xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision df58e8b1506f241670be86a560fb6e8432043aee)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  * Copyright (c) 2019, 2023, 2024, 2025, Klara, Inc.
28  * Copyright (c) 2019, Allan Jude
29  * Copyright (c) 2021, Datto, Inc.
30  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
31  */
32 
33 #include <sys/sysmacros.h>
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa.h>
37 #include <sys/txg.h>
38 #include <sys/spa_impl.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_trim.h>
41 #include <sys/zio_impl.h>
42 #include <sys/zio_compress.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/arc.h>
46 #include <sys/brt.h>
47 #include <sys/ddt.h>
48 #include <sys/blkptr.h>
49 #include <sys/zfeature.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/time.h>
53 #include <sys/trace_zfs.h>
54 #include <sys/abd.h>
55 #include <sys/dsl_crypt.h>
56 #include <cityhash.h>
57 
58 /*
59  * ==========================================================================
60  * I/O type descriptions
61  * ==========================================================================
62  */
63 const char *const zio_type_name[ZIO_TYPES] = {
64 	/*
65 	 * Note: Linux kernel thread name length is limited
66 	 * so these names will differ from upstream open zfs.
67 	 */
68 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
69 };
70 
71 int zio_dva_throttle_enabled = B_TRUE;
72 static int zio_deadman_log_all = B_FALSE;
73 
74 /*
75  * ==========================================================================
76  * I/O kmem caches
77  * ==========================================================================
78  */
79 static kmem_cache_t *zio_cache;
80 static kmem_cache_t *zio_link_cache;
81 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
84 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
85 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
86 #endif
87 
88 /* Mark IOs as "slow" if they take longer than 30 seconds */
89 static uint_t zio_slow_io_ms = (30 * MILLISEC);
90 
91 #define	BP_SPANB(indblkshift, level) \
92 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
93 #define	COMPARE_META_LEVEL	0x80000000ul
94 /*
95  * The following actions directly effect the spa's sync-to-convergence logic.
96  * The values below define the sync pass when we start performing the action.
97  * Care should be taken when changing these values as they directly impact
98  * spa_sync() performance. Tuning these values may introduce subtle performance
99  * pathologies and should only be done in the context of performance analysis.
100  * These tunables will eventually be removed and replaced with #defines once
101  * enough analysis has been done to determine optimal values.
102  *
103  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
104  * regular blocks are not deferred.
105  *
106  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
107  * compression (including of metadata).  In practice, we don't have this
108  * many sync passes, so this has no effect.
109  *
110  * The original intent was that disabling compression would help the sync
111  * passes to converge. However, in practice disabling compression increases
112  * the average number of sync passes, because when we turn compression off, a
113  * lot of block's size will change and thus we have to re-allocate (not
114  * overwrite) them. It also increases the number of 128KB allocations (e.g.
115  * for indirect blocks and spacemaps) because these will not be compressed.
116  * The 128K allocations are especially detrimental to performance on highly
117  * fragmented systems, which may have very few free segments of this size,
118  * and may need to load new metaslabs to satisfy 128K allocations.
119  */
120 
121 /* defer frees starting in this pass */
122 uint_t zfs_sync_pass_deferred_free = 2;
123 
124 /* don't compress starting in this pass */
125 static uint_t zfs_sync_pass_dont_compress = 8;
126 
127 /* rewrite new bps starting in this pass */
128 static uint_t zfs_sync_pass_rewrite = 2;
129 
130 /*
131  * An allocating zio is one that either currently has the DVA allocate
132  * stage set or will have it later in its lifetime.
133  */
134 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
135 
136 /*
137  * Enable smaller cores by excluding metadata
138  * allocations as well.
139  */
140 int zio_exclude_metadata = 0;
141 static int zio_requeue_io_start_cut_in_line = 1;
142 
143 #ifdef ZFS_DEBUG
144 static const int zio_buf_debug_limit = 16384;
145 #else
146 static const int zio_buf_debug_limit = 0;
147 #endif
148 
149 typedef struct zio_stats {
150 	kstat_named_t ziostat_total_allocations;
151 	kstat_named_t ziostat_alloc_class_fallbacks;
152 	kstat_named_t ziostat_gang_writes;
153 	kstat_named_t ziostat_gang_multilevel;
154 } zio_stats_t;
155 
156 static zio_stats_t zio_stats = {
157 	{ "total_allocations",	KSTAT_DATA_UINT64 },
158 	{ "alloc_class_fallbacks",	KSTAT_DATA_UINT64 },
159 	{ "gang_writes",	KSTAT_DATA_UINT64 },
160 	{ "gang_multilevel",	KSTAT_DATA_UINT64 },
161 };
162 
163 struct {
164 	wmsum_t ziostat_total_allocations;
165 	wmsum_t ziostat_alloc_class_fallbacks;
166 	wmsum_t ziostat_gang_writes;
167 	wmsum_t ziostat_gang_multilevel;
168 } ziostat_sums;
169 
170 #define	ZIOSTAT_BUMP(stat)	wmsum_add(&ziostat_sums.stat, 1);
171 
172 static kstat_t *zio_ksp;
173 
174 static inline void __zio_execute(zio_t *zio);
175 
176 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
177 
178 static int
zio_kstats_update(kstat_t * ksp,int rw)179 zio_kstats_update(kstat_t *ksp, int rw)
180 {
181 	zio_stats_t *zs = ksp->ks_data;
182 	if (rw == KSTAT_WRITE)
183 		return (EACCES);
184 
185 	zs->ziostat_total_allocations.value.ui64 =
186 	    wmsum_value(&ziostat_sums.ziostat_total_allocations);
187 	zs->ziostat_alloc_class_fallbacks.value.ui64 =
188 	    wmsum_value(&ziostat_sums.ziostat_alloc_class_fallbacks);
189 	zs->ziostat_gang_writes.value.ui64 =
190 	    wmsum_value(&ziostat_sums.ziostat_gang_writes);
191 	zs->ziostat_gang_multilevel.value.ui64 =
192 	    wmsum_value(&ziostat_sums.ziostat_gang_multilevel);
193 	return (0);
194 }
195 
196 void
zio_init(void)197 zio_init(void)
198 {
199 	size_t c;
200 
201 	zio_cache = kmem_cache_create("zio_cache",
202 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
203 	zio_link_cache = kmem_cache_create("zio_link_cache",
204 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
205 
206 	wmsum_init(&ziostat_sums.ziostat_total_allocations, 0);
207 	wmsum_init(&ziostat_sums.ziostat_alloc_class_fallbacks, 0);
208 	wmsum_init(&ziostat_sums.ziostat_gang_writes, 0);
209 	wmsum_init(&ziostat_sums.ziostat_gang_multilevel, 0);
210 	zio_ksp = kstat_create("zfs", 0, "zio_stats",
211 	    "misc", KSTAT_TYPE_NAMED, sizeof (zio_stats) /
212 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
213 	if (zio_ksp != NULL) {
214 		zio_ksp->ks_data = &zio_stats;
215 		zio_ksp->ks_update = zio_kstats_update;
216 		kstat_install(zio_ksp);
217 	}
218 
219 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
220 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
221 		size_t align, cflags, data_cflags;
222 		char name[32];
223 
224 		/*
225 		 * Create cache for each half-power of 2 size, starting from
226 		 * SPA_MINBLOCKSIZE.  It should give us memory space efficiency
227 		 * of ~7/8, sufficient for transient allocations mostly using
228 		 * these caches.
229 		 */
230 		size_t p2 = size;
231 		while (!ISP2(p2))
232 			p2 &= p2 - 1;
233 		if (!IS_P2ALIGNED(size, p2 / 2))
234 			continue;
235 
236 #ifndef _KERNEL
237 		/*
238 		 * If we are using watchpoints, put each buffer on its own page,
239 		 * to eliminate the performance overhead of trapping to the
240 		 * kernel when modifying a non-watched buffer that shares the
241 		 * page with a watched buffer.
242 		 */
243 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
244 			continue;
245 #endif
246 
247 		if (IS_P2ALIGNED(size, PAGESIZE))
248 			align = PAGESIZE;
249 		else
250 			align = 1 << (highbit64(size ^ (size - 1)) - 1);
251 
252 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
253 		    KMC_NODEBUG : 0;
254 		data_cflags = KMC_NODEBUG;
255 		if (abd_size_alloc_linear(size)) {
256 			cflags |= KMC_RECLAIMABLE;
257 			data_cflags |= KMC_RECLAIMABLE;
258 		}
259 		if (cflags == data_cflags) {
260 			/*
261 			 * Resulting kmem caches would be identical.
262 			 * Save memory by creating only one.
263 			 */
264 			(void) snprintf(name, sizeof (name),
265 			    "zio_buf_comb_%lu", (ulong_t)size);
266 			zio_buf_cache[c] = kmem_cache_create(name, size, align,
267 			    NULL, NULL, NULL, NULL, NULL, cflags);
268 			zio_data_buf_cache[c] = zio_buf_cache[c];
269 			continue;
270 		}
271 		(void) snprintf(name, sizeof (name), "zio_buf_%lu",
272 		    (ulong_t)size);
273 		zio_buf_cache[c] = kmem_cache_create(name, size, align,
274 		    NULL, NULL, NULL, NULL, NULL, cflags);
275 
276 		(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
277 		    (ulong_t)size);
278 		zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
279 		    NULL, NULL, NULL, NULL, NULL, data_cflags);
280 	}
281 
282 	while (--c != 0) {
283 		ASSERT(zio_buf_cache[c] != NULL);
284 		if (zio_buf_cache[c - 1] == NULL)
285 			zio_buf_cache[c - 1] = zio_buf_cache[c];
286 
287 		ASSERT(zio_data_buf_cache[c] != NULL);
288 		if (zio_data_buf_cache[c - 1] == NULL)
289 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
290 	}
291 
292 	zio_inject_init();
293 
294 	lz4_init();
295 }
296 
297 void
zio_fini(void)298 zio_fini(void)
299 {
300 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
301 
302 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
303 	for (size_t i = 0; i < n; i++) {
304 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
305 			(void) printf("zio_fini: [%d] %llu != %llu\n",
306 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
307 			    (long long unsigned)zio_buf_cache_allocs[i],
308 			    (long long unsigned)zio_buf_cache_frees[i]);
309 	}
310 #endif
311 
312 	/*
313 	 * The same kmem cache can show up multiple times in both zio_buf_cache
314 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
315 	 * sort it out.
316 	 */
317 	for (size_t i = 0; i < n; i++) {
318 		kmem_cache_t *cache = zio_buf_cache[i];
319 		if (cache == NULL)
320 			continue;
321 		for (size_t j = i; j < n; j++) {
322 			if (cache == zio_buf_cache[j])
323 				zio_buf_cache[j] = NULL;
324 			if (cache == zio_data_buf_cache[j])
325 				zio_data_buf_cache[j] = NULL;
326 		}
327 		kmem_cache_destroy(cache);
328 	}
329 
330 	for (size_t i = 0; i < n; i++) {
331 		kmem_cache_t *cache = zio_data_buf_cache[i];
332 		if (cache == NULL)
333 			continue;
334 		for (size_t j = i; j < n; j++) {
335 			if (cache == zio_data_buf_cache[j])
336 				zio_data_buf_cache[j] = NULL;
337 		}
338 		kmem_cache_destroy(cache);
339 	}
340 
341 	for (size_t i = 0; i < n; i++) {
342 		VERIFY3P(zio_buf_cache[i], ==, NULL);
343 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
344 	}
345 
346 	if (zio_ksp != NULL) {
347 		kstat_delete(zio_ksp);
348 		zio_ksp = NULL;
349 	}
350 
351 	wmsum_fini(&ziostat_sums.ziostat_total_allocations);
352 	wmsum_fini(&ziostat_sums.ziostat_alloc_class_fallbacks);
353 	wmsum_fini(&ziostat_sums.ziostat_gang_writes);
354 	wmsum_fini(&ziostat_sums.ziostat_gang_multilevel);
355 
356 	kmem_cache_destroy(zio_link_cache);
357 	kmem_cache_destroy(zio_cache);
358 
359 	zio_inject_fini();
360 
361 	lz4_fini();
362 }
363 
364 /*
365  * ==========================================================================
366  * Allocate and free I/O buffers
367  * ==========================================================================
368  */
369 
370 #if defined(ZFS_DEBUG) && defined(_KERNEL)
371 #define	ZFS_ZIO_BUF_CANARY	1
372 #endif
373 
374 #ifdef ZFS_ZIO_BUF_CANARY
375 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
376 
377 /*
378  * Use empty space after the buffer to detect overflows.
379  *
380  * Since zio_init() creates kmem caches only for certain set of buffer sizes,
381  * allocations of different sizes may have some unused space after the data.
382  * Filling part of that space with a known pattern on allocation and checking
383  * it on free should allow us to detect some buffer overflows.
384  */
385 static void
zio_buf_put_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)386 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
387 {
388 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
389 	ulong_t *canary = p + off / sizeof (ulong_t);
390 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
391 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
392 	    cache[c] == cache[c + 1])
393 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
394 	for (; off < asize; canary++, off += sizeof (ulong_t))
395 		*canary = zio_buf_canary;
396 }
397 
398 static void
zio_buf_check_canary(ulong_t * p,size_t size,kmem_cache_t ** cache,size_t c)399 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
400 {
401 	size_t off = P2ROUNDUP(size, sizeof (ulong_t));
402 	ulong_t *canary = p + off / sizeof (ulong_t);
403 	size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
404 	if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
405 	    cache[c] == cache[c + 1])
406 		asize = (c + 2) << SPA_MINBLOCKSHIFT;
407 	for (; off < asize; canary++, off += sizeof (ulong_t)) {
408 		if (unlikely(*canary != zio_buf_canary)) {
409 			PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
410 			    p, size, (canary - p) * sizeof (ulong_t),
411 			    *canary, zio_buf_canary);
412 		}
413 	}
414 }
415 #endif
416 
417 /*
418  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
419  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
420  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
421  * excess / transient data in-core during a crashdump.
422  */
423 void *
zio_buf_alloc(size_t size)424 zio_buf_alloc(size_t size)
425 {
426 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
427 
428 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
429 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
430 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
431 #endif
432 
433 	void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
434 #ifdef ZFS_ZIO_BUF_CANARY
435 	zio_buf_put_canary(p, size, zio_buf_cache, c);
436 #endif
437 	return (p);
438 }
439 
440 /*
441  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
442  * crashdump if the kernel panics.  This exists so that we will limit the amount
443  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
444  * of kernel heap dumped to disk when the kernel panics)
445  */
446 void *
zio_data_buf_alloc(size_t size)447 zio_data_buf_alloc(size_t size)
448 {
449 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
450 
451 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
452 
453 	void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
454 #ifdef ZFS_ZIO_BUF_CANARY
455 	zio_buf_put_canary(p, size, zio_data_buf_cache, c);
456 #endif
457 	return (p);
458 }
459 
460 void
zio_buf_free(void * buf,size_t size)461 zio_buf_free(void *buf, size_t size)
462 {
463 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
464 
465 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
466 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
467 	atomic_add_64(&zio_buf_cache_frees[c], 1);
468 #endif
469 
470 #ifdef ZFS_ZIO_BUF_CANARY
471 	zio_buf_check_canary(buf, size, zio_buf_cache, c);
472 #endif
473 	kmem_cache_free(zio_buf_cache[c], buf);
474 }
475 
476 void
zio_data_buf_free(void * buf,size_t size)477 zio_data_buf_free(void *buf, size_t size)
478 {
479 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
480 
481 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
482 
483 #ifdef ZFS_ZIO_BUF_CANARY
484 	zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
485 #endif
486 	kmem_cache_free(zio_data_buf_cache[c], buf);
487 }
488 
489 static void
zio_abd_free(void * abd,size_t size)490 zio_abd_free(void *abd, size_t size)
491 {
492 	(void) size;
493 	abd_free((abd_t *)abd);
494 }
495 
496 /*
497  * ==========================================================================
498  * Push and pop I/O transform buffers
499  * ==========================================================================
500  */
501 void
zio_push_transform(zio_t * zio,abd_t * data,uint64_t size,uint64_t bufsize,zio_transform_func_t * transform)502 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
503     zio_transform_func_t *transform)
504 {
505 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
506 
507 	zt->zt_orig_abd = zio->io_abd;
508 	zt->zt_orig_size = zio->io_size;
509 	zt->zt_bufsize = bufsize;
510 	zt->zt_transform = transform;
511 
512 	zt->zt_next = zio->io_transform_stack;
513 	zio->io_transform_stack = zt;
514 
515 	zio->io_abd = data;
516 	zio->io_size = size;
517 }
518 
519 void
zio_pop_transforms(zio_t * zio)520 zio_pop_transforms(zio_t *zio)
521 {
522 	zio_transform_t *zt;
523 
524 	while ((zt = zio->io_transform_stack) != NULL) {
525 		if (zt->zt_transform != NULL)
526 			zt->zt_transform(zio,
527 			    zt->zt_orig_abd, zt->zt_orig_size);
528 
529 		if (zt->zt_bufsize != 0)
530 			abd_free(zio->io_abd);
531 
532 		zio->io_abd = zt->zt_orig_abd;
533 		zio->io_size = zt->zt_orig_size;
534 		zio->io_transform_stack = zt->zt_next;
535 
536 		kmem_free(zt, sizeof (zio_transform_t));
537 	}
538 }
539 
540 /*
541  * ==========================================================================
542  * I/O transform callbacks for subblocks, decompression, and decryption
543  * ==========================================================================
544  */
545 static void
zio_subblock(zio_t * zio,abd_t * data,uint64_t size)546 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
547 {
548 	ASSERT(zio->io_size > size);
549 
550 	if (zio->io_type == ZIO_TYPE_READ)
551 		abd_copy(data, zio->io_abd, size);
552 }
553 
554 static void
zio_decompress(zio_t * zio,abd_t * data,uint64_t size)555 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
556 {
557 	if (zio->io_error == 0) {
558 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
559 		    zio->io_abd, data, zio->io_size, size,
560 		    &zio->io_prop.zp_complevel);
561 
562 		if (zio_injection_enabled && ret == 0)
563 			ret = zio_handle_fault_injection(zio, EINVAL);
564 
565 		if (ret != 0)
566 			zio->io_error = SET_ERROR(EIO);
567 	}
568 }
569 
570 static void
zio_decrypt(zio_t * zio,abd_t * data,uint64_t size)571 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
572 {
573 	int ret;
574 	void *tmp;
575 	blkptr_t *bp = zio->io_bp;
576 	spa_t *spa = zio->io_spa;
577 	uint64_t dsobj = zio->io_bookmark.zb_objset;
578 	uint64_t lsize = BP_GET_LSIZE(bp);
579 	dmu_object_type_t ot = BP_GET_TYPE(bp);
580 	uint8_t salt[ZIO_DATA_SALT_LEN];
581 	uint8_t iv[ZIO_DATA_IV_LEN];
582 	uint8_t mac[ZIO_DATA_MAC_LEN];
583 	boolean_t no_crypt = B_FALSE;
584 
585 	ASSERT(BP_USES_CRYPT(bp));
586 	ASSERT3U(size, !=, 0);
587 
588 	if (zio->io_error != 0)
589 		return;
590 
591 	/*
592 	 * Verify the cksum of MACs stored in an indirect bp. It will always
593 	 * be possible to verify this since it does not require an encryption
594 	 * key.
595 	 */
596 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
597 		zio_crypt_decode_mac_bp(bp, mac);
598 
599 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
600 			/*
601 			 * We haven't decompressed the data yet, but
602 			 * zio_crypt_do_indirect_mac_checksum() requires
603 			 * decompressed data to be able to parse out the MACs
604 			 * from the indirect block. We decompress it now and
605 			 * throw away the result after we are finished.
606 			 */
607 			abd_t *abd = abd_alloc_linear(lsize, B_TRUE);
608 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
609 			    zio->io_abd, abd, zio->io_size, lsize,
610 			    &zio->io_prop.zp_complevel);
611 			if (ret != 0) {
612 				abd_free(abd);
613 				ret = SET_ERROR(EIO);
614 				goto error;
615 			}
616 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
617 			    abd, lsize, BP_SHOULD_BYTESWAP(bp), mac);
618 			abd_free(abd);
619 		} else {
620 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
621 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
622 		}
623 		abd_copy(data, zio->io_abd, size);
624 
625 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
626 			ret = zio_handle_decrypt_injection(spa,
627 			    &zio->io_bookmark, ot, ECKSUM);
628 		}
629 		if (ret != 0)
630 			goto error;
631 
632 		return;
633 	}
634 
635 	/*
636 	 * If this is an authenticated block, just check the MAC. It would be
637 	 * nice to separate this out into its own flag, but when this was done,
638 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
639 	 * could make this a flag bit.
640 	 */
641 	if (BP_IS_AUTHENTICATED(bp)) {
642 		if (ot == DMU_OT_OBJSET) {
643 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
644 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
645 		} else {
646 			zio_crypt_decode_mac_bp(bp, mac);
647 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
648 			    zio->io_abd, size, mac);
649 			if (zio_injection_enabled && ret == 0) {
650 				ret = zio_handle_decrypt_injection(spa,
651 				    &zio->io_bookmark, ot, ECKSUM);
652 			}
653 		}
654 		abd_copy(data, zio->io_abd, size);
655 
656 		if (ret != 0)
657 			goto error;
658 
659 		return;
660 	}
661 
662 	zio_crypt_decode_params_bp(bp, salt, iv);
663 
664 	if (ot == DMU_OT_INTENT_LOG) {
665 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
666 		zio_crypt_decode_mac_zil(tmp, mac);
667 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
668 	} else {
669 		zio_crypt_decode_mac_bp(bp, mac);
670 	}
671 
672 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
673 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
674 	    zio->io_abd, &no_crypt);
675 	if (no_crypt)
676 		abd_copy(data, zio->io_abd, size);
677 
678 	if (ret != 0)
679 		goto error;
680 
681 	return;
682 
683 error:
684 	/* assert that the key was found unless this was speculative */
685 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
686 
687 	/*
688 	 * If there was a decryption / authentication error return EIO as
689 	 * the io_error. If this was not a speculative zio, create an ereport.
690 	 */
691 	if (ret == ECKSUM) {
692 		zio->io_error = SET_ERROR(EIO);
693 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
694 			spa_log_error(spa, &zio->io_bookmark,
695 			    BP_GET_PHYSICAL_BIRTH(zio->io_bp));
696 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
697 			    spa, NULL, &zio->io_bookmark, zio, 0);
698 		}
699 	} else {
700 		zio->io_error = ret;
701 	}
702 }
703 
704 /*
705  * ==========================================================================
706  * I/O parent/child relationships and pipeline interlocks
707  * ==========================================================================
708  */
709 zio_t *
zio_walk_parents(zio_t * cio,zio_link_t ** zl)710 zio_walk_parents(zio_t *cio, zio_link_t **zl)
711 {
712 	list_t *pl = &cio->io_parent_list;
713 
714 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
715 	if (*zl == NULL)
716 		return (NULL);
717 
718 	ASSERT((*zl)->zl_child == cio);
719 	return ((*zl)->zl_parent);
720 }
721 
722 zio_t *
zio_walk_children(zio_t * pio,zio_link_t ** zl)723 zio_walk_children(zio_t *pio, zio_link_t **zl)
724 {
725 	list_t *cl = &pio->io_child_list;
726 
727 	ASSERT(MUTEX_HELD(&pio->io_lock));
728 
729 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
730 	if (*zl == NULL)
731 		return (NULL);
732 
733 	ASSERT((*zl)->zl_parent == pio);
734 	return ((*zl)->zl_child);
735 }
736 
737 zio_t *
zio_unique_parent(zio_t * cio)738 zio_unique_parent(zio_t *cio)
739 {
740 	zio_link_t *zl = NULL;
741 	zio_t *pio = zio_walk_parents(cio, &zl);
742 
743 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
744 	return (pio);
745 }
746 
747 static void
zio_add_child_impl(zio_t * pio,zio_t * cio,boolean_t first)748 zio_add_child_impl(zio_t *pio, zio_t *cio, boolean_t first)
749 {
750 	/*
751 	 * Logical I/Os can have logical, gang, or vdev children.
752 	 * Gang I/Os can have gang or vdev children.
753 	 * Vdev I/Os can only have vdev children.
754 	 * The following ASSERT captures all of these constraints.
755 	 */
756 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
757 
758 	/* Parent should not have READY stage if child doesn't have it. */
759 	IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
760 	    (cio->io_child_type != ZIO_CHILD_VDEV),
761 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0);
762 
763 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
764 	zl->zl_parent = pio;
765 	zl->zl_child = cio;
766 
767 	mutex_enter(&pio->io_lock);
768 
769 	if (first)
770 		ASSERT(list_is_empty(&cio->io_parent_list));
771 	else
772 		mutex_enter(&cio->io_lock);
773 
774 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
775 
776 	uint64_t *countp = pio->io_children[cio->io_child_type];
777 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
778 		countp[w] += !cio->io_state[w];
779 
780 	list_insert_head(&pio->io_child_list, zl);
781 	list_insert_head(&cio->io_parent_list, zl);
782 
783 	if (!first)
784 		mutex_exit(&cio->io_lock);
785 
786 	mutex_exit(&pio->io_lock);
787 }
788 
789 void
zio_add_child(zio_t * pio,zio_t * cio)790 zio_add_child(zio_t *pio, zio_t *cio)
791 {
792 	zio_add_child_impl(pio, cio, B_FALSE);
793 }
794 
795 static void
zio_add_child_first(zio_t * pio,zio_t * cio)796 zio_add_child_first(zio_t *pio, zio_t *cio)
797 {
798 	zio_add_child_impl(pio, cio, B_TRUE);
799 }
800 
801 static void
zio_remove_child(zio_t * pio,zio_t * cio,zio_link_t * zl)802 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
803 {
804 	ASSERT(zl->zl_parent == pio);
805 	ASSERT(zl->zl_child == cio);
806 
807 	mutex_enter(&pio->io_lock);
808 	mutex_enter(&cio->io_lock);
809 
810 	list_remove(&pio->io_child_list, zl);
811 	list_remove(&cio->io_parent_list, zl);
812 
813 	mutex_exit(&cio->io_lock);
814 	mutex_exit(&pio->io_lock);
815 	kmem_cache_free(zio_link_cache, zl);
816 }
817 
818 static boolean_t
zio_wait_for_children(zio_t * zio,uint8_t childbits,enum zio_wait_type wait)819 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
820 {
821 	boolean_t waiting = B_FALSE;
822 
823 	mutex_enter(&zio->io_lock);
824 	ASSERT(zio->io_stall == NULL);
825 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
826 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
827 			continue;
828 
829 		uint64_t *countp = &zio->io_children[c][wait];
830 		if (*countp != 0) {
831 			zio->io_stage >>= 1;
832 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
833 			zio->io_stall = countp;
834 			waiting = B_TRUE;
835 			break;
836 		}
837 	}
838 	mutex_exit(&zio->io_lock);
839 	return (waiting);
840 }
841 
842 __attribute__((always_inline))
843 static inline void
zio_notify_parent(zio_t * pio,zio_t * zio,enum zio_wait_type wait,zio_t ** next_to_executep)844 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
845     zio_t **next_to_executep)
846 {
847 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
848 	int *errorp = &pio->io_child_error[zio->io_child_type];
849 
850 	mutex_enter(&pio->io_lock);
851 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
852 		*errorp = zio_worst_error(*errorp, zio->io_error);
853 	pio->io_post |= zio->io_post;
854 	ASSERT3U(*countp, >, 0);
855 
856 	(*countp)--;
857 
858 	if (*countp == 0 && pio->io_stall == countp) {
859 		zio_taskq_type_t type =
860 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
861 		    ZIO_TASKQ_INTERRUPT;
862 		pio->io_stall = NULL;
863 		mutex_exit(&pio->io_lock);
864 
865 		/*
866 		 * If we can tell the caller to execute this parent next, do
867 		 * so. We do this if the parent's zio type matches the child's
868 		 * type, or if it's a zio_null() with no done callback, and so
869 		 * has no actual work to do. Otherwise dispatch the parent zio
870 		 * in its own taskq.
871 		 *
872 		 * Having the caller execute the parent when possible reduces
873 		 * locking on the zio taskq's, reduces context switch
874 		 * overhead, and has no recursion penalty.  Note that one
875 		 * read from disk typically causes at least 3 zio's: a
876 		 * zio_null(), the logical zio_read(), and then a physical
877 		 * zio.  When the physical ZIO completes, we are able to call
878 		 * zio_done() on all 3 of these zio's from one invocation of
879 		 * zio_execute() by returning the parent back to
880 		 * zio_execute().  Since the parent isn't executed until this
881 		 * thread returns back to zio_execute(), the caller should do
882 		 * so promptly.
883 		 *
884 		 * In other cases, dispatching the parent prevents
885 		 * overflowing the stack when we have deeply nested
886 		 * parent-child relationships, as we do with the "mega zio"
887 		 * of writes for spa_sync(), and the chain of ZIL blocks.
888 		 */
889 		if (next_to_executep != NULL && *next_to_executep == NULL &&
890 		    (pio->io_type == zio->io_type ||
891 		    (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) {
892 			*next_to_executep = pio;
893 		} else {
894 			zio_taskq_dispatch(pio, type, B_FALSE);
895 		}
896 	} else {
897 		mutex_exit(&pio->io_lock);
898 	}
899 }
900 
901 static void
zio_inherit_child_errors(zio_t * zio,enum zio_child c)902 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
903 {
904 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
905 		zio->io_error = zio->io_child_error[c];
906 }
907 
908 int
zio_bookmark_compare(const void * x1,const void * x2)909 zio_bookmark_compare(const void *x1, const void *x2)
910 {
911 	const zio_t *z1 = x1;
912 	const zio_t *z2 = x2;
913 
914 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
915 		return (-1);
916 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
917 		return (1);
918 
919 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
920 		return (-1);
921 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
922 		return (1);
923 
924 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
925 		return (-1);
926 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
927 		return (1);
928 
929 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
930 		return (-1);
931 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
932 		return (1);
933 
934 	if (z1 < z2)
935 		return (-1);
936 	if (z1 > z2)
937 		return (1);
938 
939 	return (0);
940 }
941 
942 /*
943  * ==========================================================================
944  * Create the various types of I/O (read, write, free, etc)
945  * ==========================================================================
946  */
947 static zio_t *
zio_create(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,zio_done_func_t * done,void * private,zio_type_t type,zio_priority_t priority,zio_flag_t flags,vdev_t * vd,uint64_t offset,const zbookmark_phys_t * zb,enum zio_stage stage,enum zio_stage pipeline)948 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
949     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
950     void *private, zio_type_t type, zio_priority_t priority,
951     zio_flag_t flags, vdev_t *vd, uint64_t offset,
952     const zbookmark_phys_t *zb, enum zio_stage stage,
953     enum zio_stage pipeline)
954 {
955 	zio_t *zio;
956 
957 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
958 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
959 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
960 
961 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
962 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
963 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
964 
965 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
966 
967 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
968 	memset(zio, 0, sizeof (zio_t));
969 
970 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
971 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
972 
973 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
974 	    offsetof(zio_link_t, zl_parent_node));
975 	list_create(&zio->io_child_list, sizeof (zio_link_t),
976 	    offsetof(zio_link_t, zl_child_node));
977 	metaslab_trace_init(&zio->io_alloc_list);
978 
979 	if (vd != NULL)
980 		zio->io_child_type = ZIO_CHILD_VDEV;
981 	else if (flags & ZIO_FLAG_GANG_CHILD)
982 		zio->io_child_type = ZIO_CHILD_GANG;
983 	else if (flags & ZIO_FLAG_DDT_CHILD)
984 		zio->io_child_type = ZIO_CHILD_DDT;
985 	else
986 		zio->io_child_type = ZIO_CHILD_LOGICAL;
987 
988 	if (bp != NULL) {
989 		if (type != ZIO_TYPE_WRITE ||
990 		    zio->io_child_type == ZIO_CHILD_DDT) {
991 			zio->io_bp_copy = *bp;
992 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
993 		} else {
994 			zio->io_bp = (blkptr_t *)bp;
995 		}
996 		zio->io_bp_orig = *bp;
997 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
998 			zio->io_logical = zio;
999 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
1000 			pipeline |= ZIO_GANG_STAGES;
1001 		if (flags & ZIO_FLAG_PREALLOCATED) {
1002 			BP_ZERO_DVAS(zio->io_bp);
1003 			BP_SET_BIRTH(zio->io_bp, 0, 0);
1004 		}
1005 	}
1006 
1007 	zio->io_spa = spa;
1008 	zio->io_txg = txg;
1009 	zio->io_done = done;
1010 	zio->io_private = private;
1011 	zio->io_type = type;
1012 	zio->io_priority = priority;
1013 	zio->io_vd = vd;
1014 	zio->io_offset = offset;
1015 	zio->io_orig_abd = zio->io_abd = data;
1016 	zio->io_orig_size = zio->io_size = psize;
1017 	zio->io_lsize = lsize;
1018 	zio->io_orig_flags = zio->io_flags = flags;
1019 	zio->io_orig_stage = zio->io_stage = stage;
1020 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
1021 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
1022 	zio->io_allocator = ZIO_ALLOCATOR_NONE;
1023 
1024 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
1025 	    (pipeline & ZIO_STAGE_READY) == 0;
1026 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
1027 
1028 	if (zb != NULL)
1029 		zio->io_bookmark = *zb;
1030 
1031 	if (pio != NULL) {
1032 		zio->io_metaslab_class = pio->io_metaslab_class;
1033 		if (zio->io_logical == NULL)
1034 			zio->io_logical = pio->io_logical;
1035 		if (zio->io_child_type == ZIO_CHILD_GANG)
1036 			zio->io_gang_leader = pio->io_gang_leader;
1037 		zio_add_child_first(pio, zio);
1038 	}
1039 
1040 	taskq_init_ent(&zio->io_tqent);
1041 
1042 	return (zio);
1043 }
1044 
1045 void
zio_destroy(zio_t * zio)1046 zio_destroy(zio_t *zio)
1047 {
1048 	metaslab_trace_fini(&zio->io_alloc_list);
1049 	list_destroy(&zio->io_parent_list);
1050 	list_destroy(&zio->io_child_list);
1051 	mutex_destroy(&zio->io_lock);
1052 	cv_destroy(&zio->io_cv);
1053 	kmem_cache_free(zio_cache, zio);
1054 }
1055 
1056 /*
1057  * ZIO intended to be between others.  Provides synchronization at READY
1058  * and DONE pipeline stages and calls the respective callbacks.
1059  */
1060 zio_t *
zio_null(zio_t * pio,spa_t * spa,vdev_t * vd,zio_done_func_t * done,void * private,zio_flag_t flags)1061 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
1062     void *private, zio_flag_t flags)
1063 {
1064 	zio_t *zio;
1065 
1066 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1067 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1068 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1069 
1070 	return (zio);
1071 }
1072 
1073 /*
1074  * ZIO intended to be a root of a tree.  Unlike null ZIO does not have a
1075  * READY pipeline stage (is ready on creation), so it should not be used
1076  * as child of any ZIO that may need waiting for grandchildren READY stage
1077  * (any other ZIO type).
1078  */
1079 zio_t *
zio_root(spa_t * spa,zio_done_func_t * done,void * private,zio_flag_t flags)1080 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1081 {
1082 	zio_t *zio;
1083 
1084 	zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1085 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1086 	    ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1087 
1088 	return (zio);
1089 }
1090 
1091 static int
zfs_blkptr_verify_log(spa_t * spa,const blkptr_t * bp,enum blk_verify_flag blk_verify,const char * fmt,...)1092 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1093     enum blk_verify_flag blk_verify, const char *fmt, ...)
1094 {
1095 	va_list adx;
1096 	char buf[256];
1097 
1098 	va_start(adx, fmt);
1099 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
1100 	va_end(adx);
1101 
1102 	zfs_dbgmsg("bad blkptr at %px: "
1103 	    "DVA[0]=%#llx/%#llx "
1104 	    "DVA[1]=%#llx/%#llx "
1105 	    "DVA[2]=%#llx/%#llx "
1106 	    "prop=%#llx "
1107 	    "prop2=%#llx "
1108 	    "pad=%#llx "
1109 	    "phys_birth=%#llx "
1110 	    "birth=%#llx "
1111 	    "fill=%#llx "
1112 	    "cksum=%#llx/%#llx/%#llx/%#llx",
1113 	    bp,
1114 	    (long long)bp->blk_dva[0].dva_word[0],
1115 	    (long long)bp->blk_dva[0].dva_word[1],
1116 	    (long long)bp->blk_dva[1].dva_word[0],
1117 	    (long long)bp->blk_dva[1].dva_word[1],
1118 	    (long long)bp->blk_dva[2].dva_word[0],
1119 	    (long long)bp->blk_dva[2].dva_word[1],
1120 	    (long long)bp->blk_prop,
1121 	    (long long)bp->blk_prop2,
1122 	    (long long)bp->blk_pad,
1123 	    (long long)BP_GET_RAW_PHYSICAL_BIRTH(bp),
1124 	    (long long)BP_GET_LOGICAL_BIRTH(bp),
1125 	    (long long)bp->blk_fill,
1126 	    (long long)bp->blk_cksum.zc_word[0],
1127 	    (long long)bp->blk_cksum.zc_word[1],
1128 	    (long long)bp->blk_cksum.zc_word[2],
1129 	    (long long)bp->blk_cksum.zc_word[3]);
1130 	switch (blk_verify) {
1131 	case BLK_VERIFY_HALT:
1132 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
1133 		break;
1134 	case BLK_VERIFY_LOG:
1135 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1136 		break;
1137 	case BLK_VERIFY_ONLY:
1138 		break;
1139 	}
1140 
1141 	return (1);
1142 }
1143 
1144 /*
1145  * Verify the block pointer fields contain reasonable values.  This means
1146  * it only contains known object types, checksum/compression identifiers,
1147  * block sizes within the maximum allowed limits, valid DVAs, etc.
1148  *
1149  * If everything checks out 0 is returned.  The zfs_blkptr_verify
1150  * argument controls the behavior when an invalid field is detected.
1151  *
1152  * Values for blk_verify_flag:
1153  *   BLK_VERIFY_ONLY: evaluate the block
1154  *   BLK_VERIFY_LOG: evaluate the block and log problems
1155  *   BLK_VERIFY_HALT: call zfs_panic_recover on error
1156  *
1157  * Values for blk_config_flag:
1158  *   BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1159  *   BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1160  *   obtained for reader
1161  *   BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1162  *   performance
1163  */
1164 int
zfs_blkptr_verify(spa_t * spa,const blkptr_t * bp,enum blk_config_flag blk_config,enum blk_verify_flag blk_verify)1165 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1166     enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1167 {
1168 	int errors = 0;
1169 
1170 	if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp)))) {
1171 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1172 		    "blkptr at %px has invalid TYPE %llu",
1173 		    bp, (longlong_t)BP_GET_TYPE(bp));
1174 	}
1175 	if (unlikely(BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS)) {
1176 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1177 		    "blkptr at %px has invalid COMPRESS %llu",
1178 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
1179 	}
1180 	if (unlikely(BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1181 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1182 		    "blkptr at %px has invalid LSIZE %llu",
1183 		    bp, (longlong_t)BP_GET_LSIZE(bp));
1184 	}
1185 	if (BP_IS_EMBEDDED(bp)) {
1186 		if (unlikely(BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES)) {
1187 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1188 			    "blkptr at %px has invalid ETYPE %llu",
1189 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1190 		}
1191 		if (unlikely(BPE_GET_PSIZE(bp) > BPE_PAYLOAD_SIZE)) {
1192 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1193 			    "blkptr at %px has invalid PSIZE %llu",
1194 			    bp, (longlong_t)BPE_GET_PSIZE(bp));
1195 		}
1196 		return (errors ? ECKSUM : 0);
1197 	} else if (BP_IS_HOLE(bp)) {
1198 		/*
1199 		 * Holes are allowed (expected, even) to have no DVAs, no
1200 		 * checksum, and no psize.
1201 		 */
1202 		return (errors ? ECKSUM : 0);
1203 	} else if (unlikely(!DVA_IS_VALID(&bp->blk_dva[0]))) {
1204 		/* Non-hole, non-embedded BPs _must_ have at least one DVA */
1205 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1206 		    "blkptr at %px has no valid DVAs", bp);
1207 	}
1208 	if (unlikely(BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS)) {
1209 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1210 		    "blkptr at %px has invalid CHECKSUM %llu",
1211 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
1212 	}
1213 	if (unlikely(BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE)) {
1214 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1215 		    "blkptr at %px has invalid PSIZE %llu",
1216 		    bp, (longlong_t)BP_GET_PSIZE(bp));
1217 	}
1218 
1219 	/*
1220 	 * Do not verify individual DVAs if the config is not trusted. This
1221 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1222 	 */
1223 	if (unlikely(!spa->spa_trust_config))
1224 		return (errors ? ECKSUM : 0);
1225 
1226 	switch (blk_config) {
1227 	case BLK_CONFIG_HELD:
1228 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1229 		break;
1230 	case BLK_CONFIG_NEEDED:
1231 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1232 		break;
1233 	case BLK_CONFIG_NEEDED_TRY:
1234 		if (!spa_config_tryenter(spa, SCL_VDEV, bp, RW_READER))
1235 			return (EBUSY);
1236 		break;
1237 	case BLK_CONFIG_SKIP:
1238 		return (errors ? ECKSUM : 0);
1239 	default:
1240 		panic("invalid blk_config %u", blk_config);
1241 	}
1242 
1243 	/*
1244 	 * Pool-specific checks.
1245 	 *
1246 	 * Note: it would be nice to verify that the logical birth
1247 	 * and physical birth are not too large.  However,
1248 	 * spa_freeze() allows the birth time of log blocks (and
1249 	 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1250 	 * large.
1251 	 */
1252 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1253 		const dva_t *dva = &bp->blk_dva[i];
1254 		uint64_t vdevid = DVA_GET_VDEV(dva);
1255 
1256 		if (unlikely(vdevid >= spa->spa_root_vdev->vdev_children)) {
1257 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1258 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1259 			    bp, i, (longlong_t)vdevid);
1260 			continue;
1261 		}
1262 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1263 		if (unlikely(vd == NULL)) {
1264 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1265 			    "blkptr at %px DVA %u has invalid VDEV %llu",
1266 			    bp, i, (longlong_t)vdevid);
1267 			continue;
1268 		}
1269 		if (unlikely(vd->vdev_ops == &vdev_hole_ops)) {
1270 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1271 			    "blkptr at %px DVA %u has hole VDEV %llu",
1272 			    bp, i, (longlong_t)vdevid);
1273 			continue;
1274 		}
1275 		if (vd->vdev_ops == &vdev_missing_ops) {
1276 			/*
1277 			 * "missing" vdevs are valid during import, but we
1278 			 * don't have their detailed info (e.g. asize), so
1279 			 * we can't perform any more checks on them.
1280 			 */
1281 			continue;
1282 		}
1283 		uint64_t offset = DVA_GET_OFFSET(dva);
1284 		uint64_t asize = DVA_GET_ASIZE(dva);
1285 		if (DVA_GET_GANG(dva))
1286 			asize = vdev_gang_header_asize(vd);
1287 		if (unlikely(offset + asize > vd->vdev_asize)) {
1288 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1289 			    "blkptr at %px DVA %u has invalid OFFSET %llu",
1290 			    bp, i, (longlong_t)offset);
1291 		}
1292 	}
1293 	if (blk_config == BLK_CONFIG_NEEDED || blk_config ==
1294 	    BLK_CONFIG_NEEDED_TRY)
1295 		spa_config_exit(spa, SCL_VDEV, bp);
1296 
1297 	return (errors ? ECKSUM : 0);
1298 }
1299 
1300 boolean_t
zfs_dva_valid(spa_t * spa,const dva_t * dva,const blkptr_t * bp)1301 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1302 {
1303 	(void) bp;
1304 	uint64_t vdevid = DVA_GET_VDEV(dva);
1305 
1306 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1307 		return (B_FALSE);
1308 
1309 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1310 	if (vd == NULL)
1311 		return (B_FALSE);
1312 
1313 	if (vd->vdev_ops == &vdev_hole_ops)
1314 		return (B_FALSE);
1315 
1316 	if (vd->vdev_ops == &vdev_missing_ops) {
1317 		return (B_FALSE);
1318 	}
1319 
1320 	uint64_t offset = DVA_GET_OFFSET(dva);
1321 	uint64_t asize = DVA_GET_ASIZE(dva);
1322 
1323 	if (DVA_GET_GANG(dva))
1324 		asize = vdev_gang_header_asize(vd);
1325 	if (offset + asize > vd->vdev_asize)
1326 		return (B_FALSE);
1327 
1328 	return (B_TRUE);
1329 }
1330 
1331 zio_t *
zio_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1332 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1333     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1334     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1335 {
1336 	zio_t *zio;
1337 
1338 	zio = zio_create(pio, spa, BP_GET_PHYSICAL_BIRTH(bp), bp,
1339 	    data, size, size, done, private,
1340 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1341 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1342 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1343 
1344 	return (zio);
1345 }
1346 
1347 zio_t *
zio_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t lsize,uint64_t psize,const zio_prop_t * zp,zio_done_func_t * ready,zio_done_func_t * children_ready,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,const zbookmark_phys_t * zb)1348 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1349     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1350     zio_done_func_t *ready, zio_done_func_t *children_ready,
1351     zio_done_func_t *done, void *private, zio_priority_t priority,
1352     zio_flag_t flags, const zbookmark_phys_t *zb)
1353 {
1354 	zio_t *zio;
1355 	enum zio_stage pipeline = zp->zp_direct_write == B_TRUE ?
1356 	    ZIO_DIRECT_WRITE_PIPELINE : (flags & ZIO_FLAG_DDT_CHILD) ?
1357 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE;
1358 
1359 
1360 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1361 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1362 	    ZIO_STAGE_OPEN, pipeline);
1363 
1364 	zio->io_ready = ready;
1365 	zio->io_children_ready = children_ready;
1366 	zio->io_prop = *zp;
1367 
1368 	/*
1369 	 * Data can be NULL if we are going to call zio_write_override() to
1370 	 * provide the already-allocated BP.  But we may need the data to
1371 	 * verify a dedup hit (if requested).  In this case, don't try to
1372 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1373 	 * dedup blocks need data as well so we also disable dedup in this
1374 	 * case.
1375 	 */
1376 	if (data == NULL &&
1377 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1378 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1379 	}
1380 
1381 	return (zio);
1382 }
1383 
1384 zio_t *
zio_rewrite(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,abd_t * data,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,zbookmark_phys_t * zb)1385 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1386     uint64_t size, zio_done_func_t *done, void *private,
1387     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1388 {
1389 	zio_t *zio;
1390 
1391 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1392 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1393 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1394 
1395 	return (zio);
1396 }
1397 
1398 void
zio_write_override(zio_t * zio,blkptr_t * bp,int copies,int gang_copies,boolean_t nopwrite,boolean_t brtwrite)1399 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, int gang_copies,
1400     boolean_t nopwrite, boolean_t brtwrite)
1401 {
1402 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1403 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1404 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1405 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1406 	ASSERT(!brtwrite || !nopwrite);
1407 
1408 	/*
1409 	 * We must reset the io_prop to match the values that existed
1410 	 * when the bp was first written by dmu_sync() keeping in mind
1411 	 * that nopwrite and dedup are mutually exclusive.
1412 	 */
1413 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1414 	zio->io_prop.zp_nopwrite = nopwrite;
1415 	zio->io_prop.zp_brtwrite = brtwrite;
1416 	zio->io_prop.zp_copies = copies;
1417 	zio->io_prop.zp_gang_copies = gang_copies;
1418 	zio->io_bp_override = bp;
1419 }
1420 
1421 void
zio_free(spa_t * spa,uint64_t txg,const blkptr_t * bp)1422 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1423 {
1424 
1425 	(void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1426 
1427 	/*
1428 	 * The check for EMBEDDED is a performance optimization.  We
1429 	 * process the free here (by ignoring it) rather than
1430 	 * putting it on the list and then processing it in zio_free_sync().
1431 	 */
1432 	if (BP_IS_EMBEDDED(bp))
1433 		return;
1434 
1435 	/*
1436 	 * Frees that are for the currently-syncing txg, are not going to be
1437 	 * deferred, and which will not need to do a read (i.e. not GANG or
1438 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1439 	 * in-memory list for later processing.
1440 	 *
1441 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1442 	 * when the log space map feature is disabled. [see relevant comment
1443 	 * in spa_sync_iterate_to_convergence()]
1444 	 */
1445 	if (BP_IS_GANG(bp) ||
1446 	    BP_GET_DEDUP(bp) ||
1447 	    txg != spa->spa_syncing_txg ||
1448 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1449 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1450 	    brt_maybe_exists(spa, bp)) {
1451 		metaslab_check_free(spa, bp);
1452 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1453 	} else {
1454 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1455 	}
1456 }
1457 
1458 /*
1459  * To improve performance, this function may return NULL if we were able
1460  * to do the free immediately.  This avoids the cost of creating a zio
1461  * (and linking it to the parent, etc).
1462  */
1463 zio_t *
zio_free_sync(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_flag_t flags)1464 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1465     zio_flag_t flags)
1466 {
1467 	ASSERT(!BP_IS_HOLE(bp));
1468 	ASSERT(spa_syncing_txg(spa) == txg);
1469 
1470 	if (BP_IS_EMBEDDED(bp))
1471 		return (NULL);
1472 
1473 	metaslab_check_free(spa, bp);
1474 	arc_freed(spa, bp);
1475 	dsl_scan_freed(spa, bp);
1476 
1477 	if (BP_IS_GANG(bp) ||
1478 	    BP_GET_DEDUP(bp) ||
1479 	    brt_maybe_exists(spa, bp)) {
1480 		/*
1481 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1482 		 * block header, the DDT or the BRT), so issue them
1483 		 * asynchronously so that this thread is not tied up.
1484 		 */
1485 		enum zio_stage stage =
1486 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1487 
1488 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1489 		    BP_GET_PSIZE(bp), NULL, NULL,
1490 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1491 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1492 	} else {
1493 		metaslab_free(spa, bp, txg, B_FALSE);
1494 		return (NULL);
1495 	}
1496 }
1497 
1498 zio_t *
zio_claim(zio_t * pio,spa_t * spa,uint64_t txg,const blkptr_t * bp,zio_done_func_t * done,void * private,zio_flag_t flags)1499 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1500     zio_done_func_t *done, void *private, zio_flag_t flags)
1501 {
1502 	zio_t *zio;
1503 
1504 	(void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1505 	    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1506 
1507 	if (BP_IS_EMBEDDED(bp))
1508 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1509 
1510 	/*
1511 	 * A claim is an allocation of a specific block.  Claims are needed
1512 	 * to support immediate writes in the intent log.  The issue is that
1513 	 * immediate writes contain committed data, but in a txg that was
1514 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1515 	 * the intent log claims all blocks that contain immediate write data
1516 	 * so that the SPA knows they're in use.
1517 	 *
1518 	 * All claims *must* be resolved in the first txg -- before the SPA
1519 	 * starts allocating blocks -- so that nothing is allocated twice.
1520 	 * If txg == 0 we just verify that the block is claimable.
1521 	 */
1522 	ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1523 	    spa_min_claim_txg(spa));
1524 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1525 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1526 
1527 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1528 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1529 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1530 	ASSERT0(zio->io_queued_timestamp);
1531 
1532 	return (zio);
1533 }
1534 
1535 zio_t *
zio_trim(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,enum trim_flag trim_flags)1536 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1537     zio_done_func_t *done, void *private, zio_priority_t priority,
1538     zio_flag_t flags, enum trim_flag trim_flags)
1539 {
1540 	zio_t *zio;
1541 
1542 	ASSERT0(vd->vdev_children);
1543 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1544 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1545 	ASSERT3U(size, !=, 0);
1546 
1547 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1548 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1549 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1550 	zio->io_trim_flags = trim_flags;
1551 
1552 	return (zio);
1553 }
1554 
1555 zio_t *
zio_read_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1556 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1557     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1558     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1559 {
1560 	zio_t *zio;
1561 
1562 	ASSERT(vd->vdev_children == 0);
1563 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1564 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1565 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1566 
1567 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1568 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1569 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1570 
1571 	zio->io_prop.zp_checksum = checksum;
1572 
1573 	return (zio);
1574 }
1575 
1576 zio_t *
zio_write_phys(zio_t * pio,vdev_t * vd,uint64_t offset,uint64_t size,abd_t * data,int checksum,zio_done_func_t * done,void * private,zio_priority_t priority,zio_flag_t flags,boolean_t labels)1577 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1578     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1579     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1580 {
1581 	zio_t *zio;
1582 
1583 	ASSERT(vd->vdev_children == 0);
1584 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1585 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1586 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1587 
1588 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1589 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1590 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1591 
1592 	zio->io_prop.zp_checksum = checksum;
1593 
1594 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1595 		/*
1596 		 * zec checksums are necessarily destructive -- they modify
1597 		 * the end of the write buffer to hold the verifier/checksum.
1598 		 * Therefore, we must make a local copy in case the data is
1599 		 * being written to multiple places in parallel.
1600 		 */
1601 		abd_t *wbuf = abd_alloc_sametype(data, size);
1602 		abd_copy(wbuf, data, size);
1603 
1604 		zio_push_transform(zio, wbuf, size, size, NULL);
1605 	}
1606 
1607 	return (zio);
1608 }
1609 
1610 /*
1611  * Create a child I/O to do some work for us.
1612  */
1613 zio_t *
zio_vdev_child_io(zio_t * pio,blkptr_t * bp,vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,int type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1614 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1615     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1616     zio_flag_t flags, zio_done_func_t *done, void *private)
1617 {
1618 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1619 	zio_t *zio;
1620 
1621 	/*
1622 	 * vdev child I/Os do not propagate their error to the parent.
1623 	 * Therefore, for correct operation the caller *must* check for
1624 	 * and handle the error in the child i/o's done callback.
1625 	 * The only exceptions are i/os that we don't care about
1626 	 * (OPTIONAL or REPAIR).
1627 	 */
1628 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1629 	    done != NULL);
1630 
1631 	if (type == ZIO_TYPE_READ && bp != NULL) {
1632 		/*
1633 		 * If we have the bp, then the child should perform the
1634 		 * checksum and the parent need not.  This pushes error
1635 		 * detection as close to the leaves as possible and
1636 		 * eliminates redundant checksums in the interior nodes.
1637 		 */
1638 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1639 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1640 		/*
1641 		 * We never allow the mirror VDEV to attempt reading from any
1642 		 * additional data copies after the first Direct I/O checksum
1643 		 * verify failure. This is to avoid bad data being written out
1644 		 * through the mirror during self healing. See comment in
1645 		 * vdev_mirror_io_done() for more details.
1646 		 */
1647 		ASSERT0(pio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
1648 	} else if (type == ZIO_TYPE_WRITE &&
1649 	    pio->io_prop.zp_direct_write == B_TRUE) {
1650 		/*
1651 		 * By default we only will verify checksums for Direct I/O
1652 		 * writes for Linux. FreeBSD is able to place user pages under
1653 		 * write protection before issuing them to the ZIO pipeline.
1654 		 *
1655 		 * Checksum validation errors will only be reported through
1656 		 * the top-level VDEV, which is set by this child ZIO.
1657 		 */
1658 		ASSERT3P(bp, !=, NULL);
1659 		ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
1660 		pipeline |= ZIO_STAGE_DIO_CHECKSUM_VERIFY;
1661 	}
1662 
1663 	if (vd->vdev_ops->vdev_op_leaf) {
1664 		ASSERT0(vd->vdev_children);
1665 		offset += VDEV_LABEL_START_SIZE;
1666 	}
1667 
1668 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1669 
1670 	/*
1671 	 * If we've decided to do a repair, the write is not speculative --
1672 	 * even if the original read was.
1673 	 */
1674 	if (flags & ZIO_FLAG_IO_REPAIR)
1675 		flags &= ~ZIO_FLAG_SPECULATIVE;
1676 
1677 	/*
1678 	 * If we're creating a child I/O that is not associated with a
1679 	 * top-level vdev, then the child zio is not an allocating I/O.
1680 	 * If this is a retried I/O then we ignore it since we will
1681 	 * have already processed the original allocating I/O.
1682 	 */
1683 	if (flags & ZIO_FLAG_ALLOC_THROTTLED &&
1684 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1685 		ASSERT(pio->io_metaslab_class != NULL);
1686 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1687 		ASSERT(type == ZIO_TYPE_WRITE);
1688 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1689 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1690 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1691 		    pio->io_child_type == ZIO_CHILD_GANG);
1692 
1693 		flags &= ~ZIO_FLAG_ALLOC_THROTTLED;
1694 	}
1695 
1696 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1697 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1698 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1699 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1700 
1701 	return (zio);
1702 }
1703 
1704 zio_t *
zio_vdev_delegated_io(vdev_t * vd,uint64_t offset,abd_t * data,uint64_t size,zio_type_t type,zio_priority_t priority,zio_flag_t flags,zio_done_func_t * done,void * private)1705 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1706     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1707     zio_done_func_t *done, void *private)
1708 {
1709 	zio_t *zio;
1710 
1711 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1712 
1713 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1714 	    data, size, size, done, private, type, priority,
1715 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1716 	    vd, offset, NULL,
1717 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1718 
1719 	return (zio);
1720 }
1721 
1722 
1723 /*
1724  * Send a flush command to the given vdev. Unlike most zio creation functions,
1725  * the flush zios are issued immediately. You can wait on pio to pause until
1726  * the flushes complete.
1727  */
1728 void
zio_flush(zio_t * pio,vdev_t * vd)1729 zio_flush(zio_t *pio, vdev_t *vd)
1730 {
1731 	const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1732 	    ZIO_FLAG_DONT_RETRY;
1733 
1734 	if (vd->vdev_nowritecache)
1735 		return;
1736 
1737 	if (vd->vdev_children == 0) {
1738 		zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0,
1739 		    NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0,
1740 		    NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE));
1741 	} else {
1742 		for (uint64_t c = 0; c < vd->vdev_children; c++)
1743 			zio_flush(pio, vd->vdev_child[c]);
1744 	}
1745 }
1746 
1747 void
zio_shrink(zio_t * zio,uint64_t size)1748 zio_shrink(zio_t *zio, uint64_t size)
1749 {
1750 	ASSERT3P(zio->io_executor, ==, NULL);
1751 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1752 	ASSERT3U(size, <=, zio->io_size);
1753 
1754 	/*
1755 	 * We don't shrink for raidz because of problems with the
1756 	 * reconstruction when reading back less than the block size.
1757 	 * Note, BP_IS_RAIDZ() assumes no compression.
1758 	 */
1759 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1760 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1761 		/* we are not doing a raw write */
1762 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1763 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1764 	}
1765 }
1766 
1767 /*
1768  * Round provided allocation size up to a value that can be allocated
1769  * by at least some vdev(s) in the pool with minimum or no additional
1770  * padding and without extra space usage on others
1771  */
1772 static uint64_t
zio_roundup_alloc_size(spa_t * spa,uint64_t size)1773 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1774 {
1775 	if (size > spa->spa_min_alloc)
1776 		return (roundup(size, spa->spa_gcd_alloc));
1777 	return (spa->spa_min_alloc);
1778 }
1779 
1780 size_t
zio_get_compression_max_size(enum zio_compress compress,uint64_t gcd_alloc,uint64_t min_alloc,size_t s_len)1781 zio_get_compression_max_size(enum zio_compress compress, uint64_t gcd_alloc,
1782     uint64_t min_alloc, size_t s_len)
1783 {
1784 	size_t d_len;
1785 
1786 	/* minimum 12.5% must be saved (legacy value, may be changed later) */
1787 	d_len = s_len - (s_len >> 3);
1788 
1789 	/* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1790 	if (compress == ZIO_COMPRESS_ZLE)
1791 		return (d_len);
1792 
1793 	d_len = d_len - d_len % gcd_alloc;
1794 
1795 	if (d_len < min_alloc)
1796 		return (BPE_PAYLOAD_SIZE);
1797 	return (d_len);
1798 }
1799 
1800 /*
1801  * ==========================================================================
1802  * Prepare to read and write logical blocks
1803  * ==========================================================================
1804  */
1805 
1806 static zio_t *
zio_read_bp_init(zio_t * zio)1807 zio_read_bp_init(zio_t *zio)
1808 {
1809 	blkptr_t *bp = zio->io_bp;
1810 	uint64_t psize =
1811 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1812 
1813 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1814 
1815 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1816 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1817 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1818 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1819 		    psize, psize, zio_decompress);
1820 	}
1821 
1822 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1823 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1824 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1825 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1826 		    psize, psize, zio_decrypt);
1827 	}
1828 
1829 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1830 		int psize = BPE_GET_PSIZE(bp);
1831 		void *data = abd_borrow_buf(zio->io_abd, psize);
1832 
1833 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1834 		decode_embedded_bp_compressed(bp, data);
1835 		abd_return_buf_copy(zio->io_abd, data, psize);
1836 	} else {
1837 		ASSERT(!BP_IS_EMBEDDED(bp));
1838 	}
1839 
1840 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1841 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1842 
1843 	return (zio);
1844 }
1845 
1846 static zio_t *
zio_write_bp_init(zio_t * zio)1847 zio_write_bp_init(zio_t *zio)
1848 {
1849 	if (!IO_IS_ALLOCATING(zio))
1850 		return (zio);
1851 
1852 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1853 
1854 	if (zio->io_bp_override) {
1855 		blkptr_t *bp = zio->io_bp;
1856 		zio_prop_t *zp = &zio->io_prop;
1857 
1858 		ASSERT(BP_GET_BIRTH(bp) != zio->io_txg);
1859 
1860 		*bp = *zio->io_bp_override;
1861 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1862 
1863 		if (zp->zp_brtwrite)
1864 			return (zio);
1865 
1866 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1867 
1868 		if (BP_IS_EMBEDDED(bp))
1869 			return (zio);
1870 
1871 		/*
1872 		 * If we've been overridden and nopwrite is set then
1873 		 * set the flag accordingly to indicate that a nopwrite
1874 		 * has already occurred.
1875 		 */
1876 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1877 			ASSERT(!zp->zp_dedup);
1878 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1879 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1880 			return (zio);
1881 		}
1882 
1883 		ASSERT(!zp->zp_nopwrite);
1884 
1885 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1886 			return (zio);
1887 
1888 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1889 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1890 
1891 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1892 		    !zp->zp_encrypt) {
1893 			BP_SET_DEDUP(bp, 1);
1894 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1895 			return (zio);
1896 		}
1897 
1898 		/*
1899 		 * We were unable to handle this as an override bp, treat
1900 		 * it as a regular write I/O.
1901 		 */
1902 		zio->io_bp_override = NULL;
1903 		*bp = zio->io_bp_orig;
1904 		zio->io_pipeline = zio->io_orig_pipeline;
1905 	}
1906 
1907 	return (zio);
1908 }
1909 
1910 static zio_t *
zio_write_compress(zio_t * zio)1911 zio_write_compress(zio_t *zio)
1912 {
1913 	spa_t *spa = zio->io_spa;
1914 	zio_prop_t *zp = &zio->io_prop;
1915 	enum zio_compress compress = zp->zp_compress;
1916 	blkptr_t *bp = zio->io_bp;
1917 	uint64_t lsize = zio->io_lsize;
1918 	uint64_t psize = zio->io_size;
1919 	uint32_t pass = 1;
1920 
1921 	/*
1922 	 * If our children haven't all reached the ready stage,
1923 	 * wait for them and then repeat this pipeline stage.
1924 	 */
1925 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1926 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1927 		return (NULL);
1928 	}
1929 
1930 	if (!IO_IS_ALLOCATING(zio))
1931 		return (zio);
1932 
1933 	if (zio->io_children_ready != NULL) {
1934 		/*
1935 		 * Now that all our children are ready, run the callback
1936 		 * associated with this zio in case it wants to modify the
1937 		 * data to be written.
1938 		 */
1939 		ASSERT3U(zp->zp_level, >, 0);
1940 		zio->io_children_ready(zio);
1941 	}
1942 
1943 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1944 	ASSERT(zio->io_bp_override == NULL);
1945 
1946 	if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg) {
1947 		/*
1948 		 * We're rewriting an existing block, which means we're
1949 		 * working on behalf of spa_sync().  For spa_sync() to
1950 		 * converge, it must eventually be the case that we don't
1951 		 * have to allocate new blocks.  But compression changes
1952 		 * the blocksize, which forces a reallocate, and makes
1953 		 * convergence take longer.  Therefore, after the first
1954 		 * few passes, stop compressing to ensure convergence.
1955 		 */
1956 		pass = spa_sync_pass(spa);
1957 
1958 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1959 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1960 		ASSERT(!BP_GET_DEDUP(bp));
1961 
1962 		if (pass >= zfs_sync_pass_dont_compress)
1963 			compress = ZIO_COMPRESS_OFF;
1964 
1965 		/* Make sure someone doesn't change their mind on overwrites */
1966 		ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1967 		    MIN(zp->zp_copies, spa_max_replication(spa))
1968 		    == BP_GET_NDVAS(bp));
1969 	}
1970 
1971 	/* If it's a compressed write that is not raw, compress the buffer. */
1972 	if (compress != ZIO_COMPRESS_OFF &&
1973 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1974 		abd_t *cabd = NULL;
1975 		if (abd_cmp_zero(zio->io_abd, lsize) == 0)
1976 			psize = 0;
1977 		else if (compress == ZIO_COMPRESS_EMPTY)
1978 			psize = lsize;
1979 		else
1980 			psize = zio_compress_data(compress, zio->io_abd, &cabd,
1981 			    lsize,
1982 			    zio_get_compression_max_size(compress,
1983 			    spa->spa_gcd_alloc, spa->spa_min_alloc, lsize),
1984 			    zp->zp_complevel);
1985 		if (psize == 0) {
1986 			compress = ZIO_COMPRESS_OFF;
1987 		} else if (psize >= lsize) {
1988 			compress = ZIO_COMPRESS_OFF;
1989 			if (cabd != NULL)
1990 				abd_free(cabd);
1991 		} else if (psize <= BPE_PAYLOAD_SIZE && !zp->zp_encrypt &&
1992 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1993 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1994 			void *cbuf = abd_borrow_buf_copy(cabd, lsize);
1995 			encode_embedded_bp_compressed(bp,
1996 			    cbuf, compress, lsize, psize);
1997 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1998 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1999 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
2000 			abd_return_buf(cabd, cbuf, lsize);
2001 			abd_free(cabd);
2002 			BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
2003 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2004 			ASSERT(spa_feature_is_active(spa,
2005 			    SPA_FEATURE_EMBEDDED_DATA));
2006 			return (zio);
2007 		} else {
2008 			/*
2009 			 * Round compressed size up to the minimum allocation
2010 			 * size of the smallest-ashift device, and zero the
2011 			 * tail. This ensures that the compressed size of the
2012 			 * BP (and thus compressratio property) are correct,
2013 			 * in that we charge for the padding used to fill out
2014 			 * the last sector.
2015 			 */
2016 			size_t rounded = (size_t)zio_roundup_alloc_size(spa,
2017 			    psize);
2018 			if (rounded >= lsize) {
2019 				compress = ZIO_COMPRESS_OFF;
2020 				abd_free(cabd);
2021 				psize = lsize;
2022 			} else {
2023 				abd_zero_off(cabd, psize, rounded - psize);
2024 				psize = rounded;
2025 				zio_push_transform(zio, cabd,
2026 				    psize, lsize, NULL);
2027 			}
2028 		}
2029 
2030 		/*
2031 		 * We were unable to handle this as an override bp, treat
2032 		 * it as a regular write I/O.
2033 		 */
2034 		zio->io_bp_override = NULL;
2035 		*bp = zio->io_bp_orig;
2036 		zio->io_pipeline = zio->io_orig_pipeline;
2037 
2038 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
2039 	    zp->zp_type == DMU_OT_DNODE) {
2040 		/*
2041 		 * The DMU actually relies on the zio layer's compression
2042 		 * to free metadnode blocks that have had all contained
2043 		 * dnodes freed. As a result, even when doing a raw
2044 		 * receive, we must check whether the block can be compressed
2045 		 * to a hole.
2046 		 */
2047 		if (abd_cmp_zero(zio->io_abd, lsize) == 0) {
2048 			psize = 0;
2049 			compress = ZIO_COMPRESS_OFF;
2050 		} else {
2051 			psize = lsize;
2052 		}
2053 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
2054 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
2055 		/*
2056 		 * If we are raw receiving an encrypted dataset we should not
2057 		 * take this codepath because it will change the on-disk block
2058 		 * and decryption will fail.
2059 		 */
2060 		size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
2061 		    lsize);
2062 
2063 		if (rounded != psize) {
2064 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
2065 			abd_zero_off(cdata, psize, rounded - psize);
2066 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
2067 			psize = rounded;
2068 			zio_push_transform(zio, cdata,
2069 			    psize, rounded, NULL);
2070 		}
2071 	} else {
2072 		ASSERT3U(psize, !=, 0);
2073 	}
2074 
2075 	/*
2076 	 * The final pass of spa_sync() must be all rewrites, but the first
2077 	 * few passes offer a trade-off: allocating blocks defers convergence,
2078 	 * but newly allocated blocks are sequential, so they can be written
2079 	 * to disk faster.  Therefore, we allow the first few passes of
2080 	 * spa_sync() to allocate new blocks, but force rewrites after that.
2081 	 * There should only be a handful of blocks after pass 1 in any case.
2082 	 */
2083 	if (!BP_IS_HOLE(bp) && BP_GET_BIRTH(bp) == zio->io_txg &&
2084 	    BP_GET_PSIZE(bp) == psize &&
2085 	    pass >= zfs_sync_pass_rewrite) {
2086 		VERIFY3U(psize, !=, 0);
2087 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
2088 
2089 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
2090 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
2091 	} else {
2092 		BP_ZERO(bp);
2093 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2094 	}
2095 
2096 	if (psize == 0) {
2097 		if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
2098 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
2099 			BP_SET_LSIZE(bp, lsize);
2100 			BP_SET_TYPE(bp, zp->zp_type);
2101 			BP_SET_LEVEL(bp, zp->zp_level);
2102 			BP_SET_BIRTH(bp, zio->io_txg, 0);
2103 		}
2104 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2105 	} else {
2106 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
2107 		BP_SET_LSIZE(bp, lsize);
2108 		BP_SET_TYPE(bp, zp->zp_type);
2109 		BP_SET_LEVEL(bp, zp->zp_level);
2110 		BP_SET_PSIZE(bp, psize);
2111 		BP_SET_COMPRESS(bp, compress);
2112 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
2113 		BP_SET_DEDUP(bp, zp->zp_dedup);
2114 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
2115 		if (zp->zp_dedup) {
2116 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2117 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2118 			ASSERT(!zp->zp_encrypt ||
2119 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
2120 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
2121 		}
2122 		if (zp->zp_nopwrite) {
2123 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2124 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2125 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
2126 		}
2127 	}
2128 	return (zio);
2129 }
2130 
2131 static zio_t *
zio_free_bp_init(zio_t * zio)2132 zio_free_bp_init(zio_t *zio)
2133 {
2134 	blkptr_t *bp = zio->io_bp;
2135 
2136 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2137 		if (BP_GET_DEDUP(bp))
2138 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2139 	}
2140 
2141 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2142 
2143 	return (zio);
2144 }
2145 
2146 /*
2147  * ==========================================================================
2148  * Execute the I/O pipeline
2149  * ==========================================================================
2150  */
2151 
2152 static void
zio_taskq_dispatch(zio_t * zio,zio_taskq_type_t q,boolean_t cutinline)2153 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2154 {
2155 	spa_t *spa = zio->io_spa;
2156 	zio_type_t t = zio->io_type;
2157 
2158 	/*
2159 	 * If we're a config writer or a probe, the normal issue and
2160 	 * interrupt threads may all be blocked waiting for the config lock.
2161 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2162 	 */
2163 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2164 		t = ZIO_TYPE_NULL;
2165 
2166 	/*
2167 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2168 	 */
2169 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2170 		t = ZIO_TYPE_NULL;
2171 
2172 	/*
2173 	 * If this is a high priority I/O, then use the high priority taskq if
2174 	 * available or cut the line otherwise.
2175 	 */
2176 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) {
2177 		if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2178 			q++;
2179 		else
2180 			cutinline = B_TRUE;
2181 	}
2182 
2183 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2184 
2185 	spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline);
2186 }
2187 
2188 static boolean_t
zio_taskq_member(zio_t * zio,zio_taskq_type_t q)2189 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2190 {
2191 	spa_t *spa = zio->io_spa;
2192 
2193 	taskq_t *tq = taskq_of_curthread();
2194 
2195 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2196 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2197 		uint_t i;
2198 		for (i = 0; i < tqs->stqs_count; i++) {
2199 			if (tqs->stqs_taskq[i] == tq)
2200 				return (B_TRUE);
2201 		}
2202 	}
2203 
2204 	return (B_FALSE);
2205 }
2206 
2207 static zio_t *
zio_issue_async(zio_t * zio)2208 zio_issue_async(zio_t *zio)
2209 {
2210 	ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2211 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2212 	return (NULL);
2213 }
2214 
2215 void
zio_interrupt(void * zio)2216 zio_interrupt(void *zio)
2217 {
2218 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2219 }
2220 
2221 void
zio_delay_interrupt(zio_t * zio)2222 zio_delay_interrupt(zio_t *zio)
2223 {
2224 	/*
2225 	 * The timeout_generic() function isn't defined in userspace, so
2226 	 * rather than trying to implement the function, the zio delay
2227 	 * functionality has been disabled for userspace builds.
2228 	 */
2229 
2230 #ifdef _KERNEL
2231 	/*
2232 	 * If io_target_timestamp is zero, then no delay has been registered
2233 	 * for this IO, thus jump to the end of this function and "skip" the
2234 	 * delay; issuing it directly to the zio layer.
2235 	 */
2236 	if (zio->io_target_timestamp != 0) {
2237 		hrtime_t now = gethrtime();
2238 
2239 		if (now >= zio->io_target_timestamp) {
2240 			/*
2241 			 * This IO has already taken longer than the target
2242 			 * delay to complete, so we don't want to delay it
2243 			 * any longer; we "miss" the delay and issue it
2244 			 * directly to the zio layer. This is likely due to
2245 			 * the target latency being set to a value less than
2246 			 * the underlying hardware can satisfy (e.g. delay
2247 			 * set to 1ms, but the disks take 10ms to complete an
2248 			 * IO request).
2249 			 */
2250 
2251 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2252 			    hrtime_t, now);
2253 
2254 			zio_interrupt(zio);
2255 		} else {
2256 			taskqid_t tid;
2257 			hrtime_t diff = zio->io_target_timestamp - now;
2258 			int ticks = MAX(1, NSEC_TO_TICK(diff));
2259 			clock_t expire_at_tick = ddi_get_lbolt() + ticks;
2260 
2261 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2262 			    hrtime_t, now, hrtime_t, diff);
2263 
2264 			tid = taskq_dispatch_delay(system_taskq, zio_interrupt,
2265 			    zio, TQ_NOSLEEP, expire_at_tick);
2266 			if (tid == TASKQID_INVALID) {
2267 				/*
2268 				 * Couldn't allocate a task.  Just finish the
2269 				 * zio without a delay.
2270 				 */
2271 				zio_interrupt(zio);
2272 			}
2273 		}
2274 		return;
2275 	}
2276 #endif
2277 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2278 	zio_interrupt(zio);
2279 }
2280 
2281 static void
zio_deadman_impl(zio_t * pio,int ziodepth)2282 zio_deadman_impl(zio_t *pio, int ziodepth)
2283 {
2284 	zio_t *cio, *cio_next;
2285 	zio_link_t *zl = NULL;
2286 	vdev_t *vd = pio->io_vd;
2287 	uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2288 
2289 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2290 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2291 		zbookmark_phys_t *zb = &pio->io_bookmark;
2292 		uint64_t delta = gethrtime() - pio->io_timestamp;
2293 
2294 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2295 		    "delta=%llu queued=%llu io=%llu "
2296 		    "path=%s "
2297 		    "last=%llu type=%d "
2298 		    "priority=%d flags=0x%llx stage=0x%x "
2299 		    "pipeline=0x%x pipeline-trace=0x%x "
2300 		    "objset=%llu object=%llu "
2301 		    "level=%llu blkid=%llu "
2302 		    "offset=%llu size=%llu "
2303 		    "error=%d",
2304 		    ziodepth, pio, pio->io_timestamp,
2305 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2306 		    vd ? vd->vdev_path : "NULL",
2307 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2308 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2309 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2310 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2311 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2312 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2313 		    pio->io_error);
2314 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2315 		    pio->io_spa, vd, zb, pio, 0);
2316 	}
2317 
2318 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2319 	    list_is_empty(&pio->io_child_list) &&
2320 	    failmode == ZIO_FAILURE_MODE_CONTINUE &&
2321 	    taskq_empty_ent(&pio->io_tqent) &&
2322 	    pio->io_queue_state == ZIO_QS_ACTIVE) {
2323 		pio->io_error = EINTR;
2324 		zio_interrupt(pio);
2325 	}
2326 
2327 	mutex_enter(&pio->io_lock);
2328 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 		cio_next = zio_walk_children(pio, &zl);
2330 		zio_deadman_impl(cio, ziodepth + 1);
2331 	}
2332 	mutex_exit(&pio->io_lock);
2333 }
2334 
2335 /*
2336  * Log the critical information describing this zio and all of its children
2337  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2338  */
2339 void
zio_deadman(zio_t * pio,const char * tag)2340 zio_deadman(zio_t *pio, const char *tag)
2341 {
2342 	spa_t *spa = pio->io_spa;
2343 	char *name = spa_name(spa);
2344 
2345 	if (!zfs_deadman_enabled || spa_suspended(spa))
2346 		return;
2347 
2348 	zio_deadman_impl(pio, 0);
2349 
2350 	switch (spa_get_deadman_failmode(spa)) {
2351 	case ZIO_FAILURE_MODE_WAIT:
2352 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2353 		break;
2354 
2355 	case ZIO_FAILURE_MODE_CONTINUE:
2356 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2357 		break;
2358 
2359 	case ZIO_FAILURE_MODE_PANIC:
2360 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2361 		break;
2362 	}
2363 }
2364 
2365 /*
2366  * Execute the I/O pipeline until one of the following occurs:
2367  * (1) the I/O completes; (2) the pipeline stalls waiting for
2368  * dependent child I/Os; (3) the I/O issues, so we're waiting
2369  * for an I/O completion interrupt; (4) the I/O is delegated by
2370  * vdev-level caching or aggregation; (5) the I/O is deferred
2371  * due to vdev-level queueing; (6) the I/O is handed off to
2372  * another thread.  In all cases, the pipeline stops whenever
2373  * there's no CPU work; it never burns a thread in cv_wait_io().
2374  *
2375  * There's no locking on io_stage because there's no legitimate way
2376  * for multiple threads to be attempting to process the same I/O.
2377  */
2378 static zio_pipe_stage_t *zio_pipeline[];
2379 
2380 /*
2381  * zio_execute() is a wrapper around the static function
2382  * __zio_execute() so that we can force  __zio_execute() to be
2383  * inlined.  This reduces stack overhead which is important
2384  * because __zio_execute() is called recursively in several zio
2385  * code paths.  zio_execute() itself cannot be inlined because
2386  * it is externally visible.
2387  */
2388 void
zio_execute(void * zio)2389 zio_execute(void *zio)
2390 {
2391 	fstrans_cookie_t cookie;
2392 
2393 	cookie = spl_fstrans_mark();
2394 	__zio_execute(zio);
2395 	spl_fstrans_unmark(cookie);
2396 }
2397 
2398 /*
2399  * Used to determine if in the current context the stack is sized large
2400  * enough to allow zio_execute() to be called recursively.  A minimum
2401  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2402  */
2403 static boolean_t
zio_execute_stack_check(zio_t * zio)2404 zio_execute_stack_check(zio_t *zio)
2405 {
2406 #if !defined(HAVE_LARGE_STACKS)
2407 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2408 
2409 	/* Executing in txg_sync_thread() context. */
2410 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2411 		return (B_TRUE);
2412 
2413 	/* Pool initialization outside of zio_taskq context. */
2414 	if (dp && spa_is_initializing(dp->dp_spa) &&
2415 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2416 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2417 		return (B_TRUE);
2418 #else
2419 	(void) zio;
2420 #endif /* HAVE_LARGE_STACKS */
2421 
2422 	return (B_FALSE);
2423 }
2424 
2425 __attribute__((always_inline))
2426 static inline void
__zio_execute(zio_t * zio)2427 __zio_execute(zio_t *zio)
2428 {
2429 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2430 
2431 	while (zio->io_stage < ZIO_STAGE_DONE) {
2432 		enum zio_stage pipeline = zio->io_pipeline;
2433 		enum zio_stage stage = zio->io_stage;
2434 
2435 		zio->io_executor = curthread;
2436 
2437 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2438 		ASSERT(ISP2(stage));
2439 		ASSERT(zio->io_stall == NULL);
2440 
2441 		do {
2442 			stage <<= 1;
2443 		} while ((stage & pipeline) == 0);
2444 
2445 		ASSERT(stage <= ZIO_STAGE_DONE);
2446 
2447 		/*
2448 		 * If we are in interrupt context and this pipeline stage
2449 		 * will grab a config lock that is held across I/O,
2450 		 * or may wait for an I/O that needs an interrupt thread
2451 		 * to complete, issue async to avoid deadlock.
2452 		 *
2453 		 * For VDEV_IO_START, we cut in line so that the io will
2454 		 * be sent to disk promptly.
2455 		 */
2456 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2457 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2458 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2459 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2460 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2461 			return;
2462 		}
2463 
2464 		/*
2465 		 * If the current context doesn't have large enough stacks
2466 		 * the zio must be issued asynchronously to prevent overflow.
2467 		 */
2468 		if (zio_execute_stack_check(zio)) {
2469 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2470 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2471 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2472 			return;
2473 		}
2474 
2475 		zio->io_stage = stage;
2476 		zio->io_pipeline_trace |= zio->io_stage;
2477 
2478 		/*
2479 		 * The zio pipeline stage returns the next zio to execute
2480 		 * (typically the same as this one), or NULL if we should
2481 		 * stop.
2482 		 */
2483 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2484 
2485 		if (zio == NULL)
2486 			return;
2487 	}
2488 }
2489 
2490 
2491 /*
2492  * ==========================================================================
2493  * Initiate I/O, either sync or async
2494  * ==========================================================================
2495  */
2496 int
zio_wait(zio_t * zio)2497 zio_wait(zio_t *zio)
2498 {
2499 	/*
2500 	 * Some routines, like zio_free_sync(), may return a NULL zio
2501 	 * to avoid the performance overhead of creating and then destroying
2502 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2503 	 * zio and ignore it.
2504 	 */
2505 	if (zio == NULL)
2506 		return (0);
2507 
2508 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2509 	int error;
2510 
2511 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2512 	ASSERT3P(zio->io_executor, ==, NULL);
2513 
2514 	zio->io_waiter = curthread;
2515 	ASSERT0(zio->io_queued_timestamp);
2516 	zio->io_queued_timestamp = gethrtime();
2517 
2518 	if (zio->io_type == ZIO_TYPE_WRITE) {
2519 		spa_select_allocator(zio);
2520 	}
2521 	__zio_execute(zio);
2522 
2523 	mutex_enter(&zio->io_lock);
2524 	while (zio->io_executor != NULL) {
2525 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2526 		    ddi_get_lbolt() + timeout);
2527 
2528 		if (zfs_deadman_enabled && error == -1 &&
2529 		    gethrtime() - zio->io_queued_timestamp >
2530 		    spa_deadman_ziotime(zio->io_spa)) {
2531 			mutex_exit(&zio->io_lock);
2532 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2533 			zio_deadman(zio, FTAG);
2534 			mutex_enter(&zio->io_lock);
2535 		}
2536 	}
2537 	mutex_exit(&zio->io_lock);
2538 
2539 	error = zio->io_error;
2540 	zio_destroy(zio);
2541 
2542 	return (error);
2543 }
2544 
2545 void
zio_nowait(zio_t * zio)2546 zio_nowait(zio_t *zio)
2547 {
2548 	/*
2549 	 * See comment in zio_wait().
2550 	 */
2551 	if (zio == NULL)
2552 		return;
2553 
2554 	ASSERT3P(zio->io_executor, ==, NULL);
2555 
2556 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2557 	    list_is_empty(&zio->io_parent_list)) {
2558 		zio_t *pio;
2559 
2560 		/*
2561 		 * This is a logical async I/O with no parent to wait for it.
2562 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2563 		 * will ensure they complete prior to unloading the pool.
2564 		 */
2565 		spa_t *spa = zio->io_spa;
2566 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2567 
2568 		zio_add_child(pio, zio);
2569 	}
2570 
2571 	ASSERT0(zio->io_queued_timestamp);
2572 	zio->io_queued_timestamp = gethrtime();
2573 	if (zio->io_type == ZIO_TYPE_WRITE) {
2574 		spa_select_allocator(zio);
2575 	}
2576 	__zio_execute(zio);
2577 }
2578 
2579 /*
2580  * ==========================================================================
2581  * Reexecute, cancel, or suspend/resume failed I/O
2582  * ==========================================================================
2583  */
2584 
2585 static void
zio_reexecute(void * arg)2586 zio_reexecute(void *arg)
2587 {
2588 	zio_t *pio = arg;
2589 	zio_t *cio, *cio_next, *gio;
2590 
2591 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2592 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2593 	ASSERT(pio->io_gang_leader == NULL);
2594 	ASSERT(pio->io_gang_tree == NULL);
2595 
2596 	mutex_enter(&pio->io_lock);
2597 	pio->io_flags = pio->io_orig_flags;
2598 	pio->io_stage = pio->io_orig_stage;
2599 	pio->io_pipeline = pio->io_orig_pipeline;
2600 	pio->io_post = 0;
2601 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2602 	pio->io_pipeline_trace = 0;
2603 	pio->io_error = 0;
2604 	pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2605 	    (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2606 	pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2607 
2608 	/*
2609 	 * It's possible for a failed ZIO to be a descendant of more than one
2610 	 * ZIO tree. When reexecuting it, we have to be sure to add its wait
2611 	 * states to all parent wait counts.
2612 	 *
2613 	 * Those parents, in turn, may have other children that are currently
2614 	 * active, usually because they've already been reexecuted after
2615 	 * resuming. Those children may be executing and may call
2616 	 * zio_notify_parent() at the same time as we're updating our parent's
2617 	 * counts. To avoid races while updating the counts, we take
2618 	 * gio->io_lock before each update.
2619 	 */
2620 	zio_link_t *zl = NULL;
2621 	while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2622 		mutex_enter(&gio->io_lock);
2623 		for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2624 			gio->io_children[pio->io_child_type][w] +=
2625 			    !pio->io_state[w];
2626 		}
2627 		mutex_exit(&gio->io_lock);
2628 	}
2629 
2630 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2631 		pio->io_child_error[c] = 0;
2632 
2633 	if (IO_IS_ALLOCATING(pio))
2634 		BP_ZERO(pio->io_bp);
2635 
2636 	/*
2637 	 * As we reexecute pio's children, new children could be created.
2638 	 * New children go to the head of pio's io_child_list, however,
2639 	 * so we will (correctly) not reexecute them.  The key is that
2640 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2641 	 * cannot be affected by any side effects of reexecuting 'cio'.
2642 	 */
2643 	zl = NULL;
2644 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2645 		cio_next = zio_walk_children(pio, &zl);
2646 		mutex_exit(&pio->io_lock);
2647 		zio_reexecute(cio);
2648 		mutex_enter(&pio->io_lock);
2649 	}
2650 	mutex_exit(&pio->io_lock);
2651 
2652 	/*
2653 	 * Now that all children have been reexecuted, execute the parent.
2654 	 * We don't reexecute "The Godfather" I/O here as it's the
2655 	 * responsibility of the caller to wait on it.
2656 	 */
2657 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2658 		pio->io_queued_timestamp = gethrtime();
2659 		__zio_execute(pio);
2660 	}
2661 }
2662 
2663 void
zio_suspend(spa_t * spa,zio_t * zio,zio_suspend_reason_t reason)2664 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2665 {
2666 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2667 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2668 		    "failure and the failure mode property for this pool "
2669 		    "is set to panic.", spa_name(spa));
2670 
2671 	if (reason != ZIO_SUSPEND_MMP) {
2672 		cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable "
2673 		    "I/O failure and has been suspended.", spa_name(spa));
2674 	}
2675 
2676 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2677 	    NULL, NULL, 0);
2678 
2679 	mutex_enter(&spa->spa_suspend_lock);
2680 
2681 	if (spa->spa_suspend_zio_root == NULL)
2682 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2683 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2684 		    ZIO_FLAG_GODFATHER);
2685 
2686 	spa->spa_suspended = reason;
2687 
2688 	if (zio != NULL) {
2689 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2690 		ASSERT(zio != spa->spa_suspend_zio_root);
2691 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2692 		ASSERT(zio_unique_parent(zio) == NULL);
2693 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2694 		zio_add_child(spa->spa_suspend_zio_root, zio);
2695 	}
2696 
2697 	mutex_exit(&spa->spa_suspend_lock);
2698 
2699 	txg_wait_kick(spa->spa_dsl_pool);
2700 }
2701 
2702 int
zio_resume(spa_t * spa)2703 zio_resume(spa_t *spa)
2704 {
2705 	zio_t *pio;
2706 
2707 	/*
2708 	 * Reexecute all previously suspended i/o.
2709 	 */
2710 	mutex_enter(&spa->spa_suspend_lock);
2711 	if (spa->spa_suspended != ZIO_SUSPEND_NONE)
2712 		cmn_err(CE_WARN, "Pool '%s' was suspended and is being "
2713 		    "resumed. Failed I/O will be retried.",
2714 		    spa_name(spa));
2715 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2716 	cv_broadcast(&spa->spa_suspend_cv);
2717 	pio = spa->spa_suspend_zio_root;
2718 	spa->spa_suspend_zio_root = NULL;
2719 	mutex_exit(&spa->spa_suspend_lock);
2720 
2721 	if (pio == NULL)
2722 		return (0);
2723 
2724 	zio_reexecute(pio);
2725 	return (zio_wait(pio));
2726 }
2727 
2728 void
zio_resume_wait(spa_t * spa)2729 zio_resume_wait(spa_t *spa)
2730 {
2731 	mutex_enter(&spa->spa_suspend_lock);
2732 	while (spa_suspended(spa))
2733 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2734 	mutex_exit(&spa->spa_suspend_lock);
2735 }
2736 
2737 /*
2738  * ==========================================================================
2739  * Gang blocks.
2740  *
2741  * A gang block is a collection of small blocks that looks to the DMU
2742  * like one large block.  When zio_dva_allocate() cannot find a block
2743  * of the requested size, due to either severe fragmentation or the pool
2744  * being nearly full, it calls zio_write_gang_block() to construct the
2745  * block from smaller fragments.
2746  *
2747  * A gang block consists of a a gang header and up to gbh_nblkptrs(size)
2748  * gang members. The gang header is like an indirect block: it's an array
2749  * of block pointers, though the header has a small tail (a zio_eck_t)
2750  * that stores an embedded checksum. It is allocated using only a single
2751  * sector as the requested size, and hence is allocatable regardless of
2752  * fragmentation. Its size is determined by the smallest allocatable
2753  * asize of the vdevs it was allocated on. The gang header's bps point
2754  * to its gang members, which hold the data.
2755  *
2756  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2757  * as the verifier to ensure uniqueness of the SHA256 checksum.
2758  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2759  * not the gang header.  This ensures that data block signatures (needed for
2760  * deduplication) are independent of how the block is physically stored.
2761  *
2762  * Gang blocks can be nested: a gang member may itself be a gang block.
2763  * Thus every gang block is a tree in which root and all interior nodes are
2764  * gang headers, and the leaves are normal blocks that contain user data.
2765  * The root of the gang tree is called the gang leader.
2766  *
2767  * To perform any operation (read, rewrite, free, claim) on a gang block,
2768  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2769  * in the io_gang_tree field of the original logical i/o by recursively
2770  * reading the gang leader and all gang headers below it.  This yields
2771  * an in-core tree containing the contents of every gang header and the
2772  * bps for every constituent of the gang block.
2773  *
2774  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2775  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2776  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2777  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2778  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2779  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2780  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2781  * of the gang header plus zio_checksum_compute() of the data to update the
2782  * gang header's blk_cksum as described above.
2783  *
2784  * The two-phase assemble/issue model solves the problem of partial failure --
2785  * what if you'd freed part of a gang block but then couldn't read the
2786  * gang header for another part?  Assembling the entire gang tree first
2787  * ensures that all the necessary gang header I/O has succeeded before
2788  * starting the actual work of free, claim, or write.  Once the gang tree
2789  * is assembled, free and claim are in-memory operations that cannot fail.
2790  *
2791  * In the event that a gang write fails, zio_dva_unallocate() walks the
2792  * gang tree to immediately free (i.e. insert back into the space map)
2793  * everything we've allocated.  This ensures that we don't get ENOSPC
2794  * errors during repeated suspend/resume cycles due to a flaky device.
2795  *
2796  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2797  * the gang tree, we won't modify the block, so we can safely defer the free
2798  * (knowing that the block is still intact).  If we *can* assemble the gang
2799  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2800  * each constituent bp and we can allocate a new block on the next sync pass.
2801  *
2802  * In all cases, the gang tree allows complete recovery from partial failure.
2803  * ==========================================================================
2804  */
2805 
2806 static void
zio_gang_issue_func_done(zio_t * zio)2807 zio_gang_issue_func_done(zio_t *zio)
2808 {
2809 	abd_free(zio->io_abd);
2810 }
2811 
2812 static zio_t *
zio_read_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2813 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2814     uint64_t offset)
2815 {
2816 	if (gn != NULL)
2817 		return (pio);
2818 
2819 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2820 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2821 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2822 	    &pio->io_bookmark));
2823 }
2824 
2825 static zio_t *
zio_rewrite_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2826 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2827     uint64_t offset)
2828 {
2829 	zio_t *zio;
2830 
2831 	if (gn != NULL) {
2832 		abd_t *gbh_abd =
2833 		    abd_get_from_buf(gn->gn_gbh, gn->gn_gangblocksize);
2834 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2835 		    gbh_abd, gn->gn_gangblocksize, zio_gang_issue_func_done,
2836 		    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2837 		    &pio->io_bookmark);
2838 		/*
2839 		 * As we rewrite each gang header, the pipeline will compute
2840 		 * a new gang block header checksum for it; but no one will
2841 		 * compute a new data checksum, so we do that here.  The one
2842 		 * exception is the gang leader: the pipeline already computed
2843 		 * its data checksum because that stage precedes gang assembly.
2844 		 * (Presently, nothing actually uses interior data checksums;
2845 		 * this is just good hygiene.)
2846 		 */
2847 		if (gn != pio->io_gang_leader->io_gang_tree) {
2848 			abd_t *buf = abd_get_offset(data, offset);
2849 
2850 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2851 			    buf, BP_GET_PSIZE(bp));
2852 
2853 			abd_free(buf);
2854 		}
2855 		/*
2856 		 * If we are here to damage data for testing purposes,
2857 		 * leave the GBH alone so that we can detect the damage.
2858 		 */
2859 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2860 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2861 	} else {
2862 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2863 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2864 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2865 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2866 	}
2867 
2868 	return (zio);
2869 }
2870 
2871 static zio_t *
zio_free_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2872 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2873     uint64_t offset)
2874 {
2875 	(void) gn, (void) data, (void) offset;
2876 
2877 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2878 	    ZIO_GANG_CHILD_FLAGS(pio));
2879 	if (zio == NULL) {
2880 		zio = zio_null(pio, pio->io_spa,
2881 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2882 	}
2883 	return (zio);
2884 }
2885 
2886 static zio_t *
zio_claim_gang(zio_t * pio,blkptr_t * bp,zio_gang_node_t * gn,abd_t * data,uint64_t offset)2887 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2888     uint64_t offset)
2889 {
2890 	(void) gn, (void) data, (void) offset;
2891 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2892 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2893 }
2894 
2895 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2896 	NULL,
2897 	zio_read_gang,
2898 	zio_rewrite_gang,
2899 	zio_free_gang,
2900 	zio_claim_gang,
2901 	NULL
2902 };
2903 
2904 static void zio_gang_tree_assemble_done(zio_t *zio);
2905 
2906 static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t ** gnpp,uint64_t gangblocksize)2907 zio_gang_node_alloc(zio_gang_node_t **gnpp, uint64_t gangblocksize)
2908 {
2909 	zio_gang_node_t *gn;
2910 
2911 	ASSERT(*gnpp == NULL);
2912 
2913 	gn = kmem_zalloc(sizeof (*gn) +
2914 	    (gbh_nblkptrs(gangblocksize) * sizeof (gn)), KM_SLEEP);
2915 	gn->gn_gangblocksize = gn->gn_allocsize = gangblocksize;
2916 	gn->gn_gbh = zio_buf_alloc(gangblocksize);
2917 	*gnpp = gn;
2918 
2919 	return (gn);
2920 }
2921 
2922 static void
zio_gang_node_free(zio_gang_node_t ** gnpp)2923 zio_gang_node_free(zio_gang_node_t **gnpp)
2924 {
2925 	zio_gang_node_t *gn = *gnpp;
2926 
2927 	for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++)
2928 		ASSERT(gn->gn_child[g] == NULL);
2929 
2930 	zio_buf_free(gn->gn_gbh, gn->gn_allocsize);
2931 	kmem_free(gn, sizeof (*gn) +
2932 	    (gbh_nblkptrs(gn->gn_allocsize) * sizeof (gn)));
2933 	*gnpp = NULL;
2934 }
2935 
2936 static void
zio_gang_tree_free(zio_gang_node_t ** gnpp)2937 zio_gang_tree_free(zio_gang_node_t **gnpp)
2938 {
2939 	zio_gang_node_t *gn = *gnpp;
2940 
2941 	if (gn == NULL)
2942 		return;
2943 
2944 	for (int g = 0; g < gbh_nblkptrs(gn->gn_allocsize); g++)
2945 		zio_gang_tree_free(&gn->gn_child[g]);
2946 
2947 	zio_gang_node_free(gnpp);
2948 }
2949 
2950 static void
zio_gang_tree_assemble(zio_t * gio,blkptr_t * bp,zio_gang_node_t ** gnpp)2951 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2952 {
2953 	uint64_t gangblocksize = UINT64_MAX;
2954 	if (spa_feature_is_active(gio->io_spa,
2955 	    SPA_FEATURE_DYNAMIC_GANG_HEADER)) {
2956 		spa_config_enter(gio->io_spa, SCL_VDEV, FTAG, RW_READER);
2957 		for (int dva = 0; dva < BP_GET_NDVAS(bp); dva++) {
2958 			vdev_t *vd = vdev_lookup_top(gio->io_spa,
2959 			    DVA_GET_VDEV(&bp->blk_dva[dva]));
2960 			uint64_t psize = vdev_gang_header_psize(vd);
2961 			gangblocksize = MIN(gangblocksize, psize);
2962 		}
2963 		spa_config_exit(gio->io_spa, SCL_VDEV, FTAG);
2964 	} else {
2965 		gangblocksize = SPA_OLD_GANGBLOCKSIZE;
2966 	}
2967 	ASSERT3U(gangblocksize, !=, UINT64_MAX);
2968 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp, gangblocksize);
2969 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, gangblocksize);
2970 
2971 	ASSERT(gio->io_gang_leader == gio);
2972 	ASSERT(BP_IS_GANG(bp));
2973 
2974 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, gangblocksize,
2975 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2976 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2977 }
2978 
2979 static void
zio_gang_tree_assemble_done(zio_t * zio)2980 zio_gang_tree_assemble_done(zio_t *zio)
2981 {
2982 	zio_t *gio = zio->io_gang_leader;
2983 	zio_gang_node_t *gn = zio->io_private;
2984 	blkptr_t *bp = zio->io_bp;
2985 
2986 	ASSERT(gio == zio_unique_parent(zio));
2987 	ASSERT(list_is_empty(&zio->io_child_list));
2988 
2989 	if (zio->io_error)
2990 		return;
2991 
2992 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2993 	if (BP_SHOULD_BYTESWAP(bp))
2994 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2995 
2996 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2997 	/*
2998 	 * If this was an old-style gangblock, the gangblocksize should have
2999 	 * been updated in zio_checksum_error to reflect that.
3000 	 */
3001 	ASSERT3U(gbh_eck(gn->gn_gbh, gn->gn_gangblocksize)->zec_magic,
3002 	    ==, ZEC_MAGIC);
3003 
3004 	abd_free(zio->io_abd);
3005 
3006 	for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
3007 		blkptr_t *gbp = gbh_bp(gn->gn_gbh, g);
3008 		if (!BP_IS_GANG(gbp))
3009 			continue;
3010 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
3011 	}
3012 }
3013 
3014 static void
zio_gang_tree_issue(zio_t * pio,zio_gang_node_t * gn,blkptr_t * bp,abd_t * data,uint64_t offset)3015 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
3016     uint64_t offset)
3017 {
3018 	zio_t *gio = pio->io_gang_leader;
3019 	zio_t *zio;
3020 
3021 	ASSERT(BP_IS_GANG(bp) == !!gn);
3022 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
3023 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
3024 
3025 	/*
3026 	 * If you're a gang header, your data is in gn->gn_gbh.
3027 	 * If you're a gang member, your data is in 'data' and gn == NULL.
3028 	 */
3029 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
3030 
3031 	if (gn != NULL) {
3032 		ASSERT3U(gbh_eck(gn->gn_gbh,
3033 		    gn->gn_gangblocksize)->zec_magic, ==, ZEC_MAGIC);
3034 
3035 		for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
3036 			blkptr_t *gbp = gbh_bp(gn->gn_gbh, g);
3037 			if (BP_IS_HOLE(gbp))
3038 				continue;
3039 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
3040 			    offset);
3041 			offset += BP_GET_PSIZE(gbp);
3042 		}
3043 	}
3044 
3045 	if (gn == gio->io_gang_tree)
3046 		ASSERT3U(gio->io_size, ==, offset);
3047 
3048 	if (zio != pio)
3049 		zio_nowait(zio);
3050 }
3051 
3052 static zio_t *
zio_gang_assemble(zio_t * zio)3053 zio_gang_assemble(zio_t *zio)
3054 {
3055 	blkptr_t *bp = zio->io_bp;
3056 
3057 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
3058 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3059 
3060 	zio->io_gang_leader = zio;
3061 
3062 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
3063 
3064 	return (zio);
3065 }
3066 
3067 static zio_t *
zio_gang_issue(zio_t * zio)3068 zio_gang_issue(zio_t *zio)
3069 {
3070 	blkptr_t *bp = zio->io_bp;
3071 
3072 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
3073 		return (NULL);
3074 	}
3075 
3076 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
3077 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3078 
3079 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
3080 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
3081 		    0);
3082 	else
3083 		zio_gang_tree_free(&zio->io_gang_tree);
3084 
3085 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3086 
3087 	return (zio);
3088 }
3089 
3090 static void
zio_gang_inherit_allocator(zio_t * pio,zio_t * cio)3091 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
3092 {
3093 	cio->io_allocator = pio->io_allocator;
3094 }
3095 
3096 static void
zio_write_gang_member_ready(zio_t * zio)3097 zio_write_gang_member_ready(zio_t *zio)
3098 {
3099 	zio_t *pio = zio_unique_parent(zio);
3100 	dva_t *cdva = zio->io_bp->blk_dva;
3101 	dva_t *pdva = pio->io_bp->blk_dva;
3102 	uint64_t asize;
3103 	zio_t *gio __maybe_unused = zio->io_gang_leader;
3104 
3105 	if (BP_IS_HOLE(zio->io_bp))
3106 		return;
3107 
3108 	/*
3109 	 * If we're getting direct-invoked from zio_write_gang_block(),
3110 	 * the bp_orig will be set.
3111 	 */
3112 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig) ||
3113 	    zio->io_flags & ZIO_FLAG_PREALLOCATED);
3114 
3115 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
3116 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
3117 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
3118 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
3119 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
3120 
3121 	mutex_enter(&pio->io_lock);
3122 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
3123 		ASSERT(DVA_GET_GANG(&pdva[d]));
3124 		asize = DVA_GET_ASIZE(&pdva[d]);
3125 		asize += DVA_GET_ASIZE(&cdva[d]);
3126 		DVA_SET_ASIZE(&pdva[d], asize);
3127 	}
3128 	mutex_exit(&pio->io_lock);
3129 }
3130 
3131 static void
zio_write_gang_done(zio_t * zio)3132 zio_write_gang_done(zio_t *zio)
3133 {
3134 	/*
3135 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
3136 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3137 	 * check for it here as it is cleared in zio_ready.
3138 	 */
3139 	if (zio->io_abd != NULL)
3140 		abd_free(zio->io_abd);
3141 }
3142 
3143 static void
zio_update_feature(void * arg,dmu_tx_t * tx)3144 zio_update_feature(void *arg, dmu_tx_t *tx)
3145 {
3146 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3147 	spa_feature_incr(spa, (spa_feature_t)(uintptr_t)arg, tx);
3148 }
3149 
3150 static zio_t *
zio_write_gang_block(zio_t * pio,metaslab_class_t * mc)3151 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
3152 {
3153 	spa_t *spa = pio->io_spa;
3154 	blkptr_t *bp = pio->io_bp;
3155 	zio_t *gio = pio->io_gang_leader;
3156 	zio_t *zio;
3157 	zio_gang_node_t *gn, **gnpp;
3158 	zio_gbh_phys_t *gbh;
3159 	abd_t *gbh_abd;
3160 	uint64_t txg = pio->io_txg;
3161 	uint64_t resid = pio->io_size;
3162 	zio_prop_t zp;
3163 	int error;
3164 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
3165 
3166 	/*
3167 	 * Store multiple copies of the GBH, so that we can still traverse
3168 	 * all the data (e.g. to free or scrub) even if a block is damaged.
3169 	 * This value respects the redundant_metadata property.
3170 	 */
3171 	int gbh_copies = gio->io_prop.zp_gang_copies;
3172 	if (gbh_copies == 0) {
3173 		/*
3174 		 * This should only happen in the case where we're filling in
3175 		 * DDT entries for a parent that wants more copies than the DDT
3176 		 * has.  In that case, we cannot gang without creating a mixed
3177 		 * blkptr, which is illegal.
3178 		 */
3179 		ASSERT3U(gio->io_child_type, ==, ZIO_CHILD_DDT);
3180 		pio->io_error = EAGAIN;
3181 		return (pio);
3182 	}
3183 	ASSERT3S(gbh_copies, >, 0);
3184 	ASSERT3S(gbh_copies, <=, SPA_DVAS_PER_BP);
3185 
3186 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
3187 	int flags = METASLAB_GANG_HEADER;
3188 	if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
3189 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3190 		ASSERT(has_data);
3191 
3192 		flags |= METASLAB_ASYNC_ALLOC;
3193 	}
3194 
3195 	uint64_t gangblocksize = SPA_OLD_GANGBLOCKSIZE;
3196 	uint64_t candidate = gangblocksize;
3197 	error = metaslab_alloc_range(spa, mc, gangblocksize, gangblocksize,
3198 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3199 	    &pio->io_alloc_list, pio->io_allocator, pio, &candidate);
3200 	if (error) {
3201 		pio->io_error = error;
3202 		return (pio);
3203 	}
3204 	if (spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER))
3205 		gangblocksize = candidate;
3206 
3207 	if (pio == gio) {
3208 		gnpp = &gio->io_gang_tree;
3209 	} else {
3210 		gnpp = pio->io_private;
3211 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
3212 	}
3213 
3214 	gn = zio_gang_node_alloc(gnpp, gangblocksize);
3215 	gbh = gn->gn_gbh;
3216 	memset(gbh, 0, gangblocksize);
3217 	gbh_abd = abd_get_from_buf(gbh, gangblocksize);
3218 
3219 	/*
3220 	 * Create the gang header.
3221 	 */
3222 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, gangblocksize,
3223 	    zio_write_gang_done, NULL, pio->io_priority,
3224 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3225 
3226 	zio_gang_inherit_allocator(pio, zio);
3227 	if (pio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
3228 		boolean_t more;
3229 		VERIFY(metaslab_class_throttle_reserve(mc, zio->io_allocator,
3230 		    gbh_copies, zio->io_size, B_TRUE, &more));
3231 		zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED;
3232 	}
3233 
3234 	/*
3235 	 * Create and nowait the gang children. First, we try to do
3236 	 * opportunistic allocations. If that fails to generate enough
3237 	 * space, we fall back to normal zio_write calls for nested gang.
3238 	 */
3239 	int g;
3240 	boolean_t any_failed = B_FALSE;
3241 	for (g = 0; resid != 0; g++) {
3242 		flags &= METASLAB_ASYNC_ALLOC;
3243 		flags |= METASLAB_GANG_CHILD;
3244 		zp.zp_checksum = gio->io_prop.zp_checksum;
3245 		zp.zp_compress = ZIO_COMPRESS_OFF;
3246 		zp.zp_complevel = gio->io_prop.zp_complevel;
3247 		zp.zp_type = zp.zp_storage_type = DMU_OT_NONE;
3248 		zp.zp_level = 0;
3249 		zp.zp_copies = gio->io_prop.zp_copies;
3250 		zp.zp_gang_copies = gio->io_prop.zp_gang_copies;
3251 		zp.zp_dedup = B_FALSE;
3252 		zp.zp_dedup_verify = B_FALSE;
3253 		zp.zp_nopwrite = B_FALSE;
3254 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
3255 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
3256 		zp.zp_direct_write = B_FALSE;
3257 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3258 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3259 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3260 
3261 		uint64_t min_size = zio_roundup_alloc_size(spa,
3262 		    resid / (gbh_nblkptrs(gangblocksize) - g));
3263 		min_size = MIN(min_size, resid);
3264 		bp = &((blkptr_t *)gbh)[g];
3265 
3266 		zio_alloc_list_t cio_list;
3267 		metaslab_trace_init(&cio_list);
3268 		uint64_t allocated_size = UINT64_MAX;
3269 		error = metaslab_alloc_range(spa, mc, min_size, resid,
3270 		    bp, gio->io_prop.zp_copies, txg, NULL,
3271 		    flags, &cio_list, zio->io_allocator, NULL, &allocated_size);
3272 
3273 		boolean_t allocated = error == 0;
3274 		any_failed |= !allocated;
3275 
3276 		uint64_t psize = allocated ? MIN(resid, allocated_size) :
3277 		    min_size;
3278 		ASSERT3U(psize, >=, min_size);
3279 
3280 		zio_t *cio = zio_write(zio, spa, txg, bp, has_data ?
3281 		    abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL,
3282 		    psize, psize, &zp, zio_write_gang_member_ready, NULL,
3283 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3284 		    ZIO_GANG_CHILD_FLAGS(pio) |
3285 		    (allocated ? ZIO_FLAG_PREALLOCATED : 0), &pio->io_bookmark);
3286 
3287 		resid -= psize;
3288 		zio_gang_inherit_allocator(zio, cio);
3289 		if (allocated) {
3290 			metaslab_trace_move(&cio_list, &cio->io_alloc_list);
3291 			metaslab_group_alloc_increment_all(spa,
3292 			    &cio->io_bp_orig, zio->io_allocator, flags, psize,
3293 			    cio);
3294 		}
3295 		/*
3296 		 * We do not reserve for the child writes, since we already
3297 		 * reserved for the parent.  Unreserve though will be called
3298 		 * for individual children.  We can do this since sum of all
3299 		 * child's physical sizes is equal to parent's physical size.
3300 		 * It would not work for potentially bigger allocation sizes.
3301 		 */
3302 
3303 		zio_nowait(cio);
3304 	}
3305 
3306 	/*
3307 	 * If we used more gang children than the old limit, we must already be
3308 	 * using the new headers. No need to update anything, just move on.
3309 	 *
3310 	 * Otherwise, we might be in a case where we need to turn on the new
3311 	 * feature, so we check that. We enable the new feature if we didn't
3312 	 * manage to fit everything into 3 gang children and we could have
3313 	 * written more than that.
3314 	 */
3315 	if (g > gbh_nblkptrs(SPA_OLD_GANGBLOCKSIZE)) {
3316 		ASSERT(spa_feature_is_active(spa,
3317 		    SPA_FEATURE_DYNAMIC_GANG_HEADER));
3318 	} else if (any_failed && candidate > SPA_OLD_GANGBLOCKSIZE &&
3319 	    spa_feature_is_enabled(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER) &&
3320 	    !spa_feature_is_active(spa, SPA_FEATURE_DYNAMIC_GANG_HEADER)) {
3321 		dmu_tx_t *tx =
3322 		    dmu_tx_create_assigned(spa->spa_dsl_pool, txg + 1);
3323 		dsl_sync_task_nowait(spa->spa_dsl_pool,
3324 		    zio_update_feature,
3325 		    (void *)SPA_FEATURE_DYNAMIC_GANG_HEADER, tx);
3326 		dmu_tx_commit(tx);
3327 	}
3328 
3329 	/*
3330 	 * Set pio's pipeline to just wait for zio to finish.
3331 	 */
3332 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3333 
3334 	zio_nowait(zio);
3335 
3336 	return (pio);
3337 }
3338 
3339 /*
3340  * The zio_nop_write stage in the pipeline determines if allocating a
3341  * new bp is necessary.  The nopwrite feature can handle writes in
3342  * either syncing or open context (i.e. zil writes) and as a result is
3343  * mutually exclusive with dedup.
3344  *
3345  * By leveraging a cryptographically secure checksum, such as SHA256, we
3346  * can compare the checksums of the new data and the old to determine if
3347  * allocating a new block is required.  Note that our requirements for
3348  * cryptographic strength are fairly weak: there can't be any accidental
3349  * hash collisions, but we don't need to be secure against intentional
3350  * (malicious) collisions.  To trigger a nopwrite, you have to be able
3351  * to write the file to begin with, and triggering an incorrect (hash
3352  * collision) nopwrite is no worse than simply writing to the file.
3353  * That said, there are no known attacks against the checksum algorithms
3354  * used for nopwrite, assuming that the salt and the checksums
3355  * themselves remain secret.
3356  */
3357 static zio_t *
zio_nop_write(zio_t * zio)3358 zio_nop_write(zio_t *zio)
3359 {
3360 	blkptr_t *bp = zio->io_bp;
3361 	blkptr_t *bp_orig = &zio->io_bp_orig;
3362 	zio_prop_t *zp = &zio->io_prop;
3363 
3364 	ASSERT(BP_IS_HOLE(bp));
3365 	ASSERT(BP_GET_LEVEL(bp) == 0);
3366 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3367 	ASSERT(zp->zp_nopwrite);
3368 	ASSERT(!zp->zp_dedup);
3369 	ASSERT(zio->io_bp_override == NULL);
3370 	ASSERT(IO_IS_ALLOCATING(zio));
3371 
3372 	/*
3373 	 * Check to see if the original bp and the new bp have matching
3374 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3375 	 * If they don't then just continue with the pipeline which will
3376 	 * allocate a new bp.
3377 	 */
3378 	if (BP_IS_HOLE(bp_orig) ||
3379 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3380 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3381 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3382 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3383 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3384 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3385 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3386 		return (zio);
3387 
3388 	/*
3389 	 * If the checksums match then reset the pipeline so that we
3390 	 * avoid allocating a new bp and issuing any I/O.
3391 	 */
3392 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3393 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3394 		    ZCHECKSUM_FLAG_NOPWRITE);
3395 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3396 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3397 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3398 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3399 
3400 		/*
3401 		 * If we're overwriting a block that is currently on an
3402 		 * indirect vdev, then ignore the nopwrite request and
3403 		 * allow a new block to be allocated on a concrete vdev.
3404 		 */
3405 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3406 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3407 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3408 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3409 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3410 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3411 				return (zio);
3412 			}
3413 		}
3414 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3415 
3416 		*bp = *bp_orig;
3417 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3418 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3419 	}
3420 
3421 	return (zio);
3422 }
3423 
3424 /*
3425  * ==========================================================================
3426  * Block Reference Table
3427  * ==========================================================================
3428  */
3429 static zio_t *
zio_brt_free(zio_t * zio)3430 zio_brt_free(zio_t *zio)
3431 {
3432 	blkptr_t *bp;
3433 
3434 	bp = zio->io_bp;
3435 
3436 	if (BP_GET_LEVEL(bp) > 0 ||
3437 	    BP_IS_METADATA(bp) ||
3438 	    !brt_maybe_exists(zio->io_spa, bp)) {
3439 		return (zio);
3440 	}
3441 
3442 	if (!brt_entry_decref(zio->io_spa, bp)) {
3443 		/*
3444 		 * This isn't the last reference, so we cannot free
3445 		 * the data yet.
3446 		 */
3447 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3448 	}
3449 
3450 	return (zio);
3451 }
3452 
3453 /*
3454  * ==========================================================================
3455  * Dedup
3456  * ==========================================================================
3457  */
3458 static void
zio_ddt_child_read_done(zio_t * zio)3459 zio_ddt_child_read_done(zio_t *zio)
3460 {
3461 	blkptr_t *bp = zio->io_bp;
3462 	ddt_t *ddt;
3463 	ddt_entry_t *dde = zio->io_private;
3464 	zio_t *pio = zio_unique_parent(zio);
3465 
3466 	mutex_enter(&pio->io_lock);
3467 	ddt = ddt_select(zio->io_spa, bp);
3468 
3469 	if (zio->io_error == 0) {
3470 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
3471 		/* this phys variant doesn't need repair */
3472 		ddt_phys_clear(dde->dde_phys, v);
3473 	}
3474 
3475 	if (zio->io_error == 0 && dde->dde_io->dde_repair_abd == NULL)
3476 		dde->dde_io->dde_repair_abd = zio->io_abd;
3477 	else
3478 		abd_free(zio->io_abd);
3479 	mutex_exit(&pio->io_lock);
3480 }
3481 
3482 static zio_t *
zio_ddt_read_start(zio_t * zio)3483 zio_ddt_read_start(zio_t *zio)
3484 {
3485 	blkptr_t *bp = zio->io_bp;
3486 
3487 	ASSERT(BP_GET_DEDUP(bp));
3488 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3489 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3490 
3491 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3492 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3493 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3494 		ddt_phys_variant_t v_self = ddt_phys_select(ddt, dde, bp);
3495 		ddt_univ_phys_t *ddp = dde->dde_phys;
3496 		blkptr_t blk;
3497 
3498 		ASSERT(zio->io_vsd == NULL);
3499 		zio->io_vsd = dde;
3500 
3501 		if (v_self == DDT_PHYS_NONE)
3502 			return (zio);
3503 
3504 		/* issue I/O for the other copies */
3505 		for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3506 			ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3507 
3508 			if (ddt_phys_birth(ddp, v) == 0 || v == v_self)
3509 				continue;
3510 
3511 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key,
3512 			    ddp, v, &blk);
3513 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3514 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3515 			    zio->io_size, zio_ddt_child_read_done, dde,
3516 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3517 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3518 		}
3519 		return (zio);
3520 	}
3521 
3522 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3523 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3524 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3525 
3526 	return (zio);
3527 }
3528 
3529 static zio_t *
zio_ddt_read_done(zio_t * zio)3530 zio_ddt_read_done(zio_t *zio)
3531 {
3532 	blkptr_t *bp = zio->io_bp;
3533 
3534 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3535 		return (NULL);
3536 	}
3537 
3538 	ASSERT(BP_GET_DEDUP(bp));
3539 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3540 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3541 
3542 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3543 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3544 		ddt_entry_t *dde = zio->io_vsd;
3545 		if (ddt == NULL) {
3546 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3547 			return (zio);
3548 		}
3549 		if (dde == NULL) {
3550 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3551 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3552 			return (NULL);
3553 		}
3554 		if (dde->dde_io->dde_repair_abd != NULL) {
3555 			abd_copy(zio->io_abd, dde->dde_io->dde_repair_abd,
3556 			    zio->io_size);
3557 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3558 		}
3559 		ddt_repair_done(ddt, dde);
3560 		zio->io_vsd = NULL;
3561 	}
3562 
3563 	ASSERT(zio->io_vsd == NULL);
3564 
3565 	return (zio);
3566 }
3567 
3568 static boolean_t
zio_ddt_collision(zio_t * zio,ddt_t * ddt,ddt_entry_t * dde)3569 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3570 {
3571 	spa_t *spa = zio->io_spa;
3572 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3573 
3574 	ASSERT(!(zio->io_bp_override && do_raw));
3575 
3576 	/*
3577 	 * Note: we compare the original data, not the transformed data,
3578 	 * because when zio->io_bp is an override bp, we will not have
3579 	 * pushed the I/O transforms.  That's an important optimization
3580 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3581 	 * However, we should never get a raw, override zio so in these
3582 	 * cases we can compare the io_abd directly. This is useful because
3583 	 * it allows us to do dedup verification even if we don't have access
3584 	 * to the original data (for instance, if the encryption keys aren't
3585 	 * loaded).
3586 	 */
3587 
3588 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3589 		if (DDT_PHYS_IS_DITTO(ddt, p))
3590 			continue;
3591 
3592 		if (dde->dde_io == NULL)
3593 			continue;
3594 
3595 		zio_t *lio = dde->dde_io->dde_lead_zio[p];
3596 		if (lio == NULL)
3597 			continue;
3598 
3599 		if (do_raw)
3600 			return (lio->io_size != zio->io_size ||
3601 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3602 
3603 		return (lio->io_orig_size != zio->io_orig_size ||
3604 		    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3605 	}
3606 
3607 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3608 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3609 		uint64_t phys_birth = ddt_phys_birth(dde->dde_phys, v);
3610 
3611 		if (phys_birth != 0 && do_raw) {
3612 			blkptr_t blk = *zio->io_bp;
3613 			uint64_t psize;
3614 			abd_t *tmpabd;
3615 			int error;
3616 
3617 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3618 			psize = BP_GET_PSIZE(&blk);
3619 
3620 			if (psize != zio->io_size)
3621 				return (B_TRUE);
3622 
3623 			ddt_exit(ddt);
3624 
3625 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3626 
3627 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3628 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3629 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3630 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3631 
3632 			if (error == 0) {
3633 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3634 					error = SET_ERROR(ENOENT);
3635 			}
3636 
3637 			abd_free(tmpabd);
3638 			ddt_enter(ddt);
3639 			return (error != 0);
3640 		} else if (phys_birth != 0) {
3641 			arc_buf_t *abuf = NULL;
3642 			arc_flags_t aflags = ARC_FLAG_WAIT;
3643 			blkptr_t blk = *zio->io_bp;
3644 			int error;
3645 
3646 			ddt_bp_fill(dde->dde_phys, v, &blk, phys_birth);
3647 
3648 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3649 				return (B_TRUE);
3650 
3651 			ddt_exit(ddt);
3652 
3653 			error = arc_read(NULL, spa, &blk,
3654 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3655 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3656 			    &aflags, &zio->io_bookmark);
3657 
3658 			if (error == 0) {
3659 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3660 				    zio->io_orig_size) != 0)
3661 					error = SET_ERROR(ENOENT);
3662 				arc_buf_destroy(abuf, &abuf);
3663 			}
3664 
3665 			ddt_enter(ddt);
3666 			return (error != 0);
3667 		}
3668 	}
3669 
3670 	return (B_FALSE);
3671 }
3672 
3673 static void
zio_ddt_child_write_done(zio_t * zio)3674 zio_ddt_child_write_done(zio_t *zio)
3675 {
3676 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3677 	ddt_entry_t *dde = zio->io_private;
3678 
3679 	zio_link_t *zl = NULL;
3680 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3681 
3682 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3683 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3684 	ddt_univ_phys_t *ddp = dde->dde_phys;
3685 
3686 	ddt_enter(ddt);
3687 
3688 	/* we're the lead, so once we're done there's no one else outstanding */
3689 	if (dde->dde_io->dde_lead_zio[p] == zio)
3690 		dde->dde_io->dde_lead_zio[p] = NULL;
3691 
3692 	ddt_univ_phys_t *orig = &dde->dde_io->dde_orig_phys;
3693 
3694 	if (zio->io_error != 0) {
3695 		/*
3696 		 * The write failed, so we're about to abort the entire IO
3697 		 * chain. We need to revert the entry back to what it was at
3698 		 * the last time it was successfully extended.
3699 		 */
3700 		ddt_phys_unextend(ddp, orig, v);
3701 		ddt_phys_clear(orig, v);
3702 
3703 		ddt_exit(ddt);
3704 		return;
3705 	}
3706 
3707 	/*
3708 	 * Add references for all dedup writes that were waiting on the
3709 	 * physical one, skipping any other physical writes that are waiting.
3710 	 */
3711 	zio_t *pio;
3712 	zl = NULL;
3713 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3714 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3715 			ddt_phys_addref(ddp, v);
3716 	}
3717 
3718 	/*
3719 	 * We've successfully added new DVAs to the entry. Clear the saved
3720 	 * state or, if there's still outstanding IO, remember it so we can
3721 	 * revert to a known good state if that IO fails.
3722 	 */
3723 	if (dde->dde_io->dde_lead_zio[p] == NULL)
3724 		ddt_phys_clear(orig, v);
3725 	else
3726 		ddt_phys_copy(orig, ddp, v);
3727 
3728 	ddt_exit(ddt);
3729 }
3730 
3731 static void
zio_ddt_child_write_ready(zio_t * zio)3732 zio_ddt_child_write_ready(zio_t *zio)
3733 {
3734 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3735 	ddt_entry_t *dde = zio->io_private;
3736 
3737 	zio_link_t *zl = NULL;
3738 	ASSERT3P(zio_walk_parents(zio, &zl), !=, NULL);
3739 
3740 	int p = DDT_PHYS_FOR_COPIES(ddt, zio->io_prop.zp_copies);
3741 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3742 
3743 	if (ddt_phys_is_gang(dde->dde_phys, v)) {
3744 		for (int i = 0; i < BP_GET_NDVAS(zio->io_bp); i++) {
3745 			dva_t *d = &zio->io_bp->blk_dva[i];
3746 			metaslab_group_alloc_decrement(zio->io_spa,
3747 			    DVA_GET_VDEV(d), zio->io_allocator,
3748 			    METASLAB_ASYNC_ALLOC, zio->io_size, zio);
3749 		}
3750 		zio->io_error = EAGAIN;
3751 	}
3752 
3753 	if (zio->io_error != 0)
3754 		return;
3755 
3756 	ddt_enter(ddt);
3757 
3758 	ddt_phys_extend(dde->dde_phys, v, zio->io_bp);
3759 
3760 	zio_t *pio;
3761 	zl = NULL;
3762 	while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
3763 		if (!(pio->io_flags & ZIO_FLAG_DDT_CHILD))
3764 			ddt_bp_fill(dde->dde_phys, v, pio->io_bp, zio->io_txg);
3765 	}
3766 
3767 	ddt_exit(ddt);
3768 }
3769 
3770 static zio_t *
zio_ddt_write(zio_t * zio)3771 zio_ddt_write(zio_t *zio)
3772 {
3773 	spa_t *spa = zio->io_spa;
3774 	blkptr_t *bp = zio->io_bp;
3775 	uint64_t txg = zio->io_txg;
3776 	zio_prop_t *zp = &zio->io_prop;
3777 	ddt_t *ddt = ddt_select(spa, bp);
3778 	ddt_entry_t *dde;
3779 
3780 	ASSERT(BP_GET_DEDUP(bp));
3781 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3782 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3783 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3784 	/*
3785 	 * Deduplication will not take place for Direct I/O writes. The
3786 	 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3787 	 * place in the open-context. Direct I/O write can not attempt to
3788 	 * modify the ddt_tree while issuing out a write.
3789 	 */
3790 	ASSERT3B(zio->io_prop.zp_direct_write, ==, B_FALSE);
3791 
3792 	ddt_enter(ddt);
3793 	/*
3794 	 * Search DDT for matching entry.  Skip DVAs verification here, since
3795 	 * they can go only from override, and once we get here the override
3796 	 * pointer can't have "D" flag to be confused with pruned DDT entries.
3797 	 */
3798 	IMPLY(zio->io_bp_override, !BP_GET_DEDUP(zio->io_bp_override));
3799 	dde = ddt_lookup(ddt, bp, B_FALSE);
3800 	if (dde == NULL) {
3801 		/* DDT size is over its quota so no new entries */
3802 		zp->zp_dedup = B_FALSE;
3803 		BP_SET_DEDUP(bp, B_FALSE);
3804 		if (zio->io_bp_override == NULL)
3805 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
3806 		ddt_exit(ddt);
3807 		return (zio);
3808 	}
3809 
3810 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3811 		/*
3812 		 * If we're using a weak checksum, upgrade to a strong checksum
3813 		 * and try again.  If we're already using a strong checksum,
3814 		 * we can't resolve it, so just convert to an ordinary write.
3815 		 * (And automatically e-mail a paper to Nature?)
3816 		 */
3817 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3818 		    ZCHECKSUM_FLAG_DEDUP)) {
3819 			zp->zp_checksum = spa_dedup_checksum(spa);
3820 			zio_pop_transforms(zio);
3821 			zio->io_stage = ZIO_STAGE_OPEN;
3822 			BP_ZERO(bp);
3823 		} else {
3824 			zp->zp_dedup = B_FALSE;
3825 			BP_SET_DEDUP(bp, B_FALSE);
3826 		}
3827 		ASSERT(!BP_GET_DEDUP(bp));
3828 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3829 		ddt_exit(ddt);
3830 		return (zio);
3831 	}
3832 
3833 	int p = DDT_PHYS_FOR_COPIES(ddt, zp->zp_copies);
3834 	ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3835 	ddt_univ_phys_t *ddp = dde->dde_phys;
3836 
3837 	/*
3838 	 * In the common cases, at this point we have a regular BP with no
3839 	 * allocated DVAs, and the corresponding DDT entry for its checksum.
3840 	 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3841 	 * requirement.
3842 	 *
3843 	 * One of three things needs to happen to fulfill this:
3844 	 *
3845 	 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3846 	 *   them out of the entry and return;
3847 	 *
3848 	 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3849 	 *   issue the write as normal so that DVAs can be allocated and the
3850 	 *   data land on disk. We then copy the DVAs into the DDT entry on
3851 	 *   return.
3852 	 *
3853 	 * - if the DDT entry has some DVAs, but too few, we have to issue the
3854 	 *   write, adjusted to have allocate fewer copies. When it returns, we
3855 	 *   add the new DVAs to the DDT entry, and update the BP to have the
3856 	 *   full amount it originally requested.
3857 	 *
3858 	 * In all cases, if there's already a writing IO in flight, we need to
3859 	 * defer the action until after the write is done. If our action is to
3860 	 * write, we need to adjust our request for additional DVAs to match
3861 	 * what will be in the DDT entry after it completes. In this way every
3862 	 * IO can be guaranteed to recieve enough DVAs simply by joining the
3863 	 * end of the chain and letting the sequence play out.
3864 	 */
3865 
3866 	/*
3867 	 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3868 	 * the third one as normal.
3869 	 */
3870 	int have_dvas = ddt_phys_dva_count(ddp, v, BP_IS_ENCRYPTED(bp));
3871 	IMPLY(have_dvas == 0, ddt_phys_birth(ddp, v) == 0);
3872 	boolean_t is_ganged = ddt_phys_is_gang(ddp, v);
3873 
3874 	/* Number of DVAs requested by the IO. */
3875 	uint8_t need_dvas = zp->zp_copies;
3876 	/* Number of DVAs in outstanding writes for this dde. */
3877 	uint8_t parent_dvas = 0;
3878 
3879 	/*
3880 	 * What we do next depends on whether or not there's IO outstanding that
3881 	 * will update this entry.
3882 	 */
3883 	if (dde->dde_io == NULL || dde->dde_io->dde_lead_zio[p] == NULL) {
3884 		/*
3885 		 * No IO outstanding, so we only need to worry about ourselves.
3886 		 */
3887 
3888 		/*
3889 		 * Override BPs bring their own DVAs and their own problems.
3890 		 */
3891 		if (zio->io_bp_override) {
3892 			/*
3893 			 * For a brand-new entry, all the work has been done
3894 			 * for us, and we can just fill it out from the provided
3895 			 * block and leave.
3896 			 */
3897 			if (have_dvas == 0) {
3898 				ASSERT(BP_GET_BIRTH(bp) == txg);
3899 				ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3900 				ddt_phys_extend(ddp, v, bp);
3901 				ddt_phys_addref(ddp, v);
3902 				ddt_exit(ddt);
3903 				return (zio);
3904 			}
3905 
3906 			/*
3907 			 * If we already have this entry, then we want to treat
3908 			 * it like a regular write. To do this we just wipe
3909 			 * them out and proceed like a regular write.
3910 			 *
3911 			 * Even if there are some DVAs in the entry, we still
3912 			 * have to clear them out. We can't use them to fill
3913 			 * out the dedup entry, as they are all referenced
3914 			 * together by a bp already on disk, and will be freed
3915 			 * as a group.
3916 			 */
3917 			BP_ZERO_DVAS(bp);
3918 			BP_SET_BIRTH(bp, 0, 0);
3919 		}
3920 
3921 		/*
3922 		 * If there are enough DVAs in the entry to service our request,
3923 		 * then we can just use them as-is.
3924 		 */
3925 		if (have_dvas >= need_dvas) {
3926 			/*
3927 			 * For rewrite operations, try preserving the original
3928 			 * logical birth time.  If the result matches the
3929 			 * original BP, this becomes a NOP.
3930 			 */
3931 			if (zp->zp_rewrite) {
3932 				uint64_t orig_logical_birth =
3933 				    BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig);
3934 				ddt_bp_fill(ddp, v, bp, orig_logical_birth);
3935 				if (BP_EQUAL(bp, &zio->io_bp_orig)) {
3936 					/* We can skip accounting. */
3937 					zio->io_flags |= ZIO_FLAG_NOPWRITE;
3938 					ddt_exit(ddt);
3939 					return (zio);
3940 				}
3941 			}
3942 
3943 			ddt_bp_fill(ddp, v, bp, txg);
3944 			ddt_phys_addref(ddp, v);
3945 			ddt_exit(ddt);
3946 			return (zio);
3947 		}
3948 
3949 		/*
3950 		 * Otherwise, we have to issue IO to fill the entry up to the
3951 		 * amount we need.
3952 		 */
3953 		need_dvas -= have_dvas;
3954 	} else {
3955 		/*
3956 		 * There's a write in-flight. If there's already enough DVAs on
3957 		 * the entry, then either there were already enough to start
3958 		 * with, or the in-flight IO is between READY and DONE, and so
3959 		 * has extended the entry with new DVAs. Either way, we don't
3960 		 * need to do anything, we can just slot in behind it.
3961 		 */
3962 
3963 		if (zio->io_bp_override) {
3964 			/*
3965 			 * If there's a write out, then we're soon going to
3966 			 * have our own copies of this block, so clear out the
3967 			 * override block and treat it as a regular dedup
3968 			 * write. See comment above.
3969 			 */
3970 			BP_ZERO_DVAS(bp);
3971 			BP_SET_BIRTH(bp, 0, 0);
3972 		}
3973 
3974 		if (have_dvas >= need_dvas) {
3975 			/*
3976 			 * A minor point: there might already be enough
3977 			 * committed DVAs in the entry to service our request,
3978 			 * but we don't know which are completed and which are
3979 			 * allocated but not yet written. In this case, should
3980 			 * the IO for the new DVAs fail, we will be on the end
3981 			 * of the IO chain and will also recieve an error, even
3982 			 * though our request could have been serviced.
3983 			 *
3984 			 * This is an extremely rare case, as it requires the
3985 			 * original block to be copied with a request for a
3986 			 * larger number of DVAs, then copied again requesting
3987 			 * the same (or already fulfilled) number of DVAs while
3988 			 * the first request is active, and then that first
3989 			 * request errors. In return, the logic required to
3990 			 * catch and handle it is complex. For now, I'm just
3991 			 * not going to bother with it.
3992 			 */
3993 
3994 			/*
3995 			 * We always fill the bp here as we may have arrived
3996 			 * after the in-flight write has passed READY, and so
3997 			 * missed out.
3998 			 */
3999 			ddt_bp_fill(ddp, v, bp, txg);
4000 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
4001 			ddt_exit(ddt);
4002 			return (zio);
4003 		}
4004 
4005 		/*
4006 		 * There's not enough in the entry yet, so we need to look at
4007 		 * the write in-flight and see how many DVAs it will have once
4008 		 * it completes.
4009 		 *
4010 		 * The in-flight write has potentially had its copies request
4011 		 * reduced (if we're filling out an existing entry), so we need
4012 		 * to reach in and get the original write to find out what it is
4013 		 * expecting.
4014 		 *
4015 		 * Note that the parent of the lead zio will always have the
4016 		 * highest zp_copies of any zio in the chain, because ones that
4017 		 * can be serviced without additional IO are always added to
4018 		 * the back of the chain.
4019 		 */
4020 		zio_link_t *zl = NULL;
4021 		zio_t *pio =
4022 		    zio_walk_parents(dde->dde_io->dde_lead_zio[p], &zl);
4023 		ASSERT(pio);
4024 		parent_dvas = pio->io_prop.zp_copies;
4025 
4026 		if (parent_dvas >= need_dvas) {
4027 			zio_add_child(zio, dde->dde_io->dde_lead_zio[p]);
4028 			ddt_exit(ddt);
4029 			return (zio);
4030 		}
4031 
4032 		/*
4033 		 * Still not enough, so we will need to issue to get the
4034 		 * shortfall.
4035 		 */
4036 		need_dvas -= parent_dvas;
4037 	}
4038 
4039 	if (is_ganged) {
4040 		zp->zp_dedup = B_FALSE;
4041 		BP_SET_DEDUP(bp, B_FALSE);
4042 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
4043 		ddt_exit(ddt);
4044 		return (zio);
4045 	}
4046 
4047 	/*
4048 	 * We need to write. We will create a new write with the copies
4049 	 * property adjusted to match the number of DVAs we need to need to
4050 	 * grow the DDT entry by to satisfy the request.
4051 	 */
4052 	zio_prop_t czp = *zp;
4053 	if (have_dvas > 0 || parent_dvas > 0) {
4054 		czp.zp_copies = need_dvas;
4055 		czp.zp_gang_copies = 0;
4056 	} else {
4057 		ASSERT3U(czp.zp_copies, ==, need_dvas);
4058 	}
4059 
4060 	zio_t *cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
4061 	    zio->io_orig_size, zio->io_orig_size, &czp,
4062 	    zio_ddt_child_write_ready, NULL,
4063 	    zio_ddt_child_write_done, dde, zio->io_priority,
4064 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
4065 
4066 	zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
4067 
4068 	/*
4069 	 * We are the new lead zio, because our parent has the highest
4070 	 * zp_copies that has been requested for this entry so far.
4071 	 */
4072 	ddt_alloc_entry_io(dde);
4073 	if (dde->dde_io->dde_lead_zio[p] == NULL) {
4074 		/*
4075 		 * First time out, take a copy of the stable entry to revert
4076 		 * to if there's an error (see zio_ddt_child_write_done())
4077 		 */
4078 		ddt_phys_copy(&dde->dde_io->dde_orig_phys, dde->dde_phys, v);
4079 	} else {
4080 		/*
4081 		 * Make the existing chain our child, because it cannot
4082 		 * complete until we have.
4083 		 */
4084 		zio_add_child(cio, dde->dde_io->dde_lead_zio[p]);
4085 	}
4086 	dde->dde_io->dde_lead_zio[p] = cio;
4087 
4088 	ddt_exit(ddt);
4089 
4090 	zio_nowait(cio);
4091 
4092 	return (zio);
4093 }
4094 
4095 static ddt_entry_t *freedde; /* for debugging */
4096 
4097 static zio_t *
zio_ddt_free(zio_t * zio)4098 zio_ddt_free(zio_t *zio)
4099 {
4100 	spa_t *spa = zio->io_spa;
4101 	blkptr_t *bp = zio->io_bp;
4102 	ddt_t *ddt = ddt_select(spa, bp);
4103 	ddt_entry_t *dde = NULL;
4104 
4105 	ASSERT(BP_GET_DEDUP(bp));
4106 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4107 
4108 	ddt_enter(ddt);
4109 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
4110 	if (dde) {
4111 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
4112 		if (v != DDT_PHYS_NONE)
4113 			ddt_phys_decref(dde->dde_phys, v);
4114 	}
4115 	ddt_exit(ddt);
4116 
4117 	/*
4118 	 * When no entry was found, it must have been pruned,
4119 	 * so we can free it now instead of decrementing the
4120 	 * refcount in the DDT.
4121 	 */
4122 	if (!dde) {
4123 		BP_SET_DEDUP(bp, 0);
4124 		zio->io_pipeline |= ZIO_STAGE_DVA_FREE;
4125 	}
4126 
4127 	return (zio);
4128 }
4129 
4130 /*
4131  * ==========================================================================
4132  * Allocate and free blocks
4133  * ==========================================================================
4134  */
4135 
4136 static zio_t *
zio_io_to_allocate(metaslab_class_allocator_t * mca,boolean_t * more)4137 zio_io_to_allocate(metaslab_class_allocator_t *mca, boolean_t *more)
4138 {
4139 	zio_t *zio;
4140 
4141 	ASSERT(MUTEX_HELD(&mca->mca_lock));
4142 
4143 	zio = avl_first(&mca->mca_tree);
4144 	if (zio == NULL) {
4145 		*more = B_FALSE;
4146 		return (NULL);
4147 	}
4148 
4149 	ASSERT(IO_IS_ALLOCATING(zio));
4150 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4151 
4152 	/*
4153 	 * Try to place a reservation for this zio. If we're unable to
4154 	 * reserve then we throttle.
4155 	 */
4156 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
4157 	    zio->io_allocator, zio->io_prop.zp_copies, zio->io_size,
4158 	    B_FALSE, more)) {
4159 		return (NULL);
4160 	}
4161 	zio->io_flags |= ZIO_FLAG_ALLOC_THROTTLED;
4162 
4163 	avl_remove(&mca->mca_tree, zio);
4164 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
4165 
4166 	if (avl_is_empty(&mca->mca_tree))
4167 		*more = B_FALSE;
4168 	return (zio);
4169 }
4170 
4171 static zio_t *
zio_dva_throttle(zio_t * zio)4172 zio_dva_throttle(zio_t *zio)
4173 {
4174 	spa_t *spa = zio->io_spa;
4175 	zio_t *nio;
4176 	metaslab_class_t *mc;
4177 	boolean_t more;
4178 
4179 	/*
4180 	 * If not already chosen, choose an appropriate allocation class.
4181 	 */
4182 	mc = zio->io_metaslab_class;
4183 	if (mc == NULL)
4184 		mc = spa_preferred_class(spa, zio);
4185 
4186 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
4187 	    !mc->mc_alloc_throttle_enabled ||
4188 	    zio->io_child_type == ZIO_CHILD_GANG ||
4189 	    zio->io_flags & ZIO_FLAG_NODATA) {
4190 		return (zio);
4191 	}
4192 
4193 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4194 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4195 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4196 	ASSERT3U(zio->io_queued_timestamp, >, 0);
4197 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
4198 
4199 	zio->io_metaslab_class = mc;
4200 	metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator];
4201 	mutex_enter(&mca->mca_lock);
4202 	avl_add(&mca->mca_tree, zio);
4203 	nio = zio_io_to_allocate(mca, &more);
4204 	mutex_exit(&mca->mca_lock);
4205 	return (nio);
4206 }
4207 
4208 static void
zio_allocate_dispatch(metaslab_class_t * mc,int allocator)4209 zio_allocate_dispatch(metaslab_class_t *mc, int allocator)
4210 {
4211 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
4212 	zio_t *zio;
4213 	boolean_t more;
4214 
4215 	do {
4216 		mutex_enter(&mca->mca_lock);
4217 		zio = zio_io_to_allocate(mca, &more);
4218 		mutex_exit(&mca->mca_lock);
4219 		if (zio == NULL)
4220 			return;
4221 
4222 		ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
4223 		ASSERT0(zio->io_error);
4224 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
4225 	} while (more);
4226 }
4227 
4228 static zio_t *
zio_dva_allocate(zio_t * zio)4229 zio_dva_allocate(zio_t *zio)
4230 {
4231 	spa_t *spa = zio->io_spa;
4232 	metaslab_class_t *mc, *newmc;
4233 	blkptr_t *bp = zio->io_bp;
4234 	int error;
4235 	int flags = 0;
4236 
4237 	if (zio->io_gang_leader == NULL) {
4238 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
4239 		zio->io_gang_leader = zio;
4240 	}
4241 	if (zio->io_flags & ZIO_FLAG_PREALLOCATED) {
4242 		ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_GANG);
4243 		memcpy(zio->io_bp->blk_dva, zio->io_bp_orig.blk_dva,
4244 		    3 * sizeof (dva_t));
4245 		BP_SET_LOGICAL_BIRTH(zio->io_bp,
4246 		    BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig));
4247 		BP_SET_PHYSICAL_BIRTH(zio->io_bp,
4248 		    BP_GET_RAW_PHYSICAL_BIRTH(&zio->io_bp_orig));
4249 		return (zio);
4250 	}
4251 
4252 	ASSERT(BP_IS_HOLE(bp));
4253 	ASSERT0(BP_GET_NDVAS(bp));
4254 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
4255 
4256 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
4257 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
4258 
4259 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
4260 		flags |= METASLAB_GANG_CHILD;
4261 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
4262 		flags |= METASLAB_ASYNC_ALLOC;
4263 
4264 	/*
4265 	 * If not already chosen, choose an appropriate allocation class.
4266 	 */
4267 	mc = zio->io_metaslab_class;
4268 	if (mc == NULL) {
4269 		mc = spa_preferred_class(spa, zio);
4270 		zio->io_metaslab_class = mc;
4271 	}
4272 	ZIOSTAT_BUMP(ziostat_total_allocations);
4273 
4274 again:
4275 	/*
4276 	 * Try allocating the block in the usual metaslab class.
4277 	 * If that's full, allocate it in some other class(es).
4278 	 * If that's full, allocate as a gang block,
4279 	 * and if all are full, the allocation fails (which shouldn't happen).
4280 	 *
4281 	 * Note that we do not fall back on embedded slog (ZIL) space, to
4282 	 * preserve unfragmented slog space, which is critical for decent
4283 	 * sync write performance.  If a log allocation fails, we will fall
4284 	 * back to spa_sync() which is abysmal for performance.
4285 	 */
4286 	ASSERT(ZIO_HAS_ALLOCATOR(zio));
4287 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
4288 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
4289 	    &zio->io_alloc_list, zio->io_allocator, zio);
4290 
4291 	/*
4292 	 * When the dedup or special class is spilling into the normal class,
4293 	 * there can still be significant space available due to deferred
4294 	 * frees that are in-flight.  We track the txg when this occurred and
4295 	 * back off adding new DDT entries for a few txgs to allow the free
4296 	 * blocks to be processed.
4297 	 */
4298 	if (error == ENOSPC && spa->spa_dedup_class_full_txg != zio->io_txg &&
4299 	    (mc == spa_dedup_class(spa) || (mc == spa_special_class(spa) &&
4300 	    !spa_has_dedup(spa) && spa_special_has_ddt(spa)))) {
4301 		spa->spa_dedup_class_full_txg = zio->io_txg;
4302 		zfs_dbgmsg("%s[%llu]: %s class spilling, req size %llu, "
4303 		    "%llu allocated of %llu",
4304 		    spa_name(spa), (u_longlong_t)zio->io_txg,
4305 		    metaslab_class_get_name(mc),
4306 		    (u_longlong_t)zio->io_size,
4307 		    (u_longlong_t)metaslab_class_get_alloc(mc),
4308 		    (u_longlong_t)metaslab_class_get_space(mc));
4309 	}
4310 
4311 	/*
4312 	 * Fall back to some other class when this one is full.
4313 	 */
4314 	if (error == ENOSPC && (newmc = spa_preferred_class(spa, zio)) != mc) {
4315 		/*
4316 		 * If we are holding old class reservation, drop it.
4317 		 * Dispatch the next ZIO(s) there if some are waiting.
4318 		 */
4319 		if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
4320 			if (metaslab_class_throttle_unreserve(mc,
4321 			    zio->io_allocator, zio->io_prop.zp_copies,
4322 			    zio->io_size)) {
4323 				zio_allocate_dispatch(zio->io_metaslab_class,
4324 				    zio->io_allocator);
4325 			}
4326 			zio->io_flags &= ~ZIO_FLAG_ALLOC_THROTTLED;
4327 		}
4328 
4329 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4330 			zfs_dbgmsg("%s: metaslab allocation failure in %s "
4331 			    "class, trying fallback to %s class: zio %px, "
4332 			    "size %llu, error %d", spa_name(spa),
4333 			    metaslab_class_get_name(mc),
4334 			    metaslab_class_get_name(newmc),
4335 			    zio, (u_longlong_t)zio->io_size, error);
4336 		}
4337 		zio->io_metaslab_class = mc = newmc;
4338 		ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4339 
4340 		/*
4341 		 * If the new class uses throttling, return to that pipeline
4342 		 * stage.  Otherwise just do another allocation attempt.
4343 		 */
4344 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
4345 		    mc->mc_alloc_throttle_enabled &&
4346 		    zio->io_child_type != ZIO_CHILD_GANG &&
4347 		    !(zio->io_flags & ZIO_FLAG_NODATA)) {
4348 			zio->io_stage = ZIO_STAGE_DVA_THROTTLE >> 1;
4349 			return (zio);
4350 		}
4351 		goto again;
4352 	}
4353 
4354 	if (error == ENOSPC && zio->io_size > spa->spa_min_alloc) {
4355 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
4356 			zfs_dbgmsg("%s: metaslab allocation failure, "
4357 			    "trying ganging: zio %px, size %llu, error %d",
4358 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4359 			    error);
4360 		}
4361 		ZIOSTAT_BUMP(ziostat_gang_writes);
4362 		if (flags & METASLAB_GANG_CHILD)
4363 			ZIOSTAT_BUMP(ziostat_gang_multilevel);
4364 		return (zio_write_gang_block(zio, mc));
4365 	}
4366 	if (error != 0) {
4367 		if (error != ENOSPC ||
4368 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
4369 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4370 			    "size %llu, error %d",
4371 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
4372 			    error);
4373 		}
4374 		zio->io_error = error;
4375 	} else if (zio->io_prop.zp_rewrite) {
4376 		/*
4377 		 * For rewrite operations, preserve the logical birth time
4378 		 * but set the physical birth time to the current txg.
4379 		 */
4380 		uint64_t logical_birth = BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig);
4381 		ASSERT3U(logical_birth, <=, zio->io_txg);
4382 		BP_SET_BIRTH(zio->io_bp, logical_birth, zio->io_txg);
4383 		BP_SET_REWRITE(zio->io_bp, 1);
4384 	}
4385 
4386 	return (zio);
4387 }
4388 
4389 static zio_t *
zio_dva_free(zio_t * zio)4390 zio_dva_free(zio_t *zio)
4391 {
4392 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
4393 
4394 	return (zio);
4395 }
4396 
4397 static zio_t *
zio_dva_claim(zio_t * zio)4398 zio_dva_claim(zio_t *zio)
4399 {
4400 	int error;
4401 
4402 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
4403 	if (error)
4404 		zio->io_error = error;
4405 
4406 	return (zio);
4407 }
4408 
4409 /*
4410  * Undo an allocation.  This is used by zio_done() when an I/O fails
4411  * and we want to give back the block we just allocated.
4412  * This handles both normal blocks and gang blocks.
4413  */
4414 static void
zio_dva_unallocate(zio_t * zio,zio_gang_node_t * gn,blkptr_t * bp)4415 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
4416 {
4417 	ASSERT(BP_GET_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
4418 	ASSERT(zio->io_bp_override == NULL);
4419 
4420 	if (!BP_IS_HOLE(bp)) {
4421 		metaslab_free(zio->io_spa, bp, BP_GET_BIRTH(bp), B_TRUE);
4422 	}
4423 
4424 	if (gn != NULL) {
4425 		for (int g = 0; g < gbh_nblkptrs(gn->gn_gangblocksize); g++) {
4426 			zio_dva_unallocate(zio, gn->gn_child[g],
4427 			    gbh_bp(gn->gn_gbh, g));
4428 		}
4429 	}
4430 }
4431 
4432 /*
4433  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
4434  */
4435 int
zio_alloc_zil(spa_t * spa,objset_t * os,uint64_t txg,blkptr_t * new_bp,uint64_t size,boolean_t * slog)4436 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
4437     uint64_t size, boolean_t *slog)
4438 {
4439 	int error;
4440 	zio_alloc_list_t io_alloc_list;
4441 
4442 	ASSERT(txg > spa_syncing_txg(spa));
4443 
4444 	metaslab_trace_init(&io_alloc_list);
4445 
4446 	/*
4447 	 * Block pointer fields are useful to metaslabs for stats and debugging.
4448 	 * Fill in the obvious ones before calling into metaslab_alloc().
4449 	 */
4450 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4451 	BP_SET_PSIZE(new_bp, size);
4452 	BP_SET_LEVEL(new_bp, 0);
4453 
4454 	/*
4455 	 * When allocating a zil block, we don't have information about
4456 	 * the final destination of the block except the objset it's part
4457 	 * of, so we just hash the objset ID to pick the allocator to get
4458 	 * some parallelism.
4459 	 */
4460 	int flags = METASLAB_ZIL;
4461 	int allocator = (uint_t)cityhash1(os->os_dsl_dataset->ds_object)
4462 	    % spa->spa_alloc_count;
4463 	ZIOSTAT_BUMP(ziostat_total_allocations);
4464 
4465 	/* Try log class (dedicated slog devices) first */
4466 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
4467 	    txg, NULL, flags, &io_alloc_list, allocator, NULL);
4468 	*slog = (error == 0);
4469 
4470 	/* Try special_embedded_log class (reserved on special vdevs) */
4471 	if (error != 0) {
4472 		error = metaslab_alloc(spa, spa_special_embedded_log_class(spa),
4473 		    size, new_bp, 1, txg, NULL, flags, &io_alloc_list,
4474 		    allocator, NULL);
4475 	}
4476 
4477 	/* Try special class (general special vdev allocation) */
4478 	if (error != 0) {
4479 		error = metaslab_alloc(spa, spa_special_class(spa), size,
4480 		    new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4481 		    NULL);
4482 	}
4483 
4484 	/* Try embedded_log class (reserved on normal vdevs) */
4485 	if (error != 0) {
4486 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
4487 		    new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4488 		    NULL);
4489 	}
4490 
4491 	/* Finally fall back to normal class */
4492 	if (error != 0) {
4493 		ZIOSTAT_BUMP(ziostat_alloc_class_fallbacks);
4494 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
4495 		    new_bp, 1, txg, NULL, flags, &io_alloc_list, allocator,
4496 		    NULL);
4497 	}
4498 	metaslab_trace_fini(&io_alloc_list);
4499 
4500 	if (error == 0) {
4501 		BP_SET_LSIZE(new_bp, size);
4502 		BP_SET_PSIZE(new_bp, size);
4503 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
4504 		BP_SET_CHECKSUM(new_bp,
4505 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
4506 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
4507 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
4508 		BP_SET_LEVEL(new_bp, 0);
4509 		BP_SET_DEDUP(new_bp, 0);
4510 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
4511 
4512 		/*
4513 		 * encrypted blocks will require an IV and salt. We generate
4514 		 * these now since we will not be rewriting the bp at
4515 		 * rewrite time.
4516 		 */
4517 		if (os->os_encrypted) {
4518 			uint8_t iv[ZIO_DATA_IV_LEN];
4519 			uint8_t salt[ZIO_DATA_SALT_LEN];
4520 
4521 			BP_SET_CRYPT(new_bp, B_TRUE);
4522 			VERIFY0(spa_crypt_get_salt(spa,
4523 			    dmu_objset_id(os), salt));
4524 			VERIFY0(zio_crypt_generate_iv(iv));
4525 
4526 			zio_crypt_encode_params_bp(new_bp, salt, iv);
4527 		}
4528 	} else {
4529 		zfs_dbgmsg("%s: zil block allocation failure: "
4530 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
4531 		    error);
4532 	}
4533 
4534 	return (error);
4535 }
4536 
4537 /*
4538  * ==========================================================================
4539  * Read and write to physical devices
4540  * ==========================================================================
4541  */
4542 
4543 /*
4544  * Issue an I/O to the underlying vdev. Typically the issue pipeline
4545  * stops after this stage and will resume upon I/O completion.
4546  * However, there are instances where the vdev layer may need to
4547  * continue the pipeline when an I/O was not issued. Since the I/O
4548  * that was sent to the vdev layer might be different than the one
4549  * currently active in the pipeline (see vdev_queue_io()), we explicitly
4550  * force the underlying vdev layers to call either zio_execute() or
4551  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4552  */
4553 static zio_t *
zio_vdev_io_start(zio_t * zio)4554 zio_vdev_io_start(zio_t *zio)
4555 {
4556 	vdev_t *vd = zio->io_vd;
4557 	uint64_t align;
4558 	spa_t *spa = zio->io_spa;
4559 
4560 	zio->io_delay = 0;
4561 
4562 	ASSERT(zio->io_error == 0);
4563 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
4564 
4565 	if (vd == NULL) {
4566 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4567 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
4568 
4569 		/*
4570 		 * The mirror_ops handle multiple DVAs in a single BP.
4571 		 */
4572 		vdev_mirror_ops.vdev_op_io_start(zio);
4573 		return (NULL);
4574 	}
4575 
4576 	ASSERT3P(zio->io_logical, !=, zio);
4577 	if (zio->io_type == ZIO_TYPE_WRITE) {
4578 		ASSERT(spa->spa_trust_config);
4579 
4580 		/*
4581 		 * Note: the code can handle other kinds of writes,
4582 		 * but we don't expect them.
4583 		 */
4584 		if (zio->io_vd->vdev_noalloc) {
4585 			ASSERT(zio->io_flags &
4586 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
4587 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
4588 		}
4589 	}
4590 
4591 	align = 1ULL << vd->vdev_top->vdev_ashift;
4592 
4593 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
4594 	    P2PHASE(zio->io_size, align) != 0) {
4595 		/* Transform logical writes to be a full physical block size. */
4596 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
4597 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
4598 		ASSERT(vd == vd->vdev_top);
4599 		if (zio->io_type == ZIO_TYPE_WRITE) {
4600 			abd_copy(abuf, zio->io_abd, zio->io_size);
4601 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
4602 		}
4603 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
4604 	}
4605 
4606 	/*
4607 	 * If this is not a physical io, make sure that it is properly aligned
4608 	 * before proceeding.
4609 	 */
4610 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
4611 		ASSERT0(P2PHASE(zio->io_offset, align));
4612 		ASSERT0(P2PHASE(zio->io_size, align));
4613 	} else {
4614 		/*
4615 		 * For physical writes, we allow 512b aligned writes and assume
4616 		 * the device will perform a read-modify-write as necessary.
4617 		 */
4618 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
4619 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
4620 	}
4621 
4622 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
4623 
4624 	/*
4625 	 * If this is a repair I/O, and there's no self-healing involved --
4626 	 * that is, we're just resilvering what we expect to resilver --
4627 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4628 	 * This prevents spurious resilvering.
4629 	 *
4630 	 * There are a few ways that we can end up creating these spurious
4631 	 * resilver i/os:
4632 	 *
4633 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
4634 	 * dirty DTL.  The mirror code will issue resilver writes to
4635 	 * each DVA, including the one(s) that are not on vdevs with dirty
4636 	 * DTLs.
4637 	 *
4638 	 * 2. With nested replication, which happens when we have a
4639 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4640 	 * For example, given mirror(replacing(A+B), C), it's likely that
4641 	 * only A is out of date (it's the new device). In this case, we'll
4642 	 * read from C, then use the data to resilver A+B -- but we don't
4643 	 * actually want to resilver B, just A. The top-level mirror has no
4644 	 * way to know this, so instead we just discard unnecessary repairs
4645 	 * as we work our way down the vdev tree.
4646 	 *
4647 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4648 	 * The same logic applies to any form of nested replication: ditto
4649 	 * + mirror, RAID-Z + replacing, etc.
4650 	 *
4651 	 * However, indirect vdevs point off to other vdevs which may have
4652 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
4653 	 * will be properly bypassed instead.
4654 	 *
4655 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4656 	 * a dRAID spare vdev. For example, when a dRAID spare is first
4657 	 * used, its spare blocks need to be written to but the leaf vdev's
4658 	 * of such blocks can have empty DTL_PARTIAL.
4659 	 *
4660 	 * There seemed no clean way to allow such writes while bypassing
4661 	 * spurious ones. At this point, just avoid all bypassing for dRAID
4662 	 * for correctness.
4663 	 */
4664 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4665 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4666 	    zio->io_txg != 0 &&	/* not a delegated i/o */
4667 	    vd->vdev_ops != &vdev_indirect_ops &&
4668 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4669 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4670 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4671 		zio_vdev_io_bypass(zio);
4672 		return (zio);
4673 	}
4674 
4675 	/*
4676 	 * Select the next best leaf I/O to process.  Distributed spares are
4677 	 * excluded since they dispatch the I/O directly to a leaf vdev after
4678 	 * applying the dRAID mapping.
4679 	 */
4680 	if (vd->vdev_ops->vdev_op_leaf &&
4681 	    vd->vdev_ops != &vdev_draid_spare_ops &&
4682 	    (zio->io_type == ZIO_TYPE_READ ||
4683 	    zio->io_type == ZIO_TYPE_WRITE ||
4684 	    zio->io_type == ZIO_TYPE_TRIM)) {
4685 
4686 		if ((zio = vdev_queue_io(zio)) == NULL)
4687 			return (NULL);
4688 
4689 		if (!vdev_accessible(vd, zio)) {
4690 			zio->io_error = SET_ERROR(ENXIO);
4691 			zio_interrupt(zio);
4692 			return (NULL);
4693 		}
4694 		zio->io_delay = gethrtime();
4695 
4696 		if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) {
4697 			/*
4698 			 * "no-op" injections return success, but do no actual
4699 			 * work. Just return it.
4700 			 */
4701 			zio_delay_interrupt(zio);
4702 			return (NULL);
4703 		}
4704 	}
4705 
4706 	vd->vdev_ops->vdev_op_io_start(zio);
4707 	return (NULL);
4708 }
4709 
4710 static zio_t *
zio_vdev_io_done(zio_t * zio)4711 zio_vdev_io_done(zio_t *zio)
4712 {
4713 	vdev_t *vd = zio->io_vd;
4714 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4715 	boolean_t unexpected_error = B_FALSE;
4716 
4717 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4718 		return (NULL);
4719 	}
4720 
4721 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
4722 	    zio->io_type == ZIO_TYPE_WRITE ||
4723 	    zio->io_type == ZIO_TYPE_FLUSH ||
4724 	    zio->io_type == ZIO_TYPE_TRIM);
4725 
4726 	if (zio->io_delay)
4727 		zio->io_delay = gethrtime() - zio->io_delay;
4728 
4729 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4730 	    vd->vdev_ops != &vdev_draid_spare_ops) {
4731 		if (zio->io_type != ZIO_TYPE_FLUSH)
4732 			vdev_queue_io_done(zio);
4733 
4734 		if (zio_injection_enabled && zio->io_error == 0)
4735 			zio->io_error = zio_handle_device_injections(vd, zio,
4736 			    EIO, EILSEQ);
4737 
4738 		if (zio_injection_enabled && zio->io_error == 0)
4739 			zio->io_error = zio_handle_label_injection(zio, EIO);
4740 
4741 		if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH &&
4742 		    zio->io_type != ZIO_TYPE_TRIM) {
4743 			if (!vdev_accessible(vd, zio)) {
4744 				zio->io_error = SET_ERROR(ENXIO);
4745 			} else {
4746 				unexpected_error = B_TRUE;
4747 			}
4748 		}
4749 	}
4750 
4751 	ops->vdev_op_io_done(zio);
4752 
4753 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4754 		VERIFY(vdev_probe(vd, zio) == NULL);
4755 
4756 	return (zio);
4757 }
4758 
4759 /*
4760  * This function is used to change the priority of an existing zio that is
4761  * currently in-flight. This is used by the arc to upgrade priority in the
4762  * event that a demand read is made for a block that is currently queued
4763  * as a scrub or async read IO. Otherwise, the high priority read request
4764  * would end up having to wait for the lower priority IO.
4765  */
4766 void
zio_change_priority(zio_t * pio,zio_priority_t priority)4767 zio_change_priority(zio_t *pio, zio_priority_t priority)
4768 {
4769 	zio_t *cio, *cio_next;
4770 	zio_link_t *zl = NULL;
4771 
4772 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4773 
4774 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4775 		vdev_queue_change_io_priority(pio, priority);
4776 	} else {
4777 		pio->io_priority = priority;
4778 	}
4779 
4780 	mutex_enter(&pio->io_lock);
4781 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4782 		cio_next = zio_walk_children(pio, &zl);
4783 		zio_change_priority(cio, priority);
4784 	}
4785 	mutex_exit(&pio->io_lock);
4786 }
4787 
4788 /*
4789  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4790  * disk, and use that to finish the checksum ereport later.
4791  */
4792 static void
zio_vsd_default_cksum_finish(zio_cksum_report_t * zcr,const abd_t * good_buf)4793 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4794     const abd_t *good_buf)
4795 {
4796 	/* no processing needed */
4797 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4798 }
4799 
4800 void
zio_vsd_default_cksum_report(zio_t * zio,zio_cksum_report_t * zcr)4801 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4802 {
4803 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4804 
4805 	abd_copy(abd, zio->io_abd, zio->io_size);
4806 
4807 	zcr->zcr_cbinfo = zio->io_size;
4808 	zcr->zcr_cbdata = abd;
4809 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4810 	zcr->zcr_free = zio_abd_free;
4811 }
4812 
4813 static zio_t *
zio_vdev_io_assess(zio_t * zio)4814 zio_vdev_io_assess(zio_t *zio)
4815 {
4816 	vdev_t *vd = zio->io_vd;
4817 
4818 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4819 		return (NULL);
4820 	}
4821 
4822 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4823 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4824 
4825 	if (zio->io_vsd != NULL) {
4826 		zio->io_vsd_ops->vsd_free(zio);
4827 		zio->io_vsd = NULL;
4828 	}
4829 
4830 	/*
4831 	 * If a Direct I/O operation has a checksum verify error then this I/O
4832 	 * should not attempt to be issued again.
4833 	 */
4834 	if (zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) {
4835 		if (zio->io_type == ZIO_TYPE_WRITE) {
4836 			ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_LOGICAL);
4837 			ASSERT3U(zio->io_error, ==, EIO);
4838 		}
4839 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4840 		return (zio);
4841 	}
4842 
4843 	if (zio_injection_enabled && zio->io_error == 0)
4844 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4845 
4846 	/*
4847 	 * If the I/O failed, determine whether we should attempt to retry it.
4848 	 *
4849 	 * On retry, we cut in line in the issue queue, since we don't want
4850 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4851 	 */
4852 	if (zio->io_error && vd == NULL &&
4853 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4854 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4855 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4856 		zio->io_error = 0;
4857 		zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4858 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4859 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4860 		    zio_requeue_io_start_cut_in_line);
4861 		return (NULL);
4862 	}
4863 
4864 	/*
4865 	 * If we got an error on a leaf device, convert it to ENXIO
4866 	 * if the device is not accessible at all.
4867 	 */
4868 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4869 	    !vdev_accessible(vd, zio))
4870 		zio->io_error = SET_ERROR(ENXIO);
4871 
4872 	/*
4873 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4874 	 * set vdev_cant_write so that we stop trying to allocate from it.
4875 	 */
4876 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4877 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4878 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4879 		    "cant_write=TRUE due to write failure with ENXIO",
4880 		    zio);
4881 		vd->vdev_cant_write = B_TRUE;
4882 	}
4883 
4884 	/*
4885 	 * If a cache flush returns ENOTSUP we know that no future
4886 	 * attempts will ever succeed. In this case we set a persistent
4887 	 * boolean flag so that we don't bother with it in the future, and
4888 	 * then we act like the flush succeeded.
4889 	 */
4890 	if (zio->io_error == ENOTSUP && zio->io_type == ZIO_TYPE_FLUSH &&
4891 	    vd != NULL) {
4892 		vd->vdev_nowritecache = B_TRUE;
4893 		zio->io_error = 0;
4894 	}
4895 
4896 	if (zio->io_error)
4897 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4898 
4899 	return (zio);
4900 }
4901 
4902 void
zio_vdev_io_reissue(zio_t * zio)4903 zio_vdev_io_reissue(zio_t *zio)
4904 {
4905 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4906 	ASSERT(zio->io_error == 0);
4907 
4908 	zio->io_stage >>= 1;
4909 }
4910 
4911 void
zio_vdev_io_redone(zio_t * zio)4912 zio_vdev_io_redone(zio_t *zio)
4913 {
4914 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4915 
4916 	zio->io_stage >>= 1;
4917 }
4918 
4919 void
zio_vdev_io_bypass(zio_t * zio)4920 zio_vdev_io_bypass(zio_t *zio)
4921 {
4922 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4923 	ASSERT(zio->io_error == 0);
4924 
4925 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4926 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4927 }
4928 
4929 /*
4930  * ==========================================================================
4931  * Encrypt and store encryption parameters
4932  * ==========================================================================
4933  */
4934 
4935 
4936 /*
4937  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4938  * managing the storage of encryption parameters and passing them to the
4939  * lower-level encryption functions.
4940  */
4941 static zio_t *
zio_encrypt(zio_t * zio)4942 zio_encrypt(zio_t *zio)
4943 {
4944 	zio_prop_t *zp = &zio->io_prop;
4945 	spa_t *spa = zio->io_spa;
4946 	blkptr_t *bp = zio->io_bp;
4947 	uint64_t psize = BP_GET_PSIZE(bp);
4948 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4949 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4950 	void *enc_buf = NULL;
4951 	abd_t *eabd = NULL;
4952 	uint8_t salt[ZIO_DATA_SALT_LEN];
4953 	uint8_t iv[ZIO_DATA_IV_LEN];
4954 	uint8_t mac[ZIO_DATA_MAC_LEN];
4955 	boolean_t no_crypt = B_FALSE;
4956 
4957 	/* the root zio already encrypted the data */
4958 	if (zio->io_child_type == ZIO_CHILD_GANG)
4959 		return (zio);
4960 
4961 	/* only ZIL blocks are re-encrypted on rewrite */
4962 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4963 		return (zio);
4964 
4965 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4966 		BP_SET_CRYPT(bp, B_FALSE);
4967 		return (zio);
4968 	}
4969 
4970 	/* if we are doing raw encryption set the provided encryption params */
4971 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4972 		ASSERT0(BP_GET_LEVEL(bp));
4973 		BP_SET_CRYPT(bp, B_TRUE);
4974 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4975 		if (ot != DMU_OT_OBJSET)
4976 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4977 
4978 		/* dnode blocks must be written out in the provided byteorder */
4979 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4980 		    ot == DMU_OT_DNODE) {
4981 			void *bswap_buf = zio_buf_alloc(psize);
4982 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4983 
4984 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4985 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4986 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4987 			    psize);
4988 
4989 			abd_take_ownership_of_buf(babd, B_TRUE);
4990 			zio_push_transform(zio, babd, psize, psize, NULL);
4991 		}
4992 
4993 		if (DMU_OT_IS_ENCRYPTED(ot))
4994 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4995 		return (zio);
4996 	}
4997 
4998 	/* indirect blocks only maintain a cksum of the lower level MACs */
4999 	if (BP_GET_LEVEL(bp) > 0) {
5000 		BP_SET_CRYPT(bp, B_TRUE);
5001 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
5002 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
5003 		    mac));
5004 		zio_crypt_encode_mac_bp(bp, mac);
5005 		return (zio);
5006 	}
5007 
5008 	/*
5009 	 * Objset blocks are a special case since they have 2 256-bit MACs
5010 	 * embedded within them.
5011 	 */
5012 	if (ot == DMU_OT_OBJSET) {
5013 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
5014 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
5015 		BP_SET_CRYPT(bp, B_TRUE);
5016 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
5017 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
5018 		return (zio);
5019 	}
5020 
5021 	/* unencrypted object types are only authenticated with a MAC */
5022 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
5023 		BP_SET_CRYPT(bp, B_TRUE);
5024 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
5025 		    zio->io_abd, psize, mac));
5026 		zio_crypt_encode_mac_bp(bp, mac);
5027 		return (zio);
5028 	}
5029 
5030 	/*
5031 	 * Later passes of sync-to-convergence may decide to rewrite data
5032 	 * in place to avoid more disk reallocations. This presents a problem
5033 	 * for encryption because this constitutes rewriting the new data with
5034 	 * the same encryption key and IV. However, this only applies to blocks
5035 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
5036 	 * MOS. We assert that the zio is allocating or an intent log write
5037 	 * to enforce this.
5038 	 */
5039 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
5040 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
5041 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
5042 	ASSERT3U(psize, !=, 0);
5043 
5044 	enc_buf = zio_buf_alloc(psize);
5045 	eabd = abd_get_from_buf(enc_buf, psize);
5046 	abd_take_ownership_of_buf(eabd, B_TRUE);
5047 
5048 	/*
5049 	 * For an explanation of what encryption parameters are stored
5050 	 * where, see the block comment in zio_crypt.c.
5051 	 */
5052 	if (ot == DMU_OT_INTENT_LOG) {
5053 		zio_crypt_decode_params_bp(bp, salt, iv);
5054 	} else {
5055 		BP_SET_CRYPT(bp, B_TRUE);
5056 	}
5057 
5058 	/* Perform the encryption. This should not fail */
5059 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
5060 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
5061 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
5062 
5063 	/* encode encryption metadata into the bp */
5064 	if (ot == DMU_OT_INTENT_LOG) {
5065 		/*
5066 		 * ZIL blocks store the MAC in the embedded checksum, so the
5067 		 * transform must always be applied.
5068 		 */
5069 		zio_crypt_encode_mac_zil(enc_buf, mac);
5070 		zio_push_transform(zio, eabd, psize, psize, NULL);
5071 	} else {
5072 		BP_SET_CRYPT(bp, B_TRUE);
5073 		zio_crypt_encode_params_bp(bp, salt, iv);
5074 		zio_crypt_encode_mac_bp(bp, mac);
5075 
5076 		if (no_crypt) {
5077 			ASSERT3U(ot, ==, DMU_OT_DNODE);
5078 			abd_free(eabd);
5079 		} else {
5080 			zio_push_transform(zio, eabd, psize, psize, NULL);
5081 		}
5082 	}
5083 
5084 	return (zio);
5085 }
5086 
5087 /*
5088  * ==========================================================================
5089  * Generate and verify checksums
5090  * ==========================================================================
5091  */
5092 static zio_t *
zio_checksum_generate(zio_t * zio)5093 zio_checksum_generate(zio_t *zio)
5094 {
5095 	blkptr_t *bp = zio->io_bp;
5096 	enum zio_checksum checksum;
5097 
5098 	if (bp == NULL) {
5099 		/*
5100 		 * This is zio_write_phys().
5101 		 * We're either generating a label checksum, or none at all.
5102 		 */
5103 		checksum = zio->io_prop.zp_checksum;
5104 
5105 		if (checksum == ZIO_CHECKSUM_OFF)
5106 			return (zio);
5107 
5108 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
5109 	} else {
5110 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
5111 			ASSERT(!IO_IS_ALLOCATING(zio));
5112 			checksum = ZIO_CHECKSUM_GANG_HEADER;
5113 		} else {
5114 			checksum = BP_GET_CHECKSUM(bp);
5115 		}
5116 	}
5117 
5118 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
5119 
5120 	return (zio);
5121 }
5122 
5123 static zio_t *
zio_checksum_verify(zio_t * zio)5124 zio_checksum_verify(zio_t *zio)
5125 {
5126 	zio_bad_cksum_t info;
5127 	blkptr_t *bp = zio->io_bp;
5128 	int error;
5129 
5130 	ASSERT(zio->io_vd != NULL);
5131 
5132 	if (bp == NULL) {
5133 		/*
5134 		 * This is zio_read_phys().
5135 		 * We're either verifying a label checksum, or nothing at all.
5136 		 */
5137 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
5138 			return (zio);
5139 
5140 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
5141 	}
5142 
5143 	ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5144 	IMPLY(zio->io_flags & ZIO_FLAG_DIO_READ,
5145 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE));
5146 
5147 	if ((error = zio_checksum_error(zio, &info)) != 0) {
5148 		zio->io_error = error;
5149 		if (error == ECKSUM &&
5150 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5151 			if (zio->io_flags & ZIO_FLAG_DIO_READ) {
5152 				zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR;
5153 				zio_t *pio = zio_unique_parent(zio);
5154 				/*
5155 				 * Any Direct I/O read that has a checksum
5156 				 * error must be treated as suspicous as the
5157 				 * contents of the buffer could be getting
5158 				 * manipulated while the I/O is taking place.
5159 				 *
5160 				 * The checksum verify error will only be
5161 				 * reported here for disk and file VDEV's and
5162 				 * will be reported on those that the failure
5163 				 * occurred on. Other types of VDEV's report the
5164 				 * verify failure in their own code paths.
5165 				 */
5166 				if (pio->io_child_type == ZIO_CHILD_LOGICAL) {
5167 					zio_dio_chksum_verify_error_report(zio);
5168 				}
5169 			} else {
5170 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5171 				zio->io_vd->vdev_stat.vs_checksum_errors++;
5172 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5173 				(void) zfs_ereport_start_checksum(zio->io_spa,
5174 				    zio->io_vd, &zio->io_bookmark, zio,
5175 				    zio->io_offset, zio->io_size, &info);
5176 			}
5177 		}
5178 	}
5179 
5180 	return (zio);
5181 }
5182 
5183 static zio_t *
zio_dio_checksum_verify(zio_t * zio)5184 zio_dio_checksum_verify(zio_t *zio)
5185 {
5186 	zio_t *pio = zio_unique_parent(zio);
5187 	int error;
5188 
5189 	ASSERT3P(zio->io_vd, !=, NULL);
5190 	ASSERT3P(zio->io_bp, !=, NULL);
5191 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5192 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5193 	ASSERT3B(pio->io_prop.zp_direct_write, ==, B_TRUE);
5194 	ASSERT3U(pio->io_child_type, ==, ZIO_CHILD_LOGICAL);
5195 
5196 	if (zfs_vdev_direct_write_verify == 0 || zio->io_error != 0)
5197 		goto out;
5198 
5199 	if ((error = zio_checksum_error(zio, NULL)) != 0) {
5200 		zio->io_error = error;
5201 		if (error == ECKSUM) {
5202 			zio->io_post |= ZIO_POST_DIO_CHKSUM_ERR;
5203 			zio_dio_chksum_verify_error_report(zio);
5204 		}
5205 	}
5206 
5207 out:
5208 	return (zio);
5209 }
5210 
5211 
5212 /*
5213  * Called by RAID-Z to ensure we don't compute the checksum twice.
5214  */
5215 void
zio_checksum_verified(zio_t * zio)5216 zio_checksum_verified(zio_t *zio)
5217 {
5218 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
5219 }
5220 
5221 /*
5222  * Report Direct I/O checksum verify error and create ZED event.
5223  */
5224 void
zio_dio_chksum_verify_error_report(zio_t * zio)5225 zio_dio_chksum_verify_error_report(zio_t *zio)
5226 {
5227 	ASSERT(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5228 
5229 	if (zio->io_child_type == ZIO_CHILD_LOGICAL)
5230 		return;
5231 
5232 	mutex_enter(&zio->io_vd->vdev_stat_lock);
5233 	zio->io_vd->vdev_stat.vs_dio_verify_errors++;
5234 	mutex_exit(&zio->io_vd->vdev_stat_lock);
5235 	if (zio->io_type == ZIO_TYPE_WRITE) {
5236 		/*
5237 		 * Convert checksum error for writes into EIO.
5238 		 */
5239 		zio->io_error = SET_ERROR(EIO);
5240 		/*
5241 		 * Report dio_verify_wr ZED event.
5242 		 */
5243 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR,
5244 		    zio->io_spa,  zio->io_vd, &zio->io_bookmark, zio, 0);
5245 	} else {
5246 		/*
5247 		 * Report dio_verify_rd ZED event.
5248 		 */
5249 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD,
5250 		    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5251 	}
5252 }
5253 
5254 /*
5255  * ==========================================================================
5256  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
5257  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
5258  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
5259  * indicate errors that are specific to one I/O, and most likely permanent.
5260  * Any other error is presumed to be worse because we weren't expecting it.
5261  * ==========================================================================
5262  */
5263 int
zio_worst_error(int e1,int e2)5264 zio_worst_error(int e1, int e2)
5265 {
5266 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
5267 	int r1, r2;
5268 
5269 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
5270 		if (e1 == zio_error_rank[r1])
5271 			break;
5272 
5273 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
5274 		if (e2 == zio_error_rank[r2])
5275 			break;
5276 
5277 	return (r1 > r2 ? e1 : e2);
5278 }
5279 
5280 /*
5281  * ==========================================================================
5282  * I/O completion
5283  * ==========================================================================
5284  */
5285 static zio_t *
zio_ready(zio_t * zio)5286 zio_ready(zio_t *zio)
5287 {
5288 	blkptr_t *bp = zio->io_bp;
5289 	zio_t *pio, *pio_next;
5290 	zio_link_t *zl = NULL;
5291 
5292 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
5293 	    ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
5294 		return (NULL);
5295 	}
5296 
5297 	if (zio->io_ready) {
5298 		ASSERT(IO_IS_ALLOCATING(zio));
5299 		ASSERT(BP_GET_BIRTH(bp) == zio->io_txg ||
5300 		    BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
5301 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
5302 
5303 		zio->io_ready(zio);
5304 	}
5305 
5306 #ifdef ZFS_DEBUG
5307 	if (bp != NULL && bp != &zio->io_bp_copy)
5308 		zio->io_bp_copy = *bp;
5309 #endif
5310 
5311 	if (zio->io_error != 0) {
5312 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
5313 
5314 		if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED) {
5315 			ASSERT(IO_IS_ALLOCATING(zio));
5316 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
5317 			ASSERT(zio->io_metaslab_class != NULL);
5318 			ASSERT(ZIO_HAS_ALLOCATOR(zio));
5319 
5320 			/*
5321 			 * We were unable to allocate anything, unreserve and
5322 			 * issue the next I/O to allocate.
5323 			 */
5324 			if (metaslab_class_throttle_unreserve(
5325 			    zio->io_metaslab_class, zio->io_allocator,
5326 			    zio->io_prop.zp_copies, zio->io_size)) {
5327 				zio_allocate_dispatch(zio->io_metaslab_class,
5328 				    zio->io_allocator);
5329 			}
5330 		}
5331 	}
5332 
5333 	mutex_enter(&zio->io_lock);
5334 	zio->io_state[ZIO_WAIT_READY] = 1;
5335 	pio = zio_walk_parents(zio, &zl);
5336 	mutex_exit(&zio->io_lock);
5337 
5338 	/*
5339 	 * As we notify zio's parents, new parents could be added.
5340 	 * New parents go to the head of zio's io_parent_list, however,
5341 	 * so we will (correctly) not notify them.  The remainder of zio's
5342 	 * io_parent_list, from 'pio_next' onward, cannot change because
5343 	 * all parents must wait for us to be done before they can be done.
5344 	 */
5345 	for (; pio != NULL; pio = pio_next) {
5346 		pio_next = zio_walk_parents(zio, &zl);
5347 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
5348 	}
5349 
5350 	if (zio->io_flags & ZIO_FLAG_NODATA) {
5351 		if (bp != NULL && BP_IS_GANG(bp)) {
5352 			zio->io_flags &= ~ZIO_FLAG_NODATA;
5353 		} else {
5354 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
5355 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
5356 		}
5357 	}
5358 
5359 	if (zio_injection_enabled &&
5360 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
5361 		zio_handle_ignored_writes(zio);
5362 
5363 	return (zio);
5364 }
5365 
5366 /*
5367  * Update the allocation throttle accounting.
5368  */
5369 static void
zio_dva_throttle_done(zio_t * zio)5370 zio_dva_throttle_done(zio_t *zio)
5371 {
5372 	zio_t *pio = zio_unique_parent(zio);
5373 	vdev_t *vd = zio->io_vd;
5374 	int flags = METASLAB_ASYNC_ALLOC;
5375 	const void *tag = pio;
5376 	uint64_t size = pio->io_size;
5377 
5378 	ASSERT3P(zio->io_bp, !=, NULL);
5379 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
5380 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
5381 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
5382 	ASSERT(vd != NULL);
5383 	ASSERT3P(vd, ==, vd->vdev_top);
5384 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
5385 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5386 	ASSERT(zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED);
5387 
5388 	/*
5389 	 * Parents of gang children can have two flavors -- ones that allocated
5390 	 * the gang header (will have ZIO_FLAG_IO_REWRITE set) and ones that
5391 	 * allocated the constituent blocks.  The first use their parent as tag.
5392 	 * We set the size to match the original allocation call for that case.
5393 	 */
5394 	if (pio->io_child_type == ZIO_CHILD_GANG &&
5395 	    (pio->io_flags & ZIO_FLAG_IO_REWRITE)) {
5396 		tag = zio_unique_parent(pio);
5397 		size = SPA_OLD_GANGBLOCKSIZE;
5398 	}
5399 
5400 	ASSERT(IO_IS_ALLOCATING(pio) || (pio->io_child_type == ZIO_CHILD_GANG &&
5401 	    (pio->io_flags & ZIO_FLAG_IO_REWRITE)));
5402 	ASSERT(ZIO_HAS_ALLOCATOR(pio));
5403 	ASSERT3P(zio, !=, zio->io_logical);
5404 	ASSERT(zio->io_logical != NULL);
5405 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
5406 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
5407 	ASSERT(zio->io_metaslab_class != NULL);
5408 	ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
5409 
5410 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id,
5411 	    pio->io_allocator, flags, size, tag);
5412 
5413 	if (metaslab_class_throttle_unreserve(pio->io_metaslab_class,
5414 	    pio->io_allocator, 1, pio->io_size)) {
5415 		zio_allocate_dispatch(zio->io_metaslab_class,
5416 		    pio->io_allocator);
5417 	}
5418 }
5419 
5420 static zio_t *
zio_done(zio_t * zio)5421 zio_done(zio_t *zio)
5422 {
5423 	/*
5424 	 * Always attempt to keep stack usage minimal here since
5425 	 * we can be called recursively up to 19 levels deep.
5426 	 */
5427 	const uint64_t psize = zio->io_size;
5428 	zio_t *pio, *pio_next;
5429 	zio_link_t *zl = NULL;
5430 
5431 	/*
5432 	 * If our children haven't all completed,
5433 	 * wait for them and then repeat this pipeline stage.
5434 	 */
5435 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
5436 		return (NULL);
5437 	}
5438 
5439 	/*
5440 	 * If the allocation throttle is enabled, then update the accounting.
5441 	 * We only track child I/Os that are part of an allocating async
5442 	 * write. We must do this since the allocation is performed
5443 	 * by the logical I/O but the actual write is done by child I/Os.
5444 	 */
5445 	if (zio->io_flags & ZIO_FLAG_ALLOC_THROTTLED &&
5446 	    zio->io_child_type == ZIO_CHILD_VDEV)
5447 		zio_dva_throttle_done(zio);
5448 
5449 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
5450 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
5451 			ASSERT(zio->io_children[c][w] == 0);
5452 
5453 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
5454 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
5455 		    sizeof (blkptr_t)) == 0 ||
5456 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
5457 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
5458 		    zio->io_bp_override == NULL &&
5459 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
5460 			ASSERT3U(zio->io_prop.zp_copies, <=,
5461 			    BP_GET_NDVAS(zio->io_bp));
5462 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
5463 			    (BP_COUNT_GANG(zio->io_bp) ==
5464 			    BP_GET_NDVAS(zio->io_bp)));
5465 		}
5466 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
5467 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
5468 	}
5469 
5470 	/*
5471 	 * If there were child vdev/gang/ddt errors, they apply to us now.
5472 	 */
5473 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
5474 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
5475 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
5476 
5477 	/*
5478 	 * If the I/O on the transformed data was successful, generate any
5479 	 * checksum reports now while we still have the transformed data.
5480 	 */
5481 	if (zio->io_error == 0) {
5482 		while (zio->io_cksum_report != NULL) {
5483 			zio_cksum_report_t *zcr = zio->io_cksum_report;
5484 			uint64_t align = zcr->zcr_align;
5485 			uint64_t asize = P2ROUNDUP(psize, align);
5486 			abd_t *adata = zio->io_abd;
5487 
5488 			if (adata != NULL && asize != psize) {
5489 				adata = abd_alloc(asize, B_TRUE);
5490 				abd_copy(adata, zio->io_abd, psize);
5491 				abd_zero_off(adata, psize, asize - psize);
5492 			}
5493 
5494 			zio->io_cksum_report = zcr->zcr_next;
5495 			zcr->zcr_next = NULL;
5496 			zcr->zcr_finish(zcr, adata);
5497 			zfs_ereport_free_checksum(zcr);
5498 
5499 			if (adata != NULL && asize != psize)
5500 				abd_free(adata);
5501 		}
5502 	}
5503 
5504 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
5505 
5506 	vdev_stat_update(zio, psize);
5507 
5508 	/*
5509 	 * If this I/O is attached to a particular vdev is slow, exceeding
5510 	 * 30 seconds to complete, post an error described the I/O delay.
5511 	 * We ignore these errors if the device is currently unavailable.
5512 	 */
5513 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
5514 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
5515 			/*
5516 			 * We want to only increment our slow IO counters if
5517 			 * the IO is valid (i.e. not if the drive is removed).
5518 			 *
5519 			 * zfs_ereport_post() will also do these checks, but
5520 			 * it can also ratelimit and have other failures, so we
5521 			 * need to increment the slow_io counters independent
5522 			 * of it.
5523 			 */
5524 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
5525 			    zio->io_spa, zio->io_vd, zio)) {
5526 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5527 				zio->io_vd->vdev_stat.vs_slow_ios++;
5528 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5529 
5530 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
5531 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
5532 				    zio, 0);
5533 			}
5534 		}
5535 	}
5536 
5537 	if (zio->io_error) {
5538 		/*
5539 		 * If this I/O is attached to a particular vdev,
5540 		 * generate an error message describing the I/O failure
5541 		 * at the block level.  We ignore these errors if the
5542 		 * device is currently unavailable.
5543 		 */
5544 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
5545 		    !vdev_is_dead(zio->io_vd) &&
5546 		    !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) {
5547 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
5548 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
5549 			if (ret != EALREADY) {
5550 				mutex_enter(&zio->io_vd->vdev_stat_lock);
5551 				if (zio->io_type == ZIO_TYPE_READ)
5552 					zio->io_vd->vdev_stat.vs_read_errors++;
5553 				else if (zio->io_type == ZIO_TYPE_WRITE)
5554 					zio->io_vd->vdev_stat.vs_write_errors++;
5555 				mutex_exit(&zio->io_vd->vdev_stat_lock);
5556 			}
5557 		}
5558 
5559 		if ((zio->io_error == EIO || !(zio->io_flags &
5560 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
5561 		    !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR) &&
5562 		    zio == zio->io_logical) {
5563 			/*
5564 			 * For logical I/O requests, tell the SPA to log the
5565 			 * error and generate a logical data ereport.
5566 			 */
5567 			spa_log_error(zio->io_spa, &zio->io_bookmark,
5568 			    BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5569 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
5570 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
5571 		}
5572 	}
5573 
5574 	if (zio->io_error && zio == zio->io_logical) {
5575 
5576 		/*
5577 		 * A DDT child tried to create a mixed gang/non-gang BP. We're
5578 		 * going to have to just retry as a non-dedup IO.
5579 		 */
5580 		if (zio->io_error == EAGAIN && IO_IS_ALLOCATING(zio) &&
5581 		    zio->io_prop.zp_dedup) {
5582 			zio->io_post |= ZIO_POST_REEXECUTE;
5583 			zio->io_prop.zp_dedup = B_FALSE;
5584 		}
5585 		/*
5586 		 * Determine whether zio should be reexecuted.  This will
5587 		 * propagate all the way to the root via zio_notify_parent().
5588 		 */
5589 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
5590 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5591 
5592 		if (IO_IS_ALLOCATING(zio) &&
5593 		    !(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5594 		    !(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) {
5595 			if (zio->io_error != ENOSPC)
5596 				zio->io_post |= ZIO_POST_REEXECUTE;
5597 			else
5598 				zio->io_post |= ZIO_POST_SUSPEND;
5599 		}
5600 
5601 		if ((zio->io_type == ZIO_TYPE_READ ||
5602 		    zio->io_type == ZIO_TYPE_FREE) &&
5603 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
5604 		    zio->io_error == ENXIO &&
5605 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
5606 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
5607 			zio->io_post |= ZIO_POST_SUSPEND;
5608 
5609 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) &&
5610 		    !(zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND)))
5611 			zio->io_post |= ZIO_POST_SUSPEND;
5612 
5613 		/*
5614 		 * Here is a possibly good place to attempt to do
5615 		 * either combinatorial reconstruction or error correction
5616 		 * based on checksums.  It also might be a good place
5617 		 * to send out preliminary ereports before we suspend
5618 		 * processing.
5619 		 */
5620 	}
5621 
5622 	/*
5623 	 * If there were logical child errors, they apply to us now.
5624 	 * We defer this until now to avoid conflating logical child
5625 	 * errors with errors that happened to the zio itself when
5626 	 * updating vdev stats and reporting FMA events above.
5627 	 */
5628 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
5629 
5630 	if ((zio->io_error ||
5631 	    (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND))) &&
5632 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
5633 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
5634 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
5635 
5636 	zio_gang_tree_free(&zio->io_gang_tree);
5637 
5638 	/*
5639 	 * Godfather I/Os should never suspend.
5640 	 */
5641 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
5642 	    (zio->io_post & ZIO_POST_SUSPEND))
5643 		zio->io_post &= ~ZIO_POST_SUSPEND;
5644 
5645 	if (zio->io_post & (ZIO_POST_REEXECUTE|ZIO_POST_SUSPEND)) {
5646 		/*
5647 		 * A Direct I/O operation that has a checksum verify error
5648 		 * should not attempt to reexecute. Instead, the error should
5649 		 * just be propagated back.
5650 		 */
5651 		ASSERT0(zio->io_post & ZIO_POST_DIO_CHKSUM_ERR);
5652 
5653 		/*
5654 		 * This is a logical I/O that wants to reexecute.
5655 		 *
5656 		 * Reexecute is top-down.  When an i/o fails, if it's not
5657 		 * the root, it simply notifies its parent and sticks around.
5658 		 * The parent, seeing that it still has children in zio_done(),
5659 		 * does the same.  This percolates all the way up to the root.
5660 		 * The root i/o will reexecute or suspend the entire tree.
5661 		 *
5662 		 * This approach ensures that zio_reexecute() honors
5663 		 * all the original i/o dependency relationships, e.g.
5664 		 * parents not executing until children are ready.
5665 		 */
5666 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
5667 
5668 		zio->io_gang_leader = NULL;
5669 
5670 		mutex_enter(&zio->io_lock);
5671 		zio->io_state[ZIO_WAIT_DONE] = 1;
5672 		mutex_exit(&zio->io_lock);
5673 
5674 		/*
5675 		 * "The Godfather" I/O monitors its children but is
5676 		 * not a true parent to them. It will track them through
5677 		 * the pipeline but severs its ties whenever they get into
5678 		 * trouble (e.g. suspended). This allows "The Godfather"
5679 		 * I/O to return status without blocking.
5680 		 */
5681 		zl = NULL;
5682 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
5683 		    pio = pio_next) {
5684 			zio_link_t *remove_zl = zl;
5685 			pio_next = zio_walk_parents(zio, &zl);
5686 
5687 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
5688 			    (zio->io_post & ZIO_POST_SUSPEND)) {
5689 				zio_remove_child(pio, zio, remove_zl);
5690 				/*
5691 				 * This is a rare code path, so we don't
5692 				 * bother with "next_to_execute".
5693 				 */
5694 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
5695 				    NULL);
5696 			}
5697 		}
5698 
5699 		if ((pio = zio_unique_parent(zio)) != NULL) {
5700 			/*
5701 			 * We're not a root i/o, so there's nothing to do
5702 			 * but notify our parent.  Don't propagate errors
5703 			 * upward since we haven't permanently failed yet.
5704 			 */
5705 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
5706 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
5707 			/*
5708 			 * This is a rare code path, so we don't bother with
5709 			 * "next_to_execute".
5710 			 */
5711 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
5712 		} else if (zio->io_post & ZIO_POST_SUSPEND) {
5713 			/*
5714 			 * We'd fail again if we reexecuted now, so suspend
5715 			 * until conditions improve (e.g. device comes online).
5716 			 */
5717 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
5718 		} else {
5719 			ASSERT(zio->io_post & ZIO_POST_REEXECUTE);
5720 			/*
5721 			 * Reexecution is potentially a huge amount of work.
5722 			 * Hand it off to the otherwise-unused claim taskq.
5723 			 */
5724 			spa_taskq_dispatch(zio->io_spa,
5725 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
5726 			    zio_reexecute, zio, B_FALSE);
5727 		}
5728 		return (NULL);
5729 	}
5730 
5731 	ASSERT(list_is_empty(&zio->io_child_list));
5732 	ASSERT0(zio->io_post & ZIO_POST_REEXECUTE);
5733 	ASSERT0(zio->io_post & ZIO_POST_SUSPEND);
5734 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5735 
5736 	/*
5737 	 * Report any checksum errors, since the I/O is complete.
5738 	 */
5739 	while (zio->io_cksum_report != NULL) {
5740 		zio_cksum_report_t *zcr = zio->io_cksum_report;
5741 		zio->io_cksum_report = zcr->zcr_next;
5742 		zcr->zcr_next = NULL;
5743 		zcr->zcr_finish(zcr, NULL);
5744 		zfs_ereport_free_checksum(zcr);
5745 	}
5746 
5747 	/*
5748 	 * It is the responsibility of the done callback to ensure that this
5749 	 * particular zio is no longer discoverable for adoption, and as
5750 	 * such, cannot acquire any new parents.
5751 	 */
5752 	if (zio->io_done)
5753 		zio->io_done(zio);
5754 
5755 	mutex_enter(&zio->io_lock);
5756 	zio->io_state[ZIO_WAIT_DONE] = 1;
5757 	mutex_exit(&zio->io_lock);
5758 
5759 	/*
5760 	 * We are done executing this zio.  We may want to execute a parent
5761 	 * next.  See the comment in zio_notify_parent().
5762 	 */
5763 	zio_t *next_to_execute = NULL;
5764 	zl = NULL;
5765 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5766 		zio_link_t *remove_zl = zl;
5767 		pio_next = zio_walk_parents(zio, &zl);
5768 		zio_remove_child(pio, zio, remove_zl);
5769 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5770 	}
5771 
5772 	if (zio->io_waiter != NULL) {
5773 		mutex_enter(&zio->io_lock);
5774 		zio->io_executor = NULL;
5775 		cv_broadcast(&zio->io_cv);
5776 		mutex_exit(&zio->io_lock);
5777 	} else {
5778 		zio_destroy(zio);
5779 	}
5780 
5781 	return (next_to_execute);
5782 }
5783 
5784 /*
5785  * ==========================================================================
5786  * I/O pipeline definition
5787  * ==========================================================================
5788  */
5789 static zio_pipe_stage_t *zio_pipeline[] = {
5790 	NULL,
5791 	zio_read_bp_init,
5792 	zio_write_bp_init,
5793 	zio_free_bp_init,
5794 	zio_issue_async,
5795 	zio_write_compress,
5796 	zio_encrypt,
5797 	zio_checksum_generate,
5798 	zio_nop_write,
5799 	zio_brt_free,
5800 	zio_ddt_read_start,
5801 	zio_ddt_read_done,
5802 	zio_ddt_write,
5803 	zio_ddt_free,
5804 	zio_gang_assemble,
5805 	zio_gang_issue,
5806 	zio_dva_throttle,
5807 	zio_dva_allocate,
5808 	zio_dva_free,
5809 	zio_dva_claim,
5810 	zio_ready,
5811 	zio_vdev_io_start,
5812 	zio_vdev_io_done,
5813 	zio_vdev_io_assess,
5814 	zio_checksum_verify,
5815 	zio_dio_checksum_verify,
5816 	zio_done
5817 };
5818 
5819 
5820 
5821 
5822 /*
5823  * Compare two zbookmark_phys_t's to see which we would reach first in a
5824  * pre-order traversal of the object tree.
5825  *
5826  * This is simple in every case aside from the meta-dnode object. For all other
5827  * objects, we traverse them in order (object 1 before object 2, and so on).
5828  * However, all of these objects are traversed while traversing object 0, since
5829  * the data it points to is the list of objects.  Thus, we need to convert to a
5830  * canonical representation so we can compare meta-dnode bookmarks to
5831  * non-meta-dnode bookmarks.
5832  *
5833  * We do this by calculating "equivalents" for each field of the zbookmark.
5834  * zbookmarks outside of the meta-dnode use their own object and level, and
5835  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5836  * blocks this bookmark refers to) by multiplying their blkid by their span
5837  * (the number of L0 blocks contained within one block at their level).
5838  * zbookmarks inside the meta-dnode calculate their object equivalent
5839  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5840  * level + 1<<31 (any value larger than a level could ever be) for their level.
5841  * This causes them to always compare before a bookmark in their object
5842  * equivalent, compare appropriately to bookmarks in other objects, and to
5843  * compare appropriately to other bookmarks in the meta-dnode.
5844  */
5845 int
zbookmark_compare(uint16_t dbss1,uint8_t ibs1,uint16_t dbss2,uint8_t ibs2,const zbookmark_phys_t * zb1,const zbookmark_phys_t * zb2)5846 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5847     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5848 {
5849 	/*
5850 	 * These variables represent the "equivalent" values for the zbookmark,
5851 	 * after converting zbookmarks inside the meta dnode to their
5852 	 * normal-object equivalents.
5853 	 */
5854 	uint64_t zb1obj, zb2obj;
5855 	uint64_t zb1L0, zb2L0;
5856 	uint64_t zb1level, zb2level;
5857 
5858 	if (zb1->zb_object == zb2->zb_object &&
5859 	    zb1->zb_level == zb2->zb_level &&
5860 	    zb1->zb_blkid == zb2->zb_blkid)
5861 		return (0);
5862 
5863 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5864 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5865 
5866 	/*
5867 	 * BP_SPANB calculates the span in blocks.
5868 	 */
5869 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5870 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5871 
5872 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5873 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5874 		zb1L0 = 0;
5875 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5876 	} else {
5877 		zb1obj = zb1->zb_object;
5878 		zb1level = zb1->zb_level;
5879 	}
5880 
5881 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5882 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5883 		zb2L0 = 0;
5884 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5885 	} else {
5886 		zb2obj = zb2->zb_object;
5887 		zb2level = zb2->zb_level;
5888 	}
5889 
5890 	/* Now that we have a canonical representation, do the comparison. */
5891 	if (zb1obj != zb2obj)
5892 		return (zb1obj < zb2obj ? -1 : 1);
5893 	else if (zb1L0 != zb2L0)
5894 		return (zb1L0 < zb2L0 ? -1 : 1);
5895 	else if (zb1level != zb2level)
5896 		return (zb1level > zb2level ? -1 : 1);
5897 	/*
5898 	 * This can (theoretically) happen if the bookmarks have the same object
5899 	 * and level, but different blkids, if the block sizes are not the same.
5900 	 * There is presently no way to change the indirect block sizes
5901 	 */
5902 	return (0);
5903 }
5904 
5905 /*
5906  *  This function checks the following: given that last_block is the place that
5907  *  our traversal stopped last time, does that guarantee that we've visited
5908  *  every node under subtree_root?  Therefore, we can't just use the raw output
5909  *  of zbookmark_compare.  We have to pass in a modified version of
5910  *  subtree_root; by incrementing the block id, and then checking whether
5911  *  last_block is before or equal to that, we can tell whether or not having
5912  *  visited last_block implies that all of subtree_root's children have been
5913  *  visited.
5914  */
5915 boolean_t
zbookmark_subtree_completed(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5916 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5917     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5918 {
5919 	zbookmark_phys_t mod_zb = *subtree_root;
5920 	mod_zb.zb_blkid++;
5921 	ASSERT0(last_block->zb_level);
5922 
5923 	/* The objset_phys_t isn't before anything. */
5924 	if (dnp == NULL)
5925 		return (B_FALSE);
5926 
5927 	/*
5928 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5929 	 * data block size in sectors, because that variable is only used if
5930 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5931 	 * know without examining it what object it refers to, and there's no
5932 	 * harm in passing in this value in other cases, we always pass it in.
5933 	 *
5934 	 * We pass in 0 for the indirect block size shift because zb2 must be
5935 	 * level 0.  The indirect block size is only used to calculate the span
5936 	 * of the bookmark, but since the bookmark must be level 0, the span is
5937 	 * always 1, so the math works out.
5938 	 *
5939 	 * If you make changes to how the zbookmark_compare code works, be sure
5940 	 * to make sure that this code still works afterwards.
5941 	 */
5942 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5943 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5944 	    last_block) <= 0);
5945 }
5946 
5947 /*
5948  * This function is similar to zbookmark_subtree_completed(), but returns true
5949  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5950  */
5951 boolean_t
zbookmark_subtree_tbd(const dnode_phys_t * dnp,const zbookmark_phys_t * subtree_root,const zbookmark_phys_t * last_block)5952 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5953     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5954 {
5955 	ASSERT0(last_block->zb_level);
5956 	if (dnp == NULL)
5957 		return (B_FALSE);
5958 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5959 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5960 	    last_block) >= 0);
5961 }
5962 
5963 EXPORT_SYMBOL(zio_type_name);
5964 EXPORT_SYMBOL(zio_buf_alloc);
5965 EXPORT_SYMBOL(zio_data_buf_alloc);
5966 EXPORT_SYMBOL(zio_buf_free);
5967 EXPORT_SYMBOL(zio_data_buf_free);
5968 
5969 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5970 	"Max I/O completion time (milliseconds) before marking it as slow");
5971 
5972 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5973 	"Prioritize requeued I/O");
5974 
5975 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5976 	"Defer frees starting in this pass");
5977 
5978 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5979 	"Don't compress starting in this pass");
5980 
5981 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5982 	"Rewrite new bps starting in this pass");
5983 
5984 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5985 	"Throttle block allocations in the ZIO pipeline");
5986 
5987 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5988 	"Log all slow ZIOs, not just those with vdevs");
5989