io_type;
2157
2158 /*
2159 * If we're a config writer or a probe, the normal issue and
2160 * interrupt threads may all be blocked waiting for the config lock.
2161 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2162 */
2163 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2164 t = ZIO_TYPE_NULL;
2165
2166 /*
2167 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2168 */
2169 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2170 t = ZIO_TYPE_NULL;
2171
2172 /*
2173 * If this is a high priority I/O, then use the high priority taskq if
2174 * available or cut the line otherwise.
2175 */
2176 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2177 if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2178 q++;
2179 else
2180 cutinline = B_TRUE;
2181 }
2182
2183 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2184
2185 spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2186 }
2187
2188 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2189 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2190 {
2191 spa_t *spa = zio->io_spa;
2192
2193 taskq_t *tq = taskq_of_curthread();
2194
2195 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2196 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2197 uint_t i;
2198 for (i = 0; i < tqs->stqs_count; i++) {
2199 if (tqs->stqs_taskq[i] == tq)
2200 return (B_TRUE);
2201 }
2202 }
2203
2204 return (B_FALSE);
2205 }
2206
2207 static zio_t *
zio_issue_async(zio_t * zio)2208 zio_issue_async(zio_t *zio)
2209 {
2210 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2211 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2212 return (NULL);
2213 }
2214
2215 void
zio_interrupt(void * zio)2216 zio_interrupt(void *zio)
2217 {
2218 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2219 }
2220
2221 void
zio_delay_interrupt(zio_t * zio)2222 zio_delay_interrupt(zio_t *zio)
2223 {
2224 /*
2225 * The timeout_generic() function isn't defined in userspace, so
2226 * rather than trying to implement the function, the zio delay
2227 * functionality has been disabled for userspace builds.
2228 */
2229
2230 #ifdef _KERNEL
2231 /*
2232 * If io_target_timestamp is zero, then no delay has been registered
2233 * for this IO, thus jump to the end of this function and "skip" the
2234 * delay; issuing it directly to the zio layer.
2235 */
2236 if (zio->io_target_timestamp != 0) {
2237 hrtime_t now = gethrtime();
2238
2239 if (now >= zio->io_target_timestamp) {
2240 /*
2241 * This IO has already taken longer than the target
2242 * delay to complete, so we don't want to delay it
2243 * any longer; we "miss" the delay and issue it
2244 * directly to the zio layer. This is likely due to
2245 * the target latency being set to a value less than
2246 * the underlying hardware can satisfy (e.g. delay
2247 * set to 1ms, but the disks take 10ms to complete an
2248 * IO request).
2249 */
2250
2251 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2252 hrtime_t, now);
2253
2254 zio_interrupt(zio);
2255 } else {
2256 taskqid_t tid;
2257 hrtime_t diff = zio->io_target_timestamp - now;
2258 int ticks = MAX(1, NSEC_TO_TICK(diff));
2259 clock_t expire_at_tick = ddi_get_lbolt() + ticks;
2260
2261 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2262 hrtime_t, now, hrtime_t, diff);
2263
2264 tid = taskq_dispatch_delay(system_taskq, zio_interrupt,
2265 zio, TQ_NOSLEEP, expire_at_tick);
2266 if (tid == TASKQID_INVALID) {
2267 /*
2268 * Couldn't allocate a task. Just finish the
2269 * zio without a delay.
2270 */
2271 zio_interrupt(zio);
2272 }
2273 }
2274 return;
2275 }
2276 #endif
2277 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2278 zio_interrupt(zio);
2279 }
2280
2281 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2282 zio_deadman_impl(zio_t *pio, int ziodepth)
2283 {
2284 zio_t *cio, *cio_next;
2285 zio_link_t *zl = NULL;
2286 vdev_t *vd = pio->io_vd;
2287 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2288
2289 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2290 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2291 zbookmark_phys_t *zb = &pio->io_bookmark;
2292 uint64_t delta = gethrtime() - pio->io_timestamp;
2293
2294 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2295 "delta=%llu queued=%llu io=%llu "
2296 "path=%s "
2297 "last=%llu type=%d "
2298 "priority=%d flags=0x%llx stage=0x%x "
2299 "pipeline=0x%x pipeline-trace=0x%x "
2300 "objset=%llu object=%llu "
2301 "level=%llu blkid=%llu "
2302 "offset=%llu size=%llu "
2303 "error=%d",
2304 ziodepth, pio, pio->io_timestamp,
2305 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2306 vd ? vd->vdev_path : "NULL",
2307 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2308 pio->io_priority, (u_longlong_t)pio->io_flags,
2309 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2310 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2311 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2312 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2313 pio->io_error);
2314 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2315 pio->io_spa, vd, zb, pio, 0);
2316 }
2317
2318 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2319 list_is_empty(&pio->io_child_list) &&
2320 failmode == ZIO_FAILURE_MODE_CONTINUE &&
2321 taskq_empty_ent(&pio->io_tqent) &&
2322 pio->io_queue_state == ZIO_QS_ACTIVE) {
2323 pio->io_error = EINTR;
2324 zio_interrupt(pio);
2325 }
2326
2327 mutex_enter(&pio->io_lock);
2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 cio_next = zio_walk_children(pio, &zl);
2330 zio_deadman_impl(cio, ziodepth + 1);
2331 }
2332 mutex_exit(&pio->io_lock);
2333 }
2334
2335 /*
2336 * Log the critical information describing this zio and all of its children
2337 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2338 */
2339 void
zio_deadman(zio_t * pio,const char * tag)2340 zio_deadman(zio_t *pio, const char *tag)
2341 {
2342 spa_t *spa = pio->io_spa;
2343 char *name = spa_name(spa);
2344
2345 if (!zfs_deadman_enabled || spa_suspended(spa))
2346 return;
2347
2348 zio_deadman_impl(pio, 0);
2349
2350 switch (spa_get_deadman_failmode(spa)) {
2351 case ZIO_FAILURE_MODE_WAIT:
2352 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2353 break;
2354
2355 case ZIO_FAILURE_MODE_CONTINUE:
2356 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2357 break;
2358
2359 case ZIO_FAILURE_MODE_PANIC:
2360 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2361 break;
2362 }
2363 }
2364
2365 /*
2366 * Execute the I/O pipeline until one of the following occurs:
2367 * (1) the I/O completes; (2) the pipeline stalls waiting for
2368 * dependent child I/Os; (3) the I/O issues, so we're waiting
2369 * for an I/O completion interrupt; (4) the I/O is delegated by
2370 * vdev-level caching or aggregation; (5) the I/O is deferred
2371 * due to vdev-level queueing; (6) the I/O is handed off to
2372 * another thread. In all cases, the pipeline stops whenever
2373 * there's no CPU work; it never burns a thread in cv_wait_io().
2374 *
2375 * There's no locking on io_stage because there's no legitimate way
2376 * for multiple threads to be attempting to process the same I/O.
2377 */
2378 static zio_pipe_stage_t *zio_pipeline[];
2379
2380 /*
2381 * zio_execute() is a wrapper around the static function
2382 * __zio_execute() so that we can force __zio_execute() to be
2383 * inlined. This reduces stack overhead which is important
2384 * because __zio_execute() is called recursively in several zio
2385 * code paths. zio_execute() itself cannot be inlined because
2386 * it is externally visible.
2387 */
2388 void
zio_execute(void * zio)2389 zio_execute(void *zio)
2390 {
2391 fstrans_cookie_t cookie;
2392
2393 cookie = spl_fstrans_mark();
2394 __zio_execute(zio);
2395 spl_fstrans_unmark(cookie);
2396 }
2397
2398 /*
2399 * Used to determine if in the current context the stack is sized large
2400 * enough to allow zio_execute() to be called recursively. A minimum
2401 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2402 */
2403 static boolean_t
zio_execute_stack_check(zio_t * zio)2404 zio_execute_stack_check(zio_t *zio)
2405 {
2406 #if !defined(HAVE_LARGE_STACKS)
2407 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2408
2409 /* Executing in txg_sync_thread() context. */
2410 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2411 return (B_TRUE);
2412
2413 /* Pool initialization outside of zio_taskq context. */
2414 if (dp && spa_is_initializing(dp->dp_spa) &&
2415 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2416 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2417 return (B_TRUE);
2418 #else
2419 (void) zio;
2420 #endif /* HAVE_LARGE_STACKS */
2421
2422 return (B_FALSE);
2423 }
2424
2425 __attribute__((always_inline))
2426 static inline void
__zio_execute(zio_t * zio)2427 __zio_execute(zio_t *zio)
2428 {
2429 ASSERT3U(zio->io_queued_timestamp, >, 0);
2430
2431 while (zio->io_stage < ZIO_STAGE_DONE) {
2432 enum zio_stage pipeline = zio->io_pipeline;
2433 enum zio_stage stage = zio->io_stage;
2434
2435 zio->io_executor = curthread;
2436
2437 ASSERT(!MUTEX_HELD(&zio->io_lock));
2438 ASSERT(ISP2(stage));
2439 ASSERT(zio->io_stall == NULL);
2440
2441 do {
2442 stage <<= 1;
2443 } while ((stage & pipeline) == 0);
2444
2445 ASSERT(stage <= ZIO_STAGE_DONE);
2446
2447 /*
2448 * If we are in interrupt context and this pipeline stage
2449 * will grab a config lock that is held across I/O,
2450 * or may wait for an I/O that needs an interrupt thread
2451 * to complete, issue async to avoid deadlock.
2452 *
2453 * For VDEV_IO_START, we cut in line so that the io will
2454 * be sent to disk promptly.
2455 */
2456 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2457 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2458 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2459 zio_requeue_io_start_cut_in_line : B_FALSE;
2460 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2461 return;
2462 }
2463
2464 /*
2465 * If the current context doesn't have large enough stacks
2466 * the zio must be issued asynchronously to prevent overflow.
2467 */
2468 if (zio_execute_stack_check(zio)) {
2469 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2470 zio_requeue_io_start_cut_in_line : B_FALSE;
2471 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2472 return;
2473 }
2474
2475 zio->io_stage = stage;
2476 zio->io_pipeline_trace |= zio->io_stage;
2477
2478 /*
2479 * The zio pipeline stage returns the next zio to execute
2480 * (typically the same as this one), or NULL if we should
2481 * stop.
2482 */
2483 zio = zio_pipeline[highbit64(stage) - 1](zio);
2484
2485 if (zio == NULL)
2486 return;
2487 }
2488 }
2489
2490
2491 /*
2492 * ==========================================================================
2493 * Initiate I/O, either sync or async
2494 * ==========================================================================
2495 */
2496 int
zio_wait(zio_t * zio)2497 zio_wait(zio_t *zio)
2498 {
2499 /*
2500 * Some routines, like zio_free_sync(), may return a NULL zio
2501 * to avoid the performance overhead of creating and then destroying
2502 * an unneeded zio. For the callers' simplicity, we accept a NULL
2503 * zio and ignore it.
2504 */
2505 if (zio == NULL)
2506 return (0);
2507
2508 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2509 int error;
2510
2511 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2512 ASSERT3P(zio->io_executor, ==, NULL);
2513
2514 zio->io_waiter = curthread;
2515 ASSERT0(zio->io_queued_timestamp);
2516 zio->io_queued_timestamp = gethrtime();
2517
2518 if (zio->io_type == ZIO_TYPE_WRITE) {
2519 spa_select_allocator(zio);
2520 }
2521 __zio_execute(zio);
2522
2523 mutex_enter(&zio->io_lock);
2524 while (zio->io_executor != NULL) {
2525 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2526 ddi_get_lbolt() + timeout);
2527
2528 if (zfs_deadman_enabled && error == -1 &&
2529 gethrtime() - zio->io_queued_timestamp >
2530 spa_deadman_ziotime(zio->io_spa)) {
2531 mutex_exit(&zio->io_lock);
2532 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2533 zio_deadman(zio, FTAG);
2534 mutex_enter(&zio->io_lock);
2535 }
2536 }
2537 mutex_exit(&zio->io_lock);
2538
2539 error = zio->io_error;
2540 zio_destroy(zio);
2541
2542 return (error);
2543 }
2544
2545 void
zio_nowait(zio_t * zio)2546 zio_nowait(zio_t *zio)
2547 {
2548 /*
2549 * See comment in zio_wait().
2550 */
2551 if (zio == NULL)
2552 return;
2553
2554 ASSERT3P(zio->io_executor, ==, NULL);
2555
2556 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2557 list_is_empty(&zio->io_parent_list)) {
2558 zio_t *pio;
2559
2560 /*
2561 * This is a logical async I/O with no parent to wait for it.
2562 * We add it to the spa_async_root_zio "Godfather" I/O which
2563 * will ensure they complete prior to unloading the pool.
2564 */
2565 spa_t *spa = zio->io_spa;
2566 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2567
2568 zio_add_child(pio, zio);
2569 }
2570
2571 ASSERT0(zio->io_queued_timestamp);
2572 zio->io_queued_timestamp = gethrtime();
2573 if (zio->io_type == ZIO_TYPE_WRITE) {
2574 spa_select_allocator(zio);
2575 }
2576 __zio_execute(zio);
2577 }
2578
2579 /*
2580 * ==========================================================================
2581 * Reexecute, cancel, or suspend/resume failed I/O
2582 * ==========================================================================
2583 */
2584
2585 static void
zio_reexecute(void * arg)2586 zio_reexecute(void *arg)
2587 {
2588 zio_t *pio = arg;
2589 zio_t *cio, *cio_next, *gio;
2590
2591 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2592 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2593 ASSERT(pio->io_gang_leader == NULL);
2594 ASSERT(pio->io_gang_tree == NULL);
2595
2596 mutex_enter(&pio->io_lock);
2597 pio->io_flags = pio->io_orig_flags;
2598 pio->io_stage = pio->io_orig_stage;
2599 pio->io_pipeline = pio->io_orig_pipeline;
2600 pio->io_post = 0;
2601 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2602 pio->io_pipeline_trace = 0;
2603 pio->io_error = 0;
2604 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2605 (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2606 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2607
2608 /*
2609 * It's possible for a failed ZIO to be a descendant of more than one
2610 * ZIO tree. When reexecuting it, we have to be sure to add its wait
2611 * states to all parent wait counts.
2612 *
2613 * Those parents, in turn, may have other children that are currently
2614 * active, usually because they've already been reexecuted after
2615 * resuming. Those children may be executing and may call
2616 * zio_notify_parent() at the same time as we're updating our parent's
2617 * counts. To avoid races while updating the counts, we take
2618 * gio->io_lock before each update.
2619 */
2620 zio_link_t *zl = NULL;
2621 while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2622 mutex_enter(&gio->io_lock);
2623 for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2624 gio->io_children[pio->io_child_type][w] +=
2625 !pio->io_state[w];
2626 }
2627 mutex_exit(&gio->io_lock);
2628 }
2629
2630 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2631 pio->io_child_error[c] = 0;
2632
2633 if (IO_IS_ALLOCATING(pio))
2634 BP_ZERO(pio->io_bp);
2635
2636 /*
2637 * As we reexecute pio's children, new children could be created.
2638 * New children go to the head of pio's io_child_list, however,
2639 * so we will (correctly) not reexecute them. The key is that
2640 * the remainder of pio's io_child_list, from 'cio_next' onward,
2641 * cannot be affected by any side effects of reexecuting 'cio'.
2642 */
2643 zl = NULL;
2644 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2645 cio_next = zio_walk_children(pio, &zl);
2646 mutex_exit(&pio->io_lock);
2647 zio_reexecute(cio);
2648 mutex_enter(&pio->io_lock);
2649 }
2650 mutex_exit(&pio->io_lock);
2651
2652 /*
2653 * Now that all children have been reexecuted, execute the parent.
2654 * We don't reexecute "The Godfather" I/O here as it's the
2655 * responsibility of the caller to wait on it.
2656 */
2657 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2658 pio->io_queued_timestamp = gethrtime();
2659 __zio_execute(pio);
2660 }
2661 }
2662
2663 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2664 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2665 {
2666 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2667 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2668 "failure and the failure mode property for this pool "
2669 "is set to panic.", spa_name(spa));
2670
2671 if (reason != ZIO_SUSPEND_MMP) {
2672 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2673 "I/O failure and has been suspended.", spa_name(spa));
2674 }
2675
2676 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2677 NULL, NULL, 0);
2678
2679 mutex_enter(&spa->spa_suspend_lock);
2680
2681 if (spa->spa_suspend_zio_root == NULL)
2682 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2683 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2684 ZIO_FLAG_GODFATHER);
2685
2686 spa->spa_suspended = reason;
2687
2688 if (zio != NULL) {
2689 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2690 ASSERT(zio != spa->spa_suspend_zio_root);
2691 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2692 ASSERT(zio_unique_parent(zio) == NULL);
2693 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2694 zio_add_child(spa->spa_suspend_zio_root, zio);
2695 }
2696
2697 mutex_exit(&spa->spa_suspend_lock);
2698
2699 txg_wait_kick(spa->spa_dsl_pool);
2700 }
2701
2702 int
zio_resume(spa_t * spa)2703 zio_resume(spa_t *spa)
2704 {
2705 zio_t *pio;
2706
2707 /*
2708 * Reexecute all previously suspended i/o.
2709 */
2710 mutex_enter(&spa->spa_suspend_lock);
2711 if (spa->spa_suspended != ZIO_SUSPEND_NONE)
2712 cmn_err(CE_WARN, "Pool '%s' was suspended and is being "
2713 "resumed. Failed I/O will be retried.",
2714 spa_name(spa));
2715 spa->spa_suspended = ZIO_SUSPEND_NONE;
2716 cv_broadcast(&spa->spa_suspend_cv);
2717 pio = spa->spa_suspend_zio_root;
2718 spa->spa_suspend_zio_root = NULL;
2719 mutex_exit(&spa->spa_suspend_lock);
2720
2721 if (pio == NULL)
2722 return (0);
2723
2724 zio_reexecute(pio);
2725 return (zio_wait(pio));
2726 }
2727
2728 void
zio_resume_wait(spa_t * spa)2729 zio_resume_wait(spa_t *spa)
2730 {
2731 mutex_enter(&spa->spa_suspend_lock);
2732 while (spa_suspended(spa))
2733 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2734 mutex_exit(&spa->spa_suspend_lock);
2735 }
2736
2737 /*
2738 * ==========================================================================
2739 * Gang blocks.
2740 *
2741 * A gang block is a collection of small blocks that looks to the DMU
2742 * like one large block. When zio_dva_allocate() cannot find a block
2743 * of the requested size, due to either severe fragmentation or the pool
2744 * being nearly full, it calls zio_write_gang_block() to construct the
2745 * block from smaller fragments.
2746 *
2747 * A gang block consists of a a gang header and up to gbh_nblkptrs(size)
2748 * gang members. The gang header is like an indirect block: it's an array
2749 * of block pointers, though the header has a small tail (a zio_eck_t)
2750 * that stores an embedded checksum. It is allocated using only a single
2751 * sector as the requested size, and hence is allocatable regardless of
2752 * fragmentation. Its size is determined by the smallest allocatable
2753 * asize of the vdevs it was allocated on. The gang header's bps point
2754 * to its gang members, which hold the data.
2755 *
2756 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2757 * as the verifier to ensure uniqueness of the SHA256 checksum.
2758 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2759 * not the gang header. This ensures that data block signatures (needed for
2760 * deduplication) are independent of how the block is physically stored.
2761 *
2762 * Gang blocks can be nested: a gang member may itself be a gang block.
2763 * Thus every gang block is a tree in which root and all interior nodes are
2764 * gang headers, and the leaves are normal blocks that contain user data.
2765 * The root of the gang tree is called the gang leader.
2766 *
2767 * To perform any operation (read, rewrite, free, claim) on a gang block,
2768 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2769 * in the io_gang_tree field of the original logical i/o by recursively
2770 * reading the gang leader and all gang headers below it. This yields
2771 * an in-core tree containing the contents of every gang header and the
2772 * bps for every constituent of the gang block.
2773 *
2774 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2775 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2776 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2777 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2778 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2779 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2780 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2781 * of the gang header plus zio_checksum_compute() of the data to update the
2782 * gang header's blk_cksum as described above.
2783 *
2784 * The two-phase assemble/issue model solves the problem of partial failure --
2785 * what if you'd freed part of a gang block but then couldn't read the
2786 * gang header for another part? Assembling the entire gang tree first
2787 * ensures that all the necessary gang header I/O has succeeded before
2788 * starting the actual work of free, claim, or write. Once the gang tree
2789 * is assembled, free and claim are in-memory operations that cannot fail.
2790 *
2791 * In the event that a gang write fails, zio_dva_unallocate() walks the
2792 * gang tree to immediately free (i.e. insert back into the space map)
2793 * everything we've allocated. This ensures that we don't get ENOSPC
2794 * errors during repeated suspend/resume cycles due to a flaky device.
2795 *
2796 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2797 * the gang tree, we won't modify the block, so we can safely defer the free
2798 * (knowing that the block is still intact). If we *can* assemble the gang
2799 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2800 * each constituent bp and we can allocate a new block on the next sync pass.
2801 *
2802 * In all cases, the gang tree allows complete recovery from partial failure.
2803 * ==========================================================================
2804 */
2805
2806 static void
zio_gang_issue_func_done(zio_t * zio)2807 zio_gang_issue_func_done(zio_t *zio)
2808 {
2809 abd_free(zio->io_abd);
2810 }
2811
2812 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2813 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2814 uint64_t offset)
2815 {
2816 if (gn != NULL)
2817 return (pio);
2818
2819 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2820 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2821 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2822 &pio->io_bookmark));
2823 }
2824
2825 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2826 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2827 uint64_t offset)
2828 {
2829 zio_t *zio;
2830
2831 if (gn != NULL) {
2832 abd_t *gbh_abd =
2833 abd_get_from_buf(gn->gn_gbh, gn->gn_gangblocksize);
2834 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2835 gbh_abd, gn->gn_gangblocksize, zio_gang_issue_func_done,
2836 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2837 &pio->io_bookmark);
2838 /*
2839 * As we rewrite each gang header, the pipeline will compute
2840 * a new gang block header checksum for it; but no one will
2841 * compute a new data checksum, so we do that here. The one
2842 * exception is the gang leader: the pipeline already computed
2843 * its data checksum because that stage precedes gang assembly.
2844 * (Presently, nothing actually uses interior data checksums;
2845 * this is just good hygiene.)
2846 */
2847 if (gn != pio->io_gang_leader->io_gang_tree) {
2848 abd_t *buf = abd_get_offset(data, offset);
2849
2850 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2851 buf, BP_GET_PSIZE(bp));
2852
2853 abd_free(buf);
2854 }
2855 /*
2856 * If we are here to damage data for testing purposes,
2857 * leave the GBH alone so that we can detect the damage.
2858 */
2859 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2860 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2861 } else {
2862 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2863 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2864 zio_gang_issue_func_done, NULL, pio->io_priority,
2865 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2866 }
2867
2868 return (zio);
2869 }
2870
2871 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2872 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2873 uint64_t offset)
2874 {
2875 (void) gn, (void) data, (void) offset;
2876
2877 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2878 ZIO_GANG_CHILD_FLAGS(pio));
2879 if (zio == NULL) {
2880 zio = zio_null(pio, pio->io_spa,
2881 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2882 }
2883 return (zio);
2884 }
2885
2886 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2887 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2888 uint64_t offset)
2889 {
2890 (void) gn, (void) data, (void) offset;
2891 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2892 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2893 }
2894
2895 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2896 NULL,
2897 zio_read_gang,
2898 zio_rewrite_gang,
2899 zio_free_gang,
2900 zio_claim_gang,
2901 NULL
2902 };
2903
2904 static void zio_gang_tree_assemble_done(zio_t *zio);
2905
2906 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp,uint64_t gangblocksize)2907 zio_gang_node_alloc(zio_gang_node_t **gnpp, uint64_t gangblocksize)
2908 {
2909 zio_gang_node_t *gn;
2910
2911 ASSERT(*gnpp == NULL);
2912
2913 gn = kmem_zalloc(sizeof (*gn) +
2914 (gbh_nblkptrs(gangblocksize) * sizeof (gn)), KM_SLEEP);
2915 gn->gn_gangblocksize = gn->gn_allocsize = gangblocksize;
2916 gn->gn_gbh = zio_buf_alloc(gangblocksize);
2917 *gnpp = gn;
2918
2919 return (gn);
2920 }
2921
2922 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2923 zio_gang_node_free(zio_gang_node_t **gnpp)
2924 {
2925 zio_gang_node_t *gn = *gnpp;
2926
2927 for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++)
2928 ASSERT(gn->gn_child[g] == NULL);
2929
2930 zio_buf_free(gn->gn_gbh, gn->gn_allocsize);
2931 kmem_free(gn, sizeof (*gn) +
2932 (gbh_nblkptrs(gn->gn_allocsize) * sizeof (gn)));
2933 *gnpp = NULL;
2934 }
2935
2936 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2937 zio_gang_tree_free(zio_gang_node_t **gnpp)
2938 {
2939 zio_gang_node_t *gn = *gnpp;
2940
2941 if (gn == NULL)
2942 return;
2943
2944 for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++)
2945 zio_gang_tree_free(&gn->gn_child[g]);
2946
2947 zio_gang_node_free(gnpp);
2948 }
2949
2950 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2951 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2952 {
2953 uint64_t gangblocksize = UINT64_MAX;
2954 if (spa_feature_is_active(gio->io_spa,
2955 SPA_FEATURE_DYNAMIC_GANG_HEADER)) {
2956 spa_config_enter(gio->io_spa, SCL_VDEV, FTAG, RW_READER);
2957 for (int dva = 0; dva < BP_GET_NDVAS(bp); dva++) {
2958 vdev_t *vd = vdev_lookup_top(gio->io_spa,
2959 DVA_GET_VDEV(&bp->blk_dva[dva]));
2960 uint64_t psize = vdev_gang_header_psize(vd);
2961 gangblocksize = MIN(gangblocksize, psize);
2962 }
2963 spa_config_exit(gio->io_spa, SCL_VDEV, FTAG);
2964 } else {
2965 gangblocksize = SPA_OLD_GANGBLOCKSIZE;
2966 }
2967 ASSERT3U(gangblocksize, !=, UINT64_MAX);
2968 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp, gangblocksize);
2969 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, gangblocksize);
2970
2971 ASSERT(gio->io_gang_leader == gio);
2972 ASSERT(BP_IS_GANG(bp));
2973
2974 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, gangblocksize,
2975 zio_gang_tree_assemble_done, gn, gio->io_priority,
2976 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2977 }
2978
2979 static void
zio_gang_tree_assemble_done(zio_t * zio)2980 zio_gang_tree_assemble_done(zio_t *zio)
2981 {
2982 zio_t *gio = zio->io_gang_leader;
2983 zio_gang_node_t *gn = zio->io_private;
2984 blkptr_t *bp = zio->io_bp;
2985
2986 ASSERT(gio == zio_unique_parent(zio));
2987 ASSERT(list_is_empty(&zio->io_child_list));
2988
2989 if (zio->io_error)
2990 return;
2991
2992 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2993 if (BP_SHOULD_BYTESWAP(bp))
2994 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2995
2996 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2997 /*
2998 * If this was an old-style gangblock, the gangblocksize should have
2999 * been updated in zio_checksum_error to reflect that.
3000 */
3001 ASSERT3U(gbh_eck(gn->gn_gbh, gn->gn_gangblocksize)->zec_magic,
3002 ==, ZEC_MAGIC);
3003
3004 abd_free(zio->io_abd);
3005
3006 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
3007 blkptr_t *gbp = gbh_bp(gn->gn_gbh, g);
3008 if (!BP_IS_GANG(gbp))
3009 continue;
3010 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
3011 }
3012 }
3013
3014 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)3015 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
3016 uint64_t offset)
3017 {
3018 zio_t *gio = pio->io_gang_leader;
3019 zio_t *zio;
3020
3021 ASSERT(BP_IS_GANG(bp) == !!gn);
3022 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
3023 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
3024
3025 /*
3026 * If you're a gang header, your data is in gn->gn_gbh.
3027 * If you're a gang member, your data is in 'data' and gn == NULL.
3028 */
3029 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
3030
3031 if (gn != NULL) {
3032 ASSERT3U(gbh_eck(gn->gn_gbh,
3033 gn->gn_gangblocksize)->zec_magic, ==, ZEC_MAGIC);
3034
3035 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
3036 blkptr_t *gbp = gbh_bp(gn->gn_gbh, g);
3037 if (BP_IS_HOLE(gbp))
3038 continue;
3039 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
3040 offset);
3041 offset += BP_GET_PSIZE(gbp);
3042 }
3043 }
3044
3045 if (gn == gio->io_gang_tree)
3046 ASSERT3U(gio->io_size, ==, offset);
3047
3048 if (zio != pio)
3049 zio_nowait(zio);
3050 }
3051
3052 static zio_t *
zio_gang_assemble(zio_t * zio)3053 zio_gang_assemble(zio_t *zio)
3054 {
3055 blkptr_t *bp = zio->io_bp;
3056
3057 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
3058 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3059
3060 zio->io_gang_leader = zio;
3061
3062 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
3063
3064 return (zio);
3065 }
3066
3067 static zio_t *
zio_gang_issue(zio_t * zio)3068 zio_gang_issue(zio_t *zio)
3069 {
3070 blkptr_t *bp = zio->io_bp;
3071
3072 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
3073 return (NULL);
3074 }
3075
3076 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
3077 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3078
3079 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
3080 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
3081 0);
3082 else
3083 zio_gang_tree_free(&zio->io_gang_tree);
3084
3085 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3086
3087 return (zio);
3088 }
3089
3090 static void
zio_gang_inherit_allocator(zio_t * pio,zio_t * cio)3091 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
3092 {
3093 cio->io_allocator = pio->io_allocator;
3094 }
3095
3096 static void
zio_write_gang_member_ready(zio_t * zio)3097 zio_write_gang_member_ready(zio_t *zio)
3098 {
3099 zio_t *pio = zio_unique_parent(zio);
3100 dva_t *cdva = zio->io_bp->blk_dva;
3101 dva_t *pdva = pio->io_bp->blk_dva;
3102 uint64_t asize;
3103 zio_t *gio __maybe_unused = zio->io_gang_leader;
3104
3105 if (BP_IS_HOLE(zio->io_bp))
3106 return;
3107
3108 /*
3109 * If we're getting direct-invoked from zio_write_gang_block(),
3110 * the bp_orig will be set.
3111 */
3112 ASSERT(BP_IS_HOLE(&zio->io_bp_orig) ||
3113 zio->io_flags & ZIO_FLAG_PREALLOCATED);
3114
3115 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
3116 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
3117 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
3118 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
3119 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
3120
3121 mutex_enter(&pio->io_lock);
3122 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
3123 ASSERT(DVA_GET_GANG(&pdva[d]));
3124 asize = DVA_GET_ASIZE(&pdva[d]);
3125 asize += DVA_GET_ASIZE(&cdva[d]);
3126 DVA_SET_ASIZE(&pdva[d], asize);
3127 }
3128 mutex_exit(&pio->io_lock);
3129 }
3130
3131 static void
zio_write_gang_done(zio_t * zio)3132 zio_write_gang_done(zio_t *zio)
3133 {
3134 /*
3135 * The io_abd field will be NULL for a zio with no data. The io_flags
3136 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3137 * check for it here as it is cleared in zio_ready.
3138 */
3139 if (zio->io_abd != NULL)
3140 abd_free(zio->io_abd);
3141 }
3142
3143 static void
zio_update_feature(void * arg,dmu_tx_t * tx)3144 zio_update_feature(void *arg, dmu_tx_t *tx)
3145 {
3146 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3147 spa_feature_incr(spa, (spa_feature_t)(uintptr_t)arg, tx);
3148 }
3149
3150 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)3151 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
3152 {
3153 spa_t *spa = pio->io_spa;
3154 blkptr_t *bp = pio->io_bp;
3155 zio_t *gio = pio->io_gang_leader;
3156 zio_t *zio;
3157 zio_gang_node_t *gn, **gnpp;
3158 zio_gbh_phys_t *gbh;
3159 abd_t *gbh_abd;
3160 uint64_t txg = pio->io_txg;
3161 uint64_t resid = pio->io_size;
3162 zio_prop_t zp;
3163 int error;
3164 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
3165
3166 /*
3167 * Store multiple copies of the GBH, so that we can still traverse
3168 * all the data (e.g. to free or scrub) even if a block is damaged.
3169 * This value respects the redundant_metadata property.
3170 */
3171 int gbh_copies = gio->io_prop.zp_gang_copies;
3172 if (gbh_copies == 0) {
3173 /*
3174 * This should only happen in the case where we're filling in
3175 * DDT entries for a parent that wants more copies than the DDT
3176 * has. In that case, we cannot gang without creating a mixed
3177 * blkptr, which is illegal.
3178 */
3179 ASSERT3U(gio->io_child_type, ==, ZIO_CHILD_DDT);
3180 pio->io_error = EAGAIN;
3181 return (pio);
3182 }
3183 ASSERT3S(gbh_copies, >, 0);
3184 ASSERT3S(gbh_copies, <=, SPA_DVAS_PER_BP);
3185
3186 ASSERT(ZIO_HAS_ALLOCATOR(pio));
3187 int flags = METASLAB_GANG_HEADER;
3188 if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
3189 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3190 ASSERT(has_data);
3191
3192 flags |= METASLAB_ASYNC_ALLOC;
3193 }
3194
3195 uint64_t gangblocksize = SPA_OLD_GANGBLOCKSIZE;
3196 uint64_t candidate = gangblocksize;
3197 error = metaslab_alloc_range(spa, mc, gangblocksize, gangblocksize,
3198 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3199 &pio->io_alloc_list, pio->io_allocator, pio, &candidate);
3200 if (error) {
3201 pio->io_error = error;
3202 return (pio);
3203 }
3204 if (spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER))
3205 gangblocksize = candidate;
3206
3207 if (pio == gio) {
3208 gnpp = &gio->io_gang_tree;
3209 } else {
3210 gnpp = pio->io_private;
3211 ASSERT(pio->io_ready == zio_write_gang_member_ready);
3212 }
3213
3214 gn = zio_gang_node_alloc(gnpp, gangblocksize);
3215 gbh = gn->gn_gbh;
3216 memset(gbh, 0, gangblocksize);
3217 gbh_abd = abd_get_from_buf(gbh, gangblocksize);
3218
3219 /*
3220 * Create the gang header.
3221 */
3222 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, gangblocksize,
3223 zio_write_gang_done, NULL, pio->io_priority,
3224 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3225
3226 zio_gang_inherit_allocator(pio, zio);
3227 if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
3228 boolean_t more;
3229 VERIFY(metaslab_class_throttle_reserve(mc, zio->io_allocator,
3230 gbh_copies, zio->io_size, B_TRUE, &more));
3231 zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED;
3232 }
3233
3234 /*
3235 * Create and nowait the gang children. First, we try to do
3236 * opportunistic allocations. If that fails to generate enough
3237 * space, we fall back to normal zio_write calls for nested gang.
3238 */
3239 int g;
3240 boolean_t any_failed = B_FALSE;
3241 for (g = 0; resid != 0; g++) {
3242 flags &= METASLAB_ASYNC_ALLOC;
3243 flags |= METASLAB_GANG_CHILD;
3244 zp.zp_checksum = gio->io_prop.zp_checksum;
3245 zp.zp_compress = ZIO_COMPRESS_OFF;
3246 zp.zp_complevel = gio->io_prop.zp_complevel;
3247 zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3248 zp.zp_level = 0;
3249 zp.zp_copies = gio->io_prop.zp_copies;
3250 zp.zp_gang_copies = gio->io_prop.zp_gang_copies;
3251 zp.zp_dedup = B_FALSE;
3252 zp.zp_dedup_verify = B_FALSE;
3253 zp.zp_nopwrite = B_FALSE;
3254 zp.zp_encrypt = gio->io_prop.zp_encrypt;
3255 zp.zp_byteorder = gio->io_prop.zp_byteorder;
3256 zp.zp_direct_write = B_FALSE;
3257 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3258 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3259 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3260
3261 uint64_t min_size = zio_roundup_alloc_size(spa,
3262 resid / (gbh_nblkptrs(gangblocksize) - g));
3263 min_size = MIN(min_size, resid);
3264 bp = &((blkptr_t *)gbh)[g];
3265
3266 zio_alloc_list_t cio_list;
3267 metaslab_trace_init(&cio_list);
3268 uint64_t allocated_size = UINT64_MAX;
3269 error = metaslab_alloc_range(spa, mc, min_size, resid,
3270 bp, gio->io_prop.zp_copies, txg, NULL,
3271 flags, &cio_list, zio->io_allocator, NULL, &allocated_size);
3272
3273 boolean_t allocated = error == 0;
3274 any_failed |= !allocated;
3275
3276 uint64_t psize = allocated ? MIN(resid, allocated_size) :
3277 min_size;
3278 ASSERT3U(psize, >=, min_size);
3279
3280 zio_t *cio = zio_write(zio, spa, txg, bp, has_data ?
3281 abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL,
3282 psize, psize, &zp, zio_write_gang_member_ready, NULL,
3283 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3284 ZIO_GANG_CHILD_FLAGS(pio) |
3285 (allocated ? ZIO_FLAG_PREALLOCATED : 0), &pio->io_bookmark);
3286
3287 resid -= psize;
3288 zio_gang_inherit_allocator(zio, cio);
3289 if (allocated) {
3290 metaslab_trace_move(&cio_list, &cio->io_alloc_list);
3291 metaslab_group_alloc_increment_all(spa,
3292 &cio->io_bp_orig, zio->io_allocator, flags, psize,
3293 cio);
3294 }
3295 /*
3296 * We do not reserve for the child writes, since we already
3297 * reserved for the parent. Unreserve though will be called
3298 * for individual children. We can do this since sum of all
3299 * child's physical sizes is equal to parent's physical size.
3300 * It would not work for potentially bigger allocation sizes.
3301 */
3302
3303 zio_nowait(cio);
3304 }
3305
3306 /*
3307 * If we used more gang children than the old limit, we must already be
3308 * using the new headers. No need to update anything, just move on.
3309 *
3310 * Otherwise, we might be in a case where we need to turn on the new
3311 * feature, so we check that. We enable the new feature if we didn't
3312 * manage to fit everything into 3 gang children and we could have
3313 * written more than that.
3314 */
3315 if (g > gbh_nblkptrs(SPA_OLD_GANGBLOCKSIZE)) {
3316 ASSERT(spa_feature_is_active(spa,
3317 SPA_FEATURE_DYNAMIC_GANG_HEADER));
3318 } else if (any_failed && candidate > SPA_OLD_GANGBLOCKSIZE &&
3319 spa_feature_is_enabled(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER) &&
3320 !spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER)) {
3321 dmu_tx_t *tx =
3322 dmu_tx_create_assigned(spa->spa_dsl_pool, txg + 1);
3323 dsl_sync_task_nowait(spa->spa_dsl_pool,
3324 zio_update_feature,
3325 (void *)SPA_FEATURE_DYNAMIC_GANG_HEADER, tx);
3326 dmu_tx_commit(tx);
3327 }
3328
3329 /*
3330 * Set pio's pipeline to just wait for zio to finish.
3331 */
3332 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3333
3334 zio_nowait(zio);
3335
3336 return (pio);
3337 }
3338
3339 /*
3340 * The zio_nop_write stage in the pipeline determines if allocating a
3341 * new bp is necessary. The nopwrite feature can handle writes in
3342 * either syncing or open context (i.e. zil writes) and as a result is
3343 * mutually exclusive with dedup.
3344 *
3345 * By leveraging a cryptographically secure checksum, such as SHA256, we
3346 * can compare the checksums of the new data and the old to determine if
3347 * allocating a new block is required. Note that our requirements for
3348 * cryptographic strength are fairly weak: there can't be any accidental
3349 * hash collisions, but we don't need to be secure against intentional
3350 * (malicious) collisions. To trigger a nopwrite, you have to be able
3351 * to write the file to begin with, and triggering an incorrect (hash
3352 * collision) nopwrite is no worse than simply writing to the file.
3353 * That said, there are no known attacks against the checksum algorithms
3354 * used for nopwrite, assuming that the salt and the checksums
3355 * themselves remain secret.
3356 */
3357 static zio_t *
zio_nop_write(zio_t * zio)3358 zio_nop_write(zio_t *zio)
3359 {
3360 blkptr_t *bp = zio->io_bp;
3361 blkptr_t *bp_orig = &zio->io_bp_orig;
3362 zio_prop_t *zp = &zio->io_prop;
3363
3364 ASSERT(BP_IS_HOLE(bp));
3365 ASSERT(BP_GET_LEVEL(bp) == 0);
3366 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3367 ASSERT(zp->zp_nopwrite);
3368 ASSERT(!zp->zp_dedup);
3369 ASSERT(zio->io_bp_override == NULL);
3370 ASSERT(IO_IS_ALLOCATING(zio));
3371
3372 /*
3373 * Check to see if the original bp and the new bp have matching
3374 * characteristics (i.e. same checksum, compression algorithms, etc).
3375 * If they don't then just continue with the pipeline which will
3376 * allocate a new bp.
3377 */
3378 if (BP_IS_HOLE(bp_orig) ||
3379 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3380 ZCHECKSUM_FLAG_NOPWRITE) ||
3381 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3382 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3383 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3384 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3385 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3386 return (zio);
3387
3388 /*
3389 * If the checksums match then reset the pipeline so that we
3390 * avoid allocating a new bp and issuing any I/O.
3391 */
3392 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3393 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3394 ZCHECKSUM_FLAG_NOPWRITE);
3395 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3396 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3397 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3398 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3399
3400 /*
3401 * If we're overwriting a block that is currently on an
3402 * indirect vdev, then ignore the nopwrite request and
3403 * allow a new block to be allocated on a concrete vdev.
3404 */
3405 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3406 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3407 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3408 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3409 if (tvd->vdev_ops == &vdev_indirect_ops) {
3410 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3411 return (zio);
3412 }
3413 }
3414 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3415
3416 *bp = *bp_orig;
3417 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3418 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3419 }
3420
3421 return (zio);
3422 }
3423
3424 /*
3425 * ==========================================================================
3426 * Block Reference Table
3427 * ==========================================================================
3428 */
3429 static zio_t *
zio_brt_free(zio_t * zio)3430 zio_brt_free(zio_t *zio)
3431 {
3432 blkptr_t *bp;
3433
3434 bp = zio->io_bp;
3435
3436 if (BP_GET_LEVEL(bp) > 0 ||
3437 BP_IS_METADATA(bp) ||
3438 !brt_maybe_exists(zio->io_spa, bp)) {
3439 return (zio);
3440 }
3441
3442 if (!brt_entry_decref(zio->io_spa, bp)) {
3443 /*
3444 * This isn't the last reference, so we cannot free
3445 * the data yet.
3446 */
3447 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3448 }
3449
3450 return (zio);
3451 }
3452
3453 /*
3454 * ==========================================================================
3455 * Dedup
3456 * ==========================================================================
3457 */
3458 static void
zio_ddt_child_read_done(zio_t * zio)3459 zio_ddt_child_read_done(zio_t *zio)
3460 {
3461 blkptr_t *bp = zio->io_bp;
3462 ddt_t *ddt;
3463 ddt_entry_t *dde = zio->io_private;
3464 zio_t *pio = zio_unique_parent(zio);
3465
3466 mutex_enter(&pio->io_lock);
3467 ddt = ddt_select(zio->io_spa, bp);
3468
3469 if (zio->io_error == 0) {
3470 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3471 /* this phys variant doesn't need repair */
3472 ddt_phys_clear(dde->dde_phys, v);
3473 }
3474
3475 if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL)
3476 dde->dde_io->dde_repair_abd = zio->io_abd;
3477 else
3478 abd_free(zio->io_abd);
3479 mutex_exit(&pio->io_lock);
3480 }
3481
3482 static zio_t *
zio_ddt_read_start(zio_t * zio)3483 zio_ddt_read_start(zio_t *zio)
3484 {
3485 blkptr_t *bp = zio->io_bp;
3486
3487 ASSERT(BP_GET_DEDUP(bp));
3488 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3489 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3490
3491 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3492 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3493 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3494 ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp);
3495 ddt_univ_phys_t *ddp = dde->dde_phys;
3496 blkptr_t blk;
3497
3498 ASSERT(zio->io_vsd == NULL);
3499 zio->io_vsd = dde;
3500
3501 if (v_self == DDT_PHYS_NONE)
3502 return (zio);
3503
3504 /* issue I/O for the other copies */
3505 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3506 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3507
3508 if (ddt_phys_birth(ddp, v) == 0 || v == v_self)
3509 continue;
3510
3511 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key,
3512 ddp, v, &blk);
3513 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3514 abd_alloc_for_io(zio->io_size, B_TRUE),
3515 zio->io_size, zio_ddt_child_read_done, dde,
3516 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3517 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3518 }
3519 return (zio);
3520 }
3521
3522 zio_nowait(zio_read(zio, zio->io_spa, bp,
3523 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3524 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3525
3526 return (zio);
3527 }
3528
3529 static zio_t *
zio_ddt_read_done(zio_t * zio)3530 zio_ddt_read_done(zio_t *zio)
3531 {
3532 blkptr_t *bp = zio->io_bp;
3533
3534 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3535 return (NULL);
3536 }
3537
3538 ASSERT(BP_GET_DEDUP(bp));
3539 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3540 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3541
3542 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3543 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3544 ddt_entry_t *dde = zio->io_vsd;
3545 if (ddt == NULL) {
3546 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3547 return (zio);
3548 }
3549 if (dde == NULL) {
3550 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3551 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3552 return (NULL);
3553 }
3554 if (dde->dde_io->dde_repair_abd != NULL) {
3555 abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd,
3556 zio->io_size);
3557 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3558 }
3559 ddt_repair_done(ddt, dde);
3560 zio->io_vsd = NULL;
3561 }
3562
3563 ASSERT(zio->io_vsd == NULL);
3564
3565 return (zio);
3566 }
3567
3568 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3569 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3570 {
3571 spa_t *spa = zio->io_spa;
3572 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3573
3574 ASSERT(!(zio->io_bp_override && do_raw));
3575
3576 /*
3577 * Note: we compare the original data, not the transformed data,
3578 * because when zio->io_bp is an override bp, we will not have
3579 * pushed the I/O transforms. That's an important optimization
3580 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3581 * However, we should never get a raw, override zio so in these
3582 * cases we can compare the io_abd directly. This is useful because
3583 * it allows us to do dedup verification even if we don't have access
3584 * to the original data (for instance, if the encryption keys aren't
3585 * loaded).
3586 */
3587
3588 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3589 if (DDT_PHYS_IS_DITTO(ddt, p))
3590 continue;
3591
3592 if (dde->dde_io == NULL)
3593 continue;
3594
3595 zio_t *lio = dde->dde_io->dde_lead_zio[p];
3596 if (lio == NULL)
3597 continue;
3598
3599 if (do_raw)
3600 return (lio->io_size != zio->io_size ||
3601 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3602
3603 return (lio->io_orig_size != zio->io_orig_size ||
3604 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3605 }
3606
3607 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3608 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3609 uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v);
3610
3611 if (phys_birth != 0 && do_raw) {
3612 blkptr_t blk = *zio->io_bp;
3613 uint64_t psize;
3614 abd_t *tmpabd;
3615 int error;
3616
3617 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3618 psize = BP_GET_PSIZE(&blk);
3619
3620 if (psize != zio->io_size)
3621 return (B_TRUE);
3622
3623 ddt_exit(ddt);
3624
3625 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3626
3627 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3628 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3629 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3630 ZIO_FLAG_RAW, &zio->io_bookmark));
3631
3632 if (error == 0) {
3633 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3634 error = SET_ERROR(ENOENT);
3635 }
3636
3637 abd_free(tmpabd);
3638 ddt_enter(ddt);
3639 return (error != 0);
3640 } else if (phys_birth != 0) {
3641 arc_buf_t *abuf = NULL;
3642 arc_flags_t aflags = ARC_FLAG_WAIT;
3643 blkptr_t blk = *zio->io_bp;
3644 int error;
3645
3646 ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3647
3648 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3649 return (B_TRUE);
3650
3651 ddt_exit(ddt);
3652
3653 error = arc_read(NULL, spa, &blk,
3654 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3655 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3656 &aflags, &zio->io_bookmark);
3657
3658 if (error == 0) {
3659 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3660 zio->io_orig_size) != 0)
3661 error = SET_ERROR(ENOENT);
3662 arc_buf_destroy(abuf, &abuf);
3663 }
3664
3665 ddt_enter(ddt);
3666 return (error != 0);
3667 }
3668 }
3669
3670 return (B_FALSE);
3671 }
3672
3673 static void
zio_ddt_child_write_done(zio_t * zio)3674 zio_ddt_child_write_done(zio_t *zio)
3675 {
3676 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3677 ddt_entry_t *dde = zio->io_private;
3678
3679 zio_link_t *zl = NULL;
3680 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3681
3682 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3683 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3684 ddt_univ_phys_t *ddp = dde->dde_phys;
3685
3686 ddt_enter(ddt);
3687
3688 /* we're the lead, so once we're done there's no one else outstanding */
3689 if (dde->dde_io->dde_lead_zio[p] == zio)
3690 dde->dde_io->dde_lead_zio[p] = NULL;
3691
3692 ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys;
3693
3694 if (zio->io_error != 0) {
3695 /*
3696 * The write failed, so we're about to abort the entire IO
3697 * chain. We need to revert the entry back to what it was at
3698 * the last time it was successfully extended.
3699 */
3700 ddt_phys_unextend(ddp, orig, v);
3701 ddt_phys_clear(orig, v);
3702
3703 ddt_exit(ddt);
3704 return;
3705 }
3706
3707 /*
3708 * Add references for all dedup writes that were waiting on the
3709 * physical one, skipping any other physical writes that are waiting.
3710 */
3711 zio_t *pio;
3712 zl = NULL;
3713 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3714 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3715 ddt_phys_addref(ddp, v);
3716 }
3717
3718 /*
3719 * We've successfully added new DVAs to the entry. Clear the saved
3720 * state or, if there's still outstanding IO, remember it so we can
3721 * revert to a known good state if that IO fails.
3722 */
3723 if (dde->dde_io->dde_lead_zio[p] == NULL)
3724 ddt_phys_clear(orig, v);
3725 else
3726 ddt_phys_copy(orig, ddp, v);
3727
3728 ddt_exit(ddt);
3729 }
3730
3731 static void
zio_ddt_child_write_ready(zio_t * zio)3732 zio_ddt_child_write_ready(zio_t *zio)
3733 {
3734 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3735 ddt_entry_t *dde = zio->io_private;
3736
3737 zio_link_t *zl = NULL;
3738 ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3739
3740 int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3741 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3742
3743 if (ddt_phys_is_gang(dde->dde_phys, v)) {
3744 for (int i = 0; i < BP_GET_NDVAS(zio->io_bp); i++) {
3745 dva_t *d = &zio->io_bp->blk_dva[i];
3746 metaslab_group_alloc_decrement(zio->io_spa,
3747 DVA_GET_VDEV(d), zio->io_allocator,
3748 METASLAB_ASYNC_ALLOC, zio->io_size, zio);
3749 }
3750 zio->io_error = EAGAIN;
3751 }
3752
3753 if (zio->io_error != 0)
3754 return;
3755
3756 ddt_enter(ddt);
3757
3758 ddt_phys_extend(dde->dde_phys, v, zio->io_bp);
3759
3760 zio_t *pio;
3761 zl = NULL;
3762 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3763 if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3764 ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg);
3765 }
3766
3767 ddt_exit(ddt);
3768 }
3769
3770 static zio_t *
zio_ddt_write(zio_t * zio)3771 zio_ddt_write(zio_t *zio)
3772 {
3773 spa_t *spa = zio->io_spa;
3774 blkptr_t *bp = zio->io_bp;
3775 uint64_t txg = zio->io_txg;
3776 zio_prop_t *zp = &zio->io_prop;
3777 ddt_t *ddt = ddt_select(spa, bp);
3778 ddt_entry_t *dde;
3779
3780 ASSERT(BP_GET_DEDUP(bp));
3781 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3782 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3783 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3784 /*
3785 * Deduplication will not take place for Direct I/O writes. The
3786 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3787 * place in the open-context. Direct I/O write can not attempt to
3788 * modify the ddt_tree while issuing out a write.
3789 */
3790 ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE);
3791
3792 ddt_enter(ddt);
3793 /*
3794 * Search DDT for matching entry. Skip DVAs verification here, since
3795 * they can go only from override, and once we get here the override
3796 * pointer can't have "D" flag to be confused with pruned DDT entries.
3797 */
3798 IMPLY(zio->io_bp_override, !BP_GET_DEDUP(zio->io_bp_override));
3799 dde = ddt_lookup(ddt, bp, B_FALSE);
3800 if (dde == NULL) {
3801 /* DDT size is over its quota so no new entries */
3802 zp->zp_dedup = B_FALSE;
3803 BP_SET_DEDUP(bp, B_FALSE);
3804 if (zio->io_bp_override == NULL)
3805 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3806 ddt_exit(ddt);
3807 return (zio);
3808 }
3809
3810 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3811 /*
3812 * If we're using a weak checksum, upgrade to a strong checksum
3813 * and try again. If we're already using a strong checksum,
3814 * we can't resolve it, so just convert to an ordinary write.
3815 * (And automatically e-mail a paper to Nature?)
3816 */
3817 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3818 ZCHECKSUM_FLAG_DEDUP)) {
3819 zp->zp_checksum = spa_dedup_checksum(spa);
3820 zio_pop_transforms(zio);
3821 zio->io_stage = ZIO_STAGE_OPEN;
3822 BP_ZERO(bp);
3823 } else {
3824 zp->zp_dedup = B_FALSE;
3825 BP_SET_DEDUP(bp, B_FALSE);
3826 }
3827 ASSERT(!BP_GET_DEDUP(bp));
3828 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3829 ddt_exit(ddt);
3830 return (zio);
3831 }
3832
3833 int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies);
3834 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3835 ddt_univ_phys_t *ddp = dde->dde_phys;
3836
3837 /*
3838 * In the common cases, at this point we have a regular BP with no
3839 * allocated DVAs, and the corresponding DDT entry for its checksum.
3840 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3841 * requirement.
3842 *
3843 * One of three things needs to happen to fulfill this:
3844 *
3845 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3846 * them out of the entry and return;
3847 *
3848 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3849 * issue the write as normal so that DVAs can be allocated and the
3850 * data land on disk. We then copy the DVAs into the DDT entry on
3851 * return.
3852 *
3853 * - if the DDT entry has some DVAs, but too few, we have to issue the
3854 * write, adjusted to have allocate fewer copies. When it returns, we
3855 * add the new DVAs to the DDT entry, and update the BP to have the
3856 * full amount it originally requested.
3857 *
3858 * In all cases, if there's already a writing IO in flight, we need to
3859 * defer the action until after the write is done. If our action is to
3860 * write, we need to adjust our request for additional DVAs to match
3861 * what will be in the DDT entry after it completes. In this way every
3862 * IO can be guaranteed to recieve enough DVAs simply by joining the
3863 * end of the chain and letting the sequence play out.
3864 */
3865
3866 /*
3867 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3868 * the third one as normal.
3869 */
3870 int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp));
3871 IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0);
3872 boolean_t is_ganged = ddt_phys_is_gang(ddp, v);
3873
3874 /* Number of DVAs requested by the IO. */
3875 uint8_t need_dvas = zp->zp_copies;
3876 /* Number of DVAs in outstanding writes for this dde. */
3877 uint8_t parent_dvas = 0;
3878
3879 /*
3880 * What we do next depends on whether or not there's IO outstanding that
3881 * will update this entry.
3882 */
3883 if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) {
3884 /*
3885 * No IO outstanding, so we only need to worry about ourselves.
3886 */
3887
3888 /*
3889 * Override BPs bring their own DVAs and their own problems.
3890 */
3891 if (zio->io_bp_override) {
3892 /*
3893 * For a brand-new entry, all the work has been done
3894 * for us, and we can just fill it out from the provided
3895 * block and leave.
3896 */
3897 if (have_dvas == 0) {
3898 ASSERT(BP_GET_BIRTH(bp) == txg);
3899 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3900 ddt_phys_extend(ddp, v, bp);
3901 ddt_phys_addref(ddp, v);
3902 ddt_exit(ddt);
3903 return (zio);
3904 }
3905
3906 /*
3907 * If we already have this entry, then we want to treat
3908 * it like a regular write. To do this we just wipe
3909 * them out and proceed like a regular write.
3910 *
3911 * Even if there are some DVAs in the entry, we still
3912 * have to clear them out. We can't use them to fill
3913 * out the dedup entry, as they are all referenced
3914 * together by a bp already on disk, and will be freed
3915 * as a group.
3916 */
3917 BP_ZERO_DVAS(bp);
3918 BP_SET_BIRTH(bp, 0, 0);
3919 }
3920
3921 /*
3922 * If there are enough DVAs in the entry to service our request,
3923 * then we can just use them as-is.
3924 */
3925 if (have_dvas >= need_dvas) {
3926 /*
3927 * For rewrite operations, try preserving the original
3928 * logical birth time. If the result matches the
3929 * original BP, this becomes a NOP.
3930 */
3931 if (zp->zp_rewrite) {
3932 uint64_t orig_logical_birth =
3933 BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig);
3934 ddt_bp_fill(ddp, v, bp, orig_logical_birth);
3935 if (BP_EQUAL(bp, &zio->io_bp_orig)) {
3936 /* We can skip accounting. */
3937 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3938 ddt_exit(ddt);
3939 return (zio);
3940 }
3941 }
3942
3943 ddt_bp_fill(ddp, v, bp, txg);
3944 ddt_phys_addref(ddp, v);
3945 ddt_exit(ddt);
3946 return (zio);
3947 }
3948
3949 /*
3950 * Otherwise, we have to issue IO to fill the entry up to the
3951 * amount we need.
3952 */
3953 need_dvas -= have_dvas;
3954 } else {
3955 /*
3956 * There's a write in-flight. If there's already enough DVAs on
3957 * the entry, then either there were already enough to start
3958 * with, or the in-flight IO is between READY and DONE, and so
3959 * has extended the entry with new DVAs. Either way, we don't
3960 * need to do anything, we can just slot in behind it.
3961 */
3962
3963 if (zio->io_bp_override) {
3964 /*
3965 * If there's a write out, then we're soon going to
3966 * have our own copies of this block, so clear out the
3967 * override block and treat it as a regular dedup
3968 * write. See comment above.
3969 */
3970 BP_ZERO_DVAS(bp);
3971 BP_SET_BIRTH(bp, 0, 0);
3972 }
3973
3974 if (have_dvas >= need_dvas) {
3975 /*
3976 * A minor point: there might already be enough
3977 * committed DVAs in the entry to service our request,
3978 * but we don't know which are completed and which are
3979 * allocated but not yet written. In this case, should
3980 * the IO for the new DVAs fail, we will be on the end
3981 * of the IO chain and will also recieve an error, even
3982 * though our request could have been serviced.
3983 *
3984 * This is an extremely rare case, as it requires the
3985 * original block to be copied with a request for a
3986 * larger number of DVAs, then copied again requesting
3987 * the same (or already fulfilled) number of DVAs while
3988 * the first request is active, and then that first
3989 * request errors. In return, the logic required to
3990 * catch and handle it is complex. For now, I'm just
3991 * not going to bother with it.
3992 */
3993
3994 /*
3995 * We always fill the bp here as we may have arrived
3996 * after the in-flight write has passed READY, and so
3997 * missed out.
3998 */
3999 ddt_bp_fill(ddp, v, bp, txg);
4000 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
4001 ddt_exit(ddt);
4002 return (zio);
4003 }
4004
4005 /*
4006 * There's not enough in the entry yet, so we need to look at
4007 * the write in-flight and see how many DVAs it will have once
4008 * it completes.
4009 *
4010 * The in-flight write has potentially had its copies request
4011 * reduced (if we're filling out an existing entry), so we need
4012 * to reach in and get the original write to find out what it is
4013 * expecting.
4014 *
4015 * Note that the parent of the lead zio will always have the
4016 * highest zp_copies of any zio in the chain, because ones that
4017 * can be serviced without additional IO are always added to
4018 * the back of the chain.
4019 */
4020 zio_link_t *zl = NULL;
4021 zio_t *pio =
4022 zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl);
4023 ASSERT(pio);
4024 parent_dvas = pio->io_prop.zp_copies;
4025
4026 if (parent_dvas >= need_dvas) {
4027 zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
4028 ddt_exit(ddt);
4029 return (zio);
4030 }
4031
4032 /*
4033 * Still not enough, so we will need to issue to get the
4034 * shortfall.
4035 */
4036 need_dvas -= parent_dvas;
4037 }
4038
4039 if (is_ganged) {
4040 zp->zp_dedup = B_FALSE;
4041 BP_SET_DEDUP(bp, B_FALSE);
4042 zio->io_pipeline = ZIO_WRITE_PIPELINE;
4043 ddt_exit(ddt);
4044 return (zio);
4045 }
4046
4047 /*
4048 * We need to write. We will create a new write with the copies
4049 * property adjusted to match the number of DVAs we need to need to
4050 * grow the DDT entry by to satisfy the request.
4051 */
4052 zio_prop_t czp = *zp;
4053 if (have_dvas > 0 || parent_dvas > 0) {
4054 czp.zp_copies = need_dvas;
4055 czp.zp_gang_copies = 0;
4056 } else {
4057 ASSERT3U(czp.zp_copies, ==, need_dvas);
4058 }
4059
4060 zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
4061 zio->io_orig_size, zio->io_orig_size, &czp,
4062 zio_ddt_child_write_ready, NULL,
4063 zio_ddt_child_write_done, dde, zio->io_priority,
4064 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
4065
4066 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
4067
4068 /*
4069 * We are the new lead zio, because our parent has the highest
4070 * zp_copies that has been requested for this entry so far.
4071 */
4072 ddt_alloc_entry_io(dde);
4073 if (dde->dde_io->dde_lead_zio[p] == NULL) {
4074 /*
4075 * First time out, take a copy of the stable entry to revert
4076 * to if there's an error (see zio_ddt_child_write_done())
4077 */
4078 ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v);
4079 } else {
4080 /*
4081 * Make the existing chain our child, because it cannot
4082 * complete until we have.
4083 */
4084 zio_add_child(cio, dde->dde_io->dde_lead_zio[p]);
4085 }
4086 dde->dde_io->dde_lead_zio[p] = cio;
4087
4088 ddt_exit(ddt);
4089
4090 zio_nowait(cio);
4091
4092 return (zio);
4093 }
4094
4095 static ddt_entry_t *freedde; /* for debugging */
4096
4097 static zio_t *
zio_ddt_free(zio_t * zio)4098 zio_ddt_free(zio_t *zio)
4099 {
4100 spa_t *spa = zio->io_spa;
4101 blkptr_t *bp = zio->io_bp;
4102 ddt_t *ddt = ddt_select(spa, bp);
4103 ddt_entry_t *dde = NULL;
4104
4105 ASSERT(BP_GET_DEDUP(bp));
4106 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4107
4108 ddt_enter(ddt);
4109 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
4110 if (dde) {
4111 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
4112 if (v != DDT_PHYS_NONE)
4113 ddt_phys_decref(dde->dde_phys, v);
4114 }
4115 ddt_exit(ddt);
4116
4117 /*
4118 * When no entry was found, it must have been pruned,
4119 * so we can free it now instead of decrementing the
4120 * refcount in the DDT.
4121 */
4122 if (!dde) {
4123 BP_SET_DEDUP(bp, 0);
4124 zio->io_pipeline |= ZIO_STAGE_DVA_FREE;
4125 }
4126
4127 return (zio);
4128 }
4129
4130 /*
4131 * ==========================================================================
4132 * Allocate and free blocks
4133 * ==========================================================================
4134 */
4135
4136 static zio_t *
zio_io_to_allocate(metaslab_class_allocator_t * mca,boolean_t * more)4137 zio_io_to_allocate(metaslab_class_allocator_t *mca, boolean_t *more)
4138 {
4139 zio_t *zio;
4140
4141 ASSERT(MUTEX_HELD(&mca->mca_lock));
4142
4143 zio = avl_first(&mca->mca_tree);
4144 if (zio == NULL) {
4145 *more = B_FALSE;
4146 return (NULL);
4147 }
4148
4149 ASSERT(IO_IS_ALLOCATING(zio));
4150 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4151
4152 /*
4153 * Try to place a reservation for this zio. If we're unable to
4154 * reserve then we throttle.
4155 */
4156 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
4157 zio->io_allocator, zio->io_prop.zp_copies, zio->io_size,
4158 B_FALSE, more)) {
4159 return (NULL);
4160 }
4161 zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED;
4162
4163 avl_remove(&mca->mca_tree, zio);
4164 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
4165
4166 if (avl_is_empty(&mca->mca_tree))
4167 *more = B_FALSE;
4168 return (zio);
4169 }
4170
4171 static zio_t *
zio_dva_throttle(zio_t * zio)4172 zio_dva_throttle(zio_t *zio)
4173 {
4174 spa_t *spa = zio->io_spa;
4175 zio_t *nio;
4176 metaslab_class_t *mc;
4177 boolean_t more;
4178
4179 /*
4180 * If not already chosen, choose an appropriate allocation class.
4181 */
4182 mc = zio->io_metaslab_class;
4183 if (mc == NULL)
4184 mc = spa_preferred_class(spa, zio);
4185
4186 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
4187 !mc->mc_alloc_throttle_enabled ||
4188 zio->io_child_type == ZIO_CHILD_GANG ||
4189 zio->io_flags & ZIO_FLAG_NODATA) {
4190 return (zio);
4191 }
4192
4193 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4194 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4195 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4196 ASSERT3U(zio->io_queued_timestamp, >, 0);
4197 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
4198
4199 zio->io_metaslab_class = mc;
4200 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
4201 mutex_enter(&mca->mca_lock);
4202 avl_add(&mca->mca_tree, zio);
4203 nio = zio_io_to_allocate(mca, &more);
4204 mutex_exit(&mca->mca_lock);
4205 return (nio);
4206 }
4207
4208 static void
zio_allocate_dispatch(metaslab_class_t * mc,int allocator)4209 zio_allocate_dispatch(metaslab_class_t *mc, int allocator)
4210 {
4211 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
4212 zio_t *zio;
4213 boolean_t more;
4214
4215 do {
4216 mutex_enter(&mca->mca_lock);
4217 zio = zio_io_to_allocate(mca, &more);
4218 mutex_exit(&mca->mca_lock);
4219 if (zio == NULL)
4220 return;
4221
4222 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
4223 ASSERT0(zio->io_error);
4224 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
4225 } while (more);
4226 }
4227
4228 static zio_t *
zio_dva_allocate(zio_t * zio)4229 zio_dva_allocate(zio_t *zio)
4230 {
4231 spa_t *spa = zio->io_spa;
4232 metaslab_class_t *mc, *newmc;
4233 blkptr_t *bp = zio->io_bp;
4234 int error;
4235 int flags = 0;
4236
4237 if (zio->io_gang_leader == NULL) {
4238 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4239 zio->io_gang_leader = zio;
4240 }
4241 if (zio->io_flags & ZIO_FLAG_PREALLOCATED) {
4242 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_GANG);
4243 memcpy(zio->io_bp->blk_dva, zio->io_bp_orig.blk_dva,
4244 3 * sizeof (dva_t));
4245 BP_SET_LOGICAL_BIRTH(zio->io_bp,
4246 BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig));
4247 BP_SET_PHYSICAL_BIRTH(zio->io_bp,
4248 BP_GET_RAW_PHYSICAL_BIRTH(&zio->io_bp_orig));
4249 return (zio);
4250 }
4251
4252 ASSERT(BP_IS_HOLE(bp));
4253 ASSERT0(BP_GET_NDVAS(bp));
4254 ASSERT3U(zio->io_prop.zp_copies, >, 0);
4255
4256 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
4257 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
4258
4259 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
4260 flags |= METASLAB_GANG_CHILD;
4261 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
4262 flags |= METASLAB_ASYNC_ALLOC;
4263
4264 /*
4265 * If not already chosen, choose an appropriate allocation class.
4266 */
4267 mc = zio->io_metaslab_class;
4268 if (mc == NULL) {
4269 mc = spa_preferred_class(spa, zio);
4270 zio->io_metaslab_class = mc;
4271 }
4272 ZIOSTAT_BUMP(ziostat_total_allocations);
4273
4274 again:
4275 /*
4276 * Try allocating the block in the usual metaslab class.
4277 * If that's full, allocate it in some other class(es).
4278 * If that's full, allocate as a gang block,
4279 * and if all are full, the allocation fails (which shouldn't happen).
4280 *
4281 * Note that we do not fall back on embedded slog (ZIL) space, to
4282 * preserve unfragmented slog space, which is critical for decent
4283 * sync write performance. If a log allocation fails, we will fall
4284 * back to spa_sync() which is abysmal for performance.
4285 */
4286 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4287 error = metaslab_alloc(spa, mc, zio->io_size, bp,
4288 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4289 &zio->io_alloc_list, zio->io_allocator, zio);
4290
4291 /*
4292 * When the dedup or special class is spilling into the normal class,
4293 * there can still be significant space available due to deferred
4294 * frees that are in-flight. We track the txg when this occurred and
4295 * back off adding new DDT entries for a few txgs to allow the free
4296 * blocks to be processed.
4297 */
4298 if (error == ENOSPC && spa->spa_dedup_class_full_txg != zio->io_txg &&
4299 (mc == spa_dedup_class(spa) || (mc == spa_special_class(spa) &&
4300 !spa_has_dedup(spa) && spa_special_has_ddt(spa)))) {
4301 spa->spa_dedup_class_full_txg = zio->io_txg;
4302 zfs_dbgmsg("%s[%llu]: %s class spilling, req size %llu, "
4303 "%llu allocated of %llu",
4304 spa_name(spa), (u_longlong_t)zio->io_txg,
4305 metaslab_class_get_name(mc),
4306 (u_longlong_t)zio->io_size,
4307 (u_longlong_t)metaslab_class_get_alloc(mc),
4308 (u_longlong_t)metaslab_class_get_space(mc));
4309 }
4310
4311 /*
4312 * Fall back to some other class when this one is full.
4313 */
4314 if (error == ENOSPC && (newmc = spa_preferred_class(spa, zio)) != mc) {
4315 /*
4316 * If we are holding old class reservation, drop it.
4317 * Dispatch the next ZIO(s) there if some are waiting.
4318 */
4319 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
4320 if (metaslab_class_throttle_unreserve(mc,
4321 zio->io_allocator, zio->io_prop.zp_copies,
4322 zio->io_size)) {
4323 zio_allocate_dispatch(zio->io_metaslab_class,
4324 zio->io_allocator);
4325 }
4326 zio->io_flags &= ~ZIO_FLAG_ALLOC_THROTTLED;
4327 }
4328
4329 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4330 zfs_dbgmsg("%s: metaslab allocation failure in %s "
4331 "class, trying fallback to %s class: zio %px, "
4332 "size %llu, error %d", spa_name(spa),
4333 metaslab_class_get_name(mc),
4334 metaslab_class_get_name(newmc),
4335 zio, (u_longlong_t)zio->io_size, error);
4336 }
4337 zio->io_metaslab_class = mc = newmc;
4338 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4339
4340 /*
4341 * If the new class uses throttling, return to that pipeline
4342 * stage. Otherwise just do another allocation attempt.
4343 */
4344 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
4345 mc->mc_alloc_throttle_enabled &&
4346 zio->io_child_type != ZIO_CHILD_GANG &&
4347 !(zio->io_flags & ZIO_FLAG_NODATA)) {
4348 zio->io_stage = ZIO_STAGE_DVA_THROTTLE >> 1;
4349 return (zio);
4350 }
4351 goto again;
4352 }
4353
4354 if (error == ENOSPC && zio->io_size > spa->spa_min_alloc) {
4355 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4356 zfs_dbgmsg("%s: metaslab allocation failure, "
4357 "trying ganging: zio %px, size %llu, error %d",
4358 spa_name(spa), zio, (u_longlong_t)zio->io_size,
4359 error);
4360 }
4361 ZIOSTAT_BUMP(ziostat_gang_writes);
4362 if (flags & METASLAB_GANG_CHILD)
4363 ZIOSTAT_BUMP(ziostat_gang_multilevel);
4364 return (zio_write_gang_block(zio, mc));
4365 }
4366 if (error != 0) {
4367 if (error != ENOSPC ||
4368 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
4369 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4370 "size %llu, error %d",
4371 spa_name(spa), zio, (u_longlong_t)zio->io_size,
4372 error);
4373 }
4374 zio->io_error = error;
4375 } else if (zio->io_prop.zp_rewrite) {
4376 /*
4377 * For rewrite operations, preserve the logical birth time
4378 * but set the physical birth time to the current txg.
4379 */
4380 uint64_t logical_birth = BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig);
4381 ASSERT3U(logical_birth, <=, zio->io_txg);
4382 BP_SET_BIRTH(zio->io_bp, logical_birth, zio->io_txg);
4383 BP_SET_REWRITE(zio->io_bp, 1);
4384 }
4385
4386 return (zio);
4387 }
4388
4389 static zio_t *
zio_dva_free(zio_t * zio)4390 zio_dva_free(zio_t *zio)
4391 {
4392 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
4393
4394 return (zio);
4395 }
4396
4397 static zio_t *
zio_dva_claim(zio_t * zio)4398 zio_dva_claim(zio_t *zio)
4399 {
4400 int error;
4401
4402 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
4403 if (error)
4404 zio->io_error = error;
4405
4406 return (zio);
4407 }
4408
4409 /*
4410 * Undo an allocation. This is used by zio_done() when an I/O fails
4411 * and we want to give back the block we just allocated.
4412 * This handles both normal blocks and gang blocks.
4413 */
4414 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)4415 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
4416 {
4417 ASSERT(BP_GET_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
4418 ASSERT(zio->io_bp_override == NULL);
4419
4420 if (!BP_IS_HOLE(bp)) {
4421 metaslab_free(zio->io_spa, bp, BP_GET_BIRTH(bp), B_TRUE);
4422 }
4423
4424 if (gn != NULL) {
4425 for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
4426 zio_dva_unallocate(zio, gn->gn_child[g],
4427 gbh_bp(gn->gn_gbh, g));
4428 }
4429 }
4430 }
4431
4432 /*
4433 * Try to allocate an intent log block. Return 0 on success, errno on failure.
4434 */
4435 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)4436 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
4437 uint64_t size, boolean_t *slog)
4438 {
4439 int error;
4440 zio_alloc_list_t io_alloc_list;
4441
4442 ASSERT(txg > spa_syncing_txg(spa));
4443
4444 metaslab_trace_init(&io_alloc_list);
4445
4446 /*
4447 * Block pointer fields are useful to metaslabs for stats and debugging.
4448 * Fill in the obvious ones before calling into metaslab_alloc().
4449 */
4450 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4451 BP_SET_PSIZE(new_bp, size);
4452 BP_SET_LEVEL(new_bp, 0);
4453
4454 /*
4455 * When allocating a zil block, we don't have information about
4456 * the final destination of the block except the objset it's part
4457 * of, so we just hash the objset ID to pick the allocator to get
4458 * some parallelism.
4459 */
4460 int flags = METASLAB_ZIL;
4461 int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object)
4462 % spa->spa_alloc_count;
4463 ZIOSTAT_BUMP(ziostat_total_allocations);
4464
4465 /* Try log class (dedicated slog devices) first */
4466 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
4467 txg, NULL, flags, &io_alloc_list, allocator, NULL);
4468 *slog = (error == 0);
4469
4470 /* Try special_embedded_log class (reserved on special vdevs) */
4471 if (error != 0) {
4472 error = metaslab_alloc(spa, spa_special_embedded_log_class(spa),
4473 size, new_bp, 1, txg, NULL, flags, &io_alloc_list,
4474 allocator, NULL);
4475 }
4476
4477 /* Try special class (general special vdev allocation) */
4478 if (error != 0) {
4479 error = metaslab_alloc(spa, spa_special_class(spa), size,
4480 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4481 NULL);
4482 }
4483
4484 /* Try embedded_log class (reserved on normal vdevs) */
4485 if (error != 0) {
4486 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
4487 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4488 NULL);
4489 }
4490
4491 /* Finally fall back to normal class */
4492 if (error != 0) {
4493 ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4494 error = metaslab_alloc(spa, spa_normal_class(spa), size,
4495 new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4496 NULL);
4497 }
4498 metaslab_trace_fini(&io_alloc_list);
4499
4500 if (error == 0) {
4501 BP_SET_LSIZE(new_bp, size);
4502 BP_SET_PSIZE(new_bp, size);
4503 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
4504 BP_SET_CHECKSUM(new_bp,
4505 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
4506 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
4507 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4508 BP_SET_LEVEL(new_bp, 0);
4509 BP_SET_DEDUP(new_bp, 0);
4510 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
4511
4512 /*
4513 * encrypted blocks will require an IV and salt. We generate
4514 * these now since we will not be rewriting the bp at
4515 * rewrite time.
4516 */
4517 if (os->os_encrypted) {
4518 uint8_t iv[ZIO_DATA_IV_LEN];
4519 uint8_t salt[ZIO_DATA_SALT_LEN];
4520
4521 BP_SET_CRYPT(new_bp, B_TRUE);
4522 VERIFY0(spa_crypt_get_salt(spa,
4523 dmu_objset_id(os), salt));
4524 VERIFY0(zio_crypt_generate_iv(iv));
4525
4526 zio_crypt_encode_params_bp(new_bp, salt, iv);
4527 }
4528 } else {
4529 zfs_dbgmsg("%s: zil block allocation failure: "
4530 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
4531 error);
4532 }
4533
4534 return (error);
4535 }
4536
4537 /*
4538 * ==========================================================================
4539 * Read and write to physical devices
4540 * ==========================================================================
4541 */
4542
4543 /*
4544 * Issue an I/O to the underlying vdev. Typically the issue pipeline
4545 * stops after this stage and will resume upon I/O completion.
4546 * However, there are instances where the vdev layer may need to
4547 * continue the pipeline when an I/O was not issued. Since the I/O
4548 * that was sent to the vdev layer might be different than the one
4549 * currently active in the pipeline (see vdev_queue_io()), we explicitly
4550 * force the underlying vdev layers to call either zio_execute() or
4551 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4552 */
4553 static zio_t *
zio_vdev_io_start(zio_t * zio)4554 zio_vdev_io_start(zio_t *zio)
4555 {
4556 vdev_t *vd = zio->io_vd;
4557 uint64_t align;
4558 spa_t *spa = zio->io_spa;
4559
4560 zio->io_delay = 0;
4561
4562 ASSERT(zio->io_error == 0);
4563 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
4564
4565 if (vd == NULL) {
4566 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4567 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
4568
4569 /*
4570 * The mirror_ops handle multiple DVAs in a single BP.
4571 */
4572 vdev_mirror_ops.vdev_op_io_start(zio);
4573 return (NULL);
4574 }
4575
4576 ASSERT3P(zio->io_logical, !=, zio);
4577 if (zio->io_type == ZIO_TYPE_WRITE) {
4578 ASSERT(spa->spa_trust_config);
4579
4580 /*
4581 * Note: the code can handle other kinds of writes,
4582 * but we don't expect them.
4583 */
4584 if (zio->io_vd->vdev_noalloc) {
4585 ASSERT(zio->io_flags &
4586 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4587 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4588 }
4589 }
4590
4591 align = 1ULL << vd->vdev_top->vdev_ashift;
4592
4593 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4594 P2PHASE(zio->io_size, align) != 0) {
4595 /* Transform logical writes to be a full physical block size. */
4596 uint64_t asize = P2ROUNDUP(zio->io_size, align);
4597 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4598 ASSERT(vd == vd->vdev_top);
4599 if (zio->io_type == ZIO_TYPE_WRITE) {
4600 abd_copy(abuf, zio->io_abd, zio->io_size);
4601 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4602 }
4603 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4604 }
4605
4606 /*
4607 * If this is not a physical io, make sure that it is properly aligned
4608 * before proceeding.
4609 */
4610 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4611 ASSERT0(P2PHASE(zio->io_offset, align));
4612 ASSERT0(P2PHASE(zio->io_size, align));
4613 } else {
4614 /*
4615 * For physical writes, we allow 512b aligned writes and assume
4616 * the device will perform a read-modify-write as necessary.
4617 */
4618 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4619 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4620 }
4621
4622 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4623
4624 /*
4625 * If this is a repair I/O, and there's no self-healing involved --
4626 * that is, we're just resilvering what we expect to resilver --
4627 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4628 * This prevents spurious resilvering.
4629 *
4630 * There are a few ways that we can end up creating these spurious
4631 * resilver i/os:
4632 *
4633 * 1. A resilver i/o will be issued if any DVA in the BP has a
4634 * dirty DTL. The mirror code will issue resilver writes to
4635 * each DVA, including the one(s) that are not on vdevs with dirty
4636 * DTLs.
4637 *
4638 * 2. With nested replication, which happens when we have a
4639 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4640 * For example, given mirror(replacing(A+B), C), it's likely that
4641 * only A is out of date (it's the new device). In this case, we'll
4642 * read from C, then use the data to resilver A+B -- but we don't
4643 * actually want to resilver B, just A. The top-level mirror has no
4644 * way to know this, so instead we just discard unnecessary repairs
4645 * as we work our way down the vdev tree.
4646 *
4647 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4648 * The same logic applies to any form of nested replication: ditto
4649 * + mirror, RAID-Z + replacing, etc.
4650 *
4651 * However, indirect vdevs point off to other vdevs which may have
4652 * DTL's, so we never bypass them. The child i/os on concrete vdevs
4653 * will be properly bypassed instead.
4654 *
4655 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4656 * a dRAID spare vdev. For example, when a dRAID spare is first
4657 * used, its spare blocks need to be written to but the leaf vdev's
4658 * of such blocks can have empty DTL_PARTIAL.
4659 *
4660 * There seemed no clean way to allow such writes while bypassing
4661 * spurious ones. At this point, just avoid all bypassing for dRAID
4662 * for correctness.
4663 */
4664 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4665 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4666 zio->io_txg != 0 && /* not a delegated i/o */
4667 vd->vdev_ops != &vdev_indirect_ops &&
4668 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4669 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4670 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4671 zio_vdev_io_bypass(zio);
4672 return (zio);
4673 }
4674
4675 /*
4676 * Select the next best leaf I/O to process. Distributed spares are
4677 * excluded since they dispatch the I/O directly to a leaf vdev after
4678 * applying the dRAID mapping.
4679 */
4680 if (vd->vdev_ops->vdev_op_leaf &&
4681 vd->vdev_ops != &vdev_draid_spare_ops &&
4682 (zio->io_type == ZIO_TYPE_READ ||
4683 zio->io_type == ZIO_TYPE_WRITE ||
4684 zio->io_type == ZIO_TYPE_TRIM)) {
4685
4686 if ((zio = vdev_queue_io(zio)) == NULL)
4687 return (NULL);
4688
4689 if (!vdev_accessible(vd, zio)) {
4690 zio->io_error = SET_ERROR(ENXIO);
4691 zio_interrupt(zio);
4692 return (NULL);
4693 }
4694 zio->io_delay = gethrtime();
4695
4696 if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4697 /*
4698 * "no-op" injections return success, but do no actual
4699 * work. Just return it.
4700 */
4701 zio_delay_interrupt(zio);
4702 return (NULL);
4703 }
4704 }
4705
4706 vd->vdev_ops->vdev_op_io_start(zio);
4707 return (NULL);
4708 }
4709
4710 static zio_t *
zio_vdev_io_done(zio_t * zio)4711 zio_vdev_io_done(zio_t *zio)
4712 {
4713 vdev_t *vd = zio->io_vd;
4714 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4715 boolean_t unexpected_error = B_FALSE;
4716
4717 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4718 return (NULL);
4719 }
4720
4721 ASSERT(zio->io_type == ZIO_TYPE_READ ||
4722 zio->io_type == ZIO_TYPE_WRITE ||
4723 zio->io_type == ZIO_TYPE_FLUSH ||
4724 zio->io_type == ZIO_TYPE_TRIM);
4725
4726 if (zio->io_delay)
4727 zio->io_delay = gethrtime() - zio->io_delay;
4728
4729 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4730 vd->vdev_ops != &vdev_draid_spare_ops) {
4731 if (zio->io_type != ZIO_TYPE_FLUSH)
4732 vdev_queue_io_done(zio);
4733
4734 if (zio_injection_enabled && zio->io_error == 0)
4735 zio->io_error = zio_handle_device_injections(vd, zio,
4736 EIO, EILSEQ);
4737
4738 if (zio_injection_enabled && zio->io_error == 0)
4739 zio->io_error = zio_handle_label_injection(zio, EIO);
4740
4741 if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4742 zio->io_type != ZIO_TYPE_TRIM) {
4743 if (!vdev_accessible(vd, zio)) {
4744 zio->io_error = SET_ERROR(ENXIO);
4745 } else {
4746 unexpected_error = B_TRUE;
4747 }
4748 }
4749 }
4750
4751 ops->vdev_op_io_done(zio);
4752
4753 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4754 VERIFY(vdev_probe(vd, zio) == NULL);
4755
4756 return (zio);
4757 }
4758
4759 /*
4760 * This function is used to change the priority of an existing zio that is
4761 * currently in-flight. This is used by the arc to upgrade priority in the
4762 * event that a demand read is made for a block that is currently queued
4763 * as a scrub or async read IO. Otherwise, the high priority read request
4764 * would end up having to wait for the lower priority IO.
4765 */
4766 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4767 zio_change_priority(zio_t *pio, zio_priority_t priority)
4768 {
4769 zio_t *cio, *cio_next;
4770 zio_link_t *zl = NULL;
4771
4772 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4773
4774 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4775 vdev_queue_change_io_priority(pio, priority);
4776 } else {
4777 pio->io_priority = priority;
4778 }
4779
4780 mutex_enter(&pio->io_lock);
4781 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4782 cio_next = zio_walk_children(pio, &zl);
4783 zio_change_priority(cio, priority);
4784 }
4785 mutex_exit(&pio->io_lock);
4786 }
4787
4788 /*
4789 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4790 * disk, and use that to finish the checksum ereport later.
4791 */
4792 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4793 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4794 const abd_t *good_buf)
4795 {
4796 /* no processing needed */
4797 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4798 }
4799
4800 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4801 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4802 {
4803 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4804
4805 abd_copy(abd, zio->io_abd, zio->io_size);
4806
4807 zcr->zcr_cbinfo = zio->io_size;
4808 zcr->zcr_cbdata = abd;
4809 zcr->zcr_finish = zio_vsd_default_cksum_finish;
4810 zcr->zcr_free = zio_abd_free;
4811 }
4812
4813 static zio_t *
zio_vdev_io_assess(zio_t * zio)4814 zio_vdev_io_assess(zio_t *zio)
4815 {
4816 vdev_t *vd = zio->io_vd;
4817
4818 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4819 return (NULL);
4820 }
4821
4822 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4823 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4824
4825 if (zio->io_vsd != NULL) {
4826 zio->io_vsd_ops->vsd_free(zio);
4827 zio->io_vsd = NULL;
4828 }
4829
4830 /*
4831 * If a Direct I/O operation has a checksum verify error then this I/O
4832 * should not attempt to be issued again.
4833 */
4834 if (zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) {
4835 if (zio->io_type == ZIO_TYPE_WRITE) {
4836 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4837 ASSERT3U(zio->io_error, ==, EIO);
4838 }
4839 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4840 return (zio);
4841 }
4842
4843 if (zio_injection_enabled && zio->io_error == 0)
4844 zio->io_error = zio_handle_fault_injection(zio, EIO);
4845
4846 /*
4847 * If the I/O failed, determine whether we should attempt to retry it.
4848 *
4849 * On retry, we cut in line in the issue queue, since we don't want
4850 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4851 */
4852 if (zio->io_error && vd == NULL &&
4853 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4854 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4855 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4856 zio->io_error = 0;
4857 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4858 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4859 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4860 zio_requeue_io_start_cut_in_line);
4861 return (NULL);
4862 }
4863
4864 /*
4865 * If we got an error on a leaf device, convert it to ENXIO
4866 * if the device is not accessible at all.
4867 */
4868 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4869 !vdev_accessible(vd, zio))
4870 zio->io_error = SET_ERROR(ENXIO);
4871
4872 /*
4873 * If we can't write to an interior vdev (mirror or RAID-Z),
4874 * set vdev_cant_write so that we stop trying to allocate from it.
4875 */
4876 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4877 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4878 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4879 "cant_write=TRUE due to write failure with ENXIO",
4880 zio);
4881 vd->vdev_cant_write = B_TRUE;
4882 }
4883
4884 /*
4885 * If a cache flush returns ENOTSUP we know that no future
4886 * attempts will ever succeed. In this case we set a persistent
4887 * boolean flag so that we don't bother with it in the future, and
4888 * then we act like the flush succeeded.
4889 */
4890 if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH &&
4891 vd != NULL) {
4892 vd->vdev_nowritecache = B_TRUE;
4893 zio->io_error = 0;
4894 }
4895
4896 if (zio->io_error)
4897 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4898
4899 return (zio);
4900 }
4901
4902 void
zio_vdev_io_reissue(zio_t * zio)4903 zio_vdev_io_reissue(zio_t *zio)
4904 {
4905 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4906 ASSERT(zio->io_error == 0);
4907
4908 zio->io_stage >>= 1;
4909 }
4910
4911 void
zio_vdev_io_redone(zio_t * zio)4912 zio_vdev_io_redone(zio_t *zio)
4913 {
4914 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4915
4916 zio->io_stage >>= 1;
4917 }
4918
4919 void
zio_vdev_io_bypass(zio_t * zio)4920 zio_vdev_io_bypass(zio_t *zio)
4921 {
4922 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4923 ASSERT(zio->io_error == 0);
4924
4925 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4926 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4927 }
4928
4929 /*
4930 * ==========================================================================
4931 * Encrypt and store encryption parameters
4932 * ==========================================================================
4933 */
4934
4935
4936 /*
4937 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4938 * managing the storage of encryption parameters and passing them to the
4939 * lower-level encryption functions.
4940 */
4941 static zio_t *
zio_encrypt(zio_t * zio)4942 zio_encrypt(zio_t *zio)
4943 {
4944 zio_prop_t *zp = &zio->io_prop;
4945 spa_t *spa = zio->io_spa;
4946 blkptr_t *bp = zio->io_bp;
4947 uint64_t psize = BP_GET_PSIZE(bp);
4948 uint64_t dsobj = zio->io_bookmark.zb_objset;
4949 dmu_object_type_t ot = BP_GET_TYPE(bp);
4950 void *enc_buf = NULL;
4951 abd_t *eabd = NULL;
4952 uint8_t salt[ZIO_DATA_SALT_LEN];
4953 uint8_t iv[ZIO_DATA_IV_LEN];
4954 uint8_t mac[ZIO_DATA_MAC_LEN];
4955 boolean_t no_crypt = B_FALSE;
4956
4957 /* the root zio already encrypted the data */
4958 if (zio->io_child_type == ZIO_CHILD_GANG)
4959 return (zio);
4960
4961 /* only ZIL blocks are re-encrypted on rewrite */
4962 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4963 return (zio);
4964
4965 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4966 BP_SET_CRYPT(bp, B_FALSE);
4967 return (zio);
4968 }
4969
4970 /* if we are doing raw encryption set the provided encryption params */
4971 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4972 ASSERT0(BP_GET_LEVEL(bp));
4973 BP_SET_CRYPT(bp, B_TRUE);
4974 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4975 if (ot != DMU_OT_OBJSET)
4976 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4977
4978 /* dnode blocks must be written out in the provided byteorder */
4979 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4980 ot == DMU_OT_DNODE) {
4981 void *bswap_buf = zio_buf_alloc(psize);
4982 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4983
4984 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4985 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4986 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4987 psize);
4988
4989 abd_take_ownership_of_buf(babd, B_TRUE);
4990 zio_push_transform(zio, babd, psize, psize, NULL);
4991 }
4992
4993 if (DMU_OT_IS_ENCRYPTED(ot))
4994 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4995 return (zio);
4996 }
4997
4998 /* indirect blocks only maintain a cksum of the lower level MACs */
4999 if (BP_GET_LEVEL(bp) > 0) {
5000 BP_SET_CRYPT(bp, B_TRUE);
5001 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
5002 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
5003 mac));
5004 zio_crypt_encode_mac_bp(bp, mac);
5005 return (zio);
5006 }
5007
5008 /*
5009 * Objset blocks are a special case since they have 2 256-bit MACs
5010 * embedded within them.
5011 */
5012 if (ot == DMU_OT_OBJSET) {
5013 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
5014 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
5015 BP_SET_CRYPT(bp, B_TRUE);
5016 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
5017 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
5018 return (zio);
5019 }
5020
5021 /* unencrypted object types are only authenticated with a MAC */
5022 if (!DMU_OT_IS_ENCRYPTED(ot)) {
5023 BP_SET_CRYPT(bp, B_TRUE);
5024 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
5025 zio->io_abd, psize, mac));
5026 zio_crypt_encode_mac_bp(bp, mac);
5027 return (zio);
5028 }
5029
5030 /*
5031 * Later passes of sync-to-convergence may decide to rewrite data
5032 * in place to avoid more disk reallocations. This presents a problem
5033 * for encryption because this constitutes rewriting the new data with
5034 * the same encryption key and IV. However, this only applies to blocks
5035 * in the MOS (particularly the spacemaps) and we do not encrypt the
5036 * MOS. We assert that the zio is allocating or an intent log write
5037 * to enforce this.
5038 */
5039 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
5040 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
5041 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
5042 ASSERT3U(psize, !=, 0);
5043
5044 enc_buf = zio_buf_alloc(psize);
5045 eabd = abd_get_from_buf(enc_buf, psize);
5046 abd_take_ownership_of_buf(eabd, B_TRUE);
5047
5048 /*
5049 * For an explanation of what encryption parameters are stored
5050 * where, see the block comment in zio_crypt.c.
5051 */
5052 if (ot == DMU_OT_INTENT_LOG) {
5053 zio_crypt_decode_params_bp(bp, salt, iv);
5054 } else {
5055 BP_SET_CRYPT(bp, B_TRUE);
5056 }
5057
5058 /* Perform the encryption. This should not fail */
5059 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
5060 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
5061 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
5062
5063 /* encode encryption metadata into the bp */
5064 if (ot == DMU_OT_INTENT_LOG) {
5065 /*
5066 * ZIL blocks store the MAC in the embedded checksum, so the
5067 * transform must always be applied.
5068 */
5069 zio_crypt_encode_mac_zil(enc_buf, mac);
5070 zio_push_transform(zio, eabd, psize, psize, NULL);
5071 } else {
5072 BP_SET_CRYPT(bp, B_TRUE);
5073 zio_crypt_encode_params_bp(bp, salt, iv);
5074 zio_crypt_encode_mac_bp(bp, mac);
5075
5076 if (no_crypt) {
5077 ASSERT3U(ot, ==, DMU_OT_DNODE);
5078 abd_free(eabd);
5079 } else {
5080 zio_push_transform(zio, eabd, psize, psize, NULL);
5081 }
5082 }
5083
5084 return (zio);
5085 }
5086
5087 /*
5088 * ==========================================================================
5089 * Generate and verify checksums
5090 * ==========================================================================
5091 */
5092 static zio_t *
zio_checksum_generate(zio_t * zio)5093 zio_checksum_generate(zio_t *zio)
5094 {
5095 blkptr_t *bp = zio->io_bp;
5096 enum zio_checksum checksum;
5097
5098 if (bp == NULL) {
5099 /*
5100 * This is zio_write_phys().
5101 * We're either generating a label checksum, or none at all.
5102 */
5103 checksum = zio->io_prop.zp_checksum;
5104
5105 if (checksum == ZIO_CHECKSUM_OFF)
5106 return (zio);
5107
5108 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
5109 } else {
5110 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
5111 ASSERT(!IO_IS_ALLOCATING(zio));
5112 checksum = ZIO_CHECKSUM_GANG_HEADER;
5113 } else {
5114 checksum = BP_GET_CHECKSUM(bp);
5115 }
5116 }
5117
5118 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
5119
5120 return (zio);
5121 }
5122
5123 static zio_t *
zio_checksum_verify(zio_t * zio)5124 zio_checksum_verify(zio_t *zio)
5125 {
5126 zio_bad_cksum_t info;
5127 blkptr_t *bp = zio->io_bp;
5128 int error;
5129
5130 ASSERT(zio->io_vd != NULL);
5131
5132 if (bp == NULL) {
5133 /*
5134 * This is zio_read_phys().
5135 * We're either verifying a label checksum, or nothing at all.
5136 */
5137 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
5138 return (zio);
5139
5140 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
5141 }
5142
5143 ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5144 IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ,
5145 !(zio->io_flags & ZIO_FLAG_SPECULATIVE));
5146
5147 if ((error = zio_checksum_error(zio, &info)) != 0) {
5148 zio->io_error = error;
5149 if (error == ECKSUM &&
5150 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5151 if (zio->io_flags & ZIO_FLAG_DIO_READ) {
5152 zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR;
5153 zio_t *pio = zio_unique_parent(zio);
5154 /*
5155 * Any Direct I/O read that has a checksum
5156 * error must be treated as suspicous as the
5157 * contents of the buffer could be getting
5158 * manipulated while the I/O is taking place.
5159 *
5160 * The checksum verify error will only be
5161 * reported here for disk and file VDEV's and
5162 * will be reported on those that the failure
5163 * occurred on. Other types of VDEV's report the
5164 * verify failure in their own code paths.
5165 */
5166 if (pio->io_child_type == ZIO_CHILD_LOGICAL) {
5167 zio_dio_chksum_verify_error_report(zio);
5168 }
5169 } else {
5170 mutex_enter(&zio->io_vd->vdev_stat_lock);
5171 zio->io_vd->vdev_stat.vs_checksum_errors++;
5172 mutex_exit(&zio->io_vd->vdev_stat_lock);
5173 (void) zfs_ereport_start_checksum(zio->io_spa,
5174 zio->io_vd, &zio->io_bookmark, zio,
5175 zio->io_offset, zio->io_size, &info);
5176 }
5177 }
5178 }
5179
5180 return (zio);
5181 }
5182
5183 static zio_t *
zio_dio_checksum_verify(zio_t * zio)5184 zio_dio_checksum_verify(zio_t *zio)
5185 {
5186 zio_t *pio = zio_unique_parent(zio);
5187 int error;
5188
5189 ASSERT3P(zio->io_vd, !=, NULL);
5190 ASSERT3P(zio->io_bp, !=, NULL);
5191 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5192 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5193 ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE);
5194 ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
5195
5196 if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0)
5197 goto out;
5198
5199 if ((error = zio_checksum_error(zio, NULL)) != 0) {
5200 zio->io_error = error;
5201 if (error == ECKSUM) {
5202 zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR;
5203 zio_dio_chksum_verify_error_report(zio);
5204 }
5205 }
5206
5207 out:
5208 return (zio);
5209 }
5210
5211
5212 /*
5213 * Called by RAID-Z to ensure we don't compute the checksum twice.
5214 */
5215 void
zio_checksum_verified(zio_t * zio)5216 zio_checksum_verified(zio_t *zio)
5217 {
5218 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
5219 }
5220
5221 /*
5222 * Report Direct I/O checksum verify error and create ZED event.
5223 */
5224 void
zio_dio_chksum_verify_error_report(zio_t * zio)5225 zio_dio_chksum_verify_error_report(zio_t *zio)
5226 {
5227 ASSERT(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5228
5229 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
5230 return;
5231
5232 mutex_enter(&zio->io_vd->vdev_stat_lock);
5233 zio->io_vd->vdev_stat.vs_dio_verify_errors++;
5234 mutex_exit(&zio->io_vd->vdev_stat_lock);
5235 if (zio->io_type == ZIO_TYPE_WRITE) {
5236 /*
5237 * Convert checksum error for writes into EIO.
5238 */
5239 zio->io_error = SET_ERROR(EIO);
5240 /*
5241 * Report dio_verify_wr ZED event.
5242 */
5243 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR,
5244 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5245 } else {
5246 /*
5247 * Report dio_verify_rd ZED event.
5248 */
5249 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD,
5250 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5251 }
5252 }
5253
5254 /*
5255 * ==========================================================================
5256 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
5257 * An error of 0 indicates success. ENXIO indicates whole-device failure,
5258 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
5259 * indicate errors that are specific to one I/O, and most likely permanent.
5260 * Any other error is presumed to be worse because we weren't expecting it.
5261 * ==========================================================================
5262 */
5263 int
zio_worst_error(int e1,int e2)5264 zio_worst_error(int e1, int e2)
5265 {
5266 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
5267 int r1, r2;
5268
5269 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
5270 if (e1 == zio_error_rank[r1])
5271 break;
5272
5273 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
5274 if (e2 == zio_error_rank[r2])
5275 break;
5276
5277 return (r1 > r2 ? e1 : e2);
5278 }
5279
5280 /*
5281 * ==========================================================================
5282 * I/O completion
5283 * ==========================================================================
5284 */
5285 static zio_t *
zio_ready(zio_t * zio)5286 zio_ready(zio_t *zio)
5287 {
5288 blkptr_t *bp = zio->io_bp;
5289 zio_t *pio, *pio_next;
5290 zio_link_t *zl = NULL;
5291
5292 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
5293 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
5294 return (NULL);
5295 }
5296
5297 if (zio->io_ready) {
5298 ASSERT(IO_IS_ALLOCATING(zio));
5299 ASSERT(BP_GET_BIRTH(bp) == zio->io_txg ||
5300 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
5301 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
5302
5303 zio->io_ready(zio);
5304 }
5305
5306 #ifdef ZFS_DEBUG
5307 if (bp != NULL && bp != &zio->io_bp_copy)
5308 zio->io_bp_copy = *bp;
5309 #endif
5310
5311 if (zio->io_error != 0) {
5312 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
5313
5314 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
5315 ASSERT(IO_IS_ALLOCATING(zio));
5316 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5317 ASSERT(zio->io_metaslab_class != NULL);
5318 ASSERT(ZIO_HAS_ALLOCATOR(zio));
5319
5320 /*
5321 * We were unable to allocate anything, unreserve and
5322 * issue the next I/O to allocate.
5323 */
5324 if (metaslab_class_throttle_unreserve(
5325 zio->io_metaslab_class, zio->io_allocator,
5326 zio->io_prop.zp_copies, zio->io_size)) {
5327 zio_allocate_dispatch(zio->io_metaslab_class,
5328 zio->io_allocator);
5329 }
5330 }
5331 }
5332
5333 mutex_enter(&zio->io_lock);
5334 zio->io_state[ZIO_WAIT_READY] = 1;
5335 pio = zio_walk_parents(zio, &zl);
5336 mutex_exit(&zio->io_lock);
5337
5338 /*
5339 * As we notify zio's parents, new parents could be added.
5340 * New parents go to the head of zio's io_parent_list, however,
5341 * so we will (correctly) not notify them. The remainder of zio's
5342 * io_parent_list, from 'pio_next' onward, cannot change because
5343 * all parents must wait for us to be done before they can be done.
5344 */
5345 for (; pio != NULL; pio = pio_next) {
5346 pio_next = zio_walk_parents(zio, &zl);
5347 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
5348 }
5349
5350 if (zio->io_flags & ZIO_FLAG_NODATA) {
5351 if (bp != NULL && BP_IS_GANG(bp)) {
5352 zio->io_flags &= ~ZIO_FLAG_NODATA;
5353 } else {
5354 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
5355 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
5356 }
5357 }
5358
5359 if (zio_injection_enabled &&
5360 zio->io_spa->spa_syncing_txg == zio->io_txg)
5361 zio_handle_ignored_writes(zio);
5362
5363 return (zio);
5364 }
5365
5366 /*
5367 * Update the allocation throttle accounting.
5368 */
5369 static void
zio_dva_throttle_done(zio_t * zio)5370 zio_dva_throttle_done(zio_t *zio)
5371 {
5372 zio_t *pio = zio_unique_parent(zio);
5373 vdev_t *vd = zio->io_vd;
5374 int flags = METASLAB_ASYNC_ALLOC;
5375 const void *tag = pio;
5376 uint64_t size = pio->io_size;
5377
5378 ASSERT3P(zio->io_bp, !=, NULL);
5379 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5380 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
5381 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5382 ASSERT(vd != NULL);
5383 ASSERT3P(vd, ==, vd->vdev_top);
5384 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
5385 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5386 ASSERT(zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED);
5387
5388 /*
5389 * Parents of gang children can have two flavors -- ones that allocated
5390 * the gang header (will have ZIO_FLAG_IO_REWRITE set) and ones that
5391 * allocated the constituent blocks. The first use their parent as tag.
5392 * We set the size to match the original allocation call for that case.
5393 */
5394 if (pio->io_child_type == ZIO_CHILD_GANG &&
5395 (pio->io_flags & ZIO_FLAG_IO_REWRITE)) {
5396 tag = zio_unique_parent(pio);
5397 size = SPA_OLD_GANGBLOCKSIZE;
5398 }
5399
5400 ASSERT(IO_IS_ALLOCATING(pio) || (pio->io_child_type == ZIO_CHILD_GANG &&
5401 (pio->io_flags & ZIO_FLAG_IO_REWRITE)));
5402 ASSERT(ZIO_HAS_ALLOCATOR(pio));
5403 ASSERT3P(zio, !=, zio->io_logical);
5404 ASSERT(zio->io_logical != NULL);
5405 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5406 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
5407 ASSERT(zio->io_metaslab_class != NULL);
5408 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
5409
5410 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id,
5411 pio->io_allocator, flags, size, tag);
5412
5413 if (metaslab_class_throttle_unreserve(pio->io_metaslab_class,
5414 pio->io_allocator, 1, pio->io_size)) {
5415 zio_allocate_dispatch(zio->io_metaslab_class,
5416 pio->io_allocator);
5417 }
5418 }
5419
5420 static zio_t *
zio_done(zio_t * zio)5421 zio_done(zio_t *zio)
5422 {
5423 /*
5424 * Always attempt to keep stack usage minimal here since
5425 * we can be called recursively up to 19 levels deep.
5426 */
5427 const uint64_t psize = zio->io_size;
5428 zio_t *pio, *pio_next;
5429 zio_link_t *zl = NULL;
5430
5431 /*
5432 * If our children haven't all completed,
5433 * wait for them and then repeat this pipeline stage.
5434 */
5435 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
5436 return (NULL);
5437 }
5438
5439 /*
5440 * If the allocation throttle is enabled, then update the accounting.
5441 * We only track child I/Os that are part of an allocating async
5442 * write. We must do this since the allocation is performed
5443 * by the logical I/O but the actual write is done by child I/Os.
5444 */
5445 if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED &&
5446 zio->io_child_type == ZIO_CHILD_VDEV)
5447 zio_dva_throttle_done(zio);
5448
5449 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
5450 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
5451 ASSERT(zio->io_children[c][w] == 0);
5452
5453 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
5454 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
5455 sizeof (blkptr_t)) == 0 ||
5456 (zio->io_bp == zio_unique_parent(zio)->io_bp));
5457 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
5458 zio->io_bp_override == NULL &&
5459 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
5460 ASSERT3U(zio->io_prop.zp_copies, <=,
5461 BP_GET_NDVAS(zio->io_bp));
5462 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
5463 (BP_COUNT_GANG(zio->io_bp) ==
5464 BP_GET_NDVAS(zio->io_bp)));
5465 }
5466 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
5467 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
5468 }
5469
5470 /*
5471 * If there were child vdev/gang/ddt errors, they apply to us now.
5472 */
5473 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
5474 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
5475 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
5476
5477 /*
5478 * If the I/O on the transformed data was successful, generate any
5479 * checksum reports now while we still have the transformed data.
5480 */
5481 if (zio->io_error == 0) {
5482 while (zio->io_cksum_report != NULL) {
5483 zio_cksum_report_t *zcr = zio->io_cksum_report;
5484 uint64_t align = zcr->zcr_align;
5485 uint64_t asize = P2ROUNDUP(psize, align);
5486 abd_t *adata = zio->io_abd;
5487
5488 if (adata != NULL && asize != psize) {
5489 adata = abd_alloc(asize, B_TRUE);
5490 abd_copy(adata, zio->io_abd, psize);
5491 abd_zero_off(adata, psize, asize - psize);
5492 }
5493
5494 zio->io_cksum_report = zcr->zcr_next;
5495 zcr->zcr_next = NULL;
5496 zcr->zcr_finish(zcr, adata);
5497 zfs_ereport_free_checksum(zcr);
5498
5499 if (adata != NULL && asize != psize)
5500 abd_free(adata);
5501 }
5502 }
5503
5504 zio_pop_transforms(zio); /* note: may set zio->io_error */
5505
5506 vdev_stat_update(zio, psize);
5507
5508 /*
5509 * If this I/O is attached to a particular vdev is slow, exceeding
5510 * 30 seconds to complete, post an error described the I/O delay.
5511 * We ignore these errors if the device is currently unavailable.
5512 */
5513 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
5514 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
5515 /*
5516 * We want to only increment our slow IO counters if
5517 * the IO is valid (i.e. not if the drive is removed).
5518 *
5519 * zfs_ereport_post() will also do these checks, but
5520 * it can also ratelimit and have other failures, so we
5521 * need to increment the slow_io counters independent
5522 * of it.
5523 */
5524 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
5525 zio->io_spa, zio->io_vd, zio)) {
5526 mutex_enter(&zio->io_vd->vdev_stat_lock);
5527 zio->io_vd->vdev_stat.vs_slow_ios++;
5528 mutex_exit(&zio->io_vd->vdev_stat_lock);
5529
5530 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
5531 zio->io_spa, zio->io_vd, &zio->io_bookmark,
5532 zio, 0);
5533 }
5534 }
5535 }
5536
5537 if (zio->io_error) {
5538 /*
5539 * If this I/O is attached to a particular vdev,
5540 * generate an error message describing the I/O failure
5541 * at the block level. We ignore these errors if the
5542 * device is currently unavailable.
5543 */
5544 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
5545 !vdev_is_dead(zio->io_vd) &&
5546 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) {
5547 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
5548 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5549 if (ret != EALREADY) {
5550 mutex_enter(&zio->io_vd->vdev_stat_lock);
5551 if (zio->io_type == ZIO_TYPE_READ)
5552 zio->io_vd->vdev_stat.vs_read_errors++;
5553 else if (zio->io_type == ZIO_TYPE_WRITE)
5554 zio->io_vd->vdev_stat.vs_write_errors++;
5555 mutex_exit(&zio->io_vd->vdev_stat_lock);
5556 }
5557 }
5558
5559 if ((zio->io_error == EIO || !(zio->io_flags &
5560 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
5561 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) &&
5562 zio == zio->io_logical) {
5563 /*
5564 * For logical I/O requests, tell the SPA to log the
5565 * error and generate a logical data ereport.
5566 */
5567 spa_log_error(zio->io_spa, &zio->io_bookmark,
5568 BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5569 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
5570 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
5571 }
5572 }
5573
5574 if (zio->io_error && zio == zio->io_logical) {
5575
5576 /*
5577 * A DDT child tried to create a mixed gang/non-gang BP. We're
5578 * going to have to just retry as a non-dedup IO.
5579 */
5580 if (zio->io_error == EAGAIN && IO_IS_ALLOCATING(zio) &&
5581 zio->io_prop.zp_dedup) {
5582 zio->io_post |= ZIO_POST_REEXECUTE;
5583 zio->io_prop.zp_dedup = B_FALSE;
5584 }
5585 /*
5586 * Determine whether zio should be reexecuted. This will
5587 * propagate all the way to the root via zio_notify_parent().
5588 */
5589 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
5590 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5591
5592 if (IO_IS_ALLOCATING(zio) &&
5593 !(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5594 !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) {
5595 if (zio->io_error != ENOSPC)
5596 zio->io_post |= ZIO_POST_REEXECUTE;
5597 else
5598 zio->io_post |= ZIO_POST_SUSPEND;
5599 }
5600
5601 if ((zio->io_type == ZIO_TYPE_READ ||
5602 zio->io_type == ZIO_TYPE_FREE) &&
5603 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
5604 zio->io_error == ENXIO &&
5605 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
5606 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
5607 zio->io_post |= ZIO_POST_SUSPEND;
5608
5609 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5610 !(zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND)))
5611 zio->io_post |= ZIO_POST_SUSPEND;
5612
5613 /*
5614 * Here is a possibly good place to attempt to do
5615 * either combinatorial reconstruction or error correction
5616 * based on checksums. It also might be a good place
5617 * to send out preliminary ereports before we suspend
5618 * processing.
5619 */
5620 }
5621
5622 /*
5623 * If there were logical child errors, they apply to us now.
5624 * We defer this until now to avoid conflating logical child
5625 * errors with errors that happened to the zio itself when
5626 * updating vdev stats and reporting FMA events above.
5627 */
5628 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
5629
5630 if ((zio->io_error ||
5631 (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND))) &&
5632 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
5633 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
5634 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
5635
5636 zio_gang_tree_free(&zio->io_gang_tree);
5637
5638 /*
5639 * Godfather I/Os should never suspend.
5640 */
5641 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
5642 (zio->io_post & ZIO_POST_SUSPEND))
5643 zio->io_post &= ~ZIO_POST_SUSPEND;
5644
5645 if (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND)) {
5646 /*
5647 * A Direct I/O operation that has a checksum verify error
5648 * should not attempt to reexecute. Instead, the error should
5649 * just be propagated back.
5650 */
5651 ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5652
5653 /*
5654 * This is a logical I/O that wants to reexecute.
5655 *
5656 * Reexecute is top-down. When an i/o fails, if it's not
5657 * the root, it simply notifies its parent and sticks around.
5658 * The parent, seeing that it still has children in zio_done(),
5659 * does the same. This percolates all the way up to the root.
5660 * The root i/o will reexecute or suspend the entire tree.
5661 *
5662 * This approach ensures that zio_reexecute() honors
5663 * all the original i/o dependency relationships, e.g.
5664 * parents not executing until children are ready.
5665 */
5666 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5667
5668 zio->io_gang_leader = NULL;
5669
5670 mutex_enter(&zio->io_lock);
5671 zio->io_state[ZIO_WAIT_DONE] = 1;
5672 mutex_exit(&zio->io_lock);
5673
5674 /*
5675 * "The Godfather" I/O monitors its children but is
5676 * not a true parent to them. It will track them through
5677 * the pipeline but severs its ties whenever they get into
5678 * trouble (e.g. suspended). This allows "The Godfather"
5679 * I/O to return status without blocking.
5680 */
5681 zl = NULL;
5682 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5683 pio = pio_next) {
5684 zio_link_t *remove_zl = zl;
5685 pio_next = zio_walk_parents(zio, &zl);
5686
5687 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5688 (zio->io_post & ZIO_POST_SUSPEND)) {
5689 zio_remove_child(pio, zio, remove_zl);
5690 /*
5691 * This is a rare code path, so we don't
5692 * bother with "next_to_execute".
5693 */
5694 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5695 NULL);
5696 }
5697 }
5698
5699 if ((pio = zio_unique_parent(zio)) != NULL) {
5700 /*
5701 * We're not a root i/o, so there's nothing to do
5702 * but notify our parent. Don't propagate errors
5703 * upward since we haven't permanently failed yet.
5704 */
5705 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5706 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5707 /*
5708 * This is a rare code path, so we don't bother with
5709 * "next_to_execute".
5710 */
5711 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5712 } else if (zio->io_post & ZIO_POST_SUSPEND) {
5713 /*
5714 * We'd fail again if we reexecuted now, so suspend
5715 * until conditions improve (e.g. device comes online).
5716 */
5717 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5718 } else {
5719 ASSERT(zio->io_post & ZIO_POST_REEXECUTE);
5720 /*
5721 * Reexecution is potentially a huge amount of work.
5722 * Hand it off to the otherwise-unused claim taskq.
5723 */
5724 spa_taskq_dispatch(zio->io_spa,
5725 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5726 zio_reexecute, zio, B_FALSE);
5727 }
5728 return (NULL);
5729 }
5730
5731 ASSERT(list_is_empty(&zio->io_child_list));
5732 ASSERT0(zio->io_post & ZIO_POST_REEXECUTE);
5733 ASSERT0(zio->io_post & ZIO_POST_SUSPEND);
5734 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5735
5736 /*
5737 * Report any checksum errors, since the I/O is complete.
5738 */
5739 while (zio->io_cksum_report != NULL) {
5740 zio_cksum_report_t *zcr = zio->io_cksum_report;
5741 zio->io_cksum_report = zcr->zcr_next;
5742 zcr->zcr_next = NULL;
5743 zcr->zcr_finish(zcr, NULL);
5744 zfs_ereport_free_checksum(zcr);
5745 }
5746
5747 /*
5748 * It is the responsibility of the done callback to ensure that this
5749 * particular zio is no longer discoverable for adoption, and as
5750 * such, cannot acquire any new parents.
5751 */
5752 if (zio->io_done)
5753 zio->io_done(zio);
5754
5755 mutex_enter(&zio->io_lock);
5756 zio->io_state[ZIO_WAIT_DONE] = 1;
5757 mutex_exit(&zio->io_lock);
5758
5759 /*
5760 * We are done executing this zio. We may want to execute a parent
5761 * next. See the comment in zio_notify_parent().
5762 */
5763 zio_t *next_to_execute = NULL;
5764 zl = NULL;
5765 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5766 zio_link_t *remove_zl = zl;
5767 pio_next = zio_walk_parents(zio, &zl);
5768 zio_remove_child(pio, zio, remove_zl);
5769 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5770 }
5771
5772 if (zio->io_waiter != NULL) {
5773 mutex_enter(&zio->io_lock);
5774 zio->io_executor = NULL;
5775 cv_broadcast(&zio->io_cv);
5776 mutex_exit(&zio->io_lock);
5777 } else {
5778 zio_destroy(zio);
5779 }
5780
5781 return (next_to_execute);
5782 }
5783
5784 /*
5785 * ==========================================================================
5786 * I/O pipeline definition
5787 * ==========================================================================
5788 */
5789 static zio_pipe_stage_t *zio_pipeline[] = {
5790 NULL,
5791 zio_read_bp_init,
5792 zio_write_bp_init,
5793 zio_free_bp_init,
5794 zio_issue_async,
5795 zio_write_compress,
5796 zio_encrypt,
5797 zio_checksum_generate,
5798 zio_nop_write,
5799 zio_brt_free,
5800 zio_ddt_read_start,
5801 zio_ddt_read_done,
5802 zio_ddt_write,
5803 zio_ddt_free,
5804 zio_gang_assemble,
5805 zio_gang_issue,
5806 zio_dva_throttle,
5807 zio_dva_allocate,
5808 zio_dva_free,
5809 zio_dva_claim,
5810 zio_ready,
5811 zio_vdev_io_start,
5812 zio_vdev_io_done,
5813 zio_vdev_io_assess,
5814 zio_checksum_verify,
5815 zio_dio_checksum_verify,
5816 zio_done
5817 };
5818
5819
5820
5821
5822 /*
5823 * Compare two zbookmark_phys_t's to see which we would reach first in a
5824 * pre-order traversal of the object tree.
5825 *
5826 * This is simple in every case aside from the meta-dnode object. For all other
5827 * objects, we traverse them in order (object 1 before object 2, and so on).
5828 * However, all of these objects are traversed while traversing object 0, since
5829 * the data it points to is the list of objects. Thus, we need to convert to a
5830 * canonical representation so we can compare meta-dnode bookmarks to
5831 * non-meta-dnode bookmarks.
5832 *
5833 * We do this by calculating "equivalents" for each field of the zbookmark.
5834 * zbookmarks outside of the meta-dnode use their own object and level, and
5835 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5836 * blocks this bookmark refers to) by multiplying their blkid by their span
5837 * (the number of L0 blocks contained within one block at their level).
5838 * zbookmarks inside the meta-dnode calculate their object equivalent
5839 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5840 * level + 1<<31 (any value larger than a level could ever be) for their level.
5841 * This causes them to always compare before a bookmark in their object
5842 * equivalent, compare appropriately to bookmarks in other objects, and to
5843 * compare appropriately to other bookmarks in the meta-dnode.
5844 */
5845 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5846 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5847 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5848 {
5849 /*
5850 * These variables represent the "equivalent" values for the zbookmark,
5851 * after converting zbookmarks inside the meta dnode to their
5852 * normal-object equivalents.
5853 */
5854 uint64_t zb1obj, zb2obj;
5855 uint64_t zb1L0, zb2L0;
5856 uint64_t zb1level, zb2level;
5857
5858 if (zb1->zb_object == zb2->zb_object &&
5859 zb1->zb_level == zb2->zb_level &&
5860 zb1->zb_blkid == zb2->zb_blkid)
5861 return (0);
5862
5863 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5864 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5865
5866 /*
5867 * BP_SPANB calculates the span in blocks.
5868 */
5869 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5870 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5871
5872 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5873 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5874 zb1L0 = 0;
5875 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5876 } else {
5877 zb1obj = zb1->zb_object;
5878 zb1level = zb1->zb_level;
5879 }
5880
5881 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5882 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5883 zb2L0 = 0;
5884 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5885 } else {
5886 zb2obj = zb2->zb_object;
5887 zb2level = zb2->zb_level;
5888 }
5889
5890 /* Now that we have a canonical representation, do the comparison. */
5891 if (zb1obj != zb2obj)
5892 return (zb1obj < zb2obj ? -1 : 1);
5893 else if (zb1L0 != zb2L0)
5894 return (zb1L0 < zb2L0 ? -1 : 1);
5895 else if (zb1level != zb2level)
5896 return (zb1level > zb2level ? -1 : 1);
5897 /*
5898 * This can (theoretically) happen if the bookmarks have the same object
5899 * and level, but different blkids, if the block sizes are not the same.
5900 * There is presently no way to change the indirect block sizes
5901 */
5902 return (0);
5903 }
5904
5905 /*
5906 * This function checks the following: given that last_block is the place that
5907 * our traversal stopped last time, does that guarantee that we've visited
5908 * every node under subtree_root? Therefore, we can't just use the raw output
5909 * of zbookmark_compare. We have to pass in a modified version of
5910 * subtree_root; by incrementing the block id, and then checking whether
5911 * last_block is before or equal to that, we can tell whether or not having
5912 * visited last_block implies that all of subtree_root's children have been
5913 * visited.
5914 */
5915 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5916 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5917 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5918 {
5919 zbookmark_phys_t mod_zb = *subtree_root;
5920 mod_zb.zb_blkid++;
5921 ASSERT0(last_block->zb_level);
5922
5923 /* The objset_phys_t isn't before anything. */
5924 if (dnp == NULL)
5925 return (B_FALSE);
5926
5927 /*
5928 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5929 * data block size in sectors, because that variable is only used if
5930 * the bookmark refers to a block in the meta-dnode. Since we don't
5931 * know without examining it what object it refers to, and there's no
5932 * harm in passing in this value in other cases, we always pass it in.
5933 *
5934 * We pass in 0 for the indirect block size shift because zb2 must be
5935 * level 0. The indirect block size is only used to calculate the span
5936 * of the bookmark, but since the bookmark must be level 0, the span is
5937 * always 1, so the math works out.
5938 *
5939 * If you make changes to how the zbookmark_compare code works, be sure
5940 * to make sure that this code still works afterwards.
5941 */
5942 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5943 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5944 last_block) <= 0);
5945 }
5946
5947 /*
5948 * This function is similar to zbookmark_subtree_completed(), but returns true
5949 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5950 */
5951 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5952 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5953 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5954 {
5955 ASSERT0(last_block->zb_level);
5956 if (dnp == NULL)
5957 return (B_FALSE);
5958 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5959 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5960 last_block) >= 0);
5961 }
5962
5963 EXPORT_SYMBOL(zio_type_name);
5964 EXPORT_SYMBOL(zio_buf_alloc);
5965 EXPORT_SYMBOL(zio_data_buf_alloc);
5966 EXPORT_SYMBOL(zio_buf_free);
5967 EXPORT_SYMBOL(zio_data_buf_free);
5968
5969 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5970 "Max I/O completion time (milliseconds) before marking it as slow");
5971
5972 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5973 "Prioritize requeued I/O");
5974
5975 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5976 "Defer frees starting in this pass");
5977
5978 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5979 "Don't compress starting in this pass");
5980
5981 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5982 "Rewrite new bps starting in this pass");
5983
5984 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5985 "Throttle block allocations in the ZIO pipeline");
5986
5987 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5988 "Log all slow ZIOs, not just those with vdevs");
5989