1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc.
28 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
29 * Copyright (c) 2015, 2017, Intel Corporation.
30 * Copyright (c) 2020 Datto Inc.
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
35 * Copyright (c) 2021 Allan Jude
36 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
37 * Copyright (c) 2023, 2024, Klara Inc.
38 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
39 */
40
41 #include <stdio.h>
42 #include <unistd.h>
43 #include <stdlib.h>
44 #include <ctype.h>
45 #include <getopt.h>
46 #include <openssl/evp.h>
47 #include <sys/zfs_context.h>
48 #include <sys/spa.h>
49 #include <sys/spa_impl.h>
50 #include <sys/dmu.h>
51 #include <sys/zap.h>
52 #include <sys/zap_impl.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/zfs_znode.h>
55 #include <sys/zfs_sa.h>
56 #include <sys/sa.h>
57 #include <sys/sa_impl.h>
58 #include <sys/vdev.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/dsl_dir.h>
63 #include <sys/dsl_dataset.h>
64 #include <sys/dsl_pool.h>
65 #include <sys/dsl_bookmark.h>
66 #include <sys/dbuf.h>
67 #include <sys/zil.h>
68 #include <sys/zil_impl.h>
69 #include <sys/stat.h>
70 #include <sys/resource.h>
71 #include <sys/dmu_send.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/zio_checksum.h>
74 #include <sys/zio_compress.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/arc.h>
77 #include <sys/arc_impl.h>
78 #include <sys/ddt.h>
79 #include <sys/ddt_impl.h>
80 #include <sys/zfeature.h>
81 #include <sys/abd.h>
82 #include <sys/blkptr.h>
83 #include <sys/dsl_crypt.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/btree.h>
86 #include <sys/brt.h>
87 #include <sys/brt_impl.h>
88 #include <zfs_comutil.h>
89 #include <sys/zstd/zstd.h>
90 #include <sys/backtrace.h>
91
92 #include <libnvpair.h>
93 #include <libzutil.h>
94 #include <libzfs_core.h>
95
96 #include <libzdb.h>
97
98 #include "zdb.h"
99
100
101 extern int reference_tracking_enable;
102 extern int zfs_recover;
103 extern uint_t zfs_vdev_async_read_max_active;
104 extern boolean_t spa_load_verify_dryrun;
105 extern boolean_t spa_mode_readable_spacemaps;
106 extern uint_t zfs_reconstruct_indirect_combinations_max;
107 extern uint_t zfs_btree_verify_intensity;
108
109 static const char cmdname[] = "zdb";
110 uint8_t dump_opt[256];
111
112 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
113
114 static uint64_t *zopt_metaslab = NULL;
115 static unsigned zopt_metaslab_args = 0;
116
117
118 static zopt_object_range_t *zopt_object_ranges = NULL;
119 static unsigned zopt_object_args = 0;
120
121 static int flagbits[256];
122
123
124 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
125 static int leaked_objects = 0;
126 static zfs_range_tree_t *mos_refd_objs;
127 static spa_t *spa;
128 static objset_t *os;
129 static boolean_t kernel_init_done;
130 static boolean_t corruption_found = B_FALSE;
131
132 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
133 boolean_t);
134 static void mos_obj_refd(uint64_t);
135 static void mos_obj_refd_multiple(uint64_t);
136 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
137 dmu_tx_t *tx);
138
139
140
141 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
142 static void zdb_exit(int reason);
143
144 typedef struct sublivelist_verify_block_refcnt {
145 /* block pointer entry in livelist being verified */
146 blkptr_t svbr_blk;
147
148 /*
149 * Refcount gets incremented to 1 when we encounter the first
150 * FREE entry for the svfbr block pointer and a node for it
151 * is created in our ZDB verification/tracking metadata.
152 *
153 * As we encounter more FREE entries we increment this counter
154 * and similarly decrement it whenever we find the respective
155 * ALLOC entries for this block.
156 *
157 * When the refcount gets to 0 it means that all the FREE and
158 * ALLOC entries of this block have paired up and we no longer
159 * need to track it in our verification logic (e.g. the node
160 * containing this struct in our verification data structure
161 * should be freed).
162 *
163 * [refer to sublivelist_verify_blkptr() for the actual code]
164 */
165 uint32_t svbr_refcnt;
166 } sublivelist_verify_block_refcnt_t;
167
168 static int
sublivelist_block_refcnt_compare(const void * larg,const void * rarg)169 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
170 {
171 const sublivelist_verify_block_refcnt_t *l = larg;
172 const sublivelist_verify_block_refcnt_t *r = rarg;
173 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
174 }
175
176 static int
sublivelist_verify_blkptr(void * arg,const blkptr_t * bp,boolean_t free,dmu_tx_t * tx)177 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
178 dmu_tx_t *tx)
179 {
180 ASSERT0P(tx);
181 struct sublivelist_verify *sv = arg;
182 sublivelist_verify_block_refcnt_t current = {
183 .svbr_blk = *bp,
184
185 /*
186 * Start with 1 in case this is the first free entry.
187 * This field is not used for our B-Tree comparisons
188 * anyway.
189 */
190 .svbr_refcnt = 1,
191 };
192
193 zfs_btree_index_t where;
194 sublivelist_verify_block_refcnt_t *pair =
195 zfs_btree_find(&sv->sv_pair, ¤t, &where);
196 if (free) {
197 if (pair == NULL) {
198 /* first free entry for this block pointer */
199 zfs_btree_add(&sv->sv_pair, ¤t);
200 } else {
201 pair->svbr_refcnt++;
202 }
203 } else {
204 if (pair == NULL) {
205 /* block that is currently marked as allocated */
206 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
207 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
208 break;
209 sublivelist_verify_block_t svb = {
210 .svb_dva = bp->blk_dva[i],
211 .svb_allocated_txg =
212 BP_GET_BIRTH(bp)
213 };
214
215 if (zfs_btree_find(&sv->sv_leftover, &svb,
216 &where) == NULL) {
217 zfs_btree_add_idx(&sv->sv_leftover,
218 &svb, &where);
219 }
220 }
221 } else {
222 /* alloc matches a free entry */
223 pair->svbr_refcnt--;
224 if (pair->svbr_refcnt == 0) {
225 /* all allocs and frees have been matched */
226 zfs_btree_remove_idx(&sv->sv_pair, &where);
227 }
228 }
229 }
230
231 return (0);
232 }
233
234 static int
sublivelist_verify_func(void * args,dsl_deadlist_entry_t * dle)235 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
236 {
237 int err;
238 struct sublivelist_verify *sv = args;
239
240 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
241 sizeof (sublivelist_verify_block_refcnt_t));
242
243 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
244 sv, NULL);
245
246 sublivelist_verify_block_refcnt_t *e;
247 zfs_btree_index_t *cookie = NULL;
248 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
249 char blkbuf[BP_SPRINTF_LEN];
250 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
251 &e->svbr_blk, B_TRUE);
252 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
253 e->svbr_refcnt, blkbuf);
254 corruption_found = B_TRUE;
255 }
256 zfs_btree_destroy(&sv->sv_pair);
257
258 return (err);
259 }
260
261 static int
livelist_block_compare(const void * larg,const void * rarg)262 livelist_block_compare(const void *larg, const void *rarg)
263 {
264 const sublivelist_verify_block_t *l = larg;
265 const sublivelist_verify_block_t *r = rarg;
266
267 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
268 return (-1);
269 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
270 return (+1);
271
272 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
273 return (-1);
274 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
275 return (+1);
276
277 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
278 return (-1);
279 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
280 return (+1);
281
282 return (0);
283 }
284
285 /*
286 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
287 * sublivelist_verify_t: sv->sv_leftover
288 */
289 static void
livelist_verify(dsl_deadlist_t * dl,void * arg)290 livelist_verify(dsl_deadlist_t *dl, void *arg)
291 {
292 sublivelist_verify_t *sv = arg;
293 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
294 }
295
296 /*
297 * Check for errors in the livelist entry and discard the intermediary
298 * data structures
299 */
300 static int
sublivelist_verify_lightweight(void * args,dsl_deadlist_entry_t * dle)301 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
302 {
303 (void) args;
304 sublivelist_verify_t sv;
305 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
306 sizeof (sublivelist_verify_block_t));
307 int err = sublivelist_verify_func(&sv, dle);
308 zfs_btree_clear(&sv.sv_leftover);
309 zfs_btree_destroy(&sv.sv_leftover);
310 return (err);
311 }
312
313 typedef struct metaslab_verify {
314 /*
315 * Tree containing all the leftover ALLOCs from the livelists
316 * that are part of this metaslab.
317 */
318 zfs_btree_t mv_livelist_allocs;
319
320 /*
321 * Metaslab information.
322 */
323 uint64_t mv_vdid;
324 uint64_t mv_msid;
325 uint64_t mv_start;
326 uint64_t mv_end;
327
328 /*
329 * What's currently allocated for this metaslab.
330 */
331 zfs_range_tree_t *mv_allocated;
332 } metaslab_verify_t;
333
334 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
335
336 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
337 void *arg);
338
339 typedef struct unflushed_iter_cb_arg {
340 spa_t *uic_spa;
341 uint64_t uic_txg;
342 void *uic_arg;
343 zdb_log_sm_cb_t uic_cb;
344 } unflushed_iter_cb_arg_t;
345
346 static int
iterate_through_spacemap_logs_cb(space_map_entry_t * sme,void * arg)347 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
348 {
349 unflushed_iter_cb_arg_t *uic = arg;
350 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
351 }
352
353 static void
iterate_through_spacemap_logs(spa_t * spa,zdb_log_sm_cb_t cb,void * arg)354 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
355 {
356 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
357 return;
358
359 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
360 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
361 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
362 space_map_t *sm = NULL;
363 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
364 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
365
366 unflushed_iter_cb_arg_t uic = {
367 .uic_spa = spa,
368 .uic_txg = sls->sls_txg,
369 .uic_arg = arg,
370 .uic_cb = cb
371 };
372 VERIFY0(space_map_iterate(sm, space_map_length(sm),
373 iterate_through_spacemap_logs_cb, &uic));
374 space_map_close(sm);
375 }
376 spa_config_exit(spa, SCL_CONFIG, FTAG);
377 }
378
379 static void
verify_livelist_allocs(metaslab_verify_t * mv,uint64_t txg,uint64_t offset,uint64_t size)380 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
381 uint64_t offset, uint64_t size)
382 {
383 sublivelist_verify_block_t svb = {{{0}}};
384 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
385 DVA_SET_OFFSET(&svb.svb_dva, offset);
386 DVA_SET_ASIZE(&svb.svb_dva, size);
387 zfs_btree_index_t where;
388 uint64_t end_offset = offset + size;
389
390 /*
391 * Look for an exact match for spacemap entry in the livelist entries.
392 * Then, look for other livelist entries that fall within the range
393 * of the spacemap entry as it may have been condensed
394 */
395 sublivelist_verify_block_t *found =
396 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
397 if (found == NULL) {
398 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
399 }
400 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
401 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
402 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
403 if (found->svb_allocated_txg <= txg) {
404 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
405 "from TXG %llx FREED at TXG %llx\n",
406 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
407 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
408 (u_longlong_t)found->svb_allocated_txg,
409 (u_longlong_t)txg);
410 corruption_found = B_TRUE;
411 }
412 }
413 }
414
415 static int
metaslab_spacemap_validation_cb(space_map_entry_t * sme,void * arg)416 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
417 {
418 metaslab_verify_t *mv = arg;
419 uint64_t offset = sme->sme_offset;
420 uint64_t size = sme->sme_run;
421 uint64_t txg = sme->sme_txg;
422
423 if (sme->sme_type == SM_ALLOC) {
424 if (zfs_range_tree_contains(mv->mv_allocated,
425 offset, size)) {
426 (void) printf("ERROR: DOUBLE ALLOC: "
427 "%llu [%llx:%llx] "
428 "%llu:%llu LOG_SM\n",
429 (u_longlong_t)txg, (u_longlong_t)offset,
430 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
431 (u_longlong_t)mv->mv_msid);
432 corruption_found = B_TRUE;
433 } else {
434 zfs_range_tree_add(mv->mv_allocated,
435 offset, size);
436 }
437 } else {
438 if (!zfs_range_tree_contains(mv->mv_allocated,
439 offset, size)) {
440 (void) printf("ERROR: DOUBLE FREE: "
441 "%llu [%llx:%llx] "
442 "%llu:%llu LOG_SM\n",
443 (u_longlong_t)txg, (u_longlong_t)offset,
444 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
445 (u_longlong_t)mv->mv_msid);
446 corruption_found = B_TRUE;
447 } else {
448 zfs_range_tree_remove(mv->mv_allocated,
449 offset, size);
450 }
451 }
452
453 if (sme->sme_type != SM_ALLOC) {
454 /*
455 * If something is freed in the spacemap, verify that
456 * it is not listed as allocated in the livelist.
457 */
458 verify_livelist_allocs(mv, txg, offset, size);
459 }
460 return (0);
461 }
462
463 static int
spacemap_check_sm_log_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)464 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
465 uint64_t txg, void *arg)
466 {
467 metaslab_verify_t *mv = arg;
468 uint64_t offset = sme->sme_offset;
469 uint64_t vdev_id = sme->sme_vdev;
470
471 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
472
473 /* skip indirect vdevs */
474 if (!vdev_is_concrete(vd))
475 return (0);
476
477 if (vdev_id != mv->mv_vdid)
478 return (0);
479
480 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
481 if (ms->ms_id != mv->mv_msid)
482 return (0);
483
484 if (txg < metaslab_unflushed_txg(ms))
485 return (0);
486
487
488 ASSERT3U(txg, ==, sme->sme_txg);
489 return (metaslab_spacemap_validation_cb(sme, mv));
490 }
491
492 static void
spacemap_check_sm_log(spa_t * spa,metaslab_verify_t * mv)493 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
494 {
495 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
496 }
497
498 static void
spacemap_check_ms_sm(space_map_t * sm,metaslab_verify_t * mv)499 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
500 {
501 if (sm == NULL)
502 return;
503
504 VERIFY0(space_map_iterate(sm, space_map_length(sm),
505 metaslab_spacemap_validation_cb, mv));
506 }
507
508 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
509
510 /*
511 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
512 * they are part of that metaslab (mv_msid).
513 */
514 static void
mv_populate_livelist_allocs(metaslab_verify_t * mv,sublivelist_verify_t * sv)515 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
516 {
517 zfs_btree_index_t where;
518 sublivelist_verify_block_t *svb;
519 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
520 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
521 svb != NULL;
522 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
523 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
524 continue;
525
526 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
527 (DVA_GET_OFFSET(&svb->svb_dva) +
528 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
529 (void) printf("ERROR: Found block that crosses "
530 "metaslab boundary: <%llu:%llx:%llx>\n",
531 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
532 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
533 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
534 corruption_found = B_TRUE;
535 continue;
536 }
537
538 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
539 continue;
540
541 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
542 continue;
543
544 if ((DVA_GET_OFFSET(&svb->svb_dva) +
545 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
546 (void) printf("ERROR: Found block that crosses "
547 "metaslab boundary: <%llu:%llx:%llx>\n",
548 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
549 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
550 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
551 corruption_found = B_TRUE;
552 continue;
553 }
554
555 zfs_btree_add(&mv->mv_livelist_allocs, svb);
556 }
557
558 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
559 svb != NULL;
560 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
561 zfs_btree_remove(&sv->sv_leftover, svb);
562 }
563 }
564
565 /*
566 * [Livelist Check]
567 * Iterate through all the sublivelists and:
568 * - report leftover frees (**)
569 * - record leftover ALLOCs together with their TXG [see Cross Check]
570 *
571 * (**) Note: Double ALLOCs are valid in datasets that have dedup
572 * enabled. Similarly double FREEs are allowed as well but
573 * only if they pair up with a corresponding ALLOC entry once
574 * we our done with our sublivelist iteration.
575 *
576 * [Spacemap Check]
577 * for each metaslab:
578 * - iterate over spacemap and then the metaslab's entries in the
579 * spacemap log, then report any double FREEs and ALLOCs (do not
580 * blow up).
581 *
582 * [Cross Check]
583 * After finishing the Livelist Check phase and while being in the
584 * Spacemap Check phase, we find all the recorded leftover ALLOCs
585 * of the livelist check that are part of the metaslab that we are
586 * currently looking at in the Spacemap Check. We report any entries
587 * that are marked as ALLOCs in the livelists but have been actually
588 * freed (and potentially allocated again) after their TXG stamp in
589 * the spacemaps. Also report any ALLOCs from the livelists that
590 * belong to indirect vdevs (e.g. their vdev completed removal).
591 *
592 * Note that this will miss Log Spacemap entries that cancelled each other
593 * out before being flushed to the metaslab, so we are not guaranteed
594 * to match all erroneous ALLOCs.
595 */
596 static void
livelist_metaslab_validate(spa_t * spa)597 livelist_metaslab_validate(spa_t *spa)
598 {
599 (void) printf("Verifying deleted livelist entries\n");
600
601 sublivelist_verify_t sv;
602 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
603 sizeof (sublivelist_verify_block_t));
604 iterate_deleted_livelists(spa, livelist_verify, &sv);
605
606 (void) printf("Verifying metaslab entries\n");
607 vdev_t *rvd = spa->spa_root_vdev;
608 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
609 vdev_t *vd = rvd->vdev_child[c];
610
611 if (!vdev_is_concrete(vd))
612 continue;
613
614 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
615 metaslab_t *m = vd->vdev_ms[mid];
616
617 (void) fprintf(stderr,
618 "\rverifying concrete vdev %llu, "
619 "metaslab %llu of %llu ...",
620 (longlong_t)vd->vdev_id,
621 (longlong_t)mid,
622 (longlong_t)vd->vdev_ms_count);
623
624 uint64_t shift, start;
625 zfs_range_seg_type_t type =
626 metaslab_calculate_range_tree_type(vd, m,
627 &start, &shift);
628 metaslab_verify_t mv;
629 mv.mv_allocated = zfs_range_tree_create_flags(
630 NULL, type, NULL, start, shift,
631 0, "livelist_metaslab_validate:mv_allocated");
632 mv.mv_vdid = vd->vdev_id;
633 mv.mv_msid = m->ms_id;
634 mv.mv_start = m->ms_start;
635 mv.mv_end = m->ms_start + m->ms_size;
636 zfs_btree_create(&mv.mv_livelist_allocs,
637 livelist_block_compare, NULL,
638 sizeof (sublivelist_verify_block_t));
639
640 mv_populate_livelist_allocs(&mv, &sv);
641
642 spacemap_check_ms_sm(m->ms_sm, &mv);
643 spacemap_check_sm_log(spa, &mv);
644
645 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL);
646 zfs_range_tree_destroy(mv.mv_allocated);
647 zfs_btree_clear(&mv.mv_livelist_allocs);
648 zfs_btree_destroy(&mv.mv_livelist_allocs);
649 }
650 }
651 (void) fprintf(stderr, "\n");
652
653 /*
654 * If there are any segments in the leftover tree after we walked
655 * through all the metaslabs in the concrete vdevs then this means
656 * that we have segments in the livelists that belong to indirect
657 * vdevs and are marked as allocated.
658 */
659 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
660 zfs_btree_destroy(&sv.sv_leftover);
661 return;
662 }
663 (void) printf("ERROR: Found livelist blocks marked as allocated "
664 "for indirect vdevs:\n");
665 corruption_found = B_TRUE;
666
667 zfs_btree_index_t *where = NULL;
668 sublivelist_verify_block_t *svb;
669 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
670 NULL) {
671 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
672 ASSERT3U(vdev_id, <, rvd->vdev_children);
673 vdev_t *vd = rvd->vdev_child[vdev_id];
674 ASSERT(!vdev_is_concrete(vd));
675 (void) printf("<%d:%llx:%llx> TXG %llx\n",
676 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
677 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
678 (u_longlong_t)svb->svb_allocated_txg);
679 }
680 (void) printf("\n");
681 zfs_btree_destroy(&sv.sv_leftover);
682 }
683
684 /*
685 * These libumem hooks provide a reasonable set of defaults for the allocator's
686 * debugging facilities.
687 */
688 const char *
_umem_debug_init(void)689 _umem_debug_init(void)
690 {
691 return ("default,verbose"); /* $UMEM_DEBUG setting */
692 }
693
694 const char *
_umem_logging_init(void)695 _umem_logging_init(void)
696 {
697 return ("fail,contents"); /* $UMEM_LOGGING setting */
698 }
699
700 static void
usage(void)701 usage(void)
702 {
703 (void) fprintf(stderr,
704 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
705 "[-I <inflight I/Os>]\n"
706 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
707 "\t\t[-K <key>]\n"
708 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
709 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
710 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
711 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
712 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
713 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
714 "\t%s [-v] <bookmark>\n"
715 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
716 "\t%s -l [-Aqu] <device>\n"
717 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
718 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
719 "\t%s -O [-K <key>] <dataset> <path>\n"
720 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
721 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
722 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
723 "\t%s -E [-A] word0:word1:...:word15\n"
724 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
725 "<poolname>\n\n",
726 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
727 cmdname, cmdname, cmdname, cmdname, cmdname);
728
729 (void) fprintf(stderr, " Dataset name must include at least one "
730 "separator character '/' or '@'\n");
731 (void) fprintf(stderr, " If dataset name is specified, only that "
732 "dataset is dumped\n");
733 (void) fprintf(stderr, " If object numbers or object number "
734 "ranges are specified, only those\n"
735 " objects or ranges are dumped.\n\n");
736 (void) fprintf(stderr,
737 " Object ranges take the form <start>:<end>[:<flags>]\n"
738 " start Starting object number\n"
739 " end Ending object number, or -1 for no upper bound\n"
740 " flags Optional flags to select object types:\n"
741 " A All objects (this is the default)\n"
742 " d ZFS directories\n"
743 " f ZFS files \n"
744 " m SPA space maps\n"
745 " z ZAPs\n"
746 " - Negate effect of next flag\n\n");
747 (void) fprintf(stderr, " Options to control amount of output:\n");
748 (void) fprintf(stderr, " -b --block-stats "
749 "block statistics\n");
750 (void) fprintf(stderr, " -B --backup "
751 "backup stream\n");
752 (void) fprintf(stderr, " -c --checksum "
753 "checksum all metadata (twice for all data) blocks\n");
754 (void) fprintf(stderr, " -C --config "
755 "config (or cachefile if alone)\n");
756 (void) fprintf(stderr, " -d --datasets "
757 "dataset(s)\n");
758 (void) fprintf(stderr, " -D --dedup-stats "
759 "dedup statistics\n");
760 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
761 " decode and display block "
762 "from an embedded block pointer\n");
763 (void) fprintf(stderr, " -h --history "
764 "pool history\n");
765 (void) fprintf(stderr, " -i --intent-logs "
766 "intent logs\n");
767 (void) fprintf(stderr, " -l --label "
768 "read label contents\n");
769 (void) fprintf(stderr, " -k --checkpointed-state "
770 "examine the checkpointed state of the pool\n");
771 (void) fprintf(stderr, " -L --disable-leak-tracking "
772 "disable leak tracking (do not load spacemaps)\n");
773 (void) fprintf(stderr, " -m --metaslabs "
774 "metaslabs\n");
775 (void) fprintf(stderr, " -M --metaslab-groups "
776 "metaslab groups\n");
777 (void) fprintf(stderr, " -O --object-lookups "
778 "perform object lookups by path\n");
779 (void) fprintf(stderr, " -r --copy-object "
780 "copy an object by path to file\n");
781 (void) fprintf(stderr, " -R --read-block "
782 "read and display block from a device\n");
783 (void) fprintf(stderr, " -s --io-stats "
784 "report stats on zdb's I/O\n");
785 (void) fprintf(stderr, " -S --simulate-dedup "
786 "simulate dedup to measure effect\n");
787 (void) fprintf(stderr, " -v --verbose "
788 "verbose (applies to all others)\n");
789 (void) fprintf(stderr, " -y --livelist "
790 "perform livelist and metaslab validation on any livelists being "
791 "deleted\n\n");
792 (void) fprintf(stderr, " Below options are intended for use "
793 "with other options:\n");
794 (void) fprintf(stderr, " -A --ignore-assertions "
795 "ignore assertions (-A), enable panic recovery (-AA) or both "
796 "(-AAA)\n");
797 (void) fprintf(stderr, " -e --exported "
798 "pool is exported/destroyed/has altroot/not in a cachefile\n");
799 (void) fprintf(stderr, " -F --automatic-rewind "
800 "attempt automatic rewind within safe range of transaction "
801 "groups\n");
802 (void) fprintf(stderr, " -G --dump-debug-msg "
803 "dump zfs_dbgmsg buffer before exiting\n");
804 (void) fprintf(stderr, " -I --inflight=INTEGER "
805 "specify the maximum number of checksumming I/Os "
806 "[default is 200]\n");
807 (void) fprintf(stderr, " -K --key=KEY "
808 "decryption key for encrypted dataset\n");
809 (void) fprintf(stderr, " -o --option=\"NAME=VALUE\" "
810 "set the named tunable to the given value\n");
811 (void) fprintf(stderr, " -p --path==PATH "
812 "use one or more with -e to specify path to vdev dir\n");
813 (void) fprintf(stderr, " -P --parseable "
814 "print numbers in parseable form\n");
815 (void) fprintf(stderr, " -q --skip-label "
816 "don't print label contents\n");
817 (void) fprintf(stderr, " -t --txg=INTEGER "
818 "highest txg to use when searching for uberblocks\n");
819 (void) fprintf(stderr, " -T --brt-stats "
820 "BRT statistics\n");
821 (void) fprintf(stderr, " -u --uberblock "
822 "uberblock\n");
823 (void) fprintf(stderr, " -U --cachefile=PATH "
824 "use alternate cachefile\n");
825 (void) fprintf(stderr, " -V --verbatim "
826 "do verbatim import\n");
827 (void) fprintf(stderr, " -x --dump-blocks=PATH "
828 "dump all read blocks into specified directory\n");
829 (void) fprintf(stderr, " -X --extreme-rewind "
830 "attempt extreme rewind (does not work with dataset)\n");
831 (void) fprintf(stderr, " -Y --all-reconstruction "
832 "attempt all reconstruction combinations for split blocks\n");
833 (void) fprintf(stderr, " -Z --zstd-headers "
834 "show ZSTD headers \n");
835 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
836 "to make only that option verbose\n");
837 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
838 zdb_exit(2);
839 }
840
841 static void
dump_debug_buffer(void)842 dump_debug_buffer(void)
843 {
844 ssize_t ret __attribute__((unused));
845
846 if (!dump_opt['G'])
847 return;
848 /*
849 * We use write() instead of printf() so that this function
850 * is safe to call from a signal handler.
851 */
852 ret = write(STDERR_FILENO, "\n", 1);
853 zfs_dbgmsg_print(STDERR_FILENO, "zdb");
854 }
855
sig_handler(int signo)856 static void sig_handler(int signo)
857 {
858 struct sigaction action;
859
860 libspl_backtrace(STDERR_FILENO);
861 dump_debug_buffer();
862
863 /*
864 * Restore default action and re-raise signal so SIGSEGV and
865 * SIGABRT can trigger a core dump.
866 */
867 action.sa_handler = SIG_DFL;
868 sigemptyset(&action.sa_mask);
869 action.sa_flags = 0;
870 (void) sigaction(signo, &action, NULL);
871 raise(signo);
872 }
873
874 /*
875 * Called for usage errors that are discovered after a call to spa_open(),
876 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
877 */
878
879 static void
fatal(const char * fmt,...)880 fatal(const char *fmt, ...)
881 {
882 va_list ap;
883
884 va_start(ap, fmt);
885 (void) fprintf(stderr, "%s: ", cmdname);
886 (void) vfprintf(stderr, fmt, ap);
887 va_end(ap);
888 (void) fprintf(stderr, "\n");
889
890 dump_debug_buffer();
891
892 zdb_exit(1);
893 }
894
895 static void
dump_packed_nvlist(objset_t * os,uint64_t object,void * data,size_t size)896 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
897 {
898 (void) size;
899 nvlist_t *nv;
900 size_t nvsize = *(uint64_t *)data;
901 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
902
903 VERIFY0(dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
904
905 VERIFY0(nvlist_unpack(packed, nvsize, &nv, 0));
906
907 umem_free(packed, nvsize);
908
909 dump_nvlist(nv, 8);
910
911 nvlist_free(nv);
912 }
913
914 static void
dump_history_offsets(objset_t * os,uint64_t object,void * data,size_t size)915 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
916 {
917 (void) os, (void) object, (void) size;
918 spa_history_phys_t *shp = data;
919
920 if (shp == NULL)
921 return;
922
923 (void) printf("\t\tpool_create_len = %llu\n",
924 (u_longlong_t)shp->sh_pool_create_len);
925 (void) printf("\t\tphys_max_off = %llu\n",
926 (u_longlong_t)shp->sh_phys_max_off);
927 (void) printf("\t\tbof = %llu\n",
928 (u_longlong_t)shp->sh_bof);
929 (void) printf("\t\teof = %llu\n",
930 (u_longlong_t)shp->sh_eof);
931 (void) printf("\t\trecords_lost = %llu\n",
932 (u_longlong_t)shp->sh_records_lost);
933 }
934
935 static void
zdb_nicenum(uint64_t num,char * buf,size_t buflen)936 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
937 {
938 if (dump_opt['P'])
939 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
940 else
941 nicenum(num, buf, buflen);
942 }
943
944 static void
zdb_nicebytes(uint64_t bytes,char * buf,size_t buflen)945 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
946 {
947 if (dump_opt['P'])
948 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
949 else
950 zfs_nicebytes(bytes, buf, buflen);
951 }
952
953 static const char histo_stars[] = "****************************************";
954 static const uint64_t histo_width = sizeof (histo_stars) - 1;
955
956 static void
dump_histogram(const uint64_t * histo,int size,int offset)957 dump_histogram(const uint64_t *histo, int size, int offset)
958 {
959 int i;
960 int minidx = size - 1;
961 int maxidx = 0;
962 uint64_t max = 0;
963
964 for (i = 0; i < size; i++) {
965 if (histo[i] == 0)
966 continue;
967 if (histo[i] > max)
968 max = histo[i];
969 if (i > maxidx)
970 maxidx = i;
971 if (i < minidx)
972 minidx = i;
973 }
974
975 if (max < histo_width)
976 max = histo_width;
977
978 for (i = minidx; i <= maxidx; i++) {
979 (void) printf("\t\t\t%3u: %6llu %s\n",
980 i + offset, (u_longlong_t)histo[i],
981 &histo_stars[(max - histo[i]) * histo_width / max]);
982 }
983 }
984
985 static void
dump_zap_stats(objset_t * os,uint64_t object)986 dump_zap_stats(objset_t *os, uint64_t object)
987 {
988 int error;
989 zap_stats_t zs;
990
991 error = zap_get_stats(os, object, &zs);
992 if (error)
993 return;
994
995 if (zs.zs_ptrtbl_len == 0) {
996 ASSERT(zs.zs_num_blocks == 1);
997 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
998 (u_longlong_t)zs.zs_blocksize,
999 (u_longlong_t)zs.zs_num_entries);
1000 return;
1001 }
1002
1003 (void) printf("\tFat ZAP stats:\n");
1004
1005 (void) printf("\t\tPointer table:\n");
1006 (void) printf("\t\t\t%llu elements\n",
1007 (u_longlong_t)zs.zs_ptrtbl_len);
1008 (void) printf("\t\t\tzt_blk: %llu\n",
1009 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1010 (void) printf("\t\t\tzt_numblks: %llu\n",
1011 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1012 (void) printf("\t\t\tzt_shift: %llu\n",
1013 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1014 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1015 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1016 (void) printf("\t\t\tzt_nextblk: %llu\n",
1017 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1018
1019 (void) printf("\t\tZAP entries: %llu\n",
1020 (u_longlong_t)zs.zs_num_entries);
1021 (void) printf("\t\tLeaf blocks: %llu\n",
1022 (u_longlong_t)zs.zs_num_leafs);
1023 (void) printf("\t\tTotal blocks: %llu\n",
1024 (u_longlong_t)zs.zs_num_blocks);
1025 (void) printf("\t\tzap_block_type: 0x%llx\n",
1026 (u_longlong_t)zs.zs_block_type);
1027 (void) printf("\t\tzap_magic: 0x%llx\n",
1028 (u_longlong_t)zs.zs_magic);
1029 (void) printf("\t\tzap_salt: 0x%llx\n",
1030 (u_longlong_t)zs.zs_salt);
1031
1032 (void) printf("\t\tLeafs with 2^n pointers:\n");
1033 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1034
1035 (void) printf("\t\tBlocks with n*5 entries:\n");
1036 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1037
1038 (void) printf("\t\tBlocks n/10 full:\n");
1039 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1040
1041 (void) printf("\t\tEntries with n chunks:\n");
1042 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1043
1044 (void) printf("\t\tBuckets with n entries:\n");
1045 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1046 }
1047
1048 static void
dump_none(objset_t * os,uint64_t object,void * data,size_t size)1049 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1050 {
1051 (void) os, (void) object, (void) data, (void) size;
1052 }
1053
1054 static void
dump_unknown(objset_t * os,uint64_t object,void * data,size_t size)1055 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1056 {
1057 (void) os, (void) object, (void) data, (void) size;
1058 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1059 }
1060
1061 static void
dump_uint8(objset_t * os,uint64_t object,void * data,size_t size)1062 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1063 {
1064 (void) os, (void) object, (void) data, (void) size;
1065 }
1066
1067 static void
dump_uint64(objset_t * os,uint64_t object,void * data,size_t size)1068 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1069 {
1070 uint64_t *arr;
1071 uint64_t oursize;
1072 if (dump_opt['d'] < 6)
1073 return;
1074
1075 if (data == NULL) {
1076 dmu_object_info_t doi;
1077
1078 VERIFY0(dmu_object_info(os, object, &doi));
1079 size = doi.doi_max_offset;
1080 /*
1081 * We cap the size at 1 mebibyte here to prevent
1082 * allocation failures and nigh-infinite printing if the
1083 * object is extremely large.
1084 */
1085 oursize = MIN(size, 1 << 20);
1086 arr = kmem_alloc(oursize, KM_SLEEP);
1087
1088 int err = dmu_read(os, object, 0, oursize, arr, 0);
1089 if (err != 0) {
1090 (void) printf("got error %u from dmu_read\n", err);
1091 kmem_free(arr, oursize);
1092 return;
1093 }
1094 } else {
1095 /*
1096 * Even though the allocation is already done in this code path,
1097 * we still cap the size to prevent excessive printing.
1098 */
1099 oursize = MIN(size, 1 << 20);
1100 arr = data;
1101 }
1102
1103 if (size == 0) {
1104 if (data == NULL)
1105 kmem_free(arr, oursize);
1106 (void) printf("\t\t[]\n");
1107 return;
1108 }
1109
1110 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1111 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1112 if (i % 4 != 0)
1113 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1114 else
1115 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1116 }
1117 if (oursize != size)
1118 (void) printf(", ... ");
1119 (void) printf("]\n");
1120
1121 if (data == NULL)
1122 kmem_free(arr, oursize);
1123 }
1124
1125 static void
dump_zap(objset_t * os,uint64_t object,void * data,size_t size)1126 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1127 {
1128 (void) data, (void) size;
1129 zap_cursor_t zc;
1130 zap_attribute_t *attrp = zap_attribute_long_alloc();
1131 void *prop;
1132 unsigned i;
1133
1134 dump_zap_stats(os, object);
1135 (void) printf("\n");
1136
1137 for (zap_cursor_init(&zc, os, object);
1138 zap_cursor_retrieve(&zc, attrp) == 0;
1139 zap_cursor_advance(&zc)) {
1140 boolean_t key64 =
1141 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1142
1143 if (key64)
1144 (void) printf("\t\t0x%010" PRIu64 "x = ",
1145 *(uint64_t *)attrp->za_name);
1146 else
1147 (void) printf("\t\t%s = ", attrp->za_name);
1148
1149 if (attrp->za_num_integers == 0) {
1150 (void) printf("\n");
1151 continue;
1152 }
1153 prop = umem_zalloc(attrp->za_num_integers *
1154 attrp->za_integer_length, UMEM_NOFAIL);
1155
1156 if (key64)
1157 (void) zap_lookup_uint64(os, object,
1158 (const uint64_t *)attrp->za_name, 1,
1159 attrp->za_integer_length, attrp->za_num_integers,
1160 prop);
1161 else
1162 (void) zap_lookup(os, object, attrp->za_name,
1163 attrp->za_integer_length, attrp->za_num_integers,
1164 prop);
1165
1166 if (attrp->za_integer_length == 1 && !key64) {
1167 if (strcmp(attrp->za_name,
1168 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1169 strcmp(attrp->za_name,
1170 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1171 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1172 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1173 strcmp(attrp->za_name,
1174 DMU_POOL_CHECKSUM_SALT) == 0) {
1175 uint8_t *u8 = prop;
1176
1177 for (i = 0; i < attrp->za_num_integers; i++) {
1178 (void) printf("%02x", u8[i]);
1179 }
1180 } else {
1181 (void) printf("%s", (char *)prop);
1182 }
1183 } else {
1184 for (i = 0; i < attrp->za_num_integers; i++) {
1185 switch (attrp->za_integer_length) {
1186 case 1:
1187 (void) printf("%u ",
1188 ((uint8_t *)prop)[i]);
1189 break;
1190 case 2:
1191 (void) printf("%u ",
1192 ((uint16_t *)prop)[i]);
1193 break;
1194 case 4:
1195 (void) printf("%u ",
1196 ((uint32_t *)prop)[i]);
1197 break;
1198 case 8:
1199 (void) printf("%lld ",
1200 (u_longlong_t)((int64_t *)prop)[i]);
1201 break;
1202 }
1203 }
1204 }
1205 (void) printf("\n");
1206 umem_free(prop,
1207 attrp->za_num_integers * attrp->za_integer_length);
1208 }
1209 zap_cursor_fini(&zc);
1210 zap_attribute_free(attrp);
1211 }
1212
1213 static void
dump_bpobj(objset_t * os,uint64_t object,void * data,size_t size)1214 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1215 {
1216 bpobj_phys_t *bpop = data;
1217 uint64_t i;
1218 char bytes[32], comp[32], uncomp[32];
1219
1220 /* make sure the output won't get truncated */
1221 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1222 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1223 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1224
1225 if (bpop == NULL)
1226 return;
1227
1228 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1229 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1230 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1231
1232 (void) printf("\t\tnum_blkptrs = %llu\n",
1233 (u_longlong_t)bpop->bpo_num_blkptrs);
1234 (void) printf("\t\tbytes = %s\n", bytes);
1235 if (size >= BPOBJ_SIZE_V1) {
1236 (void) printf("\t\tcomp = %s\n", comp);
1237 (void) printf("\t\tuncomp = %s\n", uncomp);
1238 }
1239 if (size >= BPOBJ_SIZE_V2) {
1240 (void) printf("\t\tsubobjs = %llu\n",
1241 (u_longlong_t)bpop->bpo_subobjs);
1242 (void) printf("\t\tnum_subobjs = %llu\n",
1243 (u_longlong_t)bpop->bpo_num_subobjs);
1244 }
1245 if (size >= sizeof (*bpop)) {
1246 (void) printf("\t\tnum_freed = %llu\n",
1247 (u_longlong_t)bpop->bpo_num_freed);
1248 }
1249
1250 if (dump_opt['d'] < 5)
1251 return;
1252
1253 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1254 char blkbuf[BP_SPRINTF_LEN];
1255 blkptr_t bp;
1256
1257 int err = dmu_read(os, object,
1258 i * sizeof (bp), sizeof (bp), &bp, 0);
1259 if (err != 0) {
1260 (void) printf("got error %u from dmu_read\n", err);
1261 break;
1262 }
1263 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1264 BP_GET_FREE(&bp));
1265 (void) printf("\t%s\n", blkbuf);
1266 }
1267 }
1268
1269 static void
dump_bpobj_subobjs(objset_t * os,uint64_t object,void * data,size_t size)1270 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1271 {
1272 (void) data, (void) size;
1273 dmu_object_info_t doi;
1274 int64_t i;
1275
1276 VERIFY0(dmu_object_info(os, object, &doi));
1277 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1278
1279 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1280 if (err != 0) {
1281 (void) printf("got error %u from dmu_read\n", err);
1282 kmem_free(subobjs, doi.doi_max_offset);
1283 return;
1284 }
1285
1286 int64_t last_nonzero = -1;
1287 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1288 if (subobjs[i] != 0)
1289 last_nonzero = i;
1290 }
1291
1292 for (i = 0; i <= last_nonzero; i++) {
1293 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1294 }
1295 kmem_free(subobjs, doi.doi_max_offset);
1296 }
1297
1298 static void
dump_ddt_zap(objset_t * os,uint64_t object,void * data,size_t size)1299 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1300 {
1301 (void) data, (void) size;
1302 dump_zap_stats(os, object);
1303 /* contents are printed elsewhere, properly decoded */
1304 }
1305
1306 static void
dump_sa_attrs(objset_t * os,uint64_t object,void * data,size_t size)1307 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1308 {
1309 (void) data, (void) size;
1310 zap_cursor_t zc;
1311 zap_attribute_t *attrp = zap_attribute_alloc();
1312
1313 dump_zap_stats(os, object);
1314 (void) printf("\n");
1315
1316 for (zap_cursor_init(&zc, os, object);
1317 zap_cursor_retrieve(&zc, attrp) == 0;
1318 zap_cursor_advance(&zc)) {
1319 (void) printf("\t\t%s = ", attrp->za_name);
1320 if (attrp->za_num_integers == 0) {
1321 (void) printf("\n");
1322 continue;
1323 }
1324 (void) printf(" %llx : [%d:%d:%d]\n",
1325 (u_longlong_t)attrp->za_first_integer,
1326 (int)ATTR_LENGTH(attrp->za_first_integer),
1327 (int)ATTR_BSWAP(attrp->za_first_integer),
1328 (int)ATTR_NUM(attrp->za_first_integer));
1329 }
1330 zap_cursor_fini(&zc);
1331 zap_attribute_free(attrp);
1332 }
1333
1334 static void
dump_sa_layouts(objset_t * os,uint64_t object,void * data,size_t size)1335 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1336 {
1337 (void) data, (void) size;
1338 zap_cursor_t zc;
1339 zap_attribute_t *attrp = zap_attribute_alloc();
1340 uint16_t *layout_attrs;
1341 unsigned i;
1342
1343 dump_zap_stats(os, object);
1344 (void) printf("\n");
1345
1346 for (zap_cursor_init(&zc, os, object);
1347 zap_cursor_retrieve(&zc, attrp) == 0;
1348 zap_cursor_advance(&zc)) {
1349 (void) printf("\t\t%s = [", attrp->za_name);
1350 if (attrp->za_num_integers == 0) {
1351 (void) printf("\n");
1352 continue;
1353 }
1354
1355 VERIFY(attrp->za_integer_length == 2);
1356 layout_attrs = umem_zalloc(attrp->za_num_integers *
1357 attrp->za_integer_length, UMEM_NOFAIL);
1358
1359 VERIFY(zap_lookup(os, object, attrp->za_name,
1360 attrp->za_integer_length,
1361 attrp->za_num_integers, layout_attrs) == 0);
1362
1363 for (i = 0; i != attrp->za_num_integers; i++)
1364 (void) printf(" %d ", (int)layout_attrs[i]);
1365 (void) printf("]\n");
1366 umem_free(layout_attrs,
1367 attrp->za_num_integers * attrp->za_integer_length);
1368 }
1369 zap_cursor_fini(&zc);
1370 zap_attribute_free(attrp);
1371 }
1372
1373 static void
dump_zpldir(objset_t * os,uint64_t object,void * data,size_t size)1374 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1375 {
1376 (void) data, (void) size;
1377 zap_cursor_t zc;
1378 zap_attribute_t *attrp = zap_attribute_long_alloc();
1379 const char *typenames[] = {
1380 /* 0 */ "not specified",
1381 /* 1 */ "FIFO",
1382 /* 2 */ "Character Device",
1383 /* 3 */ "3 (invalid)",
1384 /* 4 */ "Directory",
1385 /* 5 */ "5 (invalid)",
1386 /* 6 */ "Block Device",
1387 /* 7 */ "7 (invalid)",
1388 /* 8 */ "Regular File",
1389 /* 9 */ "9 (invalid)",
1390 /* 10 */ "Symbolic Link",
1391 /* 11 */ "11 (invalid)",
1392 /* 12 */ "Socket",
1393 /* 13 */ "Door",
1394 /* 14 */ "Event Port",
1395 /* 15 */ "15 (invalid)",
1396 };
1397
1398 dump_zap_stats(os, object);
1399 (void) printf("\n");
1400
1401 for (zap_cursor_init(&zc, os, object);
1402 zap_cursor_retrieve(&zc, attrp) == 0;
1403 zap_cursor_advance(&zc)) {
1404 (void) printf("\t\t%s = %lld (type: %s)\n",
1405 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1406 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1407 }
1408 zap_cursor_fini(&zc);
1409 zap_attribute_free(attrp);
1410 }
1411
1412 static int
get_dtl_refcount(vdev_t * vd)1413 get_dtl_refcount(vdev_t *vd)
1414 {
1415 int refcount = 0;
1416
1417 if (vd->vdev_ops->vdev_op_leaf) {
1418 space_map_t *sm = vd->vdev_dtl_sm;
1419
1420 if (sm != NULL &&
1421 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1422 return (1);
1423 return (0);
1424 }
1425
1426 for (unsigned c = 0; c < vd->vdev_children; c++)
1427 refcount += get_dtl_refcount(vd->vdev_child[c]);
1428 return (refcount);
1429 }
1430
1431 static int
get_metaslab_refcount(vdev_t * vd)1432 get_metaslab_refcount(vdev_t *vd)
1433 {
1434 int refcount = 0;
1435
1436 if (vd->vdev_top == vd) {
1437 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1438 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1439
1440 if (sm != NULL &&
1441 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1442 refcount++;
1443 }
1444 }
1445 for (unsigned c = 0; c < vd->vdev_children; c++)
1446 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1447
1448 return (refcount);
1449 }
1450
1451 static int
get_obsolete_refcount(vdev_t * vd)1452 get_obsolete_refcount(vdev_t *vd)
1453 {
1454 uint64_t obsolete_sm_object;
1455 int refcount = 0;
1456
1457 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1458 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1459 dmu_object_info_t doi;
1460 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1461 obsolete_sm_object, &doi));
1462 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1463 refcount++;
1464 }
1465 } else {
1466 ASSERT0P(vd->vdev_obsolete_sm);
1467 ASSERT0(obsolete_sm_object);
1468 }
1469 for (unsigned c = 0; c < vd->vdev_children; c++) {
1470 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1471 }
1472
1473 return (refcount);
1474 }
1475
1476 static int
get_prev_obsolete_spacemap_refcount(spa_t * spa)1477 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1478 {
1479 uint64_t prev_obj =
1480 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1481 if (prev_obj != 0) {
1482 dmu_object_info_t doi;
1483 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1484 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1485 return (1);
1486 }
1487 }
1488 return (0);
1489 }
1490
1491 static int
get_checkpoint_refcount(vdev_t * vd)1492 get_checkpoint_refcount(vdev_t *vd)
1493 {
1494 int refcount = 0;
1495
1496 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1497 zap_contains(spa_meta_objset(vd->vdev_spa),
1498 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1499 refcount++;
1500
1501 for (uint64_t c = 0; c < vd->vdev_children; c++)
1502 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1503
1504 return (refcount);
1505 }
1506
1507 static int
get_log_spacemap_refcount(spa_t * spa)1508 get_log_spacemap_refcount(spa_t *spa)
1509 {
1510 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1511 }
1512
1513 static int
verify_spacemap_refcounts(spa_t * spa)1514 verify_spacemap_refcounts(spa_t *spa)
1515 {
1516 uint64_t expected_refcount = 0;
1517 uint64_t actual_refcount;
1518
1519 (void) feature_get_refcount(spa,
1520 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1521 &expected_refcount);
1522 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1523 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1524 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1525 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1526 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1527 actual_refcount += get_log_spacemap_refcount(spa);
1528
1529 if (expected_refcount != actual_refcount) {
1530 (void) printf("space map refcount mismatch: expected %lld != "
1531 "actual %lld\n",
1532 (longlong_t)expected_refcount,
1533 (longlong_t)actual_refcount);
1534 return (2);
1535 }
1536 return (0);
1537 }
1538
1539 static void
dump_spacemap(objset_t * os,space_map_t * sm)1540 dump_spacemap(objset_t *os, space_map_t *sm)
1541 {
1542 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1543 "INVALID", "INVALID", "INVALID", "INVALID" };
1544
1545 if (sm == NULL)
1546 return;
1547
1548 (void) printf("space map object %llu:\n",
1549 (longlong_t)sm->sm_object);
1550 (void) printf(" smp_length = 0x%llx\n",
1551 (longlong_t)sm->sm_phys->smp_length);
1552 (void) printf(" smp_alloc = 0x%llx\n",
1553 (longlong_t)sm->sm_phys->smp_alloc);
1554
1555 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1556 return;
1557
1558 /*
1559 * Print out the freelist entries in both encoded and decoded form.
1560 */
1561 uint8_t mapshift = sm->sm_shift;
1562 int64_t alloc = 0;
1563 uint64_t word, entry_id = 0;
1564 for (uint64_t offset = 0; offset < space_map_length(sm);
1565 offset += sizeof (word)) {
1566
1567 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1568 sizeof (word), &word, DMU_READ_PREFETCH));
1569
1570 if (sm_entry_is_debug(word)) {
1571 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1572 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1573 if (de_txg == 0) {
1574 (void) printf(
1575 "\t [%6llu] PADDING\n",
1576 (u_longlong_t)entry_id);
1577 } else {
1578 (void) printf(
1579 "\t [%6llu] %s: txg %llu pass %llu\n",
1580 (u_longlong_t)entry_id,
1581 ddata[SM_DEBUG_ACTION_DECODE(word)],
1582 (u_longlong_t)de_txg,
1583 (u_longlong_t)de_sync_pass);
1584 }
1585 entry_id++;
1586 continue;
1587 }
1588
1589 char entry_type;
1590 uint64_t entry_off, entry_run, entry_vdev;
1591
1592 if (sm_entry_is_single_word(word)) {
1593 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1594 'A' : 'F';
1595 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1596 sm->sm_start;
1597 entry_run = SM_RUN_DECODE(word) << mapshift;
1598
1599 (void) printf("\t [%6llu] %c "
1600 "range: %012llx-%012llx size: %08llx\n",
1601 (u_longlong_t)entry_id, entry_type,
1602 (u_longlong_t)entry_off,
1603 (u_longlong_t)(entry_off + entry_run - 1),
1604 (u_longlong_t)entry_run);
1605 } else {
1606 /* it is a two-word entry so we read another word */
1607 ASSERT(sm_entry_is_double_word(word));
1608
1609 uint64_t extra_word;
1610 offset += sizeof (extra_word);
1611 ASSERT3U(offset, <, space_map_length(sm));
1612 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1613 sizeof (extra_word), &extra_word,
1614 DMU_READ_PREFETCH));
1615
1616 entry_run = SM2_RUN_DECODE(word) << mapshift;
1617 entry_vdev = SM2_VDEV_DECODE(word);
1618 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1619 'A' : 'F';
1620 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1621 mapshift) + sm->sm_start;
1622
1623 if (zopt_metaslab_args == 0 ||
1624 zopt_metaslab[0] == entry_vdev) {
1625 (void) printf("\t [%6llu] %c "
1626 "range: %012llx-%012llx size: %08llx "
1627 "vdev: %llu\n",
1628 (u_longlong_t)entry_id, entry_type,
1629 (u_longlong_t)entry_off,
1630 (u_longlong_t)(entry_off + entry_run - 1),
1631 (u_longlong_t)entry_run,
1632 (u_longlong_t)entry_vdev);
1633 }
1634 }
1635
1636 if (entry_type == 'A')
1637 alloc += entry_run;
1638 else
1639 alloc -= entry_run;
1640 entry_id++;
1641 }
1642 if (alloc != space_map_allocated(sm)) {
1643 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1644 "with space map summary (%lld)\n",
1645 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1646 }
1647 }
1648
1649 static void
dump_metaslab_stats(metaslab_t * msp)1650 dump_metaslab_stats(metaslab_t *msp)
1651 {
1652 char maxbuf[32];
1653 zfs_range_tree_t *rt = msp->ms_allocatable;
1654 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1655 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1656
1657 /* max sure nicenum has enough space */
1658 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1659
1660 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1661
1662 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1663 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1664 "freepct", free_pct);
1665 (void) printf("\tIn-memory histogram:\n");
1666 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1667 }
1668
1669 static void
dump_metaslab(metaslab_t * msp)1670 dump_metaslab(metaslab_t *msp)
1671 {
1672 vdev_t *vd = msp->ms_group->mg_vd;
1673 spa_t *spa = vd->vdev_spa;
1674 space_map_t *sm = msp->ms_sm;
1675 char freebuf[32];
1676
1677 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1678 sizeof (freebuf));
1679
1680 (void) printf(
1681 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1682 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1683 (u_longlong_t)space_map_object(sm), freebuf);
1684
1685 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1686 mutex_enter(&msp->ms_lock);
1687 VERIFY0(metaslab_load(msp));
1688 zfs_range_tree_stat_verify(msp->ms_allocatable);
1689 dump_metaslab_stats(msp);
1690 metaslab_unload(msp);
1691 mutex_exit(&msp->ms_lock);
1692 }
1693
1694 if (dump_opt['m'] > 1 && sm != NULL &&
1695 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1696 /*
1697 * The space map histogram represents free space in chunks
1698 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1699 */
1700 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1701 (u_longlong_t)msp->ms_fragmentation);
1702 dump_histogram(sm->sm_phys->smp_histogram,
1703 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1704 }
1705
1706 if (vd->vdev_ops == &vdev_draid_ops)
1707 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1708 else
1709 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1710
1711 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1712
1713 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1714 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1715 (u_longlong_t)metaslab_unflushed_txg(msp));
1716 }
1717 }
1718
1719 static void
print_vdev_metaslab_header(vdev_t * vd)1720 print_vdev_metaslab_header(vdev_t *vd)
1721 {
1722 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1723 const char *bias_str = "";
1724 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1725 bias_str = VDEV_ALLOC_BIAS_LOG;
1726 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1727 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1728 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1729 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1730 }
1731
1732 uint64_t ms_flush_data_obj = 0;
1733 if (vd->vdev_top_zap != 0) {
1734 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1735 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1736 sizeof (uint64_t), 1, &ms_flush_data_obj);
1737 if (error != ENOENT) {
1738 ASSERT0(error);
1739 }
1740 }
1741
1742 (void) printf("\tvdev %10llu %s",
1743 (u_longlong_t)vd->vdev_id, bias_str);
1744
1745 if (ms_flush_data_obj != 0) {
1746 (void) printf(" ms_unflushed_phys object %llu",
1747 (u_longlong_t)ms_flush_data_obj);
1748 }
1749
1750 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1751 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1752 "offset", "spacemap", "free");
1753 (void) printf("\t%15s %19s %15s %12s\n",
1754 "---------------", "-------------------",
1755 "---------------", "------------");
1756 }
1757
1758 static void
dump_metaslab_groups(spa_t * spa,boolean_t show_special)1759 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1760 {
1761 vdev_t *rvd = spa->spa_root_vdev;
1762 metaslab_class_t *mc = spa_normal_class(spa);
1763 metaslab_class_t *smc = spa_special_class(spa);
1764 uint64_t fragmentation;
1765
1766 metaslab_class_histogram_verify(mc);
1767
1768 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1769 vdev_t *tvd = rvd->vdev_child[c];
1770 metaslab_group_t *mg = tvd->vdev_mg;
1771
1772 if (mg == NULL || (mg->mg_class != mc &&
1773 (!show_special || mg->mg_class != smc)))
1774 continue;
1775
1776 metaslab_group_histogram_verify(mg);
1777 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1778
1779 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1780 "fragmentation",
1781 (u_longlong_t)tvd->vdev_id,
1782 (u_longlong_t)tvd->vdev_ms_count);
1783 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1784 (void) printf("%3s\n", "-");
1785 } else {
1786 (void) printf("%3llu%%\n",
1787 (u_longlong_t)mg->mg_fragmentation);
1788 }
1789 dump_histogram(mg->mg_histogram,
1790 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1791 }
1792
1793 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1794 fragmentation = metaslab_class_fragmentation(mc);
1795 if (fragmentation == ZFS_FRAG_INVALID)
1796 (void) printf("\t%3s\n", "-");
1797 else
1798 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1799 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1800 }
1801
1802 static void
print_vdev_indirect(vdev_t * vd)1803 print_vdev_indirect(vdev_t *vd)
1804 {
1805 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1806 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1807 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1808
1809 if (vim == NULL) {
1810 ASSERT0P(vib);
1811 return;
1812 }
1813
1814 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1815 vic->vic_mapping_object);
1816 ASSERT3U(vdev_indirect_births_object(vib), ==,
1817 vic->vic_births_object);
1818
1819 (void) printf("indirect births obj %llu:\n",
1820 (longlong_t)vic->vic_births_object);
1821 (void) printf(" vib_count = %llu\n",
1822 (longlong_t)vdev_indirect_births_count(vib));
1823 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1824 vdev_indirect_birth_entry_phys_t *cur_vibe =
1825 &vib->vib_entries[i];
1826 (void) printf("\toffset %llx -> txg %llu\n",
1827 (longlong_t)cur_vibe->vibe_offset,
1828 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1829 }
1830 (void) printf("\n");
1831
1832 (void) printf("indirect mapping obj %llu:\n",
1833 (longlong_t)vic->vic_mapping_object);
1834 (void) printf(" vim_max_offset = 0x%llx\n",
1835 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1836 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1837 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1838 (void) printf(" vim_count = %llu\n",
1839 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1840
1841 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1842 return;
1843
1844 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1845
1846 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1847 vdev_indirect_mapping_entry_phys_t *vimep =
1848 &vim->vim_entries[i];
1849 (void) printf("\t<%llx:%llx:%llx> -> "
1850 "<%llx:%llx:%llx> (%x obsolete)\n",
1851 (longlong_t)vd->vdev_id,
1852 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1853 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1854 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1855 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1856 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1857 counts[i]);
1858 }
1859 (void) printf("\n");
1860
1861 uint64_t obsolete_sm_object;
1862 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1863 if (obsolete_sm_object != 0) {
1864 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1865 (void) printf("obsolete space map object %llu:\n",
1866 (u_longlong_t)obsolete_sm_object);
1867 ASSERT(vd->vdev_obsolete_sm != NULL);
1868 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1869 obsolete_sm_object);
1870 dump_spacemap(mos, vd->vdev_obsolete_sm);
1871 (void) printf("\n");
1872 }
1873 }
1874
1875 static void
dump_metaslabs(spa_t * spa)1876 dump_metaslabs(spa_t *spa)
1877 {
1878 vdev_t *vd, *rvd = spa->spa_root_vdev;
1879 uint64_t m, c = 0, children = rvd->vdev_children;
1880
1881 (void) printf("\nMetaslabs:\n");
1882
1883 if (zopt_metaslab_args > 0) {
1884 c = zopt_metaslab[0];
1885
1886 if (c >= children)
1887 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1888
1889 if (zopt_metaslab_args > 1) {
1890 vd = rvd->vdev_child[c];
1891 print_vdev_metaslab_header(vd);
1892
1893 for (m = 1; m < zopt_metaslab_args; m++) {
1894 if (zopt_metaslab[m] < vd->vdev_ms_count)
1895 dump_metaslab(
1896 vd->vdev_ms[zopt_metaslab[m]]);
1897 else
1898 (void) fprintf(stderr, "bad metaslab "
1899 "number %llu\n",
1900 (u_longlong_t)zopt_metaslab[m]);
1901 }
1902 (void) printf("\n");
1903 return;
1904 }
1905 children = c + 1;
1906 }
1907 for (; c < children; c++) {
1908 vd = rvd->vdev_child[c];
1909 print_vdev_metaslab_header(vd);
1910
1911 print_vdev_indirect(vd);
1912
1913 for (m = 0; m < vd->vdev_ms_count; m++)
1914 dump_metaslab(vd->vdev_ms[m]);
1915 (void) printf("\n");
1916 }
1917 }
1918
1919 static void
dump_log_spacemaps(spa_t * spa)1920 dump_log_spacemaps(spa_t *spa)
1921 {
1922 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1923 return;
1924
1925 (void) printf("\nLog Space Maps in Pool:\n");
1926 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1927 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1928 space_map_t *sm = NULL;
1929 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1930 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1931
1932 (void) printf("Log Spacemap object %llu txg %llu\n",
1933 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1934 dump_spacemap(spa->spa_meta_objset, sm);
1935 space_map_close(sm);
1936 }
1937 (void) printf("\n");
1938 }
1939
1940 static void
dump_ddt_entry(const ddt_t * ddt,const ddt_lightweight_entry_t * ddlwe,uint64_t index)1941 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1942 uint64_t index)
1943 {
1944 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1945 char blkbuf[BP_SPRINTF_LEN];
1946 blkptr_t blk;
1947 int p;
1948
1949 for (p = 0; p < DDT_NPHYS(ddt); p++) {
1950 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1951 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1952
1953 if (ddt_phys_birth(ddp, v) == 0)
1954 continue;
1955 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1956 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1957 (void) printf("index %llx refcnt %llu phys %d %s\n",
1958 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1959 p, blkbuf);
1960 }
1961 }
1962
1963 static void
dump_dedup_ratio(const ddt_stat_t * dds)1964 dump_dedup_ratio(const ddt_stat_t *dds)
1965 {
1966 double rL, rP, rD, D, dedup, compress, copies;
1967
1968 if (dds->dds_blocks == 0)
1969 return;
1970
1971 rL = (double)dds->dds_ref_lsize;
1972 rP = (double)dds->dds_ref_psize;
1973 rD = (double)dds->dds_ref_dsize;
1974 D = (double)dds->dds_dsize;
1975
1976 dedup = rD / D;
1977 compress = rL / rP;
1978 copies = rD / rP;
1979
1980 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1981 "dedup * compress / copies = %.2f\n\n",
1982 dedup, compress, copies, dedup * compress / copies);
1983 }
1984
1985 static void
dump_ddt_log(ddt_t * ddt)1986 dump_ddt_log(ddt_t *ddt)
1987 {
1988 if (ddt->ddt_version != DDT_VERSION_FDT ||
1989 !(ddt->ddt_flags & DDT_FLAG_LOG))
1990 return;
1991
1992 for (int n = 0; n < 2; n++) {
1993 ddt_log_t *ddl = &ddt->ddt_log[n];
1994
1995 char flagstr[64] = {0};
1996 if (ddl->ddl_flags > 0) {
1997 flagstr[0] = ' ';
1998 int c = 1;
1999 if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
2000 c += strlcpy(&flagstr[c], " FLUSHING",
2001 sizeof (flagstr) - c);
2002 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT)
2003 c += strlcpy(&flagstr[c], " CHECKPOINT",
2004 sizeof (flagstr) - c);
2005 if (ddl->ddl_flags &
2006 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT))
2007 c += strlcpy(&flagstr[c], " UNKNOWN",
2008 sizeof (flagstr) - c);
2009 flagstr[1] = '[';
2010 flagstr[c] = ']';
2011 }
2012
2013 uint64_t count = avl_numnodes(&ddl->ddl_tree);
2014
2015 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; "
2016 "len=%llu; txg=%llu; entries=%llu\n",
2017 zio_checksum_table[ddt->ddt_checksum].ci_name, n,
2018 ddl->ddl_flags, flagstr,
2019 (u_longlong_t)ddl->ddl_object,
2020 (u_longlong_t)ddl->ddl_length,
2021 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count);
2022
2023 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) {
2024 const ddt_key_t *ddk = &ddl->ddl_checkpoint;
2025 printf(" checkpoint: "
2026 "%016llx:%016llx:%016llx:%016llx:%016llx\n",
2027 (u_longlong_t)ddk->ddk_cksum.zc_word[0],
2028 (u_longlong_t)ddk->ddk_cksum.zc_word[1],
2029 (u_longlong_t)ddk->ddk_cksum.zc_word[2],
2030 (u_longlong_t)ddk->ddk_cksum.zc_word[3],
2031 (u_longlong_t)ddk->ddk_prop);
2032 }
2033
2034 if (count == 0 || dump_opt['D'] < 4)
2035 continue;
2036
2037 ddt_lightweight_entry_t ddlwe;
2038 uint64_t index = 0;
2039 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
2040 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
2041 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
2042 dump_ddt_entry(ddt, &ddlwe, index++);
2043 }
2044 }
2045 }
2046
2047 static void
dump_ddt_object(ddt_t * ddt,ddt_type_t type,ddt_class_t class)2048 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
2049 {
2050 char name[DDT_NAMELEN];
2051 ddt_lightweight_entry_t ddlwe;
2052 uint64_t walk = 0;
2053 dmu_object_info_t doi;
2054 uint64_t count, dspace, mspace;
2055 int error;
2056
2057 error = ddt_object_info(ddt, type, class, &doi);
2058
2059 if (error == ENOENT)
2060 return;
2061 ASSERT0(error);
2062
2063 error = ddt_object_count(ddt, type, class, &count);
2064 ASSERT0(error);
2065 if (count == 0)
2066 return;
2067
2068 dspace = doi.doi_physical_blocks_512 << 9;
2069 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2070
2071 ddt_object_name(ddt, type, class, name);
2072
2073 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name,
2074 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count);
2075
2076 if (dump_opt['D'] < 3)
2077 return;
2078
2079 (void) printf("%s: object=%llu\n", name,
2080 (u_longlong_t)ddt->ddt_object[type][class]);
2081 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2082
2083 if (dump_opt['D'] < 4)
2084 return;
2085
2086 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2087 return;
2088
2089 (void) printf("%s contents:\n\n", name);
2090
2091 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2092 dump_ddt_entry(ddt, &ddlwe, walk);
2093
2094 ASSERT3U(error, ==, ENOENT);
2095
2096 (void) printf("\n");
2097 }
2098
2099 static void
dump_ddt(ddt_t * ddt)2100 dump_ddt(ddt_t *ddt)
2101 {
2102 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2103 return;
2104
2105 char flagstr[64] = {0};
2106 if (ddt->ddt_flags > 0) {
2107 flagstr[0] = ' ';
2108 int c = 1;
2109 if (ddt->ddt_flags & DDT_FLAG_FLAT)
2110 c += strlcpy(&flagstr[c], " FLAT",
2111 sizeof (flagstr) - c);
2112 if (ddt->ddt_flags & DDT_FLAG_LOG)
2113 c += strlcpy(&flagstr[c], " LOG",
2114 sizeof (flagstr) - c);
2115 if (ddt->ddt_flags & ~DDT_FLAG_MASK)
2116 c += strlcpy(&flagstr[c], " UNKNOWN",
2117 sizeof (flagstr) - c);
2118 flagstr[1] = '[';
2119 flagstr[c] = ']';
2120 }
2121
2122 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n",
2123 zio_checksum_table[ddt->ddt_checksum].ci_name,
2124 (u_longlong_t)ddt->ddt_version,
2125 (ddt->ddt_version == 0) ? "LEGACY" :
2126 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN",
2127 (u_longlong_t)ddt->ddt_flags, flagstr,
2128 (u_longlong_t)ddt->ddt_dir_object);
2129
2130 for (ddt_type_t type = 0; type < DDT_TYPES; type++)
2131 for (ddt_class_t class = 0; class < DDT_CLASSES; class++)
2132 dump_ddt_object(ddt, type, class);
2133
2134 dump_ddt_log(ddt);
2135 }
2136
2137 static void
dump_all_ddts(spa_t * spa)2138 dump_all_ddts(spa_t *spa)
2139 {
2140 ddt_histogram_t ddh_total = {{{0}}};
2141 ddt_stat_t dds_total = {0};
2142
2143 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++)
2144 dump_ddt(spa->spa_ddt[c]);
2145
2146 ddt_get_dedup_stats(spa, &dds_total);
2147
2148 if (dds_total.dds_blocks == 0) {
2149 (void) printf("All DDTs are empty\n");
2150 return;
2151 }
2152
2153 (void) printf("\n");
2154
2155 if (dump_opt['D'] > 1) {
2156 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2157 ddt_get_dedup_histogram(spa, &ddh_total);
2158 zpool_dump_ddt(&dds_total, &ddh_total);
2159 }
2160
2161 dump_dedup_ratio(&dds_total);
2162
2163 /*
2164 * Dump a histogram of unique class entry age
2165 */
2166 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2167 ddt_age_histo_t histogram;
2168
2169 (void) printf("DDT walk unique, building age histogram...\n");
2170 ddt_prune_walk(spa, 0, &histogram);
2171
2172 /*
2173 * print out histogram for unique entry class birth
2174 */
2175 if (histogram.dah_entries > 0) {
2176 (void) printf("%5s %9s %4s\n",
2177 "age", "blocks", "amnt");
2178 (void) printf("%5s %9s %4s\n",
2179 "-----", "---------", "----");
2180 for (int i = 0; i < HIST_BINS; i++) {
2181 (void) printf("%5d %9d %4d%%\n", 1 << i,
2182 (int)histogram.dah_age_histo[i],
2183 (int)((histogram.dah_age_histo[i] * 100) /
2184 histogram.dah_entries));
2185 }
2186 }
2187 }
2188 }
2189
2190 static void
dump_brt(spa_t * spa)2191 dump_brt(spa_t *spa)
2192 {
2193 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2194 printf("BRT: unsupported on this pool\n");
2195 return;
2196 }
2197
2198 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2199 printf("BRT: empty\n");
2200 return;
2201 }
2202
2203 char count[32], used[32], saved[32];
2204 zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2205 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2206 uint64_t ratio = brt_get_ratio(spa);
2207 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2208 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2209
2210 if (dump_opt['T'] < 2)
2211 return;
2212
2213 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2214 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2215 if (!brtvd->bv_initiated) {
2216 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2217 continue;
2218 }
2219
2220 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2221 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2222 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2223 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2224 vdevid, count, used, saved);
2225 }
2226
2227 if (dump_opt['T'] < 3)
2228 return;
2229
2230 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2231 boolean_t do_histo = dump_opt['T'] == 3;
2232
2233 char dva[64];
2234
2235 if (!do_histo)
2236 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2237
2238 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2239 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2240 if (!brtvd->bv_initiated)
2241 continue;
2242
2243 uint64_t counts[64] = {};
2244
2245 zap_cursor_t zc;
2246 zap_attribute_t *za = zap_attribute_alloc();
2247 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2248 brtvd->bv_mos_entries);
2249 zap_cursor_retrieve(&zc, za) == 0;
2250 zap_cursor_advance(&zc)) {
2251 uint64_t refcnt;
2252 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset,
2253 brtvd->bv_mos_entries,
2254 (const uint64_t *)za->za_name, 1,
2255 za->za_integer_length, za->za_num_integers,
2256 &refcnt));
2257
2258 if (do_histo)
2259 counts[highbit64(refcnt)]++;
2260 else {
2261 uint64_t offset =
2262 *(const uint64_t *)za->za_name;
2263
2264 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx",
2265 vdevid, (u_longlong_t)offset);
2266 printf("%-16s %-10llu\n", dva,
2267 (u_longlong_t)refcnt);
2268 }
2269 }
2270 zap_cursor_fini(&zc);
2271 zap_attribute_free(za);
2272
2273 if (do_histo) {
2274 printf("\nBRT: vdev %" PRIu64
2275 ": DVAs with 2^n refcnts:\n", vdevid);
2276 dump_histogram(counts, 64, 0);
2277 }
2278 }
2279 }
2280
2281 static void
dump_dtl_seg(void * arg,uint64_t start,uint64_t size)2282 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2283 {
2284 char *prefix = arg;
2285
2286 (void) printf("%s [%llu,%llu) length %llu\n",
2287 prefix,
2288 (u_longlong_t)start,
2289 (u_longlong_t)(start + size),
2290 (u_longlong_t)(size));
2291 }
2292
2293 static void
dump_dtl(vdev_t * vd,int indent)2294 dump_dtl(vdev_t *vd, int indent)
2295 {
2296 spa_t *spa = vd->vdev_spa;
2297 boolean_t required;
2298 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2299 "outage" };
2300 char prefix[256];
2301
2302 spa_vdev_state_enter(spa, SCL_NONE);
2303 required = vdev_dtl_required(vd);
2304 (void) spa_vdev_state_exit(spa, NULL, 0);
2305
2306 if (indent == 0)
2307 (void) printf("\nDirty time logs:\n\n");
2308
2309 (void) printf("\t%*s%s [%s]\n", indent, "",
2310 vd->vdev_path ? vd->vdev_path :
2311 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2312 required ? "DTL-required" : "DTL-expendable");
2313
2314 for (int t = 0; t < DTL_TYPES; t++) {
2315 zfs_range_tree_t *rt = vd->vdev_dtl[t];
2316 if (zfs_range_tree_space(rt) == 0)
2317 continue;
2318 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2319 indent + 2, "", name[t]);
2320 zfs_range_tree_walk(rt, dump_dtl_seg, prefix);
2321 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2322 dump_spacemap(spa->spa_meta_objset,
2323 vd->vdev_dtl_sm);
2324 }
2325
2326 for (unsigned c = 0; c < vd->vdev_children; c++)
2327 dump_dtl(vd->vdev_child[c], indent + 4);
2328 }
2329
2330 static void
dump_history(spa_t * spa)2331 dump_history(spa_t *spa)
2332 {
2333 nvlist_t **events = NULL;
2334 char *buf;
2335 uint64_t resid, len, off = 0;
2336 uint_t num = 0;
2337 int error;
2338 char tbuf[30];
2339
2340 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2341 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2342 __func__);
2343 return;
2344 }
2345
2346 do {
2347 len = SPA_OLD_MAXBLOCKSIZE;
2348
2349 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2350 (void) fprintf(stderr, "Unable to read history: "
2351 "error %d\n", error);
2352 free(buf);
2353 return;
2354 }
2355
2356 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2357 break;
2358
2359 off -= resid;
2360 } while (len != 0);
2361
2362 (void) printf("\nHistory:\n");
2363 for (unsigned i = 0; i < num; i++) {
2364 boolean_t printed = B_FALSE;
2365
2366 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2367 time_t tsec;
2368 struct tm t;
2369
2370 tsec = fnvlist_lookup_uint64(events[i],
2371 ZPOOL_HIST_TIME);
2372 (void) localtime_r(&tsec, &t);
2373 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2374 } else {
2375 tbuf[0] = '\0';
2376 }
2377
2378 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2379 (void) printf("%s %s\n", tbuf,
2380 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2381 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2382 uint64_t ievent;
2383
2384 ievent = fnvlist_lookup_uint64(events[i],
2385 ZPOOL_HIST_INT_EVENT);
2386 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2387 goto next;
2388
2389 (void) printf(" %s [internal %s txg:%ju] %s\n",
2390 tbuf,
2391 zfs_history_event_names[ievent],
2392 fnvlist_lookup_uint64(events[i],
2393 ZPOOL_HIST_TXG),
2394 fnvlist_lookup_string(events[i],
2395 ZPOOL_HIST_INT_STR));
2396 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2397 (void) printf("%s [txg:%ju] %s", tbuf,
2398 fnvlist_lookup_uint64(events[i],
2399 ZPOOL_HIST_TXG),
2400 fnvlist_lookup_string(events[i],
2401 ZPOOL_HIST_INT_NAME));
2402
2403 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2404 (void) printf(" %s (%llu)",
2405 fnvlist_lookup_string(events[i],
2406 ZPOOL_HIST_DSNAME),
2407 (u_longlong_t)fnvlist_lookup_uint64(
2408 events[i],
2409 ZPOOL_HIST_DSID));
2410 }
2411
2412 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2413 ZPOOL_HIST_INT_STR));
2414 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2415 (void) printf("%s ioctl %s\n", tbuf,
2416 fnvlist_lookup_string(events[i],
2417 ZPOOL_HIST_IOCTL));
2418
2419 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2420 (void) printf(" input:\n");
2421 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2422 ZPOOL_HIST_INPUT_NVL), 8);
2423 }
2424 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2425 (void) printf(" output:\n");
2426 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2427 ZPOOL_HIST_OUTPUT_NVL), 8);
2428 }
2429 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2430 (void) printf(" errno: %lld\n",
2431 (longlong_t)fnvlist_lookup_int64(events[i],
2432 ZPOOL_HIST_ERRNO));
2433 }
2434 } else {
2435 goto next;
2436 }
2437
2438 printed = B_TRUE;
2439 next:
2440 if (dump_opt['h'] > 1) {
2441 if (!printed)
2442 (void) printf("unrecognized record:\n");
2443 dump_nvlist(events[i], 2);
2444 }
2445 }
2446 free(buf);
2447 }
2448
2449 static void
dump_dnode(objset_t * os,uint64_t object,void * data,size_t size)2450 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2451 {
2452 (void) os, (void) object, (void) data, (void) size;
2453 }
2454
2455 static uint64_t
blkid2offset(const dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb)2456 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2457 const zbookmark_phys_t *zb)
2458 {
2459 if (dnp == NULL) {
2460 ASSERT(zb->zb_level < 0);
2461 if (zb->zb_object == 0)
2462 return (zb->zb_blkid);
2463 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2464 }
2465
2466 ASSERT(zb->zb_level >= 0);
2467
2468 return ((zb->zb_blkid <<
2469 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2470 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2471 }
2472
2473 static void
snprintf_zstd_header(spa_t * spa,char * blkbuf,size_t buflen,const blkptr_t * bp)2474 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2475 const blkptr_t *bp)
2476 {
2477 static abd_t *pabd = NULL;
2478 void *buf;
2479 zio_t *zio;
2480 zfs_zstdhdr_t zstd_hdr;
2481 int error;
2482
2483 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2484 return;
2485
2486 if (BP_IS_HOLE(bp))
2487 return;
2488
2489 if (BP_IS_EMBEDDED(bp)) {
2490 buf = malloc(SPA_MAXBLOCKSIZE);
2491 if (buf == NULL) {
2492 (void) fprintf(stderr, "out of memory\n");
2493 zdb_exit(1);
2494 }
2495 decode_embedded_bp_compressed(bp, buf);
2496 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2497 free(buf);
2498 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2499 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2500 (void) snprintf(blkbuf + strlen(blkbuf),
2501 buflen - strlen(blkbuf),
2502 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2503 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2504 zfs_get_hdrlevel(&zstd_hdr));
2505 return;
2506 }
2507
2508 if (!pabd)
2509 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2510 zio = zio_root(spa, NULL, NULL, 0);
2511
2512 /* Decrypt but don't decompress so we can read the compression header */
2513 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2514 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2515 NULL));
2516 error = zio_wait(zio);
2517 if (error) {
2518 (void) fprintf(stderr, "read failed: %d\n", error);
2519 return;
2520 }
2521 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2522 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2523 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2524 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2525
2526 (void) snprintf(blkbuf + strlen(blkbuf),
2527 buflen - strlen(blkbuf),
2528 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2529 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2530 zfs_get_hdrlevel(&zstd_hdr));
2531
2532 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2533 }
2534
2535 static void
snprintf_blkptr_compact(char * blkbuf,size_t buflen,const blkptr_t * bp,boolean_t bp_freed)2536 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2537 boolean_t bp_freed)
2538 {
2539 const dva_t *dva = bp->blk_dva;
2540 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2541 int i;
2542
2543 if (dump_opt['b'] >= 6) {
2544 snprintf_blkptr(blkbuf, buflen, bp);
2545 if (bp_freed) {
2546 (void) snprintf(blkbuf + strlen(blkbuf),
2547 buflen - strlen(blkbuf), " %s", "FREE");
2548 }
2549 return;
2550 }
2551
2552 if (BP_IS_EMBEDDED(bp)) {
2553 (void) sprintf(blkbuf,
2554 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2555 (int)BPE_GET_ETYPE(bp),
2556 (u_longlong_t)BPE_GET_LSIZE(bp),
2557 (u_longlong_t)BPE_GET_PSIZE(bp),
2558 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2559 return;
2560 }
2561
2562 blkbuf[0] = '\0';
2563
2564 for (i = 0; i < ndvas; i++) {
2565 (void) snprintf(blkbuf + strlen(blkbuf),
2566 buflen - strlen(blkbuf), "%llu:%llx:%llx%s ",
2567 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2568 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2569 (u_longlong_t)DVA_GET_ASIZE(&dva[i]),
2570 (DVA_GET_GANG(&dva[i]) ? "G" : ""));
2571 }
2572
2573 if (BP_IS_HOLE(bp)) {
2574 (void) snprintf(blkbuf + strlen(blkbuf),
2575 buflen - strlen(blkbuf),
2576 "%llxL B=%llu",
2577 (u_longlong_t)BP_GET_LSIZE(bp),
2578 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2579 } else {
2580 (void) snprintf(blkbuf + strlen(blkbuf),
2581 buflen - strlen(blkbuf),
2582 "%llxL/%llxP F=%llu B=%llu/%llu",
2583 (u_longlong_t)BP_GET_LSIZE(bp),
2584 (u_longlong_t)BP_GET_PSIZE(bp),
2585 (u_longlong_t)BP_GET_FILL(bp),
2586 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2587 (u_longlong_t)BP_GET_PHYSICAL_BIRTH(bp));
2588 if (bp_freed)
2589 (void) snprintf(blkbuf + strlen(blkbuf),
2590 buflen - strlen(blkbuf), " %s", "FREE");
2591 (void) snprintf(blkbuf + strlen(blkbuf),
2592 buflen - strlen(blkbuf),
2593 " cksum=%016llx:%016llx:%016llx:%016llx",
2594 (u_longlong_t)bp->blk_cksum.zc_word[0],
2595 (u_longlong_t)bp->blk_cksum.zc_word[1],
2596 (u_longlong_t)bp->blk_cksum.zc_word[2],
2597 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2598 }
2599 }
2600
2601 static u_longlong_t
print_indirect(spa_t * spa,blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp)2602 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2603 const dnode_phys_t *dnp)
2604 {
2605 char blkbuf[BP_SPRINTF_LEN];
2606 u_longlong_t offset;
2607 int l;
2608
2609 offset = (u_longlong_t)blkid2offset(dnp, bp, zb);
2610
2611 (void) printf("%16llx ", offset);
2612
2613 ASSERT(zb->zb_level >= 0);
2614
2615 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2616 if (l == zb->zb_level) {
2617 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2618 } else {
2619 (void) printf(" ");
2620 }
2621 }
2622
2623 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2624 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2625 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2626 (void) printf("%s", blkbuf);
2627
2628 if (!BP_IS_EMBEDDED(bp)) {
2629 if (BP_GET_TYPE(bp) != dnp->dn_type) {
2630 (void) printf(" (ERROR: Block pointer type "
2631 "(%llu) does not match dnode type (%hhu))",
2632 BP_GET_TYPE(bp), dnp->dn_type);
2633 corruption_found = B_TRUE;
2634 }
2635 if (BP_GET_LEVEL(bp) != zb->zb_level) {
2636 (void) printf(" (ERROR: Block pointer level "
2637 "(%llu) does not match bookmark level (%lld))",
2638 BP_GET_LEVEL(bp), (u_longlong_t)zb->zb_level);
2639 corruption_found = B_TRUE;
2640 }
2641 }
2642 (void) printf("\n");
2643
2644 return (offset);
2645 }
2646
2647 static int
visit_indirect(spa_t * spa,const dnode_phys_t * dnp,blkptr_t * bp,const zbookmark_phys_t * zb)2648 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2649 blkptr_t *bp, const zbookmark_phys_t *zb)
2650 {
2651 u_longlong_t offset;
2652 int err = 0;
2653
2654 if (BP_GET_BIRTH(bp) == 0)
2655 return (0);
2656
2657 offset = print_indirect(spa, bp, zb, dnp);
2658
2659 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2660 arc_flags_t flags = ARC_FLAG_WAIT;
2661 int i;
2662 blkptr_t *cbp;
2663 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2664 arc_buf_t *buf;
2665 uint64_t fill = 0;
2666 ASSERT(!BP_IS_REDACTED(bp));
2667
2668 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2669 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2670 if (err)
2671 return (err);
2672 ASSERT(buf->b_data);
2673
2674 /* recursively visit blocks below this */
2675 cbp = buf->b_data;
2676 for (i = 0; i < epb; i++, cbp++) {
2677 zbookmark_phys_t czb;
2678
2679 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2680 zb->zb_level - 1,
2681 zb->zb_blkid * epb + i);
2682 err = visit_indirect(spa, dnp, cbp, &czb);
2683 if (err)
2684 break;
2685 fill += BP_GET_FILL(cbp);
2686 }
2687 if (!err) {
2688 if (fill != BP_GET_FILL(bp)) {
2689 (void) printf("%16llx: Block pointer "
2690 "fill (%llu) does not match calculated "
2691 "value (%llu)\n", offset, BP_GET_FILL(bp),
2692 (u_longlong_t)fill);
2693 corruption_found = B_TRUE;
2694 }
2695 }
2696 arc_buf_destroy(buf, &buf);
2697 }
2698
2699 return (err);
2700 }
2701
2702 static void
dump_indirect(dnode_t * dn)2703 dump_indirect(dnode_t *dn)
2704 {
2705 dnode_phys_t *dnp = dn->dn_phys;
2706 zbookmark_phys_t czb;
2707
2708 (void) printf("Indirect blocks:\n");
2709
2710 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2711 dn->dn_object, dnp->dn_nlevels - 1, 0);
2712 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2713 czb.zb_blkid = j;
2714 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2715 &dnp->dn_blkptr[j], &czb);
2716 }
2717
2718 (void) printf("\n");
2719 }
2720
2721 static void
dump_dsl_dir(objset_t * os,uint64_t object,void * data,size_t size)2722 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2723 {
2724 (void) os, (void) object;
2725 dsl_dir_phys_t *dd = data;
2726 time_t crtime;
2727 char nice[32];
2728
2729 /* make sure nicenum has enough space */
2730 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2731
2732 if (dd == NULL)
2733 return;
2734
2735 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2736
2737 crtime = dd->dd_creation_time;
2738 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2739 (void) printf("\t\thead_dataset_obj = %llu\n",
2740 (u_longlong_t)dd->dd_head_dataset_obj);
2741 (void) printf("\t\tparent_dir_obj = %llu\n",
2742 (u_longlong_t)dd->dd_parent_obj);
2743 (void) printf("\t\torigin_obj = %llu\n",
2744 (u_longlong_t)dd->dd_origin_obj);
2745 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2746 (u_longlong_t)dd->dd_child_dir_zapobj);
2747 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2748 (void) printf("\t\tused_bytes = %s\n", nice);
2749 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2750 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2751 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2752 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2753 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2754 (void) printf("\t\tquota = %s\n", nice);
2755 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2756 (void) printf("\t\treserved = %s\n", nice);
2757 (void) printf("\t\tprops_zapobj = %llu\n",
2758 (u_longlong_t)dd->dd_props_zapobj);
2759 (void) printf("\t\tdeleg_zapobj = %llu\n",
2760 (u_longlong_t)dd->dd_deleg_zapobj);
2761 (void) printf("\t\tflags = %llx\n",
2762 (u_longlong_t)dd->dd_flags);
2763
2764 #define DO(which) \
2765 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2766 sizeof (nice)); \
2767 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2768 DO(HEAD);
2769 DO(SNAP);
2770 DO(CHILD);
2771 DO(CHILD_RSRV);
2772 DO(REFRSRV);
2773 #undef DO
2774 (void) printf("\t\tclones = %llu\n",
2775 (u_longlong_t)dd->dd_clones);
2776 }
2777
2778 static void
dump_dsl_dataset(objset_t * os,uint64_t object,void * data,size_t size)2779 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2780 {
2781 (void) os, (void) object;
2782 dsl_dataset_phys_t *ds = data;
2783 time_t crtime;
2784 char used[32], compressed[32], uncompressed[32], unique[32];
2785 char blkbuf[BP_SPRINTF_LEN];
2786
2787 /* make sure nicenum has enough space */
2788 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2789 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2790 "compressed truncated");
2791 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2792 "uncompressed truncated");
2793 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2794
2795 if (ds == NULL)
2796 return;
2797
2798 ASSERT(size == sizeof (*ds));
2799 crtime = ds->ds_creation_time;
2800 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2801 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2802 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2803 sizeof (uncompressed));
2804 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2805 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2806
2807 (void) printf("\t\tdir_obj = %llu\n",
2808 (u_longlong_t)ds->ds_dir_obj);
2809 (void) printf("\t\tprev_snap_obj = %llu\n",
2810 (u_longlong_t)ds->ds_prev_snap_obj);
2811 (void) printf("\t\tprev_snap_txg = %llu\n",
2812 (u_longlong_t)ds->ds_prev_snap_txg);
2813 (void) printf("\t\tnext_snap_obj = %llu\n",
2814 (u_longlong_t)ds->ds_next_snap_obj);
2815 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2816 (u_longlong_t)ds->ds_snapnames_zapobj);
2817 (void) printf("\t\tnum_children = %llu\n",
2818 (u_longlong_t)ds->ds_num_children);
2819 (void) printf("\t\tuserrefs_obj = %llu\n",
2820 (u_longlong_t)ds->ds_userrefs_obj);
2821 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2822 (void) printf("\t\tcreation_txg = %llu\n",
2823 (u_longlong_t)ds->ds_creation_txg);
2824 (void) printf("\t\tdeadlist_obj = %llu\n",
2825 (u_longlong_t)ds->ds_deadlist_obj);
2826 (void) printf("\t\tused_bytes = %s\n", used);
2827 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2828 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2829 (void) printf("\t\tunique = %s\n", unique);
2830 (void) printf("\t\tfsid_guid = %llu\n",
2831 (u_longlong_t)ds->ds_fsid_guid);
2832 (void) printf("\t\tguid = %llu\n",
2833 (u_longlong_t)ds->ds_guid);
2834 (void) printf("\t\tflags = %llx\n",
2835 (u_longlong_t)ds->ds_flags);
2836 (void) printf("\t\tnext_clones_obj = %llu\n",
2837 (u_longlong_t)ds->ds_next_clones_obj);
2838 (void) printf("\t\tprops_obj = %llu\n",
2839 (u_longlong_t)ds->ds_props_obj);
2840 (void) printf("\t\tbp = %s\n", blkbuf);
2841 }
2842
2843 static int
dump_bptree_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2844 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2845 {
2846 (void) arg, (void) tx;
2847 char blkbuf[BP_SPRINTF_LEN];
2848
2849 if (BP_GET_BIRTH(bp) != 0) {
2850 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2851 (void) printf("\t%s\n", blkbuf);
2852 }
2853 return (0);
2854 }
2855
2856 static void
dump_bptree(objset_t * os,uint64_t obj,const char * name)2857 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2858 {
2859 char bytes[32];
2860 bptree_phys_t *bt;
2861 dmu_buf_t *db;
2862
2863 /* make sure nicenum has enough space */
2864 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2865
2866 if (dump_opt['d'] < 3)
2867 return;
2868
2869 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2870 bt = db->db_data;
2871 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2872 (void) printf("\n %s: %llu datasets, %s\n",
2873 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2874 dmu_buf_rele(db, FTAG);
2875
2876 if (dump_opt['d'] < 5)
2877 return;
2878
2879 (void) printf("\n");
2880
2881 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2882 }
2883
2884 static int
dump_bpobj_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)2885 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2886 {
2887 (void) arg, (void) tx;
2888 char blkbuf[BP_SPRINTF_LEN];
2889
2890 ASSERT(BP_GET_BIRTH(bp) != 0);
2891 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2892 (void) printf("\t%s\n", blkbuf);
2893 return (0);
2894 }
2895
2896 static void
dump_full_bpobj(bpobj_t * bpo,const char * name,int indent)2897 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2898 {
2899 char bytes[32];
2900 char comp[32];
2901 char uncomp[32];
2902 uint64_t i;
2903
2904 /* make sure nicenum has enough space */
2905 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2906 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2907 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2908
2909 if (dump_opt['d'] < 3)
2910 return;
2911
2912 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2913 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2914 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2915 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2916 if (bpo->bpo_havefreed) {
2917 (void) printf(" %*s: object %llu, %llu local "
2918 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2919 "%s (%s/%s comp)\n",
2920 indent * 8, name,
2921 (u_longlong_t)bpo->bpo_object,
2922 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2923 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2924 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2925 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2926 bytes, comp, uncomp);
2927 } else {
2928 (void) printf(" %*s: object %llu, %llu local "
2929 "blkptrs, %llu subobjs in object %llu, "
2930 "%s (%s/%s comp)\n",
2931 indent * 8, name,
2932 (u_longlong_t)bpo->bpo_object,
2933 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2934 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2935 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2936 bytes, comp, uncomp);
2937 }
2938
2939 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2940 uint64_t subobj;
2941 bpobj_t subbpo;
2942 int error;
2943 VERIFY0(dmu_read(bpo->bpo_os,
2944 bpo->bpo_phys->bpo_subobjs,
2945 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2946 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2947 if (error != 0) {
2948 (void) printf("ERROR %u while trying to open "
2949 "subobj id %llu\n",
2950 error, (u_longlong_t)subobj);
2951 corruption_found = B_TRUE;
2952 continue;
2953 }
2954 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2955 bpobj_close(&subbpo);
2956 }
2957 } else {
2958 if (bpo->bpo_havefreed) {
2959 (void) printf(" %*s: object %llu, %llu blkptrs, "
2960 "%llu freed, %s\n",
2961 indent * 8, name,
2962 (u_longlong_t)bpo->bpo_object,
2963 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2964 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2965 bytes);
2966 } else {
2967 (void) printf(" %*s: object %llu, %llu blkptrs, "
2968 "%s\n",
2969 indent * 8, name,
2970 (u_longlong_t)bpo->bpo_object,
2971 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2972 bytes);
2973 }
2974 }
2975
2976 if (dump_opt['d'] < 5)
2977 return;
2978
2979
2980 if (indent == 0) {
2981 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2982 (void) printf("\n");
2983 }
2984 }
2985
2986 static int
dump_bookmark(dsl_pool_t * dp,char * name,boolean_t print_redact,boolean_t print_list)2987 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2988 boolean_t print_list)
2989 {
2990 int err = 0;
2991 zfs_bookmark_phys_t prop;
2992 objset_t *mos = dp->dp_spa->spa_meta_objset;
2993 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2994
2995 if (err != 0) {
2996 return (err);
2997 }
2998
2999 (void) printf("\t#%s: ", strchr(name, '#') + 1);
3000 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
3001 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
3002 (u_longlong_t)prop.zbm_creation_txg,
3003 (u_longlong_t)prop.zbm_creation_time,
3004 (u_longlong_t)prop.zbm_redaction_obj);
3005
3006 IMPLY(print_list, print_redact);
3007 if (!print_redact || prop.zbm_redaction_obj == 0)
3008 return (0);
3009
3010 redaction_list_t *rl;
3011 VERIFY0(dsl_redaction_list_hold_obj(dp,
3012 prop.zbm_redaction_obj, FTAG, &rl));
3013
3014 redaction_list_phys_t *rlp = rl->rl_phys;
3015 (void) printf("\tRedacted:\n\t\tProgress: ");
3016 if (rlp->rlp_last_object != UINT64_MAX ||
3017 rlp->rlp_last_blkid != UINT64_MAX) {
3018 (void) printf("%llu %llu (incomplete)\n",
3019 (u_longlong_t)rlp->rlp_last_object,
3020 (u_longlong_t)rlp->rlp_last_blkid);
3021 } else {
3022 (void) printf("complete\n");
3023 }
3024 (void) printf("\t\tSnapshots: [");
3025 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
3026 if (i > 0)
3027 (void) printf(", ");
3028 (void) printf("%0llu",
3029 (u_longlong_t)rlp->rlp_snaps[i]);
3030 }
3031 (void) printf("]\n\t\tLength: %llu\n",
3032 (u_longlong_t)rlp->rlp_num_entries);
3033
3034 if (!print_list) {
3035 dsl_redaction_list_rele(rl, FTAG);
3036 return (0);
3037 }
3038
3039 if (rlp->rlp_num_entries == 0) {
3040 dsl_redaction_list_rele(rl, FTAG);
3041 (void) printf("\t\tRedaction List: []\n\n");
3042 return (0);
3043 }
3044
3045 redact_block_phys_t *rbp_buf;
3046 uint64_t size;
3047 dmu_object_info_t doi;
3048
3049 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
3050 size = doi.doi_max_offset;
3051 rbp_buf = kmem_alloc(size, KM_SLEEP);
3052
3053 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
3054 rbp_buf, 0);
3055 if (err != 0) {
3056 dsl_redaction_list_rele(rl, FTAG);
3057 kmem_free(rbp_buf, size);
3058 return (err);
3059 }
3060
3061 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
3062 "%llx, blksz: %x, count: %llx}",
3063 (u_longlong_t)rbp_buf[0].rbp_object,
3064 (u_longlong_t)rbp_buf[0].rbp_blkid,
3065 (uint_t)(redact_block_get_size(&rbp_buf[0])),
3066 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
3067
3068 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
3069 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
3070 "blksz: %x, count: %llx}",
3071 (u_longlong_t)rbp_buf[i].rbp_object,
3072 (u_longlong_t)rbp_buf[i].rbp_blkid,
3073 (uint_t)(redact_block_get_size(&rbp_buf[i])),
3074 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
3075 }
3076 dsl_redaction_list_rele(rl, FTAG);
3077 kmem_free(rbp_buf, size);
3078 (void) printf("]\n\n");
3079 return (0);
3080 }
3081
3082 static void
dump_bookmarks(objset_t * os,int verbosity)3083 dump_bookmarks(objset_t *os, int verbosity)
3084 {
3085 zap_cursor_t zc;
3086 zap_attribute_t *attrp;
3087 dsl_dataset_t *ds = dmu_objset_ds(os);
3088 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3089 objset_t *mos = os->os_spa->spa_meta_objset;
3090 if (verbosity < 4)
3091 return;
3092 attrp = zap_attribute_alloc();
3093 dsl_pool_config_enter(dp, FTAG);
3094
3095 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
3096 zap_cursor_retrieve(&zc, attrp) == 0;
3097 zap_cursor_advance(&zc)) {
3098 char osname[ZFS_MAX_DATASET_NAME_LEN];
3099 char buf[ZFS_MAX_DATASET_NAME_LEN];
3100 int len;
3101 dmu_objset_name(os, osname);
3102 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
3103 attrp->za_name);
3104 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
3105 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
3106 }
3107 zap_cursor_fini(&zc);
3108 dsl_pool_config_exit(dp, FTAG);
3109 zap_attribute_free(attrp);
3110 }
3111
3112 static void
bpobj_count_refd(bpobj_t * bpo)3113 bpobj_count_refd(bpobj_t *bpo)
3114 {
3115 mos_obj_refd(bpo->bpo_object);
3116
3117 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
3118 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
3119 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
3120 uint64_t subobj;
3121 bpobj_t subbpo;
3122 int error;
3123 VERIFY0(dmu_read(bpo->bpo_os,
3124 bpo->bpo_phys->bpo_subobjs,
3125 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3126 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3127 if (error != 0) {
3128 (void) printf("ERROR %u while trying to open "
3129 "subobj id %llu\n",
3130 error, (u_longlong_t)subobj);
3131 corruption_found = B_TRUE;
3132 continue;
3133 }
3134 bpobj_count_refd(&subbpo);
3135 bpobj_close(&subbpo);
3136 }
3137 }
3138 }
3139
3140 static int
dsl_deadlist_entry_count_refd(void * arg,dsl_deadlist_entry_t * dle)3141 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3142 {
3143 spa_t *spa = arg;
3144 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3145 if (dle->dle_bpobj.bpo_object != empty_bpobj)
3146 bpobj_count_refd(&dle->dle_bpobj);
3147 return (0);
3148 }
3149
3150 static int
dsl_deadlist_entry_dump(void * arg,dsl_deadlist_entry_t * dle)3151 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3152 {
3153 ASSERT0P(arg);
3154 if (dump_opt['d'] >= 5) {
3155 char buf[128];
3156 (void) snprintf(buf, sizeof (buf),
3157 "mintxg %llu -> obj %llu",
3158 (longlong_t)dle->dle_mintxg,
3159 (longlong_t)dle->dle_bpobj.bpo_object);
3160
3161 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3162 } else {
3163 (void) printf("mintxg %llu -> obj %llu\n",
3164 (longlong_t)dle->dle_mintxg,
3165 (longlong_t)dle->dle_bpobj.bpo_object);
3166 }
3167 return (0);
3168 }
3169
3170 static void
dump_blkptr_list(dsl_deadlist_t * dl,const char * name)3171 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3172 {
3173 char bytes[32];
3174 char comp[32];
3175 char uncomp[32];
3176 char entries[32];
3177 spa_t *spa = dmu_objset_spa(dl->dl_os);
3178 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3179
3180 if (dl->dl_oldfmt) {
3181 if (dl->dl_bpobj.bpo_object != empty_bpobj)
3182 bpobj_count_refd(&dl->dl_bpobj);
3183 } else {
3184 mos_obj_refd(dl->dl_object);
3185 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3186 }
3187
3188 /* make sure nicenum has enough space */
3189 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3190 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3191 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3192 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3193
3194 if (dump_opt['d'] < 3)
3195 return;
3196
3197 if (dl->dl_oldfmt) {
3198 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3199 return;
3200 }
3201
3202 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3203 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3204 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3205 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3206 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3207 name, bytes, comp, uncomp, entries);
3208
3209 if (dump_opt['d'] < 4)
3210 return;
3211
3212 (void) putchar('\n');
3213
3214 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3215 }
3216
3217 static int
verify_dd_livelist(objset_t * os)3218 verify_dd_livelist(objset_t *os)
3219 {
3220 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3221 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3222 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3223
3224 ASSERT(!dmu_objset_is_snapshot(os));
3225 if (!dsl_deadlist_is_open(&dd->dd_livelist))
3226 return (0);
3227
3228 /* Iterate through the livelist to check for duplicates */
3229 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3230 NULL);
3231
3232 dsl_pool_config_enter(dp, FTAG);
3233 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3234 &ll_comp, &ll_uncomp);
3235
3236 dsl_dataset_t *origin_ds;
3237 ASSERT(dsl_pool_config_held(dp));
3238 VERIFY0(dsl_dataset_hold_obj(dp,
3239 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3240 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3241 &used, &comp, &uncomp));
3242 dsl_dataset_rele(origin_ds, FTAG);
3243 dsl_pool_config_exit(dp, FTAG);
3244 /*
3245 * It's possible that the dataset's uncomp space is larger than the
3246 * livelist's because livelists do not track embedded block pointers
3247 */
3248 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3249 char nice_used[32], nice_comp[32], nice_uncomp[32];
3250 (void) printf("Discrepancy in space accounting:\n");
3251 zdb_nicenum(used, nice_used, sizeof (nice_used));
3252 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3253 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3254 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3255 nice_used, nice_comp, nice_uncomp);
3256 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3257 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3258 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3259 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3260 nice_used, nice_comp, nice_uncomp);
3261 return (1);
3262 }
3263 return (0);
3264 }
3265
3266 static char *key_material = NULL;
3267
3268 static boolean_t
zdb_derive_key(dsl_dir_t * dd,uint8_t * key_out)3269 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3270 {
3271 uint64_t keyformat, salt, iters;
3272 int i;
3273 unsigned char c;
3274
3275 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3276 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3277 1, &keyformat));
3278
3279 switch (keyformat) {
3280 case ZFS_KEYFORMAT_HEX:
3281 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3282 if (!isxdigit(key_material[i]) ||
3283 !isxdigit(key_material[i+1]))
3284 return (B_FALSE);
3285 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3286 return (B_FALSE);
3287 key_out[i / 2] = c;
3288 }
3289 break;
3290
3291 case ZFS_KEYFORMAT_PASSPHRASE:
3292 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3293 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3294 sizeof (uint64_t), 1, &salt));
3295 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3296 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3297 sizeof (uint64_t), 1, &iters));
3298
3299 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3300 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3301 WRAPPING_KEY_LEN, key_out) != 1)
3302 return (B_FALSE);
3303
3304 break;
3305
3306 default:
3307 fatal("no support for key format %u\n",
3308 (unsigned int) keyformat);
3309 }
3310
3311 return (B_TRUE);
3312 }
3313
3314 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3315 static boolean_t key_loaded = B_FALSE;
3316
3317 static void
zdb_load_key(objset_t * os)3318 zdb_load_key(objset_t *os)
3319 {
3320 dsl_pool_t *dp;
3321 dsl_dir_t *dd, *rdd;
3322 uint8_t key[WRAPPING_KEY_LEN];
3323 uint64_t rddobj;
3324 int err;
3325
3326 dp = spa_get_dsl(os->os_spa);
3327 dd = os->os_dsl_dataset->ds_dir;
3328
3329 dsl_pool_config_enter(dp, FTAG);
3330 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3331 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3332 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3333 dsl_dir_name(rdd, encroot);
3334 dsl_dir_rele(rdd, FTAG);
3335
3336 if (!zdb_derive_key(dd, key))
3337 fatal("couldn't derive encryption key");
3338
3339 dsl_pool_config_exit(dp, FTAG);
3340
3341 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3342
3343 dsl_crypto_params_t *dcp;
3344 nvlist_t *crypto_args;
3345
3346 crypto_args = fnvlist_alloc();
3347 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3348 (uint8_t *)key, WRAPPING_KEY_LEN);
3349 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3350 NULL, crypto_args, &dcp));
3351 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3352
3353 dsl_crypto_params_free(dcp, (err != 0));
3354 fnvlist_free(crypto_args);
3355
3356 if (err != 0)
3357 fatal(
3358 "couldn't load encryption key for %s: %s",
3359 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3360 "crypto params not supported" : strerror(err));
3361
3362 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3363
3364 printf("Unlocked encryption root: %s\n", encroot);
3365 key_loaded = B_TRUE;
3366 }
3367
3368 static void
zdb_unload_key(void)3369 zdb_unload_key(void)
3370 {
3371 if (!key_loaded)
3372 return;
3373
3374 VERIFY0(spa_keystore_unload_wkey(encroot));
3375 key_loaded = B_FALSE;
3376 }
3377
3378 static avl_tree_t idx_tree;
3379 static avl_tree_t domain_tree;
3380 static boolean_t fuid_table_loaded;
3381 static objset_t *sa_os = NULL;
3382 static sa_attr_type_t *sa_attr_table = NULL;
3383
3384 static int
open_objset(const char * path,const void * tag,objset_t ** osp)3385 open_objset(const char *path, const void *tag, objset_t **osp)
3386 {
3387 int err;
3388 uint64_t sa_attrs = 0;
3389 uint64_t version = 0;
3390
3391 VERIFY0P(sa_os);
3392
3393 /*
3394 * We can't own an objset if it's redacted. Therefore, we do this
3395 * dance: hold the objset, then acquire a long hold on its dataset, then
3396 * release the pool (which is held as part of holding the objset).
3397 */
3398
3399 if (dump_opt['K']) {
3400 /* decryption requested, try to load keys */
3401 err = dmu_objset_hold(path, tag, osp);
3402 if (err != 0) {
3403 (void) fprintf(stderr, "failed to hold dataset "
3404 "'%s': %s\n",
3405 path, strerror(err));
3406 return (err);
3407 }
3408 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3409 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3410
3411 /* succeeds or dies */
3412 zdb_load_key(*osp);
3413
3414 /* release it all */
3415 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3416 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3417 }
3418
3419 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3420
3421 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3422 if (err != 0) {
3423 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3424 path, strerror(err));
3425 return (err);
3426 }
3427 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3428 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3429
3430 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3431 (key_loaded || !(*osp)->os_encrypted)) {
3432 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3433 8, 1, &version);
3434 if (version >= ZPL_VERSION_SA) {
3435 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3436 8, 1, &sa_attrs);
3437 }
3438 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3439 &sa_attr_table);
3440 if (err != 0) {
3441 (void) fprintf(stderr, "sa_setup failed: %s\n",
3442 strerror(err));
3443 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3444 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3445 ds_hold_flags, tag);
3446 *osp = NULL;
3447 }
3448 }
3449 sa_os = *osp;
3450
3451 return (err);
3452 }
3453
3454 static void
close_objset(objset_t * os,const void * tag)3455 close_objset(objset_t *os, const void *tag)
3456 {
3457 VERIFY3P(os, ==, sa_os);
3458 if (os->os_sa != NULL)
3459 sa_tear_down(os);
3460 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3461 dsl_dataset_rele_flags(dmu_objset_ds(os),
3462 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3463 sa_attr_table = NULL;
3464 sa_os = NULL;
3465
3466 zdb_unload_key();
3467 }
3468
3469 static void
fuid_table_destroy(void)3470 fuid_table_destroy(void)
3471 {
3472 if (fuid_table_loaded) {
3473 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3474 fuid_table_loaded = B_FALSE;
3475 }
3476 }
3477
3478 /*
3479 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3480 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3481 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3482 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3483 *
3484 * Note that this is not a particularly efficient way to do this, but
3485 * ddt_remove() is the only public method that can do the work we need, and it
3486 * requires the right locks and etc to do the job. This is only ever called
3487 * during zdb shutdown so efficiency is not especially important.
3488 */
3489 static void
zdb_ddt_cleanup(spa_t * spa)3490 zdb_ddt_cleanup(spa_t *spa)
3491 {
3492 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3493 ddt_t *ddt = spa->spa_ddt[c];
3494 if (!ddt)
3495 continue;
3496
3497 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3498 ddt_enter(ddt);
3499 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3500 while (dde) {
3501 next = AVL_NEXT(&ddt->ddt_tree, dde);
3502 dde->dde_io = NULL;
3503 ddt_remove(ddt, dde);
3504 dde = next;
3505 }
3506 ddt_exit(ddt);
3507 spa_config_exit(spa, SCL_CONFIG, FTAG);
3508 }
3509 }
3510
3511 static void
zdb_exit(int reason)3512 zdb_exit(int reason)
3513 {
3514 if (spa != NULL)
3515 zdb_ddt_cleanup(spa);
3516
3517 if (os != NULL) {
3518 close_objset(os, FTAG);
3519 } else if (spa != NULL) {
3520 spa_close(spa, FTAG);
3521 }
3522
3523 fuid_table_destroy();
3524
3525 if (kernel_init_done)
3526 kernel_fini();
3527
3528 exit(reason);
3529 }
3530
3531 /*
3532 * print uid or gid information.
3533 * For normal POSIX id just the id is printed in decimal format.
3534 * For CIFS files with FUID the fuid is printed in hex followed by
3535 * the domain-rid string.
3536 */
3537 static void
print_idstr(uint64_t id,const char * id_type)3538 print_idstr(uint64_t id, const char *id_type)
3539 {
3540 if (FUID_INDEX(id)) {
3541 const char *domain =
3542 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3543 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3544 (u_longlong_t)id, domain, (int)FUID_RID(id));
3545 } else {
3546 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3547 }
3548
3549 }
3550
3551 static void
dump_uidgid(objset_t * os,uint64_t uid,uint64_t gid)3552 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3553 {
3554 uint32_t uid_idx, gid_idx;
3555
3556 uid_idx = FUID_INDEX(uid);
3557 gid_idx = FUID_INDEX(gid);
3558
3559 /* Load domain table, if not already loaded */
3560 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3561 uint64_t fuid_obj;
3562
3563 /* first find the fuid object. It lives in the master node */
3564 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3565 8, 1, &fuid_obj));
3566 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3567 (void) zfs_fuid_table_load(os, fuid_obj,
3568 &idx_tree, &domain_tree);
3569 fuid_table_loaded = B_TRUE;
3570 }
3571
3572 print_idstr(uid, "uid");
3573 print_idstr(gid, "gid");
3574 }
3575
3576 static void
dump_znode_sa_xattr(sa_handle_t * hdl)3577 dump_znode_sa_xattr(sa_handle_t *hdl)
3578 {
3579 nvlist_t *sa_xattr;
3580 nvpair_t *elem = NULL;
3581 int sa_xattr_size = 0;
3582 int sa_xattr_entries = 0;
3583 int error;
3584 char *sa_xattr_packed;
3585
3586 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3587 if (error || sa_xattr_size == 0)
3588 return;
3589
3590 sa_xattr_packed = malloc(sa_xattr_size);
3591 if (sa_xattr_packed == NULL)
3592 return;
3593
3594 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3595 sa_xattr_packed, sa_xattr_size);
3596 if (error) {
3597 free(sa_xattr_packed);
3598 return;
3599 }
3600
3601 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3602 if (error) {
3603 free(sa_xattr_packed);
3604 return;
3605 }
3606
3607 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3608 sa_xattr_entries++;
3609
3610 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3611 sa_xattr_size, sa_xattr_entries);
3612 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3613 boolean_t can_print = !dump_opt['P'];
3614 uchar_t *value;
3615 uint_t cnt, idx;
3616
3617 (void) printf("\t\t%s = ", nvpair_name(elem));
3618 nvpair_value_byte_array(elem, &value, &cnt);
3619
3620 for (idx = 0; idx < cnt; ++idx) {
3621 if (!isprint(value[idx])) {
3622 can_print = B_FALSE;
3623 break;
3624 }
3625 }
3626
3627 for (idx = 0; idx < cnt; ++idx) {
3628 if (can_print)
3629 (void) putchar(value[idx]);
3630 else
3631 (void) printf("\\%3.3o", value[idx]);
3632 }
3633 (void) putchar('\n');
3634 }
3635
3636 nvlist_free(sa_xattr);
3637 free(sa_xattr_packed);
3638 }
3639
3640 static void
dump_znode_symlink(sa_handle_t * hdl)3641 dump_znode_symlink(sa_handle_t *hdl)
3642 {
3643 int sa_symlink_size = 0;
3644 char linktarget[MAXPATHLEN];
3645 int error;
3646
3647 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3648 if (error || sa_symlink_size == 0) {
3649 return;
3650 }
3651 if (sa_symlink_size >= sizeof (linktarget)) {
3652 (void) printf("symlink size %d is too large\n",
3653 sa_symlink_size);
3654 return;
3655 }
3656 linktarget[sa_symlink_size] = '\0';
3657 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3658 &linktarget, sa_symlink_size) == 0)
3659 (void) printf("\ttarget %s\n", linktarget);
3660 }
3661
3662 static void
dump_znode(objset_t * os,uint64_t object,void * data,size_t size)3663 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3664 {
3665 (void) data, (void) size;
3666 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3667 sa_handle_t *hdl;
3668 uint64_t xattr, rdev, gen;
3669 uint64_t uid, gid, mode, fsize, parent, links;
3670 uint64_t pflags;
3671 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3672 time_t z_crtime, z_atime, z_mtime, z_ctime;
3673 sa_bulk_attr_t bulk[12];
3674 int idx = 0;
3675 int error;
3676
3677 VERIFY3P(os, ==, sa_os);
3678 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3679 (void) printf("Failed to get handle for SA znode\n");
3680 return;
3681 }
3682
3683 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3684 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3685 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3686 &links, 8);
3687 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3688 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3689 &mode, 8);
3690 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3691 NULL, &parent, 8);
3692 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3693 &fsize, 8);
3694 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3695 acctm, 16);
3696 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3697 modtm, 16);
3698 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3699 crtm, 16);
3700 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3701 chgtm, 16);
3702 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3703 &pflags, 8);
3704
3705 if (sa_bulk_lookup(hdl, bulk, idx)) {
3706 (void) sa_handle_destroy(hdl);
3707 return;
3708 }
3709
3710 z_crtime = (time_t)crtm[0];
3711 z_atime = (time_t)acctm[0];
3712 z_mtime = (time_t)modtm[0];
3713 z_ctime = (time_t)chgtm[0];
3714
3715 if (dump_opt['d'] > 4) {
3716 error = zfs_obj_to_path(os, object, path, sizeof (path));
3717 if (error == ESTALE) {
3718 (void) snprintf(path, sizeof (path), "on delete queue");
3719 } else if (error != 0) {
3720 leaked_objects++;
3721 (void) snprintf(path, sizeof (path),
3722 "path not found, possibly leaked");
3723 }
3724 (void) printf("\tpath %s\n", path);
3725 }
3726
3727 if (S_ISLNK(mode))
3728 dump_znode_symlink(hdl);
3729 dump_uidgid(os, uid, gid);
3730 (void) printf("\tatime %s", ctime(&z_atime));
3731 (void) printf("\tmtime %s", ctime(&z_mtime));
3732 (void) printf("\tctime %s", ctime(&z_ctime));
3733 (void) printf("\tcrtime %s", ctime(&z_crtime));
3734 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3735 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3736 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3737 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3738 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3739 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3740 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3741 uint64_t projid;
3742
3743 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3744 sizeof (uint64_t)) == 0)
3745 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3746 }
3747 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3748 sizeof (uint64_t)) == 0)
3749 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3750 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3751 sizeof (uint64_t)) == 0)
3752 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3753 dump_znode_sa_xattr(hdl);
3754 sa_handle_destroy(hdl);
3755 }
3756
3757 static void
dump_acl(objset_t * os,uint64_t object,void * data,size_t size)3758 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3759 {
3760 (void) os, (void) object, (void) data, (void) size;
3761 }
3762
3763 static void
dump_dmu_objset(objset_t * os,uint64_t object,void * data,size_t size)3764 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3765 {
3766 (void) os, (void) object, (void) data, (void) size;
3767 }
3768
3769 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3770 dump_none, /* unallocated */
3771 dump_zap, /* object directory */
3772 dump_uint64, /* object array */
3773 dump_none, /* packed nvlist */
3774 dump_packed_nvlist, /* packed nvlist size */
3775 dump_none, /* bpobj */
3776 dump_bpobj, /* bpobj header */
3777 dump_none, /* SPA space map header */
3778 dump_none, /* SPA space map */
3779 dump_none, /* ZIL intent log */
3780 dump_dnode, /* DMU dnode */
3781 dump_dmu_objset, /* DMU objset */
3782 dump_dsl_dir, /* DSL directory */
3783 dump_zap, /* DSL directory child map */
3784 dump_zap, /* DSL dataset snap map */
3785 dump_zap, /* DSL props */
3786 dump_dsl_dataset, /* DSL dataset */
3787 dump_znode, /* ZFS znode */
3788 dump_acl, /* ZFS V0 ACL */
3789 dump_uint8, /* ZFS plain file */
3790 dump_zpldir, /* ZFS directory */
3791 dump_zap, /* ZFS master node */
3792 dump_zap, /* ZFS delete queue */
3793 dump_uint8, /* zvol object */
3794 dump_zap, /* zvol prop */
3795 dump_uint8, /* other uint8[] */
3796 dump_uint64, /* other uint64[] */
3797 dump_zap, /* other ZAP */
3798 dump_zap, /* persistent error log */
3799 dump_uint8, /* SPA history */
3800 dump_history_offsets, /* SPA history offsets */
3801 dump_zap, /* Pool properties */
3802 dump_zap, /* DSL permissions */
3803 dump_acl, /* ZFS ACL */
3804 dump_uint8, /* ZFS SYSACL */
3805 dump_none, /* FUID nvlist */
3806 dump_packed_nvlist, /* FUID nvlist size */
3807 dump_zap, /* DSL dataset next clones */
3808 dump_zap, /* DSL scrub queue */
3809 dump_zap, /* ZFS user/group/project used */
3810 dump_zap, /* ZFS user/group/project quota */
3811 dump_zap, /* snapshot refcount tags */
3812 dump_ddt_zap, /* DDT ZAP object */
3813 dump_zap, /* DDT statistics */
3814 dump_znode, /* SA object */
3815 dump_zap, /* SA Master Node */
3816 dump_sa_attrs, /* SA attribute registration */
3817 dump_sa_layouts, /* SA attribute layouts */
3818 dump_zap, /* DSL scrub translations */
3819 dump_none, /* fake dedup BP */
3820 dump_zap, /* deadlist */
3821 dump_none, /* deadlist hdr */
3822 dump_zap, /* dsl clones */
3823 dump_bpobj_subobjs, /* bpobj subobjs */
3824 dump_unknown, /* Unknown type, must be last */
3825 };
3826
3827 static boolean_t
match_object_type(dmu_object_type_t obj_type,uint64_t flags)3828 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3829 {
3830 boolean_t match = B_TRUE;
3831
3832 switch (obj_type) {
3833 case DMU_OT_DIRECTORY_CONTENTS:
3834 if (!(flags & ZOR_FLAG_DIRECTORY))
3835 match = B_FALSE;
3836 break;
3837 case DMU_OT_PLAIN_FILE_CONTENTS:
3838 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3839 match = B_FALSE;
3840 break;
3841 case DMU_OT_SPACE_MAP:
3842 if (!(flags & ZOR_FLAG_SPACE_MAP))
3843 match = B_FALSE;
3844 break;
3845 default:
3846 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3847 if (!(flags & ZOR_FLAG_ZAP))
3848 match = B_FALSE;
3849 break;
3850 }
3851
3852 /*
3853 * If all bits except some of the supported flags are
3854 * set, the user combined the all-types flag (A) with
3855 * a negated flag to exclude some types (e.g. A-f to
3856 * show all object types except plain files).
3857 */
3858 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3859 match = B_FALSE;
3860
3861 break;
3862 }
3863
3864 return (match);
3865 }
3866
3867 static void
dump_object(objset_t * os,uint64_t object,int verbosity,boolean_t * print_header,uint64_t * dnode_slots_used,uint64_t flags)3868 dump_object(objset_t *os, uint64_t object, int verbosity,
3869 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3870 {
3871 dmu_buf_t *db = NULL;
3872 dmu_object_info_t doi;
3873 dnode_t *dn;
3874 boolean_t dnode_held = B_FALSE;
3875 void *bonus = NULL;
3876 size_t bsize = 0;
3877 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3878 char bonus_size[32];
3879 char aux[50];
3880 int error;
3881
3882 /* make sure nicenum has enough space */
3883 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3884 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3885 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3886 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3887 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3888 "bonus_size truncated");
3889
3890 if (*print_header) {
3891 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3892 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3893 "lsize", "%full", "type");
3894 *print_header = 0;
3895 }
3896
3897 if (object == 0) {
3898 dn = DMU_META_DNODE(os);
3899 dmu_object_info_from_dnode(dn, &doi);
3900 } else {
3901 /*
3902 * Encrypted datasets will have sensitive bonus buffers
3903 * encrypted. Therefore we cannot hold the bonus buffer and
3904 * must hold the dnode itself instead.
3905 */
3906 error = dmu_object_info(os, object, &doi);
3907 if (error)
3908 fatal("dmu_object_info() failed, errno %u", error);
3909
3910 if (!key_loaded && os->os_encrypted &&
3911 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3912 error = dnode_hold(os, object, FTAG, &dn);
3913 if (error)
3914 fatal("dnode_hold() failed, errno %u", error);
3915 dnode_held = B_TRUE;
3916 } else {
3917 error = dmu_bonus_hold(os, object, FTAG, &db);
3918 if (error)
3919 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3920 object, error);
3921 bonus = db->db_data;
3922 bsize = db->db_size;
3923 dn = DB_DNODE((dmu_buf_impl_t *)db);
3924 }
3925 }
3926
3927 /*
3928 * Default to showing all object types if no flags were specified.
3929 */
3930 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3931 !match_object_type(doi.doi_type, flags))
3932 goto out;
3933
3934 if (dnode_slots_used)
3935 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3936
3937 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3938 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3939 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3940 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3941 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3942 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3943 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3944 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3945 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3946
3947 aux[0] = '\0';
3948
3949 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3950 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3951 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3952 }
3953
3954 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3955 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3956 const char *compname = NULL;
3957 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3958 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3959 &compname) == 0) {
3960 (void) snprintf(aux + strlen(aux),
3961 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3962 compname);
3963 } else {
3964 (void) snprintf(aux + strlen(aux),
3965 sizeof (aux) - strlen(aux),
3966 " (Z=inherit=%s-unknown)",
3967 ZDB_COMPRESS_NAME(os->os_compress));
3968 }
3969 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3970 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3971 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3972 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3973 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3974 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3975 }
3976
3977 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3978 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3979 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3980
3981 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3982 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3983 "", "", "", "", "", "", bonus_size, "bonus",
3984 zdb_ot_name(doi.doi_bonus_type));
3985 }
3986
3987 if (verbosity >= 4) {
3988 (void) printf("\tdnode flags: %s%s%s%s\n",
3989 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3990 "USED_BYTES " : "",
3991 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3992 "USERUSED_ACCOUNTED " : "",
3993 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3994 "USEROBJUSED_ACCOUNTED " : "",
3995 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3996 "SPILL_BLKPTR" : "");
3997 (void) printf("\tdnode maxblkid: %llu\n",
3998 (longlong_t)dn->dn_phys->dn_maxblkid);
3999
4000 if (!dnode_held) {
4001 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
4002 object, bonus, bsize);
4003 } else {
4004 (void) printf("\t\t(bonus encrypted)\n");
4005 }
4006
4007 if (key_loaded ||
4008 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
4009 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
4010 NULL, 0);
4011 } else {
4012 (void) printf("\t\t(object encrypted)\n");
4013 }
4014
4015 *print_header = B_TRUE;
4016 }
4017
4018 if (verbosity >= 5) {
4019 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
4020 char blkbuf[BP_SPRINTF_LEN];
4021 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
4022 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
4023 (void) printf("\nSpill block: %s\n", blkbuf);
4024 }
4025 dump_indirect(dn);
4026 }
4027
4028 if (verbosity >= 5) {
4029 /*
4030 * Report the list of segments that comprise the object.
4031 */
4032 uint64_t start = 0;
4033 uint64_t end;
4034 uint64_t blkfill = 1;
4035 int minlvl = 1;
4036
4037 if (dn->dn_type == DMU_OT_DNODE) {
4038 minlvl = 0;
4039 blkfill = DNODES_PER_BLOCK;
4040 }
4041
4042 for (;;) {
4043 char segsize[32];
4044 /* make sure nicenum has enough space */
4045 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
4046 "segsize truncated");
4047 error = dnode_next_offset(dn,
4048 0, &start, minlvl, blkfill, 0);
4049 if (error)
4050 break;
4051 end = start;
4052 error = dnode_next_offset(dn,
4053 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
4054 zdb_nicenum(end - start, segsize, sizeof (segsize));
4055 (void) printf("\t\tsegment [%016llx, %016llx)"
4056 " size %5s\n", (u_longlong_t)start,
4057 (u_longlong_t)end, segsize);
4058 if (error)
4059 break;
4060 start = end;
4061 }
4062 }
4063
4064 out:
4065 if (db != NULL)
4066 dmu_buf_rele(db, FTAG);
4067 if (dnode_held)
4068 dnode_rele(dn, FTAG);
4069 }
4070
4071 static void
count_dir_mos_objects(dsl_dir_t * dd)4072 count_dir_mos_objects(dsl_dir_t *dd)
4073 {
4074 mos_obj_refd(dd->dd_object);
4075 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
4076 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
4077 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
4078 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
4079
4080 /*
4081 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
4082 * Ignore the references after the first one.
4083 */
4084 mos_obj_refd_multiple(dd->dd_crypto_obj);
4085 }
4086
4087 static void
count_ds_mos_objects(dsl_dataset_t * ds)4088 count_ds_mos_objects(dsl_dataset_t *ds)
4089 {
4090 mos_obj_refd(ds->ds_object);
4091 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
4092 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
4093 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
4094 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
4095 mos_obj_refd(ds->ds_bookmarks_obj);
4096
4097 if (!dsl_dataset_is_snapshot(ds)) {
4098 count_dir_mos_objects(ds->ds_dir);
4099 }
4100 }
4101
4102 static const char *const objset_types[DMU_OST_NUMTYPES] = {
4103 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4104
4105 /*
4106 * Parse a string denoting a range of object IDs of the form
4107 * <start>[:<end>[:flags]], and store the results in zor.
4108 * Return 0 on success. On error, return 1 and update the msg
4109 * pointer to point to a descriptive error message.
4110 */
4111 static int
parse_object_range(char * range,zopt_object_range_t * zor,const char ** msg)4112 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
4113 {
4114 uint64_t flags = 0;
4115 char *p, *s, *dup, *flagstr, *tmp = NULL;
4116 size_t len;
4117 int i;
4118 int rc = 0;
4119
4120 if (strchr(range, ':') == NULL) {
4121 zor->zor_obj_start = strtoull(range, &p, 0);
4122 if (*p != '\0') {
4123 *msg = "Invalid characters in object ID";
4124 rc = 1;
4125 }
4126 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4127 zor->zor_obj_end = zor->zor_obj_start;
4128 return (rc);
4129 }
4130
4131 if (strchr(range, ':') == range) {
4132 *msg = "Invalid leading colon";
4133 rc = 1;
4134 return (rc);
4135 }
4136
4137 len = strlen(range);
4138 if (range[len - 1] == ':') {
4139 *msg = "Invalid trailing colon";
4140 rc = 1;
4141 return (rc);
4142 }
4143
4144 dup = strdup(range);
4145 s = strtok_r(dup, ":", &tmp);
4146 zor->zor_obj_start = strtoull(s, &p, 0);
4147
4148 if (*p != '\0') {
4149 *msg = "Invalid characters in start object ID";
4150 rc = 1;
4151 goto out;
4152 }
4153
4154 s = strtok_r(NULL, ":", &tmp);
4155 zor->zor_obj_end = strtoull(s, &p, 0);
4156
4157 if (*p != '\0') {
4158 *msg = "Invalid characters in end object ID";
4159 rc = 1;
4160 goto out;
4161 }
4162
4163 if (zor->zor_obj_start > zor->zor_obj_end) {
4164 *msg = "Start object ID may not exceed end object ID";
4165 rc = 1;
4166 goto out;
4167 }
4168
4169 s = strtok_r(NULL, ":", &tmp);
4170 if (s == NULL) {
4171 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4172 goto out;
4173 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
4174 *msg = "Invalid colon-delimited field after flags";
4175 rc = 1;
4176 goto out;
4177 }
4178
4179 flagstr = s;
4180 for (i = 0; flagstr[i]; i++) {
4181 int bit;
4182 boolean_t negation = (flagstr[i] == '-');
4183
4184 if (negation) {
4185 i++;
4186 if (flagstr[i] == '\0') {
4187 *msg = "Invalid trailing negation operator";
4188 rc = 1;
4189 goto out;
4190 }
4191 }
4192 bit = flagbits[(uchar_t)flagstr[i]];
4193 if (bit == 0) {
4194 *msg = "Invalid flag";
4195 rc = 1;
4196 goto out;
4197 }
4198 if (negation)
4199 flags &= ~bit;
4200 else
4201 flags |= bit;
4202 }
4203 zor->zor_flags = flags;
4204
4205 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4206 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4207
4208 out:
4209 free(dup);
4210 return (rc);
4211 }
4212
4213 static void
dump_objset(objset_t * os)4214 dump_objset(objset_t *os)
4215 {
4216 dmu_objset_stats_t dds = { 0 };
4217 uint64_t object, object_count;
4218 uint64_t refdbytes, usedobjs, scratch;
4219 char numbuf[32];
4220 char blkbuf[BP_SPRINTF_LEN + 20];
4221 char osname[ZFS_MAX_DATASET_NAME_LEN];
4222 const char *type = "UNKNOWN";
4223 int verbosity = dump_opt['d'];
4224 boolean_t print_header;
4225 unsigned i;
4226 int error;
4227 uint64_t total_slots_used = 0;
4228 uint64_t max_slot_used = 0;
4229 uint64_t dnode_slots;
4230 uint64_t obj_start;
4231 uint64_t obj_end;
4232 uint64_t flags;
4233
4234 /* make sure nicenum has enough space */
4235 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4236
4237 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4238 dmu_objset_fast_stat(os, &dds);
4239 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4240
4241 print_header = B_TRUE;
4242
4243 if (dds.dds_type < DMU_OST_NUMTYPES)
4244 type = objset_types[dds.dds_type];
4245
4246 if (dds.dds_type == DMU_OST_META) {
4247 dds.dds_creation_txg = TXG_INITIAL;
4248 usedobjs = BP_GET_FILL(os->os_rootbp);
4249 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4250 dd_used_bytes;
4251 } else {
4252 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4253 }
4254
4255 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4256
4257 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4258
4259 if (verbosity >= 4) {
4260 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4261 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4262 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4263 } else {
4264 blkbuf[0] = '\0';
4265 }
4266
4267 dmu_objset_name(os, osname);
4268
4269 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4270 "%s, %llu objects%s%s\n",
4271 osname, type, (u_longlong_t)dmu_objset_id(os),
4272 (u_longlong_t)dds.dds_creation_txg,
4273 numbuf, (u_longlong_t)usedobjs, blkbuf,
4274 (dds.dds_inconsistent) ? " (inconsistent)" : "");
4275
4276 for (i = 0; i < zopt_object_args; i++) {
4277 obj_start = zopt_object_ranges[i].zor_obj_start;
4278 obj_end = zopt_object_ranges[i].zor_obj_end;
4279 flags = zopt_object_ranges[i].zor_flags;
4280
4281 object = obj_start;
4282 if (object == 0 || obj_start == obj_end)
4283 dump_object(os, object, verbosity, &print_header, NULL,
4284 flags);
4285 else
4286 object--;
4287
4288 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4289 object <= obj_end) {
4290 dump_object(os, object, verbosity, &print_header, NULL,
4291 flags);
4292 }
4293 }
4294
4295 if (zopt_object_args > 0) {
4296 (void) printf("\n");
4297 return;
4298 }
4299
4300 if (dump_opt['i'] != 0 || verbosity >= 2)
4301 dump_intent_log(dmu_objset_zil(os));
4302
4303 if (dmu_objset_ds(os) != NULL) {
4304 dsl_dataset_t *ds = dmu_objset_ds(os);
4305 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4306 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4307 !dmu_objset_is_snapshot(os)) {
4308 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4309 if (verify_dd_livelist(os) != 0)
4310 fatal("livelist is incorrect");
4311 }
4312
4313 if (dsl_dataset_remap_deadlist_exists(ds)) {
4314 (void) printf("ds_remap_deadlist:\n");
4315 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4316 }
4317 count_ds_mos_objects(ds);
4318 }
4319
4320 if (dmu_objset_ds(os) != NULL)
4321 dump_bookmarks(os, verbosity);
4322
4323 if (verbosity < 2)
4324 return;
4325
4326 if (BP_IS_HOLE(os->os_rootbp))
4327 return;
4328
4329 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4330 object_count = 0;
4331 if (DMU_USERUSED_DNODE(os) != NULL &&
4332 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4333 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4334 NULL, 0);
4335 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4336 NULL, 0);
4337 }
4338
4339 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4340 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4341 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4342 &print_header, NULL, 0);
4343
4344 object = 0;
4345 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4346 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4347 0);
4348 object_count++;
4349 total_slots_used += dnode_slots;
4350 max_slot_used = object + dnode_slots - 1;
4351 }
4352
4353 (void) printf("\n");
4354
4355 (void) printf(" Dnode slots:\n");
4356 (void) printf("\tTotal used: %10llu\n",
4357 (u_longlong_t)total_slots_used);
4358 (void) printf("\tMax used: %10llu\n",
4359 (u_longlong_t)max_slot_used);
4360 (void) printf("\tPercent empty: %10lf\n",
4361 (double)(max_slot_used - total_slots_used)*100 /
4362 (double)max_slot_used);
4363 (void) printf("\n");
4364
4365 if (error != ESRCH) {
4366 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4367 abort();
4368 }
4369
4370 ASSERT3U(object_count, ==, usedobjs);
4371
4372 if (leaked_objects != 0) {
4373 (void) printf("%d potentially leaked objects detected\n",
4374 leaked_objects);
4375 leaked_objects = 0;
4376 }
4377 }
4378
4379 static void
dump_uberblock(uberblock_t * ub,const char * header,const char * footer)4380 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4381 {
4382 time_t timestamp = ub->ub_timestamp;
4383
4384 (void) printf("%s", header ? header : "");
4385 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4386 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4387 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4388 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4389 (void) printf("\ttimestamp = %llu UTC = %s",
4390 (u_longlong_t)ub->ub_timestamp, ctime(×tamp));
4391
4392 char blkbuf[BP_SPRINTF_LEN];
4393 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4394 (void) printf("\tbp = %s\n", blkbuf);
4395
4396 (void) printf("\tmmp_magic = %016llx\n",
4397 (u_longlong_t)ub->ub_mmp_magic);
4398 if (MMP_VALID(ub)) {
4399 (void) printf("\tmmp_delay = %0llu\n",
4400 (u_longlong_t)ub->ub_mmp_delay);
4401 if (MMP_SEQ_VALID(ub))
4402 (void) printf("\tmmp_seq = %u\n",
4403 (unsigned int) MMP_SEQ(ub));
4404 if (MMP_FAIL_INT_VALID(ub))
4405 (void) printf("\tmmp_fail = %u\n",
4406 (unsigned int) MMP_FAIL_INT(ub));
4407 if (MMP_INTERVAL_VALID(ub))
4408 (void) printf("\tmmp_write = %u\n",
4409 (unsigned int) MMP_INTERVAL(ub));
4410 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4411 (void) printf("\tmmp_valid = %x\n",
4412 (unsigned int) ub->ub_mmp_config & 0xFF);
4413 }
4414
4415 if (dump_opt['u'] >= 4) {
4416 char blkbuf[BP_SPRINTF_LEN];
4417 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4418 (void) printf("\trootbp = %s\n", blkbuf);
4419 }
4420 (void) printf("\tcheckpoint_txg = %llu\n",
4421 (u_longlong_t)ub->ub_checkpoint_txg);
4422
4423 (void) printf("\traidz_reflow state=%u off=%llu\n",
4424 (int)RRSS_GET_STATE(ub),
4425 (u_longlong_t)RRSS_GET_OFFSET(ub));
4426
4427 (void) printf("%s", footer ? footer : "");
4428 }
4429
4430 static void
dump_config(spa_t * spa)4431 dump_config(spa_t *spa)
4432 {
4433 dmu_buf_t *db;
4434 size_t nvsize = 0;
4435 int error = 0;
4436
4437
4438 error = dmu_bonus_hold(spa->spa_meta_objset,
4439 spa->spa_config_object, FTAG, &db);
4440
4441 if (error == 0) {
4442 nvsize = *(uint64_t *)db->db_data;
4443 dmu_buf_rele(db, FTAG);
4444
4445 (void) printf("\nMOS Configuration:\n");
4446 dump_packed_nvlist(spa->spa_meta_objset,
4447 spa->spa_config_object, (void *)&nvsize, 1);
4448 } else {
4449 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4450 (u_longlong_t)spa->spa_config_object, error);
4451 }
4452 }
4453
4454 static void
dump_cachefile(const char * cachefile)4455 dump_cachefile(const char *cachefile)
4456 {
4457 int fd;
4458 struct stat64 statbuf;
4459 char *buf;
4460 nvlist_t *config;
4461
4462 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4463 (void) printf("cannot open '%s': %s\n", cachefile,
4464 strerror(errno));
4465 zdb_exit(1);
4466 }
4467
4468 if (fstat64(fd, &statbuf) != 0) {
4469 (void) printf("failed to stat '%s': %s\n", cachefile,
4470 strerror(errno));
4471 zdb_exit(1);
4472 }
4473
4474 if ((buf = malloc(statbuf.st_size)) == NULL) {
4475 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4476 (u_longlong_t)statbuf.st_size);
4477 zdb_exit(1);
4478 }
4479
4480 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4481 (void) fprintf(stderr, "failed to read %llu bytes\n",
4482 (u_longlong_t)statbuf.st_size);
4483 zdb_exit(1);
4484 }
4485
4486 (void) close(fd);
4487
4488 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4489 (void) fprintf(stderr, "failed to unpack nvlist\n");
4490 zdb_exit(1);
4491 }
4492
4493 free(buf);
4494
4495 dump_nvlist(config, 0);
4496
4497 nvlist_free(config);
4498 }
4499
4500 /*
4501 * ZFS label nvlist stats
4502 */
4503 typedef struct zdb_nvl_stats {
4504 int zns_list_count;
4505 int zns_leaf_count;
4506 size_t zns_leaf_largest;
4507 size_t zns_leaf_total;
4508 nvlist_t *zns_string;
4509 nvlist_t *zns_uint64;
4510 nvlist_t *zns_boolean;
4511 } zdb_nvl_stats_t;
4512
4513 static void
collect_nvlist_stats(nvlist_t * nvl,zdb_nvl_stats_t * stats)4514 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4515 {
4516 nvlist_t *list, **array;
4517 nvpair_t *nvp = NULL;
4518 const char *name;
4519 uint_t i, items;
4520
4521 stats->zns_list_count++;
4522
4523 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4524 name = nvpair_name(nvp);
4525
4526 switch (nvpair_type(nvp)) {
4527 case DATA_TYPE_STRING:
4528 fnvlist_add_string(stats->zns_string, name,
4529 fnvpair_value_string(nvp));
4530 break;
4531 case DATA_TYPE_UINT64:
4532 fnvlist_add_uint64(stats->zns_uint64, name,
4533 fnvpair_value_uint64(nvp));
4534 break;
4535 case DATA_TYPE_BOOLEAN:
4536 fnvlist_add_boolean(stats->zns_boolean, name);
4537 break;
4538 case DATA_TYPE_NVLIST:
4539 if (nvpair_value_nvlist(nvp, &list) == 0)
4540 collect_nvlist_stats(list, stats);
4541 break;
4542 case DATA_TYPE_NVLIST_ARRAY:
4543 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4544 break;
4545
4546 for (i = 0; i < items; i++) {
4547 collect_nvlist_stats(array[i], stats);
4548
4549 /* collect stats on leaf vdev */
4550 if (strcmp(name, "children") == 0) {
4551 size_t size;
4552
4553 (void) nvlist_size(array[i], &size,
4554 NV_ENCODE_XDR);
4555 stats->zns_leaf_total += size;
4556 if (size > stats->zns_leaf_largest)
4557 stats->zns_leaf_largest = size;
4558 stats->zns_leaf_count++;
4559 }
4560 }
4561 break;
4562 default:
4563 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4564 }
4565 }
4566 }
4567
4568 static void
dump_nvlist_stats(nvlist_t * nvl,size_t cap)4569 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4570 {
4571 zdb_nvl_stats_t stats = { 0 };
4572 size_t size, sum = 0, total;
4573 size_t noise;
4574
4575 /* requires nvlist with non-unique names for stat collection */
4576 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4577 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4578 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4579 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4580
4581 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4582
4583 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4584 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4585 (int)total, (int)(cap - total), 100.0 * total / cap);
4586
4587 collect_nvlist_stats(nvl, &stats);
4588
4589 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4590 size -= noise;
4591 sum += size;
4592 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4593 (int)fnvlist_num_pairs(stats.zns_uint64),
4594 (int)size, 100.0 * size / total);
4595
4596 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4597 size -= noise;
4598 sum += size;
4599 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4600 (int)fnvlist_num_pairs(stats.zns_string),
4601 (int)size, 100.0 * size / total);
4602
4603 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4604 size -= noise;
4605 sum += size;
4606 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4607 (int)fnvlist_num_pairs(stats.zns_boolean),
4608 (int)size, 100.0 * size / total);
4609
4610 size = total - sum; /* treat remainder as nvlist overhead */
4611 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4612 stats.zns_list_count, (int)size, 100.0 * size / total);
4613
4614 if (stats.zns_leaf_count > 0) {
4615 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4616
4617 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4618 stats.zns_leaf_count, (int)average);
4619 (void) printf("%24d bytes largest\n",
4620 (int)stats.zns_leaf_largest);
4621
4622 if (dump_opt['l'] >= 3 && average > 0)
4623 (void) printf(" space for %d additional leaf vdevs\n",
4624 (int)((cap - total) / average));
4625 }
4626 (void) printf("\n");
4627
4628 nvlist_free(stats.zns_string);
4629 nvlist_free(stats.zns_uint64);
4630 nvlist_free(stats.zns_boolean);
4631 }
4632
4633 typedef struct cksum_record {
4634 zio_cksum_t cksum;
4635 boolean_t labels[VDEV_LABELS];
4636 avl_node_t link;
4637 } cksum_record_t;
4638
4639 static int
cksum_record_compare(const void * x1,const void * x2)4640 cksum_record_compare(const void *x1, const void *x2)
4641 {
4642 const cksum_record_t *l = (cksum_record_t *)x1;
4643 const cksum_record_t *r = (cksum_record_t *)x2;
4644 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4645 int difference = 0;
4646
4647 for (int i = 0; i < arraysize; i++) {
4648 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4649 if (difference)
4650 break;
4651 }
4652
4653 return (difference);
4654 }
4655
4656 static cksum_record_t *
cksum_record_alloc(zio_cksum_t * cksum,int l)4657 cksum_record_alloc(zio_cksum_t *cksum, int l)
4658 {
4659 cksum_record_t *rec;
4660
4661 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4662 rec->cksum = *cksum;
4663 rec->labels[l] = B_TRUE;
4664
4665 return (rec);
4666 }
4667
4668 static cksum_record_t *
cksum_record_lookup(avl_tree_t * tree,zio_cksum_t * cksum)4669 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4670 {
4671 cksum_record_t lookup = { .cksum = *cksum };
4672 avl_index_t where;
4673
4674 return (avl_find(tree, &lookup, &where));
4675 }
4676
4677 static cksum_record_t *
cksum_record_insert(avl_tree_t * tree,zio_cksum_t * cksum,int l)4678 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4679 {
4680 cksum_record_t *rec;
4681
4682 rec = cksum_record_lookup(tree, cksum);
4683 if (rec) {
4684 rec->labels[l] = B_TRUE;
4685 } else {
4686 rec = cksum_record_alloc(cksum, l);
4687 avl_add(tree, rec);
4688 }
4689
4690 return (rec);
4691 }
4692
4693 static int
first_label(cksum_record_t * rec)4694 first_label(cksum_record_t *rec)
4695 {
4696 for (int i = 0; i < VDEV_LABELS; i++)
4697 if (rec->labels[i])
4698 return (i);
4699
4700 return (-1);
4701 }
4702
4703 static void
print_label_numbers(const char * prefix,const cksum_record_t * rec)4704 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4705 {
4706 fputs(prefix, stdout);
4707 for (int i = 0; i < VDEV_LABELS; i++)
4708 if (rec->labels[i] == B_TRUE)
4709 printf("%d ", i);
4710 putchar('\n');
4711 }
4712
4713 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4714
4715 typedef struct zdb_label {
4716 vdev_label_t label;
4717 uint64_t label_offset;
4718 nvlist_t *config_nv;
4719 cksum_record_t *config;
4720 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4721 boolean_t header_printed;
4722 boolean_t read_failed;
4723 boolean_t cksum_valid;
4724 } zdb_label_t;
4725
4726 static void
print_label_header(zdb_label_t * label,int l)4727 print_label_header(zdb_label_t *label, int l)
4728 {
4729
4730 if (dump_opt['q'])
4731 return;
4732
4733 if (label->header_printed == B_TRUE)
4734 return;
4735
4736 (void) printf("------------------------------------\n");
4737 (void) printf("LABEL %d %s\n", l,
4738 label->cksum_valid ? "" : "(Bad label cksum)");
4739 (void) printf("------------------------------------\n");
4740
4741 label->header_printed = B_TRUE;
4742 }
4743
4744 static void
print_l2arc_header(void)4745 print_l2arc_header(void)
4746 {
4747 (void) printf("------------------------------------\n");
4748 (void) printf("L2ARC device header\n");
4749 (void) printf("------------------------------------\n");
4750 }
4751
4752 static void
print_l2arc_log_blocks(void)4753 print_l2arc_log_blocks(void)
4754 {
4755 (void) printf("------------------------------------\n");
4756 (void) printf("L2ARC device log blocks\n");
4757 (void) printf("------------------------------------\n");
4758 }
4759
4760 static void
dump_l2arc_log_entries(uint64_t log_entries,l2arc_log_ent_phys_t * le,uint64_t i)4761 dump_l2arc_log_entries(uint64_t log_entries,
4762 l2arc_log_ent_phys_t *le, uint64_t i)
4763 {
4764 for (int j = 0; j < log_entries; j++) {
4765 dva_t dva = le[j].le_dva;
4766 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4767 "vdev: %llu, offset: %llu\n",
4768 (u_longlong_t)i, j + 1,
4769 (u_longlong_t)DVA_GET_ASIZE(&dva),
4770 (u_longlong_t)DVA_GET_VDEV(&dva),
4771 (u_longlong_t)DVA_GET_OFFSET(&dva));
4772 (void) printf("|\t\t\t\tbirth: %llu\n",
4773 (u_longlong_t)le[j].le_birth);
4774 (void) printf("|\t\t\t\tlsize: %llu\n",
4775 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4776 (void) printf("|\t\t\t\tpsize: %llu\n",
4777 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4778 (void) printf("|\t\t\t\tcompr: %llu\n",
4779 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4780 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4781 (u_longlong_t)(&le[j])->le_complevel);
4782 (void) printf("|\t\t\t\ttype: %llu\n",
4783 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4784 (void) printf("|\t\t\t\tprotected: %llu\n",
4785 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4786 (void) printf("|\t\t\t\tprefetch: %llu\n",
4787 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4788 (void) printf("|\t\t\t\taddress: %llu\n",
4789 (u_longlong_t)le[j].le_daddr);
4790 (void) printf("|\t\t\t\tARC state: %llu\n",
4791 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4792 (void) printf("|\n");
4793 }
4794 (void) printf("\n");
4795 }
4796
4797 static void
dump_l2arc_log_blkptr(const l2arc_log_blkptr_t * lbps)4798 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4799 {
4800 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4801 (void) printf("|\t\tpayload_asize: %llu\n",
4802 (u_longlong_t)lbps->lbp_payload_asize);
4803 (void) printf("|\t\tpayload_start: %llu\n",
4804 (u_longlong_t)lbps->lbp_payload_start);
4805 (void) printf("|\t\tlsize: %llu\n",
4806 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4807 (void) printf("|\t\tasize: %llu\n",
4808 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4809 (void) printf("|\t\tcompralgo: %llu\n",
4810 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4811 (void) printf("|\t\tcksumalgo: %llu\n",
4812 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4813 (void) printf("|\n\n");
4814 }
4815
4816 static void
dump_l2arc_log_blocks(int fd,const l2arc_dev_hdr_phys_t * l2dhdr,l2arc_dev_hdr_phys_t * rebuild)4817 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4818 l2arc_dev_hdr_phys_t *rebuild)
4819 {
4820 l2arc_log_blk_phys_t this_lb;
4821 uint64_t asize;
4822 l2arc_log_blkptr_t lbps[2];
4823 zio_cksum_t cksum;
4824 int failed = 0;
4825 l2arc_dev_t dev;
4826
4827 if (!dump_opt['q'])
4828 print_l2arc_log_blocks();
4829 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4830
4831 dev.l2ad_evict = l2dhdr->dh_evict;
4832 dev.l2ad_start = l2dhdr->dh_start;
4833 dev.l2ad_end = l2dhdr->dh_end;
4834
4835 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4836 /* no log blocks to read */
4837 if (!dump_opt['q']) {
4838 (void) printf("No log blocks to read\n");
4839 (void) printf("\n");
4840 }
4841 return;
4842 } else {
4843 dev.l2ad_hand = lbps[0].lbp_daddr +
4844 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4845 }
4846
4847 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4848
4849 for (;;) {
4850 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4851 break;
4852
4853 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4854 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4855 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4856 if (!dump_opt['q']) {
4857 (void) printf("Error while reading next log "
4858 "block\n\n");
4859 }
4860 break;
4861 }
4862
4863 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4864 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4865 failed++;
4866 if (!dump_opt['q']) {
4867 (void) printf("Invalid cksum\n");
4868 dump_l2arc_log_blkptr(&lbps[0]);
4869 }
4870 break;
4871 }
4872
4873 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4874 case ZIO_COMPRESS_OFF:
4875 break;
4876 default: {
4877 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4878 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4879 abd_t dabd;
4880 abd_get_from_buf_struct(&dabd, &this_lb,
4881 sizeof (this_lb));
4882 int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4883 (&lbps[0])->lbp_prop), abd, &dabd,
4884 asize, sizeof (this_lb), NULL);
4885 abd_free(&dabd);
4886 abd_free(abd);
4887 if (err != 0) {
4888 (void) printf("L2ARC block decompression "
4889 "failed\n");
4890 goto out;
4891 }
4892 break;
4893 }
4894 }
4895
4896 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4897 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4898 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4899 if (!dump_opt['q'])
4900 (void) printf("Invalid log block magic\n\n");
4901 break;
4902 }
4903
4904 rebuild->dh_lb_count++;
4905 rebuild->dh_lb_asize += asize;
4906 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4907 (void) printf("lb[%4llu]\tmagic: %llu\n",
4908 (u_longlong_t)rebuild->dh_lb_count,
4909 (u_longlong_t)this_lb.lb_magic);
4910 dump_l2arc_log_blkptr(&lbps[0]);
4911 }
4912
4913 if (dump_opt['l'] > 2 && !dump_opt['q'])
4914 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4915 this_lb.lb_entries,
4916 rebuild->dh_lb_count);
4917
4918 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4919 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4920 !dev.l2ad_first)
4921 break;
4922
4923 lbps[0] = lbps[1];
4924 lbps[1] = this_lb.lb_prev_lbp;
4925 }
4926 out:
4927 if (!dump_opt['q']) {
4928 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4929 (u_longlong_t)rebuild->dh_lb_count);
4930 (void) printf("\t\t %d with invalid cksum\n", failed);
4931 (void) printf("log_blk_asize:\t %llu\n\n",
4932 (u_longlong_t)rebuild->dh_lb_asize);
4933 }
4934 }
4935
4936 static int
dump_l2arc_header(int fd)4937 dump_l2arc_header(int fd)
4938 {
4939 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4940 int error = B_FALSE;
4941
4942 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4943 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4944 error = B_TRUE;
4945 } else {
4946 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4947 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4948
4949 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4950 error = B_TRUE;
4951 }
4952
4953 if (error) {
4954 (void) printf("L2ARC device header not found\n\n");
4955 /* Do not return an error here for backward compatibility */
4956 return (0);
4957 } else if (!dump_opt['q']) {
4958 print_l2arc_header();
4959
4960 (void) printf(" magic: %llu\n",
4961 (u_longlong_t)l2dhdr.dh_magic);
4962 (void) printf(" version: %llu\n",
4963 (u_longlong_t)l2dhdr.dh_version);
4964 (void) printf(" pool_guid: %llu\n",
4965 (u_longlong_t)l2dhdr.dh_spa_guid);
4966 (void) printf(" flags: %llu\n",
4967 (u_longlong_t)l2dhdr.dh_flags);
4968 (void) printf(" start_lbps[0]: %llu\n",
4969 (u_longlong_t)
4970 l2dhdr.dh_start_lbps[0].lbp_daddr);
4971 (void) printf(" start_lbps[1]: %llu\n",
4972 (u_longlong_t)
4973 l2dhdr.dh_start_lbps[1].lbp_daddr);
4974 (void) printf(" log_blk_ent: %llu\n",
4975 (u_longlong_t)l2dhdr.dh_log_entries);
4976 (void) printf(" start: %llu\n",
4977 (u_longlong_t)l2dhdr.dh_start);
4978 (void) printf(" end: %llu\n",
4979 (u_longlong_t)l2dhdr.dh_end);
4980 (void) printf(" evict: %llu\n",
4981 (u_longlong_t)l2dhdr.dh_evict);
4982 (void) printf(" lb_asize_refcount: %llu\n",
4983 (u_longlong_t)l2dhdr.dh_lb_asize);
4984 (void) printf(" lb_count_refcount: %llu\n",
4985 (u_longlong_t)l2dhdr.dh_lb_count);
4986 (void) printf(" trim_action_time: %llu\n",
4987 (u_longlong_t)l2dhdr.dh_trim_action_time);
4988 (void) printf(" trim_state: %llu\n\n",
4989 (u_longlong_t)l2dhdr.dh_trim_state);
4990 }
4991
4992 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4993 /*
4994 * The total aligned size of log blocks and the number of log blocks
4995 * reported in the header of the device may be less than what zdb
4996 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4997 * This happens because dump_l2arc_log_blocks() lacks the memory
4998 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4999 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
5000 * and dh_lb_count will be lower to begin with than what exists on the
5001 * device. This is normal and zdb should not exit with an error. The
5002 * opposite case should never happen though, the values reported in the
5003 * header should never be higher than what dump_l2arc_log_blocks() and
5004 * l2arc_rebuild() report. If this happens there is a leak in the
5005 * accounting of log blocks.
5006 */
5007 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
5008 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
5009 return (1);
5010
5011 return (0);
5012 }
5013
5014 static void
dump_config_from_label(zdb_label_t * label,size_t buflen,int l)5015 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
5016 {
5017 if (dump_opt['q'])
5018 return;
5019
5020 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
5021 return;
5022
5023 print_label_header(label, l);
5024 dump_nvlist(label->config_nv, 4);
5025 print_label_numbers(" labels = ", label->config);
5026
5027 if (dump_opt['l'] >= 2)
5028 dump_nvlist_stats(label->config_nv, buflen);
5029 }
5030
5031 #define ZDB_MAX_UB_HEADER_SIZE 32
5032
5033 static void
dump_label_uberblocks(zdb_label_t * label,uint64_t ashift,int label_num)5034 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
5035 {
5036
5037 vdev_t vd;
5038 char header[ZDB_MAX_UB_HEADER_SIZE];
5039
5040 vd.vdev_ashift = ashift;
5041 vd.vdev_top = &vd;
5042
5043 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5044 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5045 uberblock_t *ub = (void *)((char *)&label->label + uoff);
5046 cksum_record_t *rec = label->uberblocks[i];
5047
5048 if (rec == NULL) {
5049 if (dump_opt['u'] >= 2) {
5050 print_label_header(label, label_num);
5051 (void) printf(" Uberblock[%d] invalid\n", i);
5052 }
5053 continue;
5054 }
5055
5056 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
5057 continue;
5058
5059 if ((dump_opt['u'] < 4) &&
5060 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
5061 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
5062 continue;
5063
5064 print_label_header(label, label_num);
5065 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
5066 " Uberblock[%d]\n", i);
5067 dump_uberblock(ub, header, "");
5068 print_label_numbers(" labels = ", rec);
5069 }
5070 }
5071
5072 static char curpath[PATH_MAX];
5073
5074 /*
5075 * Iterate through the path components, recursively passing
5076 * current one's obj and remaining path until we find the obj
5077 * for the last one.
5078 */
5079 static int
dump_path_impl(objset_t * os,uint64_t obj,char * name,uint64_t * retobj)5080 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
5081 {
5082 int err;
5083 boolean_t header = B_TRUE;
5084 uint64_t child_obj;
5085 char *s;
5086 dmu_buf_t *db;
5087 dmu_object_info_t doi;
5088
5089 if ((s = strchr(name, '/')) != NULL)
5090 *s = '\0';
5091 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
5092
5093 (void) strlcat(curpath, name, sizeof (curpath));
5094
5095 if (err != 0) {
5096 (void) fprintf(stderr, "failed to lookup %s: %s\n",
5097 curpath, strerror(err));
5098 return (err);
5099 }
5100
5101 child_obj = ZFS_DIRENT_OBJ(child_obj);
5102 err = sa_buf_hold(os, child_obj, FTAG, &db);
5103 if (err != 0) {
5104 (void) fprintf(stderr,
5105 "failed to get SA dbuf for obj %llu: %s\n",
5106 (u_longlong_t)child_obj, strerror(err));
5107 return (EINVAL);
5108 }
5109 dmu_object_info_from_db(db, &doi);
5110 sa_buf_rele(db, FTAG);
5111
5112 if (doi.doi_bonus_type != DMU_OT_SA &&
5113 doi.doi_bonus_type != DMU_OT_ZNODE) {
5114 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
5115 doi.doi_bonus_type, (u_longlong_t)child_obj);
5116 return (EINVAL);
5117 }
5118
5119 if (dump_opt['v'] > 6) {
5120 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
5121 (u_longlong_t)child_obj, curpath, doi.doi_type,
5122 doi.doi_bonus_type);
5123 }
5124
5125 (void) strlcat(curpath, "/", sizeof (curpath));
5126
5127 switch (doi.doi_type) {
5128 case DMU_OT_DIRECTORY_CONTENTS:
5129 if (s != NULL && *(s + 1) != '\0')
5130 return (dump_path_impl(os, child_obj, s + 1, retobj));
5131 zfs_fallthrough;
5132 case DMU_OT_PLAIN_FILE_CONTENTS:
5133 if (retobj != NULL) {
5134 *retobj = child_obj;
5135 } else {
5136 dump_object(os, child_obj, dump_opt['v'], &header,
5137 NULL, 0);
5138 }
5139 return (0);
5140 default:
5141 (void) fprintf(stderr, "object %llu has non-file/directory "
5142 "type %d\n", (u_longlong_t)obj, doi.doi_type);
5143 break;
5144 }
5145
5146 return (EINVAL);
5147 }
5148
5149 /*
5150 * Dump the blocks for the object specified by path inside the dataset.
5151 */
5152 static int
dump_path(char * ds,char * path,uint64_t * retobj)5153 dump_path(char *ds, char *path, uint64_t *retobj)
5154 {
5155 int err;
5156 objset_t *os;
5157 uint64_t root_obj;
5158
5159 err = open_objset(ds, FTAG, &os);
5160 if (err != 0)
5161 return (err);
5162
5163 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5164 if (err != 0) {
5165 (void) fprintf(stderr, "can't lookup root znode: %s\n",
5166 strerror(err));
5167 close_objset(os, FTAG);
5168 return (EINVAL);
5169 }
5170
5171 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5172
5173 err = dump_path_impl(os, root_obj, path, retobj);
5174
5175 close_objset(os, FTAG);
5176 return (err);
5177 }
5178
5179 static int
dump_backup_bytes(objset_t * os,void * buf,int len,void * arg)5180 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5181 {
5182 const char *p = (const char *)buf;
5183 ssize_t nwritten;
5184
5185 (void) os;
5186 (void) arg;
5187
5188 /* Write the data out, handling short writes and signals. */
5189 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5190 if (nwritten < 0) {
5191 if (errno == EINTR)
5192 continue;
5193 return (errno);
5194 }
5195 p += nwritten;
5196 len -= nwritten;
5197 }
5198
5199 return (0);
5200 }
5201
5202 static void
dump_backup(const char * pool,uint64_t objset_id,const char * flagstr)5203 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5204 {
5205 boolean_t embed = B_FALSE;
5206 boolean_t large_block = B_FALSE;
5207 boolean_t compress = B_FALSE;
5208 boolean_t raw = B_FALSE;
5209
5210 const char *c;
5211 for (c = flagstr; c != NULL && *c != '\0'; c++) {
5212 switch (*c) {
5213 case 'e':
5214 embed = B_TRUE;
5215 break;
5216 case 'L':
5217 large_block = B_TRUE;
5218 break;
5219 case 'c':
5220 compress = B_TRUE;
5221 break;
5222 case 'w':
5223 raw = B_TRUE;
5224 break;
5225 default:
5226 fprintf(stderr, "dump_backup: invalid flag "
5227 "'%c'\n", *c);
5228 return;
5229 }
5230 }
5231
5232 if (isatty(STDOUT_FILENO)) {
5233 fprintf(stderr, "dump_backup: stream cannot be written "
5234 "to a terminal\n");
5235 return;
5236 }
5237
5238 offset_t off = 0;
5239 dmu_send_outparams_t out = {
5240 .dso_outfunc = dump_backup_bytes,
5241 .dso_dryrun = B_FALSE,
5242 };
5243
5244 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5245 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5246 &off, &out);
5247 if (err != 0) {
5248 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5249 strerror(err));
5250 return;
5251 }
5252 }
5253
5254 static int
zdb_copy_object(objset_t * os,uint64_t srcobj,char * destfile)5255 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5256 {
5257 int err = 0;
5258 uint64_t size, readsize, oursize, offset;
5259 ssize_t writesize;
5260 sa_handle_t *hdl;
5261
5262 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5263 destfile);
5264
5265 VERIFY3P(os, ==, sa_os);
5266 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5267 (void) printf("Failed to get handle for SA znode\n");
5268 return (err);
5269 }
5270 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5271 (void) sa_handle_destroy(hdl);
5272 return (err);
5273 }
5274 (void) sa_handle_destroy(hdl);
5275
5276 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5277 size);
5278 if (size == 0) {
5279 return (EINVAL);
5280 }
5281
5282 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5283 if (fd == -1)
5284 return (errno);
5285 /*
5286 * We cap the size at 1 mebibyte here to prevent
5287 * allocation failures and nigh-infinite printing if the
5288 * object is extremely large.
5289 */
5290 oursize = MIN(size, 1 << 20);
5291 offset = 0;
5292 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5293 if (buf == NULL) {
5294 (void) close(fd);
5295 return (ENOMEM);
5296 }
5297
5298 while (offset < size) {
5299 readsize = MIN(size - offset, 1 << 20);
5300 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5301 if (err != 0) {
5302 (void) printf("got error %u from dmu_read\n", err);
5303 kmem_free(buf, oursize);
5304 (void) close(fd);
5305 return (err);
5306 }
5307 if (dump_opt['v'] > 3) {
5308 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5309 " error=%d\n", offset, readsize, err);
5310 }
5311
5312 writesize = write(fd, buf, readsize);
5313 if (writesize < 0) {
5314 err = errno;
5315 break;
5316 } else if (writesize != readsize) {
5317 /* Incomplete write */
5318 (void) fprintf(stderr, "Short write, only wrote %llu of"
5319 " %" PRIu64 " bytes, exiting...\n",
5320 (u_longlong_t)writesize, readsize);
5321 break;
5322 }
5323
5324 offset += readsize;
5325 }
5326
5327 (void) close(fd);
5328
5329 if (buf != NULL)
5330 kmem_free(buf, oursize);
5331
5332 return (err);
5333 }
5334
5335 static boolean_t
label_cksum_valid(vdev_label_t * label,uint64_t offset)5336 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5337 {
5338 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5339 zio_cksum_t expected_cksum;
5340 zio_cksum_t actual_cksum;
5341 zio_cksum_t verifier;
5342 zio_eck_t *eck;
5343 int byteswap;
5344
5345 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5346 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5347
5348 offset += offsetof(vdev_label_t, vl_vdev_phys);
5349 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5350
5351 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5352 if (byteswap)
5353 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5354
5355 expected_cksum = eck->zec_cksum;
5356 eck->zec_cksum = verifier;
5357
5358 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5359 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5360 abd_free(abd);
5361
5362 if (byteswap)
5363 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5364
5365 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5366 return (B_TRUE);
5367
5368 return (B_FALSE);
5369 }
5370
5371 static int
dump_label(const char * dev)5372 dump_label(const char *dev)
5373 {
5374 char path[MAXPATHLEN];
5375 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5376 uint64_t psize, ashift, l2cache;
5377 struct stat64 statbuf;
5378 boolean_t config_found = B_FALSE;
5379 boolean_t error = B_FALSE;
5380 boolean_t read_l2arc_header = B_FALSE;
5381 avl_tree_t config_tree;
5382 avl_tree_t uberblock_tree;
5383 void *node, *cookie;
5384 int fd;
5385
5386 /*
5387 * Check if we were given absolute path and use it as is.
5388 * Otherwise if the provided vdev name doesn't point to a file,
5389 * try prepending expected disk paths and partition numbers.
5390 */
5391 (void) strlcpy(path, dev, sizeof (path));
5392 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5393 int error;
5394
5395 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5396 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5397 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5398 error = ENOENT;
5399 }
5400
5401 if (error || (stat64(path, &statbuf) != 0)) {
5402 (void) printf("failed to find device %s, try "
5403 "specifying absolute path instead\n", dev);
5404 return (1);
5405 }
5406 }
5407
5408 if ((fd = open64(path, O_RDONLY)) < 0) {
5409 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5410 zdb_exit(1);
5411 }
5412
5413 if (fstat64_blk(fd, &statbuf) != 0) {
5414 (void) printf("failed to stat '%s': %s\n", path,
5415 strerror(errno));
5416 (void) close(fd);
5417 zdb_exit(1);
5418 }
5419
5420 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5421 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5422 strerror(errno));
5423
5424 avl_create(&config_tree, cksum_record_compare,
5425 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5426 avl_create(&uberblock_tree, cksum_record_compare,
5427 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5428
5429 psize = statbuf.st_size;
5430 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5431 ashift = SPA_MINBLOCKSHIFT;
5432
5433 /*
5434 * 1. Read the label from disk
5435 * 2. Verify label cksum
5436 * 3. Unpack the configuration and insert in config tree.
5437 * 4. Traverse all uberblocks and insert in uberblock tree.
5438 */
5439 for (int l = 0; l < VDEV_LABELS; l++) {
5440 zdb_label_t *label = &labels[l];
5441 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5442 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5443 nvlist_t *config;
5444 cksum_record_t *rec;
5445 zio_cksum_t cksum;
5446 vdev_t vd;
5447
5448 label->label_offset = vdev_label_offset(psize, l, 0);
5449
5450 if (pread64(fd, &label->label, sizeof (label->label),
5451 label->label_offset) != sizeof (label->label)) {
5452 if (!dump_opt['q'])
5453 (void) printf("failed to read label %d\n", l);
5454 label->read_failed = B_TRUE;
5455 error = B_TRUE;
5456 continue;
5457 }
5458
5459 label->read_failed = B_FALSE;
5460 label->cksum_valid = label_cksum_valid(&label->label,
5461 label->label_offset);
5462
5463 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5464 nvlist_t *vdev_tree = NULL;
5465 size_t size;
5466
5467 if ((nvlist_lookup_nvlist(config,
5468 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5469 (nvlist_lookup_uint64(vdev_tree,
5470 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5471 ashift = SPA_MINBLOCKSHIFT;
5472
5473 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5474 size = buflen;
5475
5476 /* If the device is a cache device read the header. */
5477 if (!read_l2arc_header) {
5478 if (nvlist_lookup_uint64(config,
5479 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5480 l2cache == POOL_STATE_L2CACHE) {
5481 read_l2arc_header = B_TRUE;
5482 }
5483 }
5484
5485 fletcher_4_native_varsize(buf, size, &cksum);
5486 rec = cksum_record_insert(&config_tree, &cksum, l);
5487
5488 label->config = rec;
5489 label->config_nv = config;
5490 config_found = B_TRUE;
5491 } else {
5492 error = B_TRUE;
5493 }
5494
5495 vd.vdev_ashift = ashift;
5496 vd.vdev_top = &vd;
5497
5498 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5499 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5500 uberblock_t *ub = (void *)((char *)label + uoff);
5501
5502 if (uberblock_verify(ub))
5503 continue;
5504
5505 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5506 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5507
5508 label->uberblocks[i] = rec;
5509 }
5510 }
5511
5512 /*
5513 * Dump the label and uberblocks.
5514 */
5515 for (int l = 0; l < VDEV_LABELS; l++) {
5516 zdb_label_t *label = &labels[l];
5517 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5518
5519 if (label->read_failed == B_TRUE)
5520 continue;
5521
5522 if (label->config_nv) {
5523 dump_config_from_label(label, buflen, l);
5524 } else {
5525 if (!dump_opt['q'])
5526 (void) printf("failed to unpack label %d\n", l);
5527 }
5528
5529 if (dump_opt['u'])
5530 dump_label_uberblocks(label, ashift, l);
5531
5532 nvlist_free(label->config_nv);
5533 }
5534
5535 /*
5536 * Dump the L2ARC header, if existent.
5537 */
5538 if (read_l2arc_header)
5539 error |= dump_l2arc_header(fd);
5540
5541 cookie = NULL;
5542 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5543 umem_free(node, sizeof (cksum_record_t));
5544
5545 cookie = NULL;
5546 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5547 umem_free(node, sizeof (cksum_record_t));
5548
5549 avl_destroy(&config_tree);
5550 avl_destroy(&uberblock_tree);
5551
5552 (void) close(fd);
5553
5554 return (config_found == B_FALSE ? 2 :
5555 (error == B_TRUE ? 1 : 0));
5556 }
5557
5558 static uint64_t dataset_feature_count[SPA_FEATURES];
5559 static uint64_t global_feature_count[SPA_FEATURES];
5560 static uint64_t remap_deadlist_count = 0;
5561
5562 static int
dump_one_objset(const char * dsname,void * arg)5563 dump_one_objset(const char *dsname, void *arg)
5564 {
5565 (void) arg;
5566 int error;
5567 objset_t *os;
5568 spa_feature_t f;
5569
5570 error = open_objset(dsname, FTAG, &os);
5571 if (error != 0)
5572 return (0);
5573
5574 for (f = 0; f < SPA_FEATURES; f++) {
5575 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5576 continue;
5577 ASSERT(spa_feature_table[f].fi_flags &
5578 ZFEATURE_FLAG_PER_DATASET);
5579 dataset_feature_count[f]++;
5580 }
5581
5582 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5583 remap_deadlist_count++;
5584 }
5585
5586 for (dsl_bookmark_node_t *dbn =
5587 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5588 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5589 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5590 if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5591 global_feature_count[
5592 SPA_FEATURE_REDACTION_BOOKMARKS]++;
5593 objset_t *mos = os->os_spa->spa_meta_objset;
5594 dnode_t *rl;
5595 VERIFY0(dnode_hold(mos,
5596 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5597 if (rl->dn_have_spill) {
5598 global_feature_count[
5599 SPA_FEATURE_REDACTION_LIST_SPILL]++;
5600 }
5601 }
5602 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5603 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5604 }
5605
5606 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5607 !dmu_objset_is_snapshot(os)) {
5608 global_feature_count[SPA_FEATURE_LIVELIST]++;
5609 }
5610
5611 dump_objset(os);
5612 close_objset(os, FTAG);
5613 fuid_table_destroy();
5614 return (0);
5615 }
5616
5617 /*
5618 * Block statistics.
5619 */
5620 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5621 typedef struct zdb_blkstats {
5622 uint64_t zb_asize;
5623 uint64_t zb_lsize;
5624 uint64_t zb_psize;
5625 uint64_t zb_count;
5626 uint64_t zb_gangs;
5627 uint64_t zb_ditto_samevdev;
5628 uint64_t zb_ditto_same_ms;
5629 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5630 } zdb_blkstats_t;
5631
5632 /*
5633 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5634 */
5635 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5636 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5637 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5638 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5639
5640 static const char *zdb_ot_extname[] = {
5641 "deferred free",
5642 "dedup ditto",
5643 "other",
5644 "Total",
5645 };
5646
5647 #define ZB_TOTAL DN_MAX_LEVELS
5648 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5649
5650 typedef struct zdb_brt_entry {
5651 dva_t zbre_dva;
5652 uint64_t zbre_refcount;
5653 avl_node_t zbre_node;
5654 } zdb_brt_entry_t;
5655
5656 typedef struct zdb_cb {
5657 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5658 uint64_t zcb_removing_size;
5659 uint64_t zcb_checkpoint_size;
5660 uint64_t zcb_dedup_asize;
5661 uint64_t zcb_dedup_blocks;
5662 uint64_t zcb_clone_asize;
5663 uint64_t zcb_clone_blocks;
5664 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5665 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5666 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5667 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5668 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5669 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5670 uint64_t zcb_psize_total;
5671 uint64_t zcb_lsize_total;
5672 uint64_t zcb_asize_total;
5673 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5674 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5675 [BPE_PAYLOAD_SIZE + 1];
5676 uint64_t zcb_start;
5677 hrtime_t zcb_lastprint;
5678 uint64_t zcb_totalasize;
5679 uint64_t zcb_errors[256];
5680 int zcb_readfails;
5681 int zcb_haderrors;
5682 spa_t *zcb_spa;
5683 uint32_t **zcb_vd_obsolete_counts;
5684 avl_tree_t zcb_brt;
5685 boolean_t zcb_brt_is_active;
5686 } zdb_cb_t;
5687
5688 /* test if two DVA offsets from same vdev are within the same metaslab */
5689 static boolean_t
same_metaslab(spa_t * spa,uint64_t vdev,uint64_t off1,uint64_t off2)5690 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5691 {
5692 vdev_t *vd = vdev_lookup_top(spa, vdev);
5693 uint64_t ms_shift = vd->vdev_ms_shift;
5694
5695 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5696 }
5697
5698 /*
5699 * Used to simplify reporting of the histogram data.
5700 */
5701 typedef struct one_histo {
5702 const char *name;
5703 uint64_t *count;
5704 uint64_t *len;
5705 uint64_t cumulative;
5706 } one_histo_t;
5707
5708 /*
5709 * The number of separate histograms processed for psize, lsize and asize.
5710 */
5711 #define NUM_HISTO 3
5712
5713 /*
5714 * This routine will create a fixed column size output of three different
5715 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5716 * the count, length and cumulative length of the psize, lsize and
5717 * asize blocks.
5718 *
5719 * All three types of blocks are listed on a single line
5720 *
5721 * By default the table is printed in nicenumber format (e.g. 123K) but
5722 * if the '-P' parameter is specified then the full raw number (parseable)
5723 * is printed out.
5724 */
5725 static void
dump_size_histograms(zdb_cb_t * zcb)5726 dump_size_histograms(zdb_cb_t *zcb)
5727 {
5728 /*
5729 * A temporary buffer that allows us to convert a number into
5730 * a string using zdb_nicenumber to allow either raw or human
5731 * readable numbers to be output.
5732 */
5733 char numbuf[32];
5734
5735 /*
5736 * Define titles which are used in the headers of the tables
5737 * printed by this routine.
5738 */
5739 const char blocksize_title1[] = "block";
5740 const char blocksize_title2[] = "size";
5741 const char count_title[] = "Count";
5742 const char length_title[] = "Size";
5743 const char cumulative_title[] = "Cum.";
5744
5745 /*
5746 * Setup the histogram arrays (psize, lsize, and asize).
5747 */
5748 one_histo_t parm_histo[NUM_HISTO];
5749
5750 parm_histo[0].name = "psize";
5751 parm_histo[0].count = zcb->zcb_psize_count;
5752 parm_histo[0].len = zcb->zcb_psize_len;
5753 parm_histo[0].cumulative = 0;
5754
5755 parm_histo[1].name = "lsize";
5756 parm_histo[1].count = zcb->zcb_lsize_count;
5757 parm_histo[1].len = zcb->zcb_lsize_len;
5758 parm_histo[1].cumulative = 0;
5759
5760 parm_histo[2].name = "asize";
5761 parm_histo[2].count = zcb->zcb_asize_count;
5762 parm_histo[2].len = zcb->zcb_asize_len;
5763 parm_histo[2].cumulative = 0;
5764
5765
5766 (void) printf("\nBlock Size Histogram\n");
5767 /*
5768 * Print the first line titles
5769 */
5770 if (dump_opt['P'])
5771 (void) printf("\n%s\t", blocksize_title1);
5772 else
5773 (void) printf("\n%7s ", blocksize_title1);
5774
5775 for (int j = 0; j < NUM_HISTO; j++) {
5776 if (dump_opt['P']) {
5777 if (j < NUM_HISTO - 1) {
5778 (void) printf("%s\t\t\t", parm_histo[j].name);
5779 } else {
5780 /* Don't print trailing spaces */
5781 (void) printf(" %s", parm_histo[j].name);
5782 }
5783 } else {
5784 if (j < NUM_HISTO - 1) {
5785 /* Left aligned strings in the output */
5786 (void) printf("%-7s ",
5787 parm_histo[j].name);
5788 } else {
5789 /* Don't print trailing spaces */
5790 (void) printf("%s", parm_histo[j].name);
5791 }
5792 }
5793 }
5794 (void) printf("\n");
5795
5796 /*
5797 * Print the second line titles
5798 */
5799 if (dump_opt['P']) {
5800 (void) printf("%s\t", blocksize_title2);
5801 } else {
5802 (void) printf("%7s ", blocksize_title2);
5803 }
5804
5805 for (int i = 0; i < NUM_HISTO; i++) {
5806 if (dump_opt['P']) {
5807 (void) printf("%s\t%s\t%s\t",
5808 count_title, length_title, cumulative_title);
5809 } else {
5810 (void) printf("%7s%7s%7s",
5811 count_title, length_title, cumulative_title);
5812 }
5813 }
5814 (void) printf("\n");
5815
5816 /*
5817 * Print the rows
5818 */
5819 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5820
5821 /*
5822 * Print the first column showing the blocksize
5823 */
5824 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5825
5826 if (dump_opt['P']) {
5827 printf("%s", numbuf);
5828 } else {
5829 printf("%7s:", numbuf);
5830 }
5831
5832 /*
5833 * Print the remaining set of 3 columns per size:
5834 * for psize, lsize and asize
5835 */
5836 for (int j = 0; j < NUM_HISTO; j++) {
5837 parm_histo[j].cumulative += parm_histo[j].len[i];
5838
5839 zdb_nicenum(parm_histo[j].count[i],
5840 numbuf, sizeof (numbuf));
5841 if (dump_opt['P'])
5842 (void) printf("\t%s", numbuf);
5843 else
5844 (void) printf("%7s", numbuf);
5845
5846 zdb_nicenum(parm_histo[j].len[i],
5847 numbuf, sizeof (numbuf));
5848 if (dump_opt['P'])
5849 (void) printf("\t%s", numbuf);
5850 else
5851 (void) printf("%7s", numbuf);
5852
5853 zdb_nicenum(parm_histo[j].cumulative,
5854 numbuf, sizeof (numbuf));
5855 if (dump_opt['P'])
5856 (void) printf("\t%s", numbuf);
5857 else
5858 (void) printf("%7s", numbuf);
5859 }
5860 (void) printf("\n");
5861 }
5862 }
5863
5864 static void
zdb_count_block(zdb_cb_t * zcb,zilog_t * zilog,const blkptr_t * bp,dmu_object_type_t type)5865 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5866 dmu_object_type_t type)
5867 {
5868 int i;
5869
5870 ASSERT(type < ZDB_OT_TOTAL);
5871
5872 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5873 return;
5874
5875 /*
5876 * This flag controls if we will issue a claim for the block while
5877 * counting it, to ensure that all blocks are referenced in space maps.
5878 * We don't issue claims if we're not doing leak tracking, because it's
5879 * expensive if the user isn't interested. We also don't claim the
5880 * second or later occurences of cloned or dedup'd blocks, because we
5881 * already claimed them the first time.
5882 */
5883 boolean_t do_claim = !dump_opt['L'];
5884
5885 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5886
5887 blkptr_t tempbp;
5888 if (BP_GET_DEDUP(bp)) {
5889 /*
5890 * Dedup'd blocks are special. We need to count them, so we can
5891 * later uncount them when reporting leaked space, and we must
5892 * only claim them once.
5893 *
5894 * We use the existing dedup system to track what we've seen.
5895 * The first time we see a block, we do a ddt_lookup() to see
5896 * if it exists in the DDT. If we're doing leak tracking, we
5897 * claim the block at this time.
5898 *
5899 * Each time we see a block, we reduce the refcount in the
5900 * entry by one, and add to the size and count of dedup'd
5901 * blocks to report at the end.
5902 */
5903
5904 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5905
5906 ddt_enter(ddt);
5907
5908 /*
5909 * Find the block. This will create the entry in memory, but
5910 * we'll know if that happened by its refcount.
5911 */
5912 ddt_entry_t *dde = ddt_lookup(ddt, bp, B_TRUE);
5913
5914 /*
5915 * ddt_lookup() can return NULL if this block didn't exist
5916 * in the DDT and creating it would take the DDT over its
5917 * quota. Since we got the block from disk, it must exist in
5918 * the DDT, so this can't happen. However, when unique entries
5919 * are pruned, the dedup bit can be set with no corresponding
5920 * entry in the DDT.
5921 */
5922 if (dde == NULL) {
5923 ddt_exit(ddt);
5924 goto skipped;
5925 }
5926
5927 /* Get the phys for this variant */
5928 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5929
5930 /*
5931 * This entry may have multiple sets of DVAs. We must claim
5932 * each set the first time we see them in a real block on disk,
5933 * or count them on subsequent occurences. We don't have a
5934 * convenient way to track the first time we see each variant,
5935 * so we repurpose dde_io as a set of "seen" flag bits. We can
5936 * do this safely in zdb because it never writes, so it will
5937 * never have a writing zio for this block in that pointer.
5938 */
5939 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5940 if (!seen)
5941 dde->dde_io =
5942 (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5943
5944 /* Consume a reference for this block. */
5945 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5946 ddt_phys_decref(dde->dde_phys, v);
5947
5948 /*
5949 * If this entry has a single flat phys, it may have been
5950 * extended with additional DVAs at some time in its life.
5951 * This block might be from before it was fully extended, and
5952 * so have fewer DVAs.
5953 *
5954 * If this is the first time we've seen this block, and we
5955 * claimed it as-is, then we would miss the claim on some
5956 * number of DVAs, which would then be seen as leaked.
5957 *
5958 * In all cases, if we've had fewer DVAs, then the asize would
5959 * be too small, and would lead to the pool apparently using
5960 * more space than allocated.
5961 *
5962 * To handle this, we copy the canonical set of DVAs from the
5963 * entry back to the block pointer before we claim it.
5964 */
5965 if (v == DDT_PHYS_FLAT) {
5966 ASSERT3U(BP_GET_PHYSICAL_BIRTH(bp), ==,
5967 ddt_phys_birth(dde->dde_phys, v));
5968 tempbp = *bp;
5969 ddt_bp_fill(dde->dde_phys, v, &tempbp,
5970 BP_GET_PHYSICAL_BIRTH(bp));
5971 bp = &tempbp;
5972 }
5973
5974 if (seen) {
5975 /*
5976 * The second or later time we see this block,
5977 * it's a duplicate and we count it.
5978 */
5979 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
5980 zcb->zcb_dedup_blocks++;
5981
5982 /* Already claimed, don't do it again. */
5983 do_claim = B_FALSE;
5984 }
5985
5986 ddt_exit(ddt);
5987 } else if (zcb->zcb_brt_is_active &&
5988 brt_maybe_exists(zcb->zcb_spa, bp)) {
5989 /*
5990 * Cloned blocks are special. We need to count them, so we can
5991 * later uncount them when reporting leaked space, and we must
5992 * only claim them once.
5993 *
5994 * To do this, we keep our own in-memory BRT. For each block
5995 * we haven't seen before, we look it up in the real BRT and
5996 * if its there, we note it and its refcount then proceed as
5997 * normal. If we see the block again, we count it as a clone
5998 * and then give it no further consideration.
5999 */
6000 zdb_brt_entry_t zbre_search, *zbre;
6001 avl_index_t where;
6002
6003 zbre_search.zbre_dva = bp->blk_dva[0];
6004 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
6005 if (zbre == NULL) {
6006 /* Not seen before; track it */
6007 uint64_t refcnt =
6008 brt_entry_get_refcount(zcb->zcb_spa, bp);
6009 if (refcnt > 0) {
6010 zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
6011 UMEM_NOFAIL);
6012 zbre->zbre_dva = bp->blk_dva[0];
6013 zbre->zbre_refcount = refcnt;
6014 avl_insert(&zcb->zcb_brt, zbre, where);
6015 }
6016 } else {
6017 /*
6018 * Second or later occurrence, count it and take a
6019 * refcount.
6020 */
6021 zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
6022 zcb->zcb_clone_blocks++;
6023
6024 zbre->zbre_refcount--;
6025 if (zbre->zbre_refcount == 0) {
6026 avl_remove(&zcb->zcb_brt, zbre);
6027 umem_free(zbre, sizeof (zdb_brt_entry_t));
6028 }
6029
6030 /* Already claimed, don't do it again. */
6031 do_claim = B_FALSE;
6032 }
6033 }
6034
6035 skipped:
6036 for (i = 0; i < 4; i++) {
6037 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
6038 int t = (i & 1) ? type : ZDB_OT_TOTAL;
6039 int equal;
6040 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
6041
6042 zb->zb_asize += BP_GET_ASIZE(bp);
6043 zb->zb_lsize += BP_GET_LSIZE(bp);
6044 zb->zb_psize += BP_GET_PSIZE(bp);
6045 zb->zb_count++;
6046
6047 /*
6048 * The histogram is only big enough to record blocks up to
6049 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
6050 * "other", bucket.
6051 */
6052 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
6053 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
6054 zb->zb_psize_histogram[idx]++;
6055
6056 zb->zb_gangs += BP_COUNT_GANG(bp);
6057
6058 switch (BP_GET_NDVAS(bp)) {
6059 case 2:
6060 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6061 DVA_GET_VDEV(&bp->blk_dva[1])) {
6062 zb->zb_ditto_samevdev++;
6063
6064 if (same_metaslab(zcb->zcb_spa,
6065 DVA_GET_VDEV(&bp->blk_dva[0]),
6066 DVA_GET_OFFSET(&bp->blk_dva[0]),
6067 DVA_GET_OFFSET(&bp->blk_dva[1])))
6068 zb->zb_ditto_same_ms++;
6069 }
6070 break;
6071 case 3:
6072 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6073 DVA_GET_VDEV(&bp->blk_dva[1])) +
6074 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6075 DVA_GET_VDEV(&bp->blk_dva[2])) +
6076 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6077 DVA_GET_VDEV(&bp->blk_dva[2]));
6078 if (equal != 0) {
6079 zb->zb_ditto_samevdev++;
6080
6081 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6082 DVA_GET_VDEV(&bp->blk_dva[1]) &&
6083 same_metaslab(zcb->zcb_spa,
6084 DVA_GET_VDEV(&bp->blk_dva[0]),
6085 DVA_GET_OFFSET(&bp->blk_dva[0]),
6086 DVA_GET_OFFSET(&bp->blk_dva[1])))
6087 zb->zb_ditto_same_ms++;
6088 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6089 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6090 same_metaslab(zcb->zcb_spa,
6091 DVA_GET_VDEV(&bp->blk_dva[0]),
6092 DVA_GET_OFFSET(&bp->blk_dva[0]),
6093 DVA_GET_OFFSET(&bp->blk_dva[2])))
6094 zb->zb_ditto_same_ms++;
6095 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6096 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6097 same_metaslab(zcb->zcb_spa,
6098 DVA_GET_VDEV(&bp->blk_dva[1]),
6099 DVA_GET_OFFSET(&bp->blk_dva[1]),
6100 DVA_GET_OFFSET(&bp->blk_dva[2])))
6101 zb->zb_ditto_same_ms++;
6102 }
6103 break;
6104 }
6105 }
6106
6107 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6108
6109 if (BP_IS_EMBEDDED(bp)) {
6110 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
6111 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
6112 [BPE_GET_PSIZE(bp)]++;
6113 return;
6114 }
6115 /*
6116 * The binning histogram bins by powers of two up to
6117 * SPA_MAXBLOCKSIZE rather than creating bins for
6118 * every possible blocksize found in the pool.
6119 */
6120 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
6121
6122 zcb->zcb_psize_count[bin]++;
6123 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6124 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6125
6126 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6127
6128 zcb->zcb_lsize_count[bin]++;
6129 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6130 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6131
6132 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6133
6134 zcb->zcb_asize_count[bin]++;
6135 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6136 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6137
6138 if (!do_claim)
6139 return;
6140
6141 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6142 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6143 ZIO_FLAG_CANFAIL)));
6144 }
6145
6146 static void
zdb_blkptr_done(zio_t * zio)6147 zdb_blkptr_done(zio_t *zio)
6148 {
6149 spa_t *spa = zio->io_spa;
6150 blkptr_t *bp = zio->io_bp;
6151 int ioerr = zio->io_error;
6152 zdb_cb_t *zcb = zio->io_private;
6153 zbookmark_phys_t *zb = &zio->io_bookmark;
6154
6155 mutex_enter(&spa->spa_scrub_lock);
6156 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6157 cv_broadcast(&spa->spa_scrub_io_cv);
6158
6159 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6160 char blkbuf[BP_SPRINTF_LEN];
6161
6162 zcb->zcb_haderrors = 1;
6163 zcb->zcb_errors[ioerr]++;
6164
6165 if (dump_opt['b'] >= 2)
6166 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6167 else
6168 blkbuf[0] = '\0';
6169
6170 (void) printf("zdb_blkptr_cb: "
6171 "Got error %d reading "
6172 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6173 ioerr,
6174 (u_longlong_t)zb->zb_objset,
6175 (u_longlong_t)zb->zb_object,
6176 (u_longlong_t)zb->zb_level,
6177 (u_longlong_t)zb->zb_blkid,
6178 blkbuf);
6179 }
6180 mutex_exit(&spa->spa_scrub_lock);
6181
6182 abd_free(zio->io_abd);
6183 }
6184
6185 static int
zdb_blkptr_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)6186 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6187 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6188 {
6189 zdb_cb_t *zcb = arg;
6190 dmu_object_type_t type;
6191 boolean_t is_metadata;
6192
6193 if (zb->zb_level == ZB_DNODE_LEVEL)
6194 return (0);
6195
6196 if (dump_opt['b'] >= 5 && BP_GET_BIRTH(bp) > 0) {
6197 char blkbuf[BP_SPRINTF_LEN];
6198 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6199 (void) printf("objset %llu object %llu "
6200 "level %lld offset 0x%llx %s\n",
6201 (u_longlong_t)zb->zb_objset,
6202 (u_longlong_t)zb->zb_object,
6203 (longlong_t)zb->zb_level,
6204 (u_longlong_t)blkid2offset(dnp, bp, zb),
6205 blkbuf);
6206 }
6207
6208 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6209 return (0);
6210
6211 type = BP_GET_TYPE(bp);
6212
6213 zdb_count_block(zcb, zilog, bp,
6214 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6215
6216 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6217
6218 if (!BP_IS_EMBEDDED(bp) &&
6219 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6220 size_t size = BP_GET_PSIZE(bp);
6221 abd_t *abd = abd_alloc(size, B_FALSE);
6222 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6223
6224 /* If it's an intent log block, failure is expected. */
6225 if (zb->zb_level == ZB_ZIL_LEVEL)
6226 flags |= ZIO_FLAG_SPECULATIVE;
6227
6228 mutex_enter(&spa->spa_scrub_lock);
6229 while (spa->spa_load_verify_bytes > max_inflight_bytes)
6230 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6231 spa->spa_load_verify_bytes += size;
6232 mutex_exit(&spa->spa_scrub_lock);
6233
6234 zio_nowait(zio_read(NULL, spa, bp, abd, size,
6235 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6236 }
6237
6238 zcb->zcb_readfails = 0;
6239
6240 /* only call gethrtime() every 100 blocks */
6241 static int iters;
6242 if (++iters > 100)
6243 iters = 0;
6244 else
6245 return (0);
6246
6247 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6248 uint64_t now = gethrtime();
6249 char buf[10];
6250 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6251 uint64_t kb_per_sec =
6252 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6253 uint64_t sec_remaining =
6254 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6255
6256 /* make sure nicenum has enough space */
6257 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6258
6259 zfs_nicebytes(bytes, buf, sizeof (buf));
6260 (void) fprintf(stderr,
6261 "\r%5s completed (%4"PRIu64"MB/s) "
6262 "estimated time remaining: "
6263 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
6264 buf, kb_per_sec / 1024,
6265 sec_remaining / 60 / 60,
6266 sec_remaining / 60 % 60,
6267 sec_remaining % 60);
6268
6269 zcb->zcb_lastprint = now;
6270 }
6271
6272 return (0);
6273 }
6274
6275 static void
zdb_leak(void * arg,uint64_t start,uint64_t size)6276 zdb_leak(void *arg, uint64_t start, uint64_t size)
6277 {
6278 vdev_t *vd = arg;
6279
6280 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6281 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6282 }
6283
6284 static metaslab_ops_t zdb_metaslab_ops = {
6285 NULL /* alloc */
6286 };
6287
6288 static int
load_unflushed_svr_segs_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6289 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6290 uint64_t txg, void *arg)
6291 {
6292 spa_vdev_removal_t *svr = arg;
6293
6294 uint64_t offset = sme->sme_offset;
6295 uint64_t size = sme->sme_run;
6296
6297 /* skip vdevs we don't care about */
6298 if (sme->sme_vdev != svr->svr_vdev_id)
6299 return (0);
6300
6301 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6302 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6303 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6304
6305 if (txg < metaslab_unflushed_txg(ms))
6306 return (0);
6307
6308 if (sme->sme_type == SM_ALLOC)
6309 zfs_range_tree_add(svr->svr_allocd_segs, offset, size);
6310 else
6311 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size);
6312
6313 return (0);
6314 }
6315
6316 static void
claim_segment_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6317 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6318 uint64_t size, void *arg)
6319 {
6320 (void) inner_offset, (void) arg;
6321
6322 /*
6323 * This callback was called through a remap from
6324 * a device being removed. Therefore, the vdev that
6325 * this callback is applied to is a concrete
6326 * vdev.
6327 */
6328 ASSERT(vdev_is_concrete(vd));
6329
6330 VERIFY0(metaslab_claim_impl(vd, offset, size,
6331 spa_min_claim_txg(vd->vdev_spa)));
6332 }
6333
6334 static void
claim_segment_cb(void * arg,uint64_t offset,uint64_t size)6335 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6336 {
6337 vdev_t *vd = arg;
6338
6339 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6340 claim_segment_impl_cb, NULL);
6341 }
6342
6343 /*
6344 * After accounting for all allocated blocks that are directly referenced,
6345 * we might have missed a reference to a block from a partially complete
6346 * (and thus unused) indirect mapping object. We perform a secondary pass
6347 * through the metaslabs we have already mapped and claim the destination
6348 * blocks.
6349 */
6350 static void
zdb_claim_removing(spa_t * spa,zdb_cb_t * zcb)6351 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6352 {
6353 if (dump_opt['L'])
6354 return;
6355
6356 if (spa->spa_vdev_removal == NULL)
6357 return;
6358
6359 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6360
6361 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6362 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6363 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6364
6365 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
6366
6367 zfs_range_tree_t *allocs = zfs_range_tree_create_flags(
6368 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
6369 0, "zdb_claim_removing:allocs");
6370 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6371 metaslab_t *msp = vd->vdev_ms[msi];
6372
6373 ASSERT0(zfs_range_tree_space(allocs));
6374 if (msp->ms_sm != NULL)
6375 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6376 zfs_range_tree_vacate(allocs, zfs_range_tree_add,
6377 svr->svr_allocd_segs);
6378 }
6379 zfs_range_tree_destroy(allocs);
6380
6381 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6382
6383 /*
6384 * Clear everything past what has been synced,
6385 * because we have not allocated mappings for
6386 * it yet.
6387 */
6388 zfs_range_tree_clear(svr->svr_allocd_segs,
6389 vdev_indirect_mapping_max_offset(vim),
6390 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6391
6392 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs);
6393 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6394
6395 spa_config_exit(spa, SCL_CONFIG, FTAG);
6396 }
6397
6398 static int
increment_indirect_mapping_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6399 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6400 dmu_tx_t *tx)
6401 {
6402 (void) tx;
6403 zdb_cb_t *zcb = arg;
6404 spa_t *spa = zcb->zcb_spa;
6405 vdev_t *vd;
6406 const dva_t *dva = &bp->blk_dva[0];
6407
6408 ASSERT(!bp_freed);
6409 ASSERT(!dump_opt['L']);
6410 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6411
6412 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6413 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6414 ASSERT3P(vd, !=, NULL);
6415 spa_config_exit(spa, SCL_VDEV, FTAG);
6416
6417 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6418 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6419
6420 vdev_indirect_mapping_increment_obsolete_count(
6421 vd->vdev_indirect_mapping,
6422 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6423 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6424
6425 return (0);
6426 }
6427
6428 static uint32_t *
zdb_load_obsolete_counts(vdev_t * vd)6429 zdb_load_obsolete_counts(vdev_t *vd)
6430 {
6431 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6432 spa_t *spa = vd->vdev_spa;
6433 spa_condensing_indirect_phys_t *scip =
6434 &spa->spa_condensing_indirect_phys;
6435 uint64_t obsolete_sm_object;
6436 uint32_t *counts;
6437
6438 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6439 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6440 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6441 if (vd->vdev_obsolete_sm != NULL) {
6442 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6443 vd->vdev_obsolete_sm);
6444 }
6445 if (scip->scip_vdev == vd->vdev_id &&
6446 scip->scip_prev_obsolete_sm_object != 0) {
6447 space_map_t *prev_obsolete_sm = NULL;
6448 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6449 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6450 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6451 prev_obsolete_sm);
6452 space_map_close(prev_obsolete_sm);
6453 }
6454 return (counts);
6455 }
6456
6457 typedef struct checkpoint_sm_exclude_entry_arg {
6458 vdev_t *cseea_vd;
6459 uint64_t cseea_checkpoint_size;
6460 } checkpoint_sm_exclude_entry_arg_t;
6461
6462 static int
checkpoint_sm_exclude_entry_cb(space_map_entry_t * sme,void * arg)6463 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6464 {
6465 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6466 vdev_t *vd = cseea->cseea_vd;
6467 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6468 uint64_t end = sme->sme_offset + sme->sme_run;
6469
6470 ASSERT(sme->sme_type == SM_FREE);
6471
6472 /*
6473 * Since the vdev_checkpoint_sm exists in the vdev level
6474 * and the ms_sm space maps exist in the metaslab level,
6475 * an entry in the checkpoint space map could theoretically
6476 * cross the boundaries of the metaslab that it belongs.
6477 *
6478 * In reality, because of the way that we populate and
6479 * manipulate the checkpoint's space maps currently,
6480 * there shouldn't be any entries that cross metaslabs.
6481 * Hence the assertion below.
6482 *
6483 * That said, there is no fundamental requirement that
6484 * the checkpoint's space map entries should not cross
6485 * metaslab boundaries. So if needed we could add code
6486 * that handles metaslab-crossing segments in the future.
6487 */
6488 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6489 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6490
6491 /*
6492 * By removing the entry from the allocated segments we
6493 * also verify that the entry is there to begin with.
6494 */
6495 mutex_enter(&ms->ms_lock);
6496 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset,
6497 sme->sme_run);
6498 mutex_exit(&ms->ms_lock);
6499
6500 cseea->cseea_checkpoint_size += sme->sme_run;
6501 return (0);
6502 }
6503
6504 static void
zdb_leak_init_vdev_exclude_checkpoint(vdev_t * vd,zdb_cb_t * zcb)6505 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6506 {
6507 spa_t *spa = vd->vdev_spa;
6508 space_map_t *checkpoint_sm = NULL;
6509 uint64_t checkpoint_sm_obj;
6510
6511 /*
6512 * If there is no vdev_top_zap, we are in a pool whose
6513 * version predates the pool checkpoint feature.
6514 */
6515 if (vd->vdev_top_zap == 0)
6516 return;
6517
6518 /*
6519 * If there is no reference of the vdev_checkpoint_sm in
6520 * the vdev_top_zap, then one of the following scenarios
6521 * is true:
6522 *
6523 * 1] There is no checkpoint
6524 * 2] There is a checkpoint, but no checkpointed blocks
6525 * have been freed yet
6526 * 3] The current vdev is indirect
6527 *
6528 * In these cases we return immediately.
6529 */
6530 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6531 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6532 return;
6533
6534 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6535 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6536 &checkpoint_sm_obj));
6537
6538 checkpoint_sm_exclude_entry_arg_t cseea;
6539 cseea.cseea_vd = vd;
6540 cseea.cseea_checkpoint_size = 0;
6541
6542 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6543 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6544
6545 VERIFY0(space_map_iterate(checkpoint_sm,
6546 space_map_length(checkpoint_sm),
6547 checkpoint_sm_exclude_entry_cb, &cseea));
6548 space_map_close(checkpoint_sm);
6549
6550 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6551 }
6552
6553 static void
zdb_leak_init_exclude_checkpoint(spa_t * spa,zdb_cb_t * zcb)6554 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6555 {
6556 ASSERT(!dump_opt['L']);
6557
6558 vdev_t *rvd = spa->spa_root_vdev;
6559 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6560 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6561 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6562 }
6563 }
6564
6565 static int
count_unflushed_space_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6566 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6567 uint64_t txg, void *arg)
6568 {
6569 int64_t *ualloc_space = arg;
6570
6571 uint64_t offset = sme->sme_offset;
6572 uint64_t vdev_id = sme->sme_vdev;
6573
6574 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6575 if (!vdev_is_concrete(vd))
6576 return (0);
6577
6578 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6579 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6580
6581 if (txg < metaslab_unflushed_txg(ms))
6582 return (0);
6583
6584 if (sme->sme_type == SM_ALLOC)
6585 *ualloc_space += sme->sme_run;
6586 else
6587 *ualloc_space -= sme->sme_run;
6588
6589 return (0);
6590 }
6591
6592 static int64_t
get_unflushed_alloc_space(spa_t * spa)6593 get_unflushed_alloc_space(spa_t *spa)
6594 {
6595 if (dump_opt['L'])
6596 return (0);
6597
6598 int64_t ualloc_space = 0;
6599 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6600 &ualloc_space);
6601 return (ualloc_space);
6602 }
6603
6604 static int
load_unflushed_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6605 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6606 {
6607 maptype_t *uic_maptype = arg;
6608
6609 uint64_t offset = sme->sme_offset;
6610 uint64_t size = sme->sme_run;
6611 uint64_t vdev_id = sme->sme_vdev;
6612
6613 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6614
6615 /* skip indirect vdevs */
6616 if (!vdev_is_concrete(vd))
6617 return (0);
6618
6619 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6620
6621 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6622 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6623
6624 if (txg < metaslab_unflushed_txg(ms))
6625 return (0);
6626
6627 if (*uic_maptype == sme->sme_type)
6628 zfs_range_tree_add(ms->ms_allocatable, offset, size);
6629 else
6630 zfs_range_tree_remove(ms->ms_allocatable, offset, size);
6631
6632 return (0);
6633 }
6634
6635 static void
load_unflushed_to_ms_allocatables(spa_t * spa,maptype_t maptype)6636 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6637 {
6638 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6639 }
6640
6641 static void
load_concrete_ms_allocatable_trees(spa_t * spa,maptype_t maptype)6642 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6643 {
6644 vdev_t *rvd = spa->spa_root_vdev;
6645 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6646 vdev_t *vd = rvd->vdev_child[i];
6647
6648 ASSERT3U(i, ==, vd->vdev_id);
6649
6650 if (vd->vdev_ops == &vdev_indirect_ops)
6651 continue;
6652
6653 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6654 metaslab_t *msp = vd->vdev_ms[m];
6655
6656 (void) fprintf(stderr,
6657 "\rloading concrete vdev %llu, "
6658 "metaslab %llu of %llu ...",
6659 (longlong_t)vd->vdev_id,
6660 (longlong_t)msp->ms_id,
6661 (longlong_t)vd->vdev_ms_count);
6662
6663 mutex_enter(&msp->ms_lock);
6664 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6665
6666 /*
6667 * We don't want to spend the CPU manipulating the
6668 * size-ordered tree, so clear the range_tree ops.
6669 */
6670 msp->ms_allocatable->rt_ops = NULL;
6671
6672 if (msp->ms_sm != NULL) {
6673 VERIFY0(space_map_load(msp->ms_sm,
6674 msp->ms_allocatable, maptype));
6675 }
6676 if (!msp->ms_loaded)
6677 msp->ms_loaded = B_TRUE;
6678 mutex_exit(&msp->ms_lock);
6679 }
6680 }
6681
6682 load_unflushed_to_ms_allocatables(spa, maptype);
6683 }
6684
6685 /*
6686 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6687 * index in vim_entries that has the first entry in this metaslab.
6688 * On return, it will be set to the first entry after this metaslab.
6689 */
6690 static void
load_indirect_ms_allocatable_tree(vdev_t * vd,metaslab_t * msp,uint64_t * vim_idxp)6691 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6692 uint64_t *vim_idxp)
6693 {
6694 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6695
6696 mutex_enter(&msp->ms_lock);
6697 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6698
6699 /*
6700 * We don't want to spend the CPU manipulating the
6701 * size-ordered tree, so clear the range_tree ops.
6702 */
6703 msp->ms_allocatable->rt_ops = NULL;
6704
6705 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6706 (*vim_idxp)++) {
6707 vdev_indirect_mapping_entry_phys_t *vimep =
6708 &vim->vim_entries[*vim_idxp];
6709 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6710 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6711 ASSERT3U(ent_offset, >=, msp->ms_start);
6712 if (ent_offset >= msp->ms_start + msp->ms_size)
6713 break;
6714
6715 /*
6716 * Mappings do not cross metaslab boundaries,
6717 * because we create them by walking the metaslabs.
6718 */
6719 ASSERT3U(ent_offset + ent_len, <=,
6720 msp->ms_start + msp->ms_size);
6721 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6722 }
6723
6724 if (!msp->ms_loaded)
6725 msp->ms_loaded = B_TRUE;
6726 mutex_exit(&msp->ms_lock);
6727 }
6728
6729 static void
zdb_leak_init_prepare_indirect_vdevs(spa_t * spa,zdb_cb_t * zcb)6730 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6731 {
6732 ASSERT(!dump_opt['L']);
6733
6734 vdev_t *rvd = spa->spa_root_vdev;
6735 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6736 vdev_t *vd = rvd->vdev_child[c];
6737
6738 ASSERT3U(c, ==, vd->vdev_id);
6739
6740 if (vd->vdev_ops != &vdev_indirect_ops)
6741 continue;
6742
6743 /*
6744 * Note: we don't check for mapping leaks on
6745 * removing vdevs because their ms_allocatable's
6746 * are used to look for leaks in allocated space.
6747 */
6748 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6749
6750 /*
6751 * Normally, indirect vdevs don't have any
6752 * metaslabs. We want to set them up for
6753 * zio_claim().
6754 */
6755 vdev_metaslab_group_create(vd);
6756 VERIFY0(vdev_metaslab_init(vd, 0));
6757
6758 vdev_indirect_mapping_t *vim __maybe_unused =
6759 vd->vdev_indirect_mapping;
6760 uint64_t vim_idx = 0;
6761 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6762
6763 (void) fprintf(stderr,
6764 "\rloading indirect vdev %llu, "
6765 "metaslab %llu of %llu ...",
6766 (longlong_t)vd->vdev_id,
6767 (longlong_t)vd->vdev_ms[m]->ms_id,
6768 (longlong_t)vd->vdev_ms_count);
6769
6770 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6771 &vim_idx);
6772 }
6773 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6774 }
6775 }
6776
6777 static void
zdb_leak_init(spa_t * spa,zdb_cb_t * zcb)6778 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6779 {
6780 zcb->zcb_spa = spa;
6781
6782 if (dump_opt['L'])
6783 return;
6784
6785 dsl_pool_t *dp = spa->spa_dsl_pool;
6786 vdev_t *rvd = spa->spa_root_vdev;
6787
6788 /*
6789 * We are going to be changing the meaning of the metaslab's
6790 * ms_allocatable. Ensure that the allocator doesn't try to
6791 * use the tree.
6792 */
6793 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6794 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6795 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6796 spa->spa_special_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6797
6798 zcb->zcb_vd_obsolete_counts =
6799 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6800 UMEM_NOFAIL);
6801
6802 /*
6803 * For leak detection, we overload the ms_allocatable trees
6804 * to contain allocated segments instead of free segments.
6805 * As a result, we can't use the normal metaslab_load/unload
6806 * interfaces.
6807 */
6808 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6809 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6810
6811 /*
6812 * On load_concrete_ms_allocatable_trees() we loaded all the
6813 * allocated entries from the ms_sm to the ms_allocatable for
6814 * each metaslab. If the pool has a checkpoint or is in the
6815 * middle of discarding a checkpoint, some of these blocks
6816 * may have been freed but their ms_sm may not have been
6817 * updated because they are referenced by the checkpoint. In
6818 * order to avoid false-positives during leak-detection, we
6819 * go through the vdev's checkpoint space map and exclude all
6820 * its entries from their relevant ms_allocatable.
6821 *
6822 * We also aggregate the space held by the checkpoint and add
6823 * it to zcb_checkpoint_size.
6824 *
6825 * Note that at this point we are also verifying that all the
6826 * entries on the checkpoint_sm are marked as allocated in
6827 * the ms_sm of their relevant metaslab.
6828 * [see comment in checkpoint_sm_exclude_entry_cb()]
6829 */
6830 zdb_leak_init_exclude_checkpoint(spa, zcb);
6831 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6832
6833 /* for cleaner progress output */
6834 (void) fprintf(stderr, "\n");
6835
6836 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6837 ASSERT(spa_feature_is_enabled(spa,
6838 SPA_FEATURE_DEVICE_REMOVAL));
6839 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6840 increment_indirect_mapping_cb, zcb, NULL);
6841 }
6842 }
6843
6844 static boolean_t
zdb_check_for_obsolete_leaks(vdev_t * vd,zdb_cb_t * zcb)6845 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6846 {
6847 boolean_t leaks = B_FALSE;
6848 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6849 uint64_t total_leaked = 0;
6850 boolean_t are_precise = B_FALSE;
6851
6852 ASSERT(vim != NULL);
6853
6854 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6855 vdev_indirect_mapping_entry_phys_t *vimep =
6856 &vim->vim_entries[i];
6857 uint64_t obsolete_bytes = 0;
6858 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6859 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6860
6861 /*
6862 * This is not very efficient but it's easy to
6863 * verify correctness.
6864 */
6865 for (uint64_t inner_offset = 0;
6866 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6867 inner_offset += 1ULL << vd->vdev_ashift) {
6868 if (zfs_range_tree_contains(msp->ms_allocatable,
6869 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6870 obsolete_bytes += 1ULL << vd->vdev_ashift;
6871 }
6872 }
6873
6874 int64_t bytes_leaked = obsolete_bytes -
6875 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6876 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6877 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6878
6879 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6880 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6881 (void) printf("obsolete indirect mapping count "
6882 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6883 (u_longlong_t)vd->vdev_id,
6884 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6885 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6886 (u_longlong_t)bytes_leaked);
6887 }
6888 total_leaked += ABS(bytes_leaked);
6889 }
6890
6891 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6892 if (!are_precise && total_leaked > 0) {
6893 int pct_leaked = total_leaked * 100 /
6894 vdev_indirect_mapping_bytes_mapped(vim);
6895 (void) printf("cannot verify obsolete indirect mapping "
6896 "counts of vdev %llu because precise feature was not "
6897 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6898 "unreferenced\n",
6899 (u_longlong_t)vd->vdev_id, pct_leaked,
6900 (u_longlong_t)total_leaked);
6901 } else if (total_leaked > 0) {
6902 (void) printf("obsolete indirect mapping count mismatch "
6903 "for vdev %llu -- %llx total bytes mismatched\n",
6904 (u_longlong_t)vd->vdev_id,
6905 (u_longlong_t)total_leaked);
6906 leaks |= B_TRUE;
6907 }
6908
6909 vdev_indirect_mapping_free_obsolete_counts(vim,
6910 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6911 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6912
6913 return (leaks);
6914 }
6915
6916 static boolean_t
zdb_leak_fini(spa_t * spa,zdb_cb_t * zcb)6917 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6918 {
6919 if (dump_opt['L'])
6920 return (B_FALSE);
6921
6922 boolean_t leaks = B_FALSE;
6923 vdev_t *rvd = spa->spa_root_vdev;
6924 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6925 vdev_t *vd = rvd->vdev_child[c];
6926
6927 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6928 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6929 }
6930
6931 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6932 metaslab_t *msp = vd->vdev_ms[m];
6933 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6934 spa_embedded_log_class(spa) ||
6935 msp->ms_group->mg_class ==
6936 spa_special_embedded_log_class(spa)) ?
6937 vd->vdev_log_mg : vd->vdev_mg);
6938
6939 /*
6940 * ms_allocatable has been overloaded
6941 * to contain allocated segments. Now that
6942 * we finished traversing all blocks, any
6943 * block that remains in the ms_allocatable
6944 * represents an allocated block that we
6945 * did not claim during the traversal.
6946 * Claimed blocks would have been removed
6947 * from the ms_allocatable. For indirect
6948 * vdevs, space remaining in the tree
6949 * represents parts of the mapping that are
6950 * not referenced, which is not a bug.
6951 */
6952 if (vd->vdev_ops == &vdev_indirect_ops) {
6953 zfs_range_tree_vacate(msp->ms_allocatable,
6954 NULL, NULL);
6955 } else {
6956 zfs_range_tree_vacate(msp->ms_allocatable,
6957 zdb_leak, vd);
6958 }
6959 if (msp->ms_loaded) {
6960 msp->ms_loaded = B_FALSE;
6961 }
6962 }
6963 }
6964
6965 umem_free(zcb->zcb_vd_obsolete_counts,
6966 rvd->vdev_children * sizeof (uint32_t *));
6967 zcb->zcb_vd_obsolete_counts = NULL;
6968
6969 return (leaks);
6970 }
6971
6972 static int
count_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)6973 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6974 {
6975 (void) tx;
6976 zdb_cb_t *zcb = arg;
6977
6978 if (dump_opt['b'] >= 5) {
6979 char blkbuf[BP_SPRINTF_LEN];
6980 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6981 (void) printf("[%s] %s\n",
6982 "deferred free", blkbuf);
6983 }
6984 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6985 return (0);
6986 }
6987
6988 /*
6989 * Iterate over livelists which have been destroyed by the user but
6990 * are still present in the MOS, waiting to be freed
6991 */
6992 static void
iterate_deleted_livelists(spa_t * spa,ll_iter_t func,void * arg)6993 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6994 {
6995 objset_t *mos = spa->spa_meta_objset;
6996 uint64_t zap_obj;
6997 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6998 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6999 if (err == ENOENT)
7000 return;
7001 ASSERT0(err);
7002
7003 zap_cursor_t zc;
7004 zap_attribute_t *attrp = zap_attribute_alloc();
7005 dsl_deadlist_t ll;
7006 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
7007 ll.dl_os = NULL;
7008 for (zap_cursor_init(&zc, mos, zap_obj);
7009 zap_cursor_retrieve(&zc, attrp) == 0;
7010 (void) zap_cursor_advance(&zc)) {
7011 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer));
7012 func(&ll, arg);
7013 dsl_deadlist_close(&ll);
7014 }
7015 zap_cursor_fini(&zc);
7016 zap_attribute_free(attrp);
7017 }
7018
7019 static int
bpobj_count_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)7020 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
7021 dmu_tx_t *tx)
7022 {
7023 ASSERT(!bp_freed);
7024 return (count_block_cb(arg, bp, tx));
7025 }
7026
7027 static int
livelist_entry_count_blocks_cb(void * args,dsl_deadlist_entry_t * dle)7028 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
7029 {
7030 zdb_cb_t *zbc = args;
7031 bplist_t blks;
7032 bplist_create(&blks);
7033 /* determine which blocks have been alloc'd but not freed */
7034 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
7035 /* count those blocks */
7036 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
7037 bplist_destroy(&blks);
7038 return (0);
7039 }
7040
7041 static void
livelist_count_blocks(dsl_deadlist_t * ll,void * arg)7042 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
7043 {
7044 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
7045 }
7046
7047 /*
7048 * Count the blocks in the livelists that have been destroyed by the user
7049 * but haven't yet been freed.
7050 */
7051 static void
deleted_livelists_count_blocks(spa_t * spa,zdb_cb_t * zbc)7052 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
7053 {
7054 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
7055 }
7056
7057 static void
dump_livelist_cb(dsl_deadlist_t * ll,void * arg)7058 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
7059 {
7060 ASSERT0P(arg);
7061 global_feature_count[SPA_FEATURE_LIVELIST]++;
7062 dump_blkptr_list(ll, "Deleted Livelist");
7063 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
7064 }
7065
7066 /*
7067 * Print out, register object references to, and increment feature counts for
7068 * livelists that have been destroyed by the user but haven't yet been freed.
7069 */
7070 static void
deleted_livelists_dump_mos(spa_t * spa)7071 deleted_livelists_dump_mos(spa_t *spa)
7072 {
7073 uint64_t zap_obj;
7074 objset_t *mos = spa->spa_meta_objset;
7075 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7076 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7077 if (err == ENOENT)
7078 return;
7079 mos_obj_refd(zap_obj);
7080 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
7081 }
7082
7083 static int
zdb_brt_entry_compare(const void * zcn1,const void * zcn2)7084 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
7085 {
7086 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
7087 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
7088 int cmp;
7089
7090 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
7091 if (cmp == 0)
7092 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
7093
7094 return (cmp);
7095 }
7096
7097 static int
dump_block_stats(spa_t * spa)7098 dump_block_stats(spa_t *spa)
7099 {
7100 zdb_cb_t *zcb;
7101 zdb_blkstats_t *zb, *tzb;
7102 uint64_t norm_alloc, norm_space, total_alloc, total_found;
7103 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7104 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
7105 boolean_t leaks = B_FALSE;
7106 int e, c, err;
7107 bp_embedded_type_t i;
7108
7109 ddt_prefetch_all(spa);
7110
7111 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
7112
7113 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
7114 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
7115 sizeof (zdb_brt_entry_t),
7116 offsetof(zdb_brt_entry_t, zbre_node));
7117 zcb->zcb_brt_is_active = B_TRUE;
7118 }
7119
7120 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7121 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
7122 (dump_opt['c'] == 1) ? "metadata " : "",
7123 dump_opt['c'] ? "checksums " : "",
7124 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
7125 !dump_opt['L'] ? "nothing leaked " : "");
7126
7127 /*
7128 * When leak detection is enabled we load all space maps as SM_ALLOC
7129 * maps, then traverse the pool claiming each block we discover. If
7130 * the pool is perfectly consistent, the segment trees will be empty
7131 * when we're done. Anything left over is a leak; any block we can't
7132 * claim (because it's not part of any space map) is a double
7133 * allocation, reference to a freed block, or an unclaimed log block.
7134 *
7135 * When leak detection is disabled (-L option) we still traverse the
7136 * pool claiming each block we discover, but we skip opening any space
7137 * maps.
7138 */
7139 zdb_leak_init(spa, zcb);
7140
7141 /*
7142 * If there's a deferred-free bplist, process that first.
7143 */
7144 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7145 bpobj_count_block_cb, zcb, NULL);
7146
7147 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7148 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7149 bpobj_count_block_cb, zcb, NULL);
7150 }
7151
7152 zdb_claim_removing(spa, zcb);
7153
7154 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7155 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7156 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7157 zcb, NULL));
7158 }
7159
7160 deleted_livelists_count_blocks(spa, zcb);
7161
7162 if (dump_opt['c'] > 1)
7163 flags |= TRAVERSE_PREFETCH_DATA;
7164
7165 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7166 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7167 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7168 zcb->zcb_totalasize +=
7169 metaslab_class_get_alloc(spa_embedded_log_class(spa));
7170 zcb->zcb_totalasize +=
7171 metaslab_class_get_alloc(spa_special_embedded_log_class(spa));
7172 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7173 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7174
7175 /*
7176 * If we've traversed the data blocks then we need to wait for those
7177 * I/Os to complete. We leverage "The Godfather" zio to wait on
7178 * all async I/Os to complete.
7179 */
7180 if (dump_opt['c']) {
7181 for (c = 0; c < max_ncpus; c++) {
7182 (void) zio_wait(spa->spa_async_zio_root[c]);
7183 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7184 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7185 ZIO_FLAG_GODFATHER);
7186 }
7187 }
7188 ASSERT0(spa->spa_load_verify_bytes);
7189
7190 /*
7191 * Done after zio_wait() since zcb_haderrors is modified in
7192 * zdb_blkptr_done()
7193 */
7194 zcb->zcb_haderrors |= err;
7195
7196 if (zcb->zcb_haderrors) {
7197 (void) printf("\nError counts:\n\n");
7198 (void) printf("\t%5s %s\n", "errno", "count");
7199 for (e = 0; e < 256; e++) {
7200 if (zcb->zcb_errors[e] != 0) {
7201 (void) printf("\t%5d %llu\n",
7202 e, (u_longlong_t)zcb->zcb_errors[e]);
7203 }
7204 }
7205 }
7206
7207 /*
7208 * Report any leaked segments.
7209 */
7210 leaks |= zdb_leak_fini(spa, zcb);
7211
7212 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7213
7214 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7215 norm_space = metaslab_class_get_space(spa_normal_class(spa));
7216
7217 total_alloc = norm_alloc +
7218 metaslab_class_get_alloc(spa_log_class(spa)) +
7219 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7220 metaslab_class_get_alloc(spa_special_embedded_log_class(spa)) +
7221 metaslab_class_get_alloc(spa_special_class(spa)) +
7222 metaslab_class_get_alloc(spa_dedup_class(spa)) +
7223 get_unflushed_alloc_space(spa);
7224 total_found =
7225 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7226 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7227
7228 if (total_found == total_alloc && !dump_opt['L']) {
7229 (void) printf("\n\tNo leaks (block sum matches space"
7230 " maps exactly)\n");
7231 } else if (!dump_opt['L']) {
7232 (void) printf("block traversal size %llu != alloc %llu "
7233 "(%s %lld)\n",
7234 (u_longlong_t)total_found,
7235 (u_longlong_t)total_alloc,
7236 (dump_opt['L']) ? "unreachable" : "leaked",
7237 (longlong_t)(total_alloc - total_found));
7238 }
7239
7240 if (tzb->zb_count == 0) {
7241 umem_free(zcb, sizeof (zdb_cb_t));
7242 return (2);
7243 }
7244
7245 (void) printf("\n");
7246 (void) printf("\t%-16s %14llu\n", "bp count:",
7247 (u_longlong_t)tzb->zb_count);
7248 (void) printf("\t%-16s %14llu\n", "ganged count:",
7249 (longlong_t)tzb->zb_gangs);
7250 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7251 (u_longlong_t)tzb->zb_lsize,
7252 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7253 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7254 "bp physical:", (u_longlong_t)tzb->zb_psize,
7255 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7256 (double)tzb->zb_lsize / tzb->zb_psize);
7257 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7258 "bp allocated:", (u_longlong_t)tzb->zb_asize,
7259 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7260 (double)tzb->zb_lsize / tzb->zb_asize);
7261 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7262 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7263 (u_longlong_t)zcb->zcb_dedup_blocks,
7264 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7265 (void) printf("\t%-16s %14llu count: %6llu\n",
7266 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7267 (u_longlong_t)zcb->zcb_clone_blocks);
7268 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7269 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7270
7271 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7272 uint64_t alloc = metaslab_class_get_alloc(
7273 spa_special_class(spa));
7274 uint64_t space = metaslab_class_get_space(
7275 spa_special_class(spa));
7276
7277 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7278 "Special class", (u_longlong_t)alloc,
7279 100.0 * alloc / space);
7280 }
7281
7282 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7283 uint64_t alloc = metaslab_class_get_alloc(
7284 spa_dedup_class(spa));
7285 uint64_t space = metaslab_class_get_space(
7286 spa_dedup_class(spa));
7287
7288 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7289 "Dedup class", (u_longlong_t)alloc,
7290 100.0 * alloc / space);
7291 }
7292
7293 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7294 uint64_t alloc = metaslab_class_get_alloc(
7295 spa_embedded_log_class(spa));
7296 uint64_t space = metaslab_class_get_space(
7297 spa_embedded_log_class(spa));
7298
7299 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7300 "Embedded log class", (u_longlong_t)alloc,
7301 100.0 * alloc / space);
7302 }
7303
7304 if (spa_special_embedded_log_class(spa)->mc_allocator[0].mca_rotor
7305 != NULL) {
7306 uint64_t alloc = metaslab_class_get_alloc(
7307 spa_special_embedded_log_class(spa));
7308 uint64_t space = metaslab_class_get_space(
7309 spa_special_embedded_log_class(spa));
7310
7311 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7312 "Special embedded log", (u_longlong_t)alloc,
7313 100.0 * alloc / space);
7314 }
7315
7316 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7317 if (zcb->zcb_embedded_blocks[i] == 0)
7318 continue;
7319 (void) printf("\n");
7320 (void) printf("\tadditional, non-pointer bps of type %u: "
7321 "%10llu\n",
7322 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7323
7324 if (dump_opt['b'] >= 3) {
7325 (void) printf("\t number of (compressed) bytes: "
7326 "number of bps\n");
7327 dump_histogram(zcb->zcb_embedded_histogram[i],
7328 sizeof (zcb->zcb_embedded_histogram[i]) /
7329 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7330 }
7331 }
7332
7333 if (tzb->zb_ditto_samevdev != 0) {
7334 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7335 (longlong_t)tzb->zb_ditto_samevdev);
7336 }
7337 if (tzb->zb_ditto_same_ms != 0) {
7338 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7339 (longlong_t)tzb->zb_ditto_same_ms);
7340 }
7341
7342 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7343 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7344 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7345
7346 if (vim == NULL) {
7347 continue;
7348 }
7349
7350 char mem[32];
7351 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7352 mem, vdev_indirect_mapping_size(vim));
7353
7354 (void) printf("\tindirect vdev id %llu has %llu segments "
7355 "(%s in memory)\n",
7356 (longlong_t)vd->vdev_id,
7357 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7358 }
7359
7360 if (dump_opt['b'] >= 2) {
7361 int l, t, level;
7362 char csize[32], lsize[32], psize[32], asize[32];
7363 char avg[32], gang[32];
7364 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7365 "\t avg\t comp\t%%Total\tType\n");
7366
7367 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7368 UMEM_NOFAIL);
7369
7370 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7371 const char *typename;
7372
7373 /* make sure nicenum has enough space */
7374 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7375 "csize truncated");
7376 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7377 "lsize truncated");
7378 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7379 "psize truncated");
7380 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7381 "asize truncated");
7382 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7383 "avg truncated");
7384 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7385 "gang truncated");
7386
7387 if (t < DMU_OT_NUMTYPES)
7388 typename = dmu_ot[t].ot_name;
7389 else
7390 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7391
7392 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7393 (void) printf("%6s\t%5s\t%5s\t%5s"
7394 "\t%5s\t%5s\t%6s\t%s\n",
7395 "-",
7396 "-",
7397 "-",
7398 "-",
7399 "-",
7400 "-",
7401 "-",
7402 typename);
7403 continue;
7404 }
7405
7406 for (l = ZB_TOTAL - 1; l >= -1; l--) {
7407 level = (l == -1 ? ZB_TOTAL : l);
7408 zb = &zcb->zcb_type[level][t];
7409
7410 if (zb->zb_asize == 0)
7411 continue;
7412
7413 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7414 (level > 0 || DMU_OT_IS_METADATA(t))) {
7415 mdstats->zb_count += zb->zb_count;
7416 mdstats->zb_lsize += zb->zb_lsize;
7417 mdstats->zb_psize += zb->zb_psize;
7418 mdstats->zb_asize += zb->zb_asize;
7419 mdstats->zb_gangs += zb->zb_gangs;
7420 }
7421
7422 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7423 continue;
7424
7425 if (level == 0 && zb->zb_asize ==
7426 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7427 continue;
7428
7429 zdb_nicenum(zb->zb_count, csize,
7430 sizeof (csize));
7431 zdb_nicenum(zb->zb_lsize, lsize,
7432 sizeof (lsize));
7433 zdb_nicenum(zb->zb_psize, psize,
7434 sizeof (psize));
7435 zdb_nicenum(zb->zb_asize, asize,
7436 sizeof (asize));
7437 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7438 sizeof (avg));
7439 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7440
7441 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7442 "\t%5.2f\t%6.2f\t",
7443 csize, lsize, psize, asize, avg,
7444 (double)zb->zb_lsize / zb->zb_psize,
7445 100.0 * zb->zb_asize / tzb->zb_asize);
7446
7447 if (level == ZB_TOTAL)
7448 (void) printf("%s\n", typename);
7449 else
7450 (void) printf(" L%d %s\n",
7451 level, typename);
7452
7453 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7454 (void) printf("\t number of ganged "
7455 "blocks: %s\n", gang);
7456 }
7457
7458 if (dump_opt['b'] >= 4) {
7459 (void) printf("psize "
7460 "(in 512-byte sectors): "
7461 "number of blocks\n");
7462 dump_histogram(zb->zb_psize_histogram,
7463 PSIZE_HISTO_SIZE, 0);
7464 }
7465 }
7466 }
7467 zdb_nicenum(mdstats->zb_count, csize,
7468 sizeof (csize));
7469 zdb_nicenum(mdstats->zb_lsize, lsize,
7470 sizeof (lsize));
7471 zdb_nicenum(mdstats->zb_psize, psize,
7472 sizeof (psize));
7473 zdb_nicenum(mdstats->zb_asize, asize,
7474 sizeof (asize));
7475 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7476 sizeof (avg));
7477 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7478
7479 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7480 "\t%5.2f\t%6.2f\t",
7481 csize, lsize, psize, asize, avg,
7482 (double)mdstats->zb_lsize / mdstats->zb_psize,
7483 100.0 * mdstats->zb_asize / tzb->zb_asize);
7484 (void) printf("%s\n", "Metadata Total");
7485
7486 /* Output a table summarizing block sizes in the pool */
7487 if (dump_opt['b'] >= 2) {
7488 dump_size_histograms(zcb);
7489 }
7490
7491 umem_free(mdstats, sizeof (zfs_blkstat_t));
7492 }
7493
7494 (void) printf("\n");
7495
7496 if (leaks) {
7497 umem_free(zcb, sizeof (zdb_cb_t));
7498 return (2);
7499 }
7500
7501 if (zcb->zcb_haderrors) {
7502 umem_free(zcb, sizeof (zdb_cb_t));
7503 return (3);
7504 }
7505
7506 umem_free(zcb, sizeof (zdb_cb_t));
7507 return (0);
7508 }
7509
7510 typedef struct zdb_ddt_entry {
7511 /* key must be first for ddt_key_compare */
7512 ddt_key_t zdde_key;
7513 uint64_t zdde_ref_blocks;
7514 uint64_t zdde_ref_lsize;
7515 uint64_t zdde_ref_psize;
7516 uint64_t zdde_ref_dsize;
7517 avl_node_t zdde_node;
7518 } zdb_ddt_entry_t;
7519
7520 static int
zdb_ddt_add_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)7521 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7522 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7523 {
7524 (void) zilog, (void) dnp;
7525 avl_tree_t *t = arg;
7526 avl_index_t where;
7527 zdb_ddt_entry_t *zdde, zdde_search;
7528
7529 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7530 BP_IS_EMBEDDED(bp))
7531 return (0);
7532
7533 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7534 (void) printf("traversing objset %llu, %llu objects, "
7535 "%lu blocks so far\n",
7536 (u_longlong_t)zb->zb_objset,
7537 (u_longlong_t)BP_GET_FILL(bp),
7538 avl_numnodes(t));
7539 }
7540
7541 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7542 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7543 return (0);
7544
7545 ddt_key_fill(&zdde_search.zdde_key, bp);
7546
7547 zdde = avl_find(t, &zdde_search, &where);
7548
7549 if (zdde == NULL) {
7550 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7551 zdde->zdde_key = zdde_search.zdde_key;
7552 avl_insert(t, zdde, where);
7553 }
7554
7555 zdde->zdde_ref_blocks += 1;
7556 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7557 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7558 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7559
7560 return (0);
7561 }
7562
7563 static void
dump_simulated_ddt(spa_t * spa)7564 dump_simulated_ddt(spa_t *spa)
7565 {
7566 avl_tree_t t;
7567 void *cookie = NULL;
7568 zdb_ddt_entry_t *zdde;
7569 ddt_histogram_t ddh_total = {{{0}}};
7570 ddt_stat_t dds_total = {0};
7571
7572 avl_create(&t, ddt_key_compare,
7573 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7574
7575 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7576
7577 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7578 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7579
7580 spa_config_exit(spa, SCL_CONFIG, FTAG);
7581
7582 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7583 uint64_t refcnt = zdde->zdde_ref_blocks;
7584 ASSERT(refcnt != 0);
7585
7586 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7587
7588 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7589 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7590 dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7591 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7592
7593 dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7594 dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7595 dds->dds_ref_psize += zdde->zdde_ref_psize;
7596 dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7597
7598 umem_free(zdde, sizeof (*zdde));
7599 }
7600
7601 avl_destroy(&t);
7602
7603 ddt_histogram_total(&dds_total, &ddh_total);
7604
7605 (void) printf("Simulated DDT histogram:\n");
7606
7607 zpool_dump_ddt(&dds_total, &ddh_total);
7608
7609 dump_dedup_ratio(&dds_total);
7610 }
7611
7612 static int
verify_device_removal_feature_counts(spa_t * spa)7613 verify_device_removal_feature_counts(spa_t *spa)
7614 {
7615 uint64_t dr_feature_refcount = 0;
7616 uint64_t oc_feature_refcount = 0;
7617 uint64_t indirect_vdev_count = 0;
7618 uint64_t precise_vdev_count = 0;
7619 uint64_t obsolete_counts_object_count = 0;
7620 uint64_t obsolete_sm_count = 0;
7621 uint64_t obsolete_counts_count = 0;
7622 uint64_t scip_count = 0;
7623 uint64_t obsolete_bpobj_count = 0;
7624 int ret = 0;
7625
7626 spa_condensing_indirect_phys_t *scip =
7627 &spa->spa_condensing_indirect_phys;
7628 if (scip->scip_next_mapping_object != 0) {
7629 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7630 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7631 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7632
7633 (void) printf("Condensing indirect vdev %llu: new mapping "
7634 "object %llu, prev obsolete sm %llu\n",
7635 (u_longlong_t)scip->scip_vdev,
7636 (u_longlong_t)scip->scip_next_mapping_object,
7637 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7638 if (scip->scip_prev_obsolete_sm_object != 0) {
7639 space_map_t *prev_obsolete_sm = NULL;
7640 VERIFY0(space_map_open(&prev_obsolete_sm,
7641 spa->spa_meta_objset,
7642 scip->scip_prev_obsolete_sm_object,
7643 0, vd->vdev_asize, 0));
7644 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7645 (void) printf("\n");
7646 space_map_close(prev_obsolete_sm);
7647 }
7648
7649 scip_count += 2;
7650 }
7651
7652 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7653 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7654 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7655
7656 if (vic->vic_mapping_object != 0) {
7657 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7658 vd->vdev_removing);
7659 indirect_vdev_count++;
7660
7661 if (vd->vdev_indirect_mapping->vim_havecounts) {
7662 obsolete_counts_count++;
7663 }
7664 }
7665
7666 boolean_t are_precise;
7667 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7668 if (are_precise) {
7669 ASSERT(vic->vic_mapping_object != 0);
7670 precise_vdev_count++;
7671 }
7672
7673 uint64_t obsolete_sm_object;
7674 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7675 if (obsolete_sm_object != 0) {
7676 ASSERT(vic->vic_mapping_object != 0);
7677 obsolete_sm_count++;
7678 }
7679 }
7680
7681 (void) feature_get_refcount(spa,
7682 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7683 &dr_feature_refcount);
7684 (void) feature_get_refcount(spa,
7685 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7686 &oc_feature_refcount);
7687
7688 if (dr_feature_refcount != indirect_vdev_count) {
7689 ret = 1;
7690 (void) printf("Number of indirect vdevs (%llu) " \
7691 "does not match feature count (%llu)\n",
7692 (u_longlong_t)indirect_vdev_count,
7693 (u_longlong_t)dr_feature_refcount);
7694 } else {
7695 (void) printf("Verified device_removal feature refcount " \
7696 "of %llu is correct\n",
7697 (u_longlong_t)dr_feature_refcount);
7698 }
7699
7700 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7701 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7702 obsolete_bpobj_count++;
7703 }
7704
7705
7706 obsolete_counts_object_count = precise_vdev_count;
7707 obsolete_counts_object_count += obsolete_sm_count;
7708 obsolete_counts_object_count += obsolete_counts_count;
7709 obsolete_counts_object_count += scip_count;
7710 obsolete_counts_object_count += obsolete_bpobj_count;
7711 obsolete_counts_object_count += remap_deadlist_count;
7712
7713 if (oc_feature_refcount != obsolete_counts_object_count) {
7714 ret = 1;
7715 (void) printf("Number of obsolete counts objects (%llu) " \
7716 "does not match feature count (%llu)\n",
7717 (u_longlong_t)obsolete_counts_object_count,
7718 (u_longlong_t)oc_feature_refcount);
7719 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7720 "ob:%llu rd:%llu\n",
7721 (u_longlong_t)precise_vdev_count,
7722 (u_longlong_t)obsolete_sm_count,
7723 (u_longlong_t)obsolete_counts_count,
7724 (u_longlong_t)scip_count,
7725 (u_longlong_t)obsolete_bpobj_count,
7726 (u_longlong_t)remap_deadlist_count);
7727 } else {
7728 (void) printf("Verified indirect_refcount feature refcount " \
7729 "of %llu is correct\n",
7730 (u_longlong_t)oc_feature_refcount);
7731 }
7732 return (ret);
7733 }
7734
7735 static void
zdb_set_skip_mmp(char * target)7736 zdb_set_skip_mmp(char *target)
7737 {
7738 spa_t *spa;
7739
7740 /*
7741 * Disable the activity check to allow examination of
7742 * active pools.
7743 */
7744 mutex_enter(&spa_namespace_lock);
7745 if ((spa = spa_lookup(target)) != NULL) {
7746 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7747 }
7748 mutex_exit(&spa_namespace_lock);
7749 }
7750
7751 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7752 /*
7753 * Import the checkpointed state of the pool specified by the target
7754 * parameter as readonly. The function also accepts a pool config
7755 * as an optional parameter, else it attempts to infer the config by
7756 * the name of the target pool.
7757 *
7758 * Note that the checkpointed state's pool name will be the name of
7759 * the original pool with the above suffix appended to it. In addition,
7760 * if the target is not a pool name (e.g. a path to a dataset) then
7761 * the new_path parameter is populated with the updated path to
7762 * reflect the fact that we are looking into the checkpointed state.
7763 *
7764 * The function returns a newly-allocated copy of the name of the
7765 * pool containing the checkpointed state. When this copy is no
7766 * longer needed it should be freed with free(3C). Same thing
7767 * applies to the new_path parameter if allocated.
7768 */
7769 static char *
import_checkpointed_state(char * target,nvlist_t * cfg,boolean_t target_is_spa,char ** new_path)7770 import_checkpointed_state(char *target, nvlist_t *cfg, boolean_t target_is_spa,
7771 char **new_path)
7772 {
7773 int error = 0;
7774 char *poolname, *bogus_name = NULL;
7775 boolean_t freecfg = B_FALSE;
7776
7777 /* If the target is not a pool, the extract the pool name */
7778 char *path_start = strchr(target, '/');
7779 if (target_is_spa || path_start == NULL) {
7780 poolname = target;
7781 } else {
7782 size_t poolname_len = path_start - target;
7783 poolname = strndup(target, poolname_len);
7784 }
7785
7786 if (cfg == NULL) {
7787 zdb_set_skip_mmp(poolname);
7788 error = spa_get_stats(poolname, &cfg, NULL, 0);
7789 if (error != 0) {
7790 fatal("Tried to read config of pool \"%s\" but "
7791 "spa_get_stats() failed with error %d\n",
7792 poolname, error);
7793 }
7794 freecfg = B_TRUE;
7795 }
7796
7797 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7798 if (target != poolname)
7799 free(poolname);
7800 return (NULL);
7801 }
7802 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7803
7804 error = spa_import(bogus_name, cfg, NULL,
7805 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7806 ZFS_IMPORT_SKIP_MMP);
7807 if (freecfg)
7808 nvlist_free(cfg);
7809 if (error != 0) {
7810 fatal("Tried to import pool \"%s\" but spa_import() failed "
7811 "with error %d\n", bogus_name, error);
7812 }
7813
7814 if (new_path != NULL && !target_is_spa) {
7815 if (asprintf(new_path, "%s%s", bogus_name,
7816 path_start != NULL ? path_start : "") == -1) {
7817 free(bogus_name);
7818 if (!target_is_spa && path_start != NULL)
7819 free(poolname);
7820 return (NULL);
7821 }
7822 }
7823
7824 if (target != poolname)
7825 free(poolname);
7826
7827 return (bogus_name);
7828 }
7829
7830 typedef struct verify_checkpoint_sm_entry_cb_arg {
7831 vdev_t *vcsec_vd;
7832
7833 /* the following fields are only used for printing progress */
7834 uint64_t vcsec_entryid;
7835 uint64_t vcsec_num_entries;
7836 } verify_checkpoint_sm_entry_cb_arg_t;
7837
7838 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7839
7840 static int
verify_checkpoint_sm_entry_cb(space_map_entry_t * sme,void * arg)7841 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7842 {
7843 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7844 vdev_t *vd = vcsec->vcsec_vd;
7845 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7846 uint64_t end = sme->sme_offset + sme->sme_run;
7847
7848 ASSERT(sme->sme_type == SM_FREE);
7849
7850 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7851 (void) fprintf(stderr,
7852 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7853 (longlong_t)vd->vdev_id,
7854 (longlong_t)vcsec->vcsec_entryid,
7855 (longlong_t)vcsec->vcsec_num_entries);
7856 }
7857 vcsec->vcsec_entryid++;
7858
7859 /*
7860 * See comment in checkpoint_sm_exclude_entry_cb()
7861 */
7862 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7863 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7864
7865 /*
7866 * The entries in the vdev_checkpoint_sm should be marked as
7867 * allocated in the checkpointed state of the pool, therefore
7868 * their respective ms_allocateable trees should not contain them.
7869 */
7870 mutex_enter(&ms->ms_lock);
7871 zfs_range_tree_verify_not_present(ms->ms_allocatable,
7872 sme->sme_offset, sme->sme_run);
7873 mutex_exit(&ms->ms_lock);
7874
7875 return (0);
7876 }
7877
7878 /*
7879 * Verify that all segments in the vdev_checkpoint_sm are allocated
7880 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7881 * ms_allocatable).
7882 *
7883 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7884 * each vdev in the current state of the pool to the metaslab space maps
7885 * (ms_sm) of the checkpointed state of the pool.
7886 *
7887 * Note that the function changes the state of the ms_allocatable
7888 * trees of the current spa_t. The entries of these ms_allocatable
7889 * trees are cleared out and then repopulated from with the free
7890 * entries of their respective ms_sm space maps.
7891 */
7892 static void
verify_checkpoint_vdev_spacemaps(spa_t * checkpoint,spa_t * current)7893 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7894 {
7895 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7896 vdev_t *current_rvd = current->spa_root_vdev;
7897
7898 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7899
7900 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7901 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7902 vdev_t *current_vd = current_rvd->vdev_child[c];
7903
7904 space_map_t *checkpoint_sm = NULL;
7905 uint64_t checkpoint_sm_obj;
7906
7907 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7908 /*
7909 * Since we don't allow device removal in a pool
7910 * that has a checkpoint, we expect that all removed
7911 * vdevs were removed from the pool before the
7912 * checkpoint.
7913 */
7914 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7915 continue;
7916 }
7917
7918 /*
7919 * If the checkpoint space map doesn't exist, then nothing
7920 * here is checkpointed so there's nothing to verify.
7921 */
7922 if (current_vd->vdev_top_zap == 0 ||
7923 zap_contains(spa_meta_objset(current),
7924 current_vd->vdev_top_zap,
7925 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7926 continue;
7927
7928 VERIFY0(zap_lookup(spa_meta_objset(current),
7929 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7930 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7931
7932 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7933 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7934 current_vd->vdev_ashift));
7935
7936 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7937 vcsec.vcsec_vd = ckpoint_vd;
7938 vcsec.vcsec_entryid = 0;
7939 vcsec.vcsec_num_entries =
7940 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7941 VERIFY0(space_map_iterate(checkpoint_sm,
7942 space_map_length(checkpoint_sm),
7943 verify_checkpoint_sm_entry_cb, &vcsec));
7944 if (dump_opt['m'] > 3)
7945 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7946 space_map_close(checkpoint_sm);
7947 }
7948
7949 /*
7950 * If we've added vdevs since we took the checkpoint, ensure
7951 * that their checkpoint space maps are empty.
7952 */
7953 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7954 for (uint64_t c = ckpoint_rvd->vdev_children;
7955 c < current_rvd->vdev_children; c++) {
7956 vdev_t *current_vd = current_rvd->vdev_child[c];
7957 VERIFY0P(current_vd->vdev_checkpoint_sm);
7958 }
7959 }
7960
7961 /* for cleaner progress output */
7962 (void) fprintf(stderr, "\n");
7963 }
7964
7965 /*
7966 * Verifies that all space that's allocated in the checkpoint is
7967 * still allocated in the current version, by checking that everything
7968 * in checkpoint's ms_allocatable (which is actually allocated, not
7969 * allocatable/free) is not present in current's ms_allocatable.
7970 *
7971 * Note that the function changes the state of the ms_allocatable
7972 * trees of both spas when called. The entries of all ms_allocatable
7973 * trees are cleared out and then repopulated from their respective
7974 * ms_sm space maps. In the checkpointed state we load the allocated
7975 * entries, and in the current state we load the free entries.
7976 */
7977 static void
verify_checkpoint_ms_spacemaps(spa_t * checkpoint,spa_t * current)7978 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7979 {
7980 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7981 vdev_t *current_rvd = current->spa_root_vdev;
7982
7983 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7984 load_concrete_ms_allocatable_trees(current, SM_FREE);
7985
7986 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7987 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7988 vdev_t *current_vd = current_rvd->vdev_child[i];
7989
7990 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7991 /*
7992 * See comment in verify_checkpoint_vdev_spacemaps()
7993 */
7994 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7995 continue;
7996 }
7997
7998 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7999 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
8000 metaslab_t *current_msp = current_vd->vdev_ms[m];
8001
8002 (void) fprintf(stderr,
8003 "\rverifying vdev %llu of %llu, "
8004 "metaslab %llu of %llu ...",
8005 (longlong_t)current_vd->vdev_id,
8006 (longlong_t)current_rvd->vdev_children,
8007 (longlong_t)current_vd->vdev_ms[m]->ms_id,
8008 (longlong_t)current_vd->vdev_ms_count);
8009
8010 /*
8011 * We walk through the ms_allocatable trees that
8012 * are loaded with the allocated blocks from the
8013 * ms_sm spacemaps of the checkpoint. For each
8014 * one of these ranges we ensure that none of them
8015 * exists in the ms_allocatable trees of the
8016 * current state which are loaded with the ranges
8017 * that are currently free.
8018 *
8019 * This way we ensure that none of the blocks that
8020 * are part of the checkpoint were freed by mistake.
8021 */
8022 zfs_range_tree_walk(ckpoint_msp->ms_allocatable,
8023 (zfs_range_tree_func_t *)
8024 zfs_range_tree_verify_not_present,
8025 current_msp->ms_allocatable);
8026 }
8027 }
8028
8029 /* for cleaner progress output */
8030 (void) fprintf(stderr, "\n");
8031 }
8032
8033 static void
verify_checkpoint_blocks(spa_t * spa)8034 verify_checkpoint_blocks(spa_t *spa)
8035 {
8036 ASSERT(!dump_opt['L']);
8037
8038 spa_t *checkpoint_spa;
8039 char *checkpoint_pool;
8040 int error = 0;
8041
8042 /*
8043 * We import the checkpointed state of the pool (under a different
8044 * name) so we can do verification on it against the current state
8045 * of the pool.
8046 */
8047 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, B_TRUE,
8048 NULL);
8049 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
8050
8051 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
8052 if (error != 0) {
8053 fatal("Tried to open pool \"%s\" but spa_open() failed with "
8054 "error %d\n", checkpoint_pool, error);
8055 }
8056
8057 /*
8058 * Ensure that ranges in the checkpoint space maps of each vdev
8059 * are allocated according to the checkpointed state's metaslab
8060 * space maps.
8061 */
8062 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
8063
8064 /*
8065 * Ensure that allocated ranges in the checkpoint's metaslab
8066 * space maps remain allocated in the metaslab space maps of
8067 * the current state.
8068 */
8069 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
8070
8071 /*
8072 * Once we are done, we get rid of the checkpointed state.
8073 */
8074 spa_close(checkpoint_spa, FTAG);
8075 free(checkpoint_pool);
8076 }
8077
8078 static void
dump_leftover_checkpoint_blocks(spa_t * spa)8079 dump_leftover_checkpoint_blocks(spa_t *spa)
8080 {
8081 vdev_t *rvd = spa->spa_root_vdev;
8082
8083 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
8084 vdev_t *vd = rvd->vdev_child[i];
8085
8086 space_map_t *checkpoint_sm = NULL;
8087 uint64_t checkpoint_sm_obj;
8088
8089 if (vd->vdev_top_zap == 0)
8090 continue;
8091
8092 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
8093 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
8094 continue;
8095
8096 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
8097 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
8098 sizeof (uint64_t), 1, &checkpoint_sm_obj));
8099
8100 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
8101 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
8102 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
8103 space_map_close(checkpoint_sm);
8104 }
8105 }
8106
8107 static int
verify_checkpoint(spa_t * spa)8108 verify_checkpoint(spa_t *spa)
8109 {
8110 uberblock_t checkpoint;
8111 int error;
8112
8113 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
8114 return (0);
8115
8116 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8117 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
8118 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
8119
8120 if (error == ENOENT && !dump_opt['L']) {
8121 /*
8122 * If the feature is active but the uberblock is missing
8123 * then we must be in the middle of discarding the
8124 * checkpoint.
8125 */
8126 (void) printf("\nPartially discarded checkpoint "
8127 "state found:\n");
8128 if (dump_opt['m'] > 3)
8129 dump_leftover_checkpoint_blocks(spa);
8130 return (0);
8131 } else if (error != 0) {
8132 (void) printf("lookup error %d when looking for "
8133 "checkpointed uberblock in MOS\n", error);
8134 return (error);
8135 }
8136 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
8137
8138 if (checkpoint.ub_checkpoint_txg == 0) {
8139 (void) printf("\nub_checkpoint_txg not set in checkpointed "
8140 "uberblock\n");
8141 error = 3;
8142 }
8143
8144 if (error == 0 && !dump_opt['L'])
8145 verify_checkpoint_blocks(spa);
8146
8147 return (error);
8148 }
8149
8150 static void
mos_leaks_cb(void * arg,uint64_t start,uint64_t size)8151 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8152 {
8153 (void) arg;
8154 for (uint64_t i = start; i < size; i++) {
8155 (void) printf("MOS object %llu referenced but not allocated\n",
8156 (u_longlong_t)i);
8157 }
8158 }
8159
8160 static void
mos_obj_refd(uint64_t obj)8161 mos_obj_refd(uint64_t obj)
8162 {
8163 if (obj != 0 && mos_refd_objs != NULL)
8164 zfs_range_tree_add(mos_refd_objs, obj, 1);
8165 }
8166
8167 /*
8168 * Call on a MOS object that may already have been referenced.
8169 */
8170 static void
mos_obj_refd_multiple(uint64_t obj)8171 mos_obj_refd_multiple(uint64_t obj)
8172 {
8173 if (obj != 0 && mos_refd_objs != NULL &&
8174 !zfs_range_tree_contains(mos_refd_objs, obj, 1))
8175 zfs_range_tree_add(mos_refd_objs, obj, 1);
8176 }
8177
8178 static void
mos_leak_vdev_top_zap(vdev_t * vd)8179 mos_leak_vdev_top_zap(vdev_t *vd)
8180 {
8181 uint64_t ms_flush_data_obj;
8182 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8183 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8184 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8185 if (error == ENOENT)
8186 return;
8187 ASSERT0(error);
8188
8189 mos_obj_refd(ms_flush_data_obj);
8190 }
8191
8192 static void
mos_leak_vdev(vdev_t * vd)8193 mos_leak_vdev(vdev_t *vd)
8194 {
8195 mos_obj_refd(vd->vdev_dtl_object);
8196 mos_obj_refd(vd->vdev_ms_array);
8197 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8198 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8199 mos_obj_refd(vd->vdev_leaf_zap);
8200 if (vd->vdev_checkpoint_sm != NULL)
8201 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8202 if (vd->vdev_indirect_mapping != NULL) {
8203 mos_obj_refd(vd->vdev_indirect_mapping->
8204 vim_phys->vimp_counts_object);
8205 }
8206 if (vd->vdev_obsolete_sm != NULL)
8207 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8208
8209 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8210 metaslab_t *ms = vd->vdev_ms[m];
8211 mos_obj_refd(space_map_object(ms->ms_sm));
8212 }
8213
8214 if (vd->vdev_root_zap != 0)
8215 mos_obj_refd(vd->vdev_root_zap);
8216
8217 if (vd->vdev_top_zap != 0) {
8218 mos_obj_refd(vd->vdev_top_zap);
8219 mos_leak_vdev_top_zap(vd);
8220 }
8221
8222 for (uint64_t c = 0; c < vd->vdev_children; c++) {
8223 mos_leak_vdev(vd->vdev_child[c]);
8224 }
8225 }
8226
8227 static void
mos_leak_log_spacemaps(spa_t * spa)8228 mos_leak_log_spacemaps(spa_t *spa)
8229 {
8230 uint64_t spacemap_zap;
8231 int error = zap_lookup(spa_meta_objset(spa),
8232 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8233 sizeof (spacemap_zap), 1, &spacemap_zap);
8234 if (error == ENOENT)
8235 return;
8236 ASSERT0(error);
8237
8238 mos_obj_refd(spacemap_zap);
8239 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8240 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8241 mos_obj_refd(sls->sls_sm_obj);
8242 }
8243
8244 static void
errorlog_count_refd(objset_t * mos,uint64_t errlog)8245 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8246 {
8247 zap_cursor_t zc;
8248 zap_attribute_t *za = zap_attribute_alloc();
8249 for (zap_cursor_init(&zc, mos, errlog);
8250 zap_cursor_retrieve(&zc, za) == 0;
8251 zap_cursor_advance(&zc)) {
8252 mos_obj_refd(za->za_first_integer);
8253 }
8254 zap_cursor_fini(&zc);
8255 zap_attribute_free(za);
8256 }
8257
8258 static int
dump_mos_leaks(spa_t * spa)8259 dump_mos_leaks(spa_t *spa)
8260 {
8261 int rv = 0;
8262 objset_t *mos = spa->spa_meta_objset;
8263 dsl_pool_t *dp = spa->spa_dsl_pool;
8264
8265 /* Visit and mark all referenced objects in the MOS */
8266
8267 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8268 mos_obj_refd(spa->spa_pool_props_object);
8269 mos_obj_refd(spa->spa_config_object);
8270 mos_obj_refd(spa->spa_ddt_stat_object);
8271 mos_obj_refd(spa->spa_feat_desc_obj);
8272 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8273 mos_obj_refd(spa->spa_feat_for_read_obj);
8274 mos_obj_refd(spa->spa_feat_for_write_obj);
8275 mos_obj_refd(spa->spa_history);
8276 mos_obj_refd(spa->spa_errlog_last);
8277 mos_obj_refd(spa->spa_errlog_scrub);
8278
8279 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8280 errorlog_count_refd(mos, spa->spa_errlog_last);
8281 errorlog_count_refd(mos, spa->spa_errlog_scrub);
8282 }
8283
8284 mos_obj_refd(spa->spa_all_vdev_zaps);
8285 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8286 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8287 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8288 bpobj_count_refd(&spa->spa_deferred_bpobj);
8289 mos_obj_refd(dp->dp_empty_bpobj);
8290 bpobj_count_refd(&dp->dp_obsolete_bpobj);
8291 bpobj_count_refd(&dp->dp_free_bpobj);
8292 mos_obj_refd(spa->spa_l2cache.sav_object);
8293 mos_obj_refd(spa->spa_spares.sav_object);
8294
8295 if (spa->spa_syncing_log_sm != NULL)
8296 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8297 mos_leak_log_spacemaps(spa);
8298
8299 mos_obj_refd(spa->spa_condensing_indirect_phys.
8300 scip_next_mapping_object);
8301 mos_obj_refd(spa->spa_condensing_indirect_phys.
8302 scip_prev_obsolete_sm_object);
8303 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8304 vdev_indirect_mapping_t *vim =
8305 vdev_indirect_mapping_open(mos,
8306 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8307 mos_obj_refd(vim->vim_phys->vimp_counts_object);
8308 vdev_indirect_mapping_close(vim);
8309 }
8310 deleted_livelists_dump_mos(spa);
8311
8312 if (dp->dp_origin_snap != NULL) {
8313 dsl_dataset_t *ds;
8314
8315 dsl_pool_config_enter(dp, FTAG);
8316 VERIFY0(dsl_dataset_hold_obj(dp,
8317 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8318 FTAG, &ds));
8319 count_ds_mos_objects(ds);
8320 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8321 dsl_dataset_rele(ds, FTAG);
8322 dsl_pool_config_exit(dp, FTAG);
8323
8324 count_ds_mos_objects(dp->dp_origin_snap);
8325 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8326 }
8327 count_dir_mos_objects(dp->dp_mos_dir);
8328 if (dp->dp_free_dir != NULL)
8329 count_dir_mos_objects(dp->dp_free_dir);
8330 if (dp->dp_leak_dir != NULL)
8331 count_dir_mos_objects(dp->dp_leak_dir);
8332
8333 mos_leak_vdev(spa->spa_root_vdev);
8334
8335 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8336 ddt_t *ddt = spa->spa_ddt[c];
8337 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8338 continue;
8339
8340 /* DDT store objects */
8341 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8342 for (ddt_class_t class = 0; class < DDT_CLASSES;
8343 class++) {
8344 mos_obj_refd(ddt->ddt_object[type][class]);
8345 }
8346 }
8347
8348 /* FDT container */
8349 if (ddt->ddt_version == DDT_VERSION_FDT)
8350 mos_obj_refd(ddt->ddt_dir_object);
8351
8352 /* FDT log objects */
8353 if (ddt->ddt_flags & DDT_FLAG_LOG) {
8354 mos_obj_refd(ddt->ddt_log[0].ddl_object);
8355 mos_obj_refd(ddt->ddt_log[1].ddl_object);
8356 }
8357 }
8358
8359 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
8360 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
8361 if (brtvd->bv_initiated) {
8362 mos_obj_refd(brtvd->bv_mos_brtvdev);
8363 mos_obj_refd(brtvd->bv_mos_entries);
8364 }
8365 }
8366
8367 /*
8368 * Visit all allocated objects and make sure they are referenced.
8369 */
8370 uint64_t object = 0;
8371 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8372 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) {
8373 zfs_range_tree_remove(mos_refd_objs, object, 1);
8374 } else {
8375 dmu_object_info_t doi;
8376 const char *name;
8377 VERIFY0(dmu_object_info(mos, object, &doi));
8378 if (doi.doi_type & DMU_OT_NEWTYPE) {
8379 dmu_object_byteswap_t bswap =
8380 DMU_OT_BYTESWAP(doi.doi_type);
8381 name = dmu_ot_byteswap[bswap].ob_name;
8382 } else {
8383 name = dmu_ot[doi.doi_type].ot_name;
8384 }
8385
8386 (void) printf("MOS object %llu (%s) leaked\n",
8387 (u_longlong_t)object, name);
8388 rv = 2;
8389 }
8390 }
8391 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8392 if (!zfs_range_tree_is_empty(mos_refd_objs))
8393 rv = 2;
8394 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL);
8395 zfs_range_tree_destroy(mos_refd_objs);
8396 return (rv);
8397 }
8398
8399 typedef struct log_sm_obsolete_stats_arg {
8400 uint64_t lsos_current_txg;
8401
8402 uint64_t lsos_total_entries;
8403 uint64_t lsos_valid_entries;
8404
8405 uint64_t lsos_sm_entries;
8406 uint64_t lsos_valid_sm_entries;
8407 } log_sm_obsolete_stats_arg_t;
8408
8409 static int
log_spacemap_obsolete_stats_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)8410 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8411 uint64_t txg, void *arg)
8412 {
8413 log_sm_obsolete_stats_arg_t *lsos = arg;
8414
8415 uint64_t offset = sme->sme_offset;
8416 uint64_t vdev_id = sme->sme_vdev;
8417
8418 if (lsos->lsos_current_txg == 0) {
8419 /* this is the first log */
8420 lsos->lsos_current_txg = txg;
8421 } else if (lsos->lsos_current_txg < txg) {
8422 /* we just changed log - print stats and reset */
8423 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8424 (u_longlong_t)lsos->lsos_valid_sm_entries,
8425 (u_longlong_t)lsos->lsos_sm_entries,
8426 (u_longlong_t)lsos->lsos_current_txg);
8427 lsos->lsos_valid_sm_entries = 0;
8428 lsos->lsos_sm_entries = 0;
8429 lsos->lsos_current_txg = txg;
8430 }
8431 ASSERT3U(lsos->lsos_current_txg, ==, txg);
8432
8433 lsos->lsos_sm_entries++;
8434 lsos->lsos_total_entries++;
8435
8436 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8437 if (!vdev_is_concrete(vd))
8438 return (0);
8439
8440 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8441 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8442
8443 if (txg < metaslab_unflushed_txg(ms))
8444 return (0);
8445 lsos->lsos_valid_sm_entries++;
8446 lsos->lsos_valid_entries++;
8447 return (0);
8448 }
8449
8450 static void
dump_log_spacemap_obsolete_stats(spa_t * spa)8451 dump_log_spacemap_obsolete_stats(spa_t *spa)
8452 {
8453 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8454 return;
8455
8456 log_sm_obsolete_stats_arg_t lsos = {0};
8457
8458 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8459
8460 iterate_through_spacemap_logs(spa,
8461 log_spacemap_obsolete_stats_cb, &lsos);
8462
8463 /* print stats for latest log */
8464 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8465 (u_longlong_t)lsos.lsos_valid_sm_entries,
8466 (u_longlong_t)lsos.lsos_sm_entries,
8467 (u_longlong_t)lsos.lsos_current_txg);
8468
8469 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8470 (u_longlong_t)lsos.lsos_valid_entries,
8471 (u_longlong_t)lsos.lsos_total_entries);
8472 }
8473
8474 static void
dump_zpool(spa_t * spa)8475 dump_zpool(spa_t *spa)
8476 {
8477 dsl_pool_t *dp = spa_get_dsl(spa);
8478 int rc = 0;
8479
8480 if (dump_opt['y']) {
8481 livelist_metaslab_validate(spa);
8482 }
8483
8484 if (dump_opt['S']) {
8485 dump_simulated_ddt(spa);
8486 return;
8487 }
8488
8489 if (!dump_opt['e'] && dump_opt['C'] > 1) {
8490 (void) printf("\nCached configuration:\n");
8491 dump_nvlist(spa->spa_config, 8);
8492 }
8493
8494 if (dump_opt['C'])
8495 dump_config(spa);
8496
8497 if (dump_opt['u'])
8498 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8499
8500 if (dump_opt['D'])
8501 dump_all_ddts(spa);
8502
8503 if (dump_opt['T'])
8504 dump_brt(spa);
8505
8506 if (dump_opt['d'] > 2 || dump_opt['m'])
8507 dump_metaslabs(spa);
8508 if (dump_opt['M'])
8509 dump_metaslab_groups(spa, dump_opt['M'] > 1);
8510 if (dump_opt['d'] > 2 || dump_opt['m']) {
8511 dump_log_spacemaps(spa);
8512 dump_log_spacemap_obsolete_stats(spa);
8513 }
8514
8515 if (dump_opt['d'] || dump_opt['i']) {
8516 spa_feature_t f;
8517 mos_refd_objs = zfs_range_tree_create_flags(
8518 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
8519 0, "dump_zpool:mos_refd_objs");
8520 dump_objset(dp->dp_meta_objset);
8521
8522 if (dump_opt['d'] >= 3) {
8523 dsl_pool_t *dp = spa->spa_dsl_pool;
8524 dump_full_bpobj(&spa->spa_deferred_bpobj,
8525 "Deferred frees", 0);
8526 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8527 dump_full_bpobj(&dp->dp_free_bpobj,
8528 "Pool snapshot frees", 0);
8529 }
8530 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8531 ASSERT(spa_feature_is_enabled(spa,
8532 SPA_FEATURE_DEVICE_REMOVAL));
8533 dump_full_bpobj(&dp->dp_obsolete_bpobj,
8534 "Pool obsolete blocks", 0);
8535 }
8536
8537 if (spa_feature_is_active(spa,
8538 SPA_FEATURE_ASYNC_DESTROY)) {
8539 dump_bptree(spa->spa_meta_objset,
8540 dp->dp_bptree_obj,
8541 "Pool dataset frees");
8542 }
8543 dump_dtl(spa->spa_root_vdev, 0);
8544 }
8545
8546 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8547 global_feature_count[f] = UINT64_MAX;
8548 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8549 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8550 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8551 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8552
8553 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
8554 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8555
8556 if (rc == 0 && !dump_opt['L'])
8557 rc = dump_mos_leaks(spa);
8558
8559 for (f = 0; f < SPA_FEATURES; f++) {
8560 uint64_t refcount;
8561
8562 uint64_t *arr;
8563 if (!(spa_feature_table[f].fi_flags &
8564 ZFEATURE_FLAG_PER_DATASET)) {
8565 if (global_feature_count[f] == UINT64_MAX)
8566 continue;
8567 if (!spa_feature_is_enabled(spa, f)) {
8568 ASSERT0(global_feature_count[f]);
8569 continue;
8570 }
8571 arr = global_feature_count;
8572 } else {
8573 if (!spa_feature_is_enabled(spa, f)) {
8574 ASSERT0(dataset_feature_count[f]);
8575 continue;
8576 }
8577 arr = dataset_feature_count;
8578 }
8579 if (feature_get_refcount(spa, &spa_feature_table[f],
8580 &refcount) == ENOTSUP)
8581 continue;
8582 if (arr[f] != refcount) {
8583 (void) printf("%s feature refcount mismatch: "
8584 "%lld consumers != %lld refcount\n",
8585 spa_feature_table[f].fi_uname,
8586 (longlong_t)arr[f], (longlong_t)refcount);
8587 rc = 2;
8588 } else {
8589 (void) printf("Verified %s feature refcount "
8590 "of %llu is correct\n",
8591 spa_feature_table[f].fi_uname,
8592 (longlong_t)refcount);
8593 }
8594 }
8595
8596 if (rc == 0)
8597 rc = verify_device_removal_feature_counts(spa);
8598 }
8599
8600 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8601 rc = dump_block_stats(spa);
8602
8603 if (rc == 0)
8604 rc = verify_spacemap_refcounts(spa);
8605
8606 if (dump_opt['s'])
8607 show_pool_stats(spa);
8608
8609 if (dump_opt['h'])
8610 dump_history(spa);
8611
8612 if (rc == 0)
8613 rc = verify_checkpoint(spa);
8614
8615 if (rc != 0) {
8616 dump_debug_buffer();
8617 zdb_exit(rc);
8618 }
8619 }
8620
8621 #define ZDB_FLAG_CHECKSUM 0x0001
8622 #define ZDB_FLAG_DECOMPRESS 0x0002
8623 #define ZDB_FLAG_BSWAP 0x0004
8624 #define ZDB_FLAG_GBH 0x0008
8625 #define ZDB_FLAG_INDIRECT 0x0010
8626 #define ZDB_FLAG_RAW 0x0020
8627 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8628 #define ZDB_FLAG_VERBOSE 0x0080
8629
8630 static int flagbits[256];
8631 static char flagbitstr[16];
8632
8633 static void
zdb_print_blkptr(const blkptr_t * bp,int flags)8634 zdb_print_blkptr(const blkptr_t *bp, int flags)
8635 {
8636 char blkbuf[BP_SPRINTF_LEN];
8637
8638 if (flags & ZDB_FLAG_BSWAP)
8639 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8640
8641 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8642 (void) printf("%s\n", blkbuf);
8643 }
8644
8645 static void
zdb_dump_indirect(blkptr_t * bp,int nbps,int flags)8646 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8647 {
8648 int i;
8649
8650 for (i = 0; i < nbps; i++)
8651 zdb_print_blkptr(&bp[i], flags);
8652 }
8653
8654 static void
zdb_dump_gbh(void * buf,uint64_t size,int flags)8655 zdb_dump_gbh(void *buf, uint64_t size, int flags)
8656 {
8657 zdb_dump_indirect((blkptr_t *)buf, gbh_nblkptrs(size), flags);
8658 }
8659
8660 static void
zdb_dump_block_raw(void * buf,uint64_t size,int flags)8661 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8662 {
8663 if (flags & ZDB_FLAG_BSWAP)
8664 byteswap_uint64_array(buf, size);
8665 VERIFY(write(fileno(stdout), buf, size) == size);
8666 }
8667
8668 static void
zdb_dump_block(char * label,void * buf,uint64_t size,int flags)8669 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8670 {
8671 uint64_t *d = (uint64_t *)buf;
8672 unsigned nwords = size / sizeof (uint64_t);
8673 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8674 unsigned i, j;
8675 const char *hdr;
8676 char *c;
8677
8678
8679 if (do_bswap)
8680 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8681 else
8682 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8683
8684 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8685
8686 #ifdef _ZFS_LITTLE_ENDIAN
8687 /* correct the endianness */
8688 do_bswap = !do_bswap;
8689 #endif
8690 for (i = 0; i < nwords; i += 2) {
8691 (void) printf("%06llx: %016llx %016llx ",
8692 (u_longlong_t)(i * sizeof (uint64_t)),
8693 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8694 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8695
8696 c = (char *)&d[i];
8697 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8698 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8699 (void) printf("\n");
8700 }
8701 }
8702
8703 /*
8704 * There are two acceptable formats:
8705 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8706 * child[.child]* - For example: 0.1.1
8707 *
8708 * The second form can be used to specify arbitrary vdevs anywhere
8709 * in the hierarchy. For example, in a pool with a mirror of
8710 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8711 */
8712 static vdev_t *
zdb_vdev_lookup(vdev_t * vdev,const char * path)8713 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8714 {
8715 char *s, *p, *q;
8716 unsigned i;
8717
8718 if (vdev == NULL)
8719 return (NULL);
8720
8721 /* First, assume the x.x.x.x format */
8722 i = strtoul(path, &s, 10);
8723 if (s == path || (s && *s != '.' && *s != '\0'))
8724 goto name;
8725 if (i >= vdev->vdev_children)
8726 return (NULL);
8727
8728 vdev = vdev->vdev_child[i];
8729 if (s && *s == '\0')
8730 return (vdev);
8731 return (zdb_vdev_lookup(vdev, s+1));
8732
8733 name:
8734 for (i = 0; i < vdev->vdev_children; i++) {
8735 vdev_t *vc = vdev->vdev_child[i];
8736
8737 if (vc->vdev_path == NULL) {
8738 vc = zdb_vdev_lookup(vc, path);
8739 if (vc == NULL)
8740 continue;
8741 else
8742 return (vc);
8743 }
8744
8745 p = strrchr(vc->vdev_path, '/');
8746 p = p ? p + 1 : vc->vdev_path;
8747 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8748
8749 if (strcmp(vc->vdev_path, path) == 0)
8750 return (vc);
8751 if (strcmp(p, path) == 0)
8752 return (vc);
8753 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8754 return (vc);
8755 }
8756
8757 return (NULL);
8758 }
8759
8760 static int
name_from_objset_id(spa_t * spa,uint64_t objset_id,char * outstr)8761 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8762 {
8763 dsl_dataset_t *ds;
8764
8765 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8766 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8767 NULL, &ds);
8768 if (error != 0) {
8769 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8770 (u_longlong_t)objset_id, strerror(error));
8771 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8772 return (error);
8773 }
8774 dsl_dataset_name(ds, outstr);
8775 dsl_dataset_rele(ds, NULL);
8776 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8777 return (0);
8778 }
8779
8780 static boolean_t
zdb_parse_block_sizes(char * sizes,uint64_t * lsize,uint64_t * psize)8781 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8782 {
8783 char *s0, *s1, *tmp = NULL;
8784
8785 if (sizes == NULL)
8786 return (B_FALSE);
8787
8788 s0 = strtok_r(sizes, "/", &tmp);
8789 if (s0 == NULL)
8790 return (B_FALSE);
8791 s1 = strtok_r(NULL, "/", &tmp);
8792 *lsize = strtoull(s0, NULL, 16);
8793 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8794 return (*lsize >= *psize && *psize > 0);
8795 }
8796
8797 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8798
8799 static boolean_t
try_decompress_block(abd_t * pabd,uint64_t lsize,uint64_t psize,int flags,int cfunc,void * lbuf,void * lbuf2)8800 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8801 int flags, int cfunc, void *lbuf, void *lbuf2)
8802 {
8803 if (flags & ZDB_FLAG_VERBOSE) {
8804 (void) fprintf(stderr,
8805 "Trying %05llx -> %05llx (%s)\n",
8806 (u_longlong_t)psize,
8807 (u_longlong_t)lsize,
8808 zio_compress_table[cfunc].ci_name);
8809 }
8810
8811 /*
8812 * We set lbuf to all zeros and lbuf2 to all
8813 * ones, then decompress to both buffers and
8814 * compare their contents. This way we can
8815 * know if decompression filled exactly to
8816 * lsize or if it left some bytes unwritten.
8817 */
8818
8819 memset(lbuf, 0x00, lsize);
8820 memset(lbuf2, 0xff, lsize);
8821
8822 abd_t labd, labd2;
8823 abd_get_from_buf_struct(&labd, lbuf, lsize);
8824 abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8825
8826 boolean_t ret = B_FALSE;
8827 if (zio_decompress_data(cfunc, pabd,
8828 &labd, psize, lsize, NULL) == 0 &&
8829 zio_decompress_data(cfunc, pabd,
8830 &labd2, psize, lsize, NULL) == 0 &&
8831 memcmp(lbuf, lbuf2, lsize) == 0)
8832 ret = B_TRUE;
8833
8834 abd_free(&labd2);
8835 abd_free(&labd);
8836
8837 return (ret);
8838 }
8839
8840 static uint64_t
zdb_decompress_block(abd_t * pabd,void * buf,void * lbuf,uint64_t lsize,uint64_t psize,int flags)8841 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8842 uint64_t psize, int flags)
8843 {
8844 (void) buf;
8845 uint64_t orig_lsize = lsize;
8846 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8847 /*
8848 * We don't know how the data was compressed, so just try
8849 * every decompress function at every inflated blocksize.
8850 */
8851 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8852 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8853 int *cfuncp = cfuncs;
8854 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8855 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8856 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8857 ZIO_COMPRESS_MASK(ZLE);
8858 *cfuncp++ = ZIO_COMPRESS_LZ4;
8859 *cfuncp++ = ZIO_COMPRESS_LZJB;
8860 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8861 /*
8862 * Every gzip level has the same decompressor, no need to
8863 * run it 9 times per bruteforce attempt.
8864 */
8865 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8866 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8867 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8868 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8869 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8870 if (((1ULL << c) & mask) == 0)
8871 *cfuncp++ = c;
8872
8873 /*
8874 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8875 * could take a while and we should let the user know
8876 * we are not stuck. On the other hand, printing progress
8877 * info gets old after a while. User can specify 'v' flag
8878 * to see the progression.
8879 */
8880 if (lsize == psize)
8881 lsize += SPA_MINBLOCKSIZE;
8882 else
8883 maxlsize = lsize;
8884
8885 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8886 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8887 if (try_decompress_block(pabd, lsize, psize, flags,
8888 *cfuncp, lbuf, lbuf2)) {
8889 tryzle = B_FALSE;
8890 break;
8891 }
8892 }
8893 if (*cfuncp != 0)
8894 break;
8895 }
8896 if (tryzle) {
8897 for (lsize = orig_lsize; lsize <= maxlsize;
8898 lsize += SPA_MINBLOCKSIZE) {
8899 if (try_decompress_block(pabd, lsize, psize, flags,
8900 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8901 *cfuncp = ZIO_COMPRESS_ZLE;
8902 break;
8903 }
8904 }
8905 }
8906 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8907
8908 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8909 printf("\nZLE decompression was selected. If you "
8910 "suspect the results are wrong,\ntry avoiding ZLE "
8911 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8912 }
8913
8914 return (lsize > maxlsize ? -1 : lsize);
8915 }
8916
8917 /*
8918 * Read a block from a pool and print it out. The syntax of the
8919 * block descriptor is:
8920 *
8921 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8922 *
8923 * pool - The name of the pool you wish to read from
8924 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8925 * offset - offset, in hex, in bytes
8926 * size - Amount of data to read, in hex, in bytes
8927 * flags - A string of characters specifying options
8928 * b: Decode a blkptr at given offset within block
8929 * c: Calculate and display checksums
8930 * d: Decompress data before dumping
8931 * e: Byteswap data before dumping
8932 * g: Display data as a gang block header
8933 * i: Display as an indirect block
8934 * r: Dump raw data to stdout
8935 * v: Verbose
8936 *
8937 */
8938 static void
zdb_read_block(char * thing,spa_t * spa)8939 zdb_read_block(char *thing, spa_t *spa)
8940 {
8941 blkptr_t blk, *bp = &blk;
8942 dva_t *dva = bp->blk_dva;
8943 int flags = 0;
8944 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8945 zio_t *zio;
8946 vdev_t *vd;
8947 abd_t *pabd;
8948 void *lbuf, *buf;
8949 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8950 const char *vdev, *errmsg = NULL;
8951 int i, len, error;
8952 boolean_t borrowed = B_FALSE, found = B_FALSE;
8953
8954 dup = strdup(thing);
8955 s = strtok_r(dup, ":", &tmp);
8956 vdev = s ?: "";
8957 s = strtok_r(NULL, ":", &tmp);
8958 offset = strtoull(s ? s : "", NULL, 16);
8959 sizes = strtok_r(NULL, ":", &tmp);
8960 s = strtok_r(NULL, ":", &tmp);
8961 flagstr = strdup(s ?: "");
8962
8963 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8964 errmsg = "invalid size(s)";
8965 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8966 errmsg = "size must be a multiple of sector size";
8967 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8968 errmsg = "offset must be a multiple of sector size";
8969 if (errmsg) {
8970 (void) printf("Invalid block specifier: %s - %s\n",
8971 thing, errmsg);
8972 goto done;
8973 }
8974
8975 tmp = NULL;
8976 for (s = strtok_r(flagstr, ":", &tmp);
8977 s != NULL;
8978 s = strtok_r(NULL, ":", &tmp)) {
8979 len = strlen(flagstr);
8980 for (i = 0; i < len; i++) {
8981 int bit = flagbits[(uchar_t)flagstr[i]];
8982
8983 if (bit == 0) {
8984 (void) printf("***Ignoring flag: %c\n",
8985 (uchar_t)flagstr[i]);
8986 continue;
8987 }
8988 found = B_TRUE;
8989 flags |= bit;
8990
8991 p = &flagstr[i + 1];
8992 if (*p != ':' && *p != '\0') {
8993 int j = 0, nextbit = flagbits[(uchar_t)*p];
8994 char *end, offstr[8] = { 0 };
8995 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8996 (nextbit == 0)) {
8997 /* look ahead to isolate the offset */
8998 while (nextbit == 0 &&
8999 strchr(flagbitstr, *p) == NULL) {
9000 offstr[j] = *p;
9001 j++;
9002 if (i + j > strlen(flagstr))
9003 break;
9004 p++;
9005 nextbit = flagbits[(uchar_t)*p];
9006 }
9007 blkptr_offset = strtoull(offstr, &end,
9008 16);
9009 i += j;
9010 } else if (nextbit == 0) {
9011 (void) printf("***Ignoring flag arg:"
9012 " '%c'\n", (uchar_t)*p);
9013 }
9014 }
9015 }
9016 }
9017 if (blkptr_offset % sizeof (blkptr_t)) {
9018 printf("Block pointer offset 0x%llx "
9019 "must be divisible by 0x%x\n",
9020 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
9021 goto done;
9022 }
9023 if (found == B_FALSE && strlen(flagstr) > 0) {
9024 printf("Invalid flag arg: '%s'\n", flagstr);
9025 goto done;
9026 }
9027
9028 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
9029 if (vd == NULL) {
9030 (void) printf("***Invalid vdev: %s\n", vdev);
9031 goto done;
9032 } else {
9033 if (vd->vdev_path)
9034 (void) fprintf(stderr, "Found vdev: %s\n",
9035 vd->vdev_path);
9036 else
9037 (void) fprintf(stderr, "Found vdev type: %s\n",
9038 vd->vdev_ops->vdev_op_type);
9039 }
9040
9041 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
9042 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
9043
9044 BP_ZERO(bp);
9045
9046 DVA_SET_VDEV(&dva[0], vd->vdev_id);
9047 DVA_SET_OFFSET(&dva[0], offset);
9048 DVA_SET_GANG(&dva[0], 0);
9049 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
9050
9051 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
9052
9053 BP_SET_LSIZE(bp, lsize);
9054 BP_SET_PSIZE(bp, psize);
9055 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
9056 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
9057 BP_SET_TYPE(bp, DMU_OT_NONE);
9058 BP_SET_LEVEL(bp, 0);
9059 BP_SET_DEDUP(bp, 0);
9060 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
9061
9062 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9063 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9064
9065 if (vd == vd->vdev_top) {
9066 /*
9067 * Treat this as a normal block read.
9068 */
9069 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
9070 ZIO_PRIORITY_SYNC_READ,
9071 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
9072 } else {
9073 /*
9074 * Treat this as a vdev child I/O.
9075 */
9076 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
9077 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
9078 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9079 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
9080 NULL, NULL));
9081 }
9082
9083 error = zio_wait(zio);
9084 spa_config_exit(spa, SCL_STATE, FTAG);
9085
9086 if (error) {
9087 (void) printf("Read of %s failed, error: %d\n", thing, error);
9088 goto out;
9089 }
9090
9091 uint64_t orig_lsize = lsize;
9092 buf = lbuf;
9093 if (flags & ZDB_FLAG_DECOMPRESS) {
9094 lsize = zdb_decompress_block(pabd, buf, lbuf,
9095 lsize, psize, flags);
9096 if (lsize == -1) {
9097 (void) printf("Decompress of %s failed\n", thing);
9098 goto out;
9099 }
9100 } else {
9101 buf = abd_borrow_buf_copy(pabd, lsize);
9102 borrowed = B_TRUE;
9103 }
9104 /*
9105 * Try to detect invalid block pointer. If invalid, try
9106 * decompressing.
9107 */
9108 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
9109 !(flags & ZDB_FLAG_DECOMPRESS)) {
9110 const blkptr_t *b = (const blkptr_t *)(void *)
9111 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9112 if (zfs_blkptr_verify(spa, b,
9113 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) {
9114 abd_return_buf_copy(pabd, buf, lsize);
9115 borrowed = B_FALSE;
9116 buf = lbuf;
9117 lsize = zdb_decompress_block(pabd, buf,
9118 lbuf, lsize, psize, flags);
9119 b = (const blkptr_t *)(void *)
9120 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9121 if (lsize == -1 || zfs_blkptr_verify(spa, b,
9122 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
9123 printf("invalid block pointer at this DVA\n");
9124 goto out;
9125 }
9126 }
9127 }
9128
9129 if (flags & ZDB_FLAG_PRINT_BLKPTR)
9130 zdb_print_blkptr((blkptr_t *)(void *)
9131 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
9132 else if (flags & ZDB_FLAG_RAW)
9133 zdb_dump_block_raw(buf, lsize, flags);
9134 else if (flags & ZDB_FLAG_INDIRECT)
9135 zdb_dump_indirect((blkptr_t *)buf,
9136 orig_lsize / sizeof (blkptr_t), flags);
9137 else if (flags & ZDB_FLAG_GBH)
9138 zdb_dump_gbh(buf, lsize, flags);
9139 else
9140 zdb_dump_block(thing, buf, lsize, flags);
9141
9142 /*
9143 * If :c was specified, iterate through the checksum table to
9144 * calculate and display each checksum for our specified
9145 * DVA and length.
9146 */
9147 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9148 !(flags & ZDB_FLAG_GBH)) {
9149 zio_t *czio;
9150 (void) printf("\n");
9151 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9152 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9153
9154 if ((zio_checksum_table[ck].ci_flags &
9155 ZCHECKSUM_FLAG_EMBEDDED) ||
9156 ck == ZIO_CHECKSUM_NOPARITY) {
9157 continue;
9158 }
9159 BP_SET_CHECKSUM(bp, ck);
9160 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9161 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9162 if (vd == vd->vdev_top) {
9163 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9164 NULL, NULL,
9165 ZIO_PRIORITY_SYNC_READ,
9166 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9167 ZIO_FLAG_DONT_RETRY, NULL));
9168 } else {
9169 zio_nowait(zio_vdev_child_io(czio, bp, vd,
9170 offset, pabd, psize, ZIO_TYPE_READ,
9171 ZIO_PRIORITY_SYNC_READ,
9172 ZIO_FLAG_DONT_PROPAGATE |
9173 ZIO_FLAG_DONT_RETRY |
9174 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9175 ZIO_FLAG_SPECULATIVE |
9176 ZIO_FLAG_OPTIONAL, NULL, NULL));
9177 }
9178 error = zio_wait(czio);
9179 if (error == 0 || error == ECKSUM) {
9180 zio_t *ck_zio = zio_null(NULL, spa, NULL,
9181 NULL, NULL, 0);
9182 ck_zio->io_offset =
9183 DVA_GET_OFFSET(&bp->blk_dva[0]);
9184 ck_zio->io_bp = bp;
9185 zio_checksum_compute(ck_zio, ck, pabd, psize);
9186 printf(
9187 "%12s\t"
9188 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9189 zio_checksum_table[ck].ci_name,
9190 (u_longlong_t)bp->blk_cksum.zc_word[0],
9191 (u_longlong_t)bp->blk_cksum.zc_word[1],
9192 (u_longlong_t)bp->blk_cksum.zc_word[2],
9193 (u_longlong_t)bp->blk_cksum.zc_word[3]);
9194 zio_wait(ck_zio);
9195 } else {
9196 printf("error %d reading block\n", error);
9197 }
9198 spa_config_exit(spa, SCL_STATE, FTAG);
9199 }
9200 }
9201
9202 if (borrowed)
9203 abd_return_buf_copy(pabd, buf, lsize);
9204
9205 out:
9206 abd_free(pabd);
9207 umem_free(lbuf, SPA_MAXBLOCKSIZE);
9208 done:
9209 free(flagstr);
9210 free(dup);
9211 }
9212
9213 static void
zdb_embedded_block(char * thing)9214 zdb_embedded_block(char *thing)
9215 {
9216 blkptr_t bp = {{{{0}}}};
9217 unsigned long long *words = (void *)&bp;
9218 char *buf;
9219 int err;
9220
9221 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9222 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9223 words + 0, words + 1, words + 2, words + 3,
9224 words + 4, words + 5, words + 6, words + 7,
9225 words + 8, words + 9, words + 10, words + 11,
9226 words + 12, words + 13, words + 14, words + 15);
9227 if (err != 16) {
9228 (void) fprintf(stderr, "invalid input format\n");
9229 zdb_exit(1);
9230 }
9231 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9232 buf = malloc(SPA_MAXBLOCKSIZE);
9233 if (buf == NULL) {
9234 (void) fprintf(stderr, "out of memory\n");
9235 zdb_exit(1);
9236 }
9237 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9238 if (err != 0) {
9239 (void) fprintf(stderr, "decode failed: %u\n", err);
9240 zdb_exit(1);
9241 }
9242 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9243 free(buf);
9244 }
9245
9246 /* check for valid hex or decimal numeric string */
9247 static boolean_t
zdb_numeric(char * str)9248 zdb_numeric(char *str)
9249 {
9250 int i = 0, len;
9251
9252 len = strlen(str);
9253 if (len == 0)
9254 return (B_FALSE);
9255 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9256 i = 2;
9257 for (; i < len; i++) {
9258 if (!isxdigit(str[i]))
9259 return (B_FALSE);
9260 }
9261 return (B_TRUE);
9262 }
9263
9264 static int
dummy_get_file_info(dmu_object_type_t bonustype,const void * data,zfs_file_info_t * zoi)9265 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9266 zfs_file_info_t *zoi)
9267 {
9268 (void) data, (void) zoi;
9269
9270 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9271 return (ENOENT);
9272
9273 (void) fprintf(stderr, "dummy_get_file_info: not implemented");
9274 abort();
9275 }
9276
9277 int
main(int argc,char ** argv)9278 main(int argc, char **argv)
9279 {
9280 int c;
9281 int dump_all = 1;
9282 int verbose = 0;
9283 int error = 0;
9284 char **searchdirs = NULL;
9285 int nsearch = 0;
9286 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9287 nvlist_t *policy = NULL;
9288 uint64_t max_txg = UINT64_MAX;
9289 int64_t objset_id = -1;
9290 uint64_t object;
9291 int flags = ZFS_IMPORT_MISSING_LOG;
9292 int rewind = ZPOOL_NEVER_REWIND;
9293 char *spa_config_path_env, *objset_str;
9294 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9295 nvlist_t *cfg = NULL;
9296 struct sigaction action;
9297 boolean_t force_import = B_FALSE;
9298 boolean_t config_path_console = B_FALSE;
9299 char pbuf[MAXPATHLEN];
9300
9301 dprintf_setup(&argc, argv);
9302
9303 /*
9304 * Set up signal handlers, so if we crash due to bad on-disk data we
9305 * can get more info. Unlike ztest, we don't bail out if we can't set
9306 * up signal handlers, because zdb is very useful without them.
9307 */
9308 action.sa_handler = sig_handler;
9309 sigemptyset(&action.sa_mask);
9310 action.sa_flags = 0;
9311 if (sigaction(SIGSEGV, &action, NULL) < 0) {
9312 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9313 strerror(errno));
9314 }
9315 if (sigaction(SIGABRT, &action, NULL) < 0) {
9316 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9317 strerror(errno));
9318 }
9319
9320 /*
9321 * If there is an environment variable SPA_CONFIG_PATH it overrides
9322 * default spa_config_path setting. If -U flag is specified it will
9323 * override this environment variable settings once again.
9324 */
9325 spa_config_path_env = getenv("SPA_CONFIG_PATH");
9326 if (spa_config_path_env != NULL)
9327 spa_config_path = spa_config_path_env;
9328
9329 /*
9330 * For performance reasons, we set this tunable down. We do so before
9331 * the arg parsing section so that the user can override this value if
9332 * they choose.
9333 */
9334 zfs_btree_verify_intensity = 3;
9335
9336 struct option long_options[] = {
9337 {"ignore-assertions", no_argument, NULL, 'A'},
9338 {"block-stats", no_argument, NULL, 'b'},
9339 {"backup", no_argument, NULL, 'B'},
9340 {"checksum", no_argument, NULL, 'c'},
9341 {"config", no_argument, NULL, 'C'},
9342 {"datasets", no_argument, NULL, 'd'},
9343 {"dedup-stats", no_argument, NULL, 'D'},
9344 {"exported", no_argument, NULL, 'e'},
9345 {"embedded-block-pointer", no_argument, NULL, 'E'},
9346 {"automatic-rewind", no_argument, NULL, 'F'},
9347 {"dump-debug-msg", no_argument, NULL, 'G'},
9348 {"history", no_argument, NULL, 'h'},
9349 {"intent-logs", no_argument, NULL, 'i'},
9350 {"inflight", required_argument, NULL, 'I'},
9351 {"checkpointed-state", no_argument, NULL, 'k'},
9352 {"key", required_argument, NULL, 'K'},
9353 {"label", no_argument, NULL, 'l'},
9354 {"disable-leak-tracking", no_argument, NULL, 'L'},
9355 {"metaslabs", no_argument, NULL, 'm'},
9356 {"metaslab-groups", no_argument, NULL, 'M'},
9357 {"numeric", no_argument, NULL, 'N'},
9358 {"option", required_argument, NULL, 'o'},
9359 {"object-lookups", no_argument, NULL, 'O'},
9360 {"path", required_argument, NULL, 'p'},
9361 {"parseable", no_argument, NULL, 'P'},
9362 {"skip-label", no_argument, NULL, 'q'},
9363 {"copy-object", no_argument, NULL, 'r'},
9364 {"read-block", no_argument, NULL, 'R'},
9365 {"io-stats", no_argument, NULL, 's'},
9366 {"simulate-dedup", no_argument, NULL, 'S'},
9367 {"txg", required_argument, NULL, 't'},
9368 {"brt-stats", no_argument, NULL, 'T'},
9369 {"uberblock", no_argument, NULL, 'u'},
9370 {"cachefile", required_argument, NULL, 'U'},
9371 {"verbose", no_argument, NULL, 'v'},
9372 {"verbatim", no_argument, NULL, 'V'},
9373 {"dump-blocks", required_argument, NULL, 'x'},
9374 {"extreme-rewind", no_argument, NULL, 'X'},
9375 {"all-reconstruction", no_argument, NULL, 'Y'},
9376 {"livelist", no_argument, NULL, 'y'},
9377 {"zstd-headers", no_argument, NULL, 'Z'},
9378 {0, 0, 0, 0}
9379 };
9380
9381 while ((c = getopt_long(argc, argv,
9382 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9383 long_options, NULL)) != -1) {
9384 switch (c) {
9385 case 'b':
9386 case 'B':
9387 case 'c':
9388 case 'C':
9389 case 'd':
9390 case 'D':
9391 case 'E':
9392 case 'G':
9393 case 'h':
9394 case 'i':
9395 case 'l':
9396 case 'm':
9397 case 'M':
9398 case 'N':
9399 case 'O':
9400 case 'r':
9401 case 'R':
9402 case 's':
9403 case 'S':
9404 case 'T':
9405 case 'u':
9406 case 'y':
9407 case 'Z':
9408 dump_opt[c]++;
9409 dump_all = 0;
9410 break;
9411 case 'A':
9412 case 'e':
9413 case 'F':
9414 case 'k':
9415 case 'L':
9416 case 'P':
9417 case 'q':
9418 case 'X':
9419 dump_opt[c]++;
9420 break;
9421 case 'Y':
9422 zfs_reconstruct_indirect_combinations_max = INT_MAX;
9423 zfs_deadman_enabled = 0;
9424 break;
9425 /* NB: Sort single match options below. */
9426 case 'I':
9427 max_inflight_bytes = strtoull(optarg, NULL, 0);
9428 if (max_inflight_bytes == 0) {
9429 (void) fprintf(stderr, "maximum number "
9430 "of inflight bytes must be greater "
9431 "than 0\n");
9432 usage();
9433 }
9434 break;
9435 case 'K':
9436 dump_opt[c]++;
9437 key_material = strdup(optarg);
9438 /* redact key material in process table */
9439 while (*optarg != '\0') { *optarg++ = '*'; }
9440 break;
9441 case 'o':
9442 dump_opt[c]++;
9443 dump_all = 0;
9444 error = handle_tunable_option(optarg, B_FALSE);
9445 if (error != 0)
9446 zdb_exit(1);
9447 break;
9448 case 'p':
9449 if (searchdirs == NULL) {
9450 searchdirs = umem_alloc(sizeof (char *),
9451 UMEM_NOFAIL);
9452 } else {
9453 char **tmp = umem_alloc((nsearch + 1) *
9454 sizeof (char *), UMEM_NOFAIL);
9455 memcpy(tmp, searchdirs, nsearch *
9456 sizeof (char *));
9457 umem_free(searchdirs,
9458 nsearch * sizeof (char *));
9459 searchdirs = tmp;
9460 }
9461 searchdirs[nsearch++] = optarg;
9462 break;
9463 case 't':
9464 max_txg = strtoull(optarg, NULL, 0);
9465 if (max_txg < TXG_INITIAL) {
9466 (void) fprintf(stderr, "incorrect txg "
9467 "specified: %s\n", optarg);
9468 usage();
9469 }
9470 break;
9471 case 'U':
9472 config_path_console = B_TRUE;
9473 spa_config_path = optarg;
9474 if (spa_config_path[0] != '/') {
9475 (void) fprintf(stderr,
9476 "cachefile must be an absolute path "
9477 "(i.e. start with a slash)\n");
9478 usage();
9479 }
9480 break;
9481 case 'v':
9482 verbose++;
9483 break;
9484 case 'V':
9485 flags = ZFS_IMPORT_VERBATIM;
9486 break;
9487 case 'x':
9488 vn_dumpdir = optarg;
9489 break;
9490 default:
9491 usage();
9492 break;
9493 }
9494 }
9495
9496 if (!dump_opt['e'] && searchdirs != NULL) {
9497 (void) fprintf(stderr, "-p option requires use of -e\n");
9498 usage();
9499 }
9500 #if defined(_LP64)
9501 /*
9502 * ZDB does not typically re-read blocks; therefore limit the ARC
9503 * to 256 MB, which can be used entirely for metadata.
9504 */
9505 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9506 zfs_arc_max = 256 * 1024 * 1024;
9507 #endif
9508
9509 /*
9510 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9511 * "zdb -b" uses traversal prefetch which uses async reads.
9512 * For good performance, let several of them be active at once.
9513 */
9514 zfs_vdev_async_read_max_active = 10;
9515
9516 /*
9517 * Disable reference tracking for better performance.
9518 */
9519 reference_tracking_enable = B_FALSE;
9520
9521 /*
9522 * Do not fail spa_load when spa_load_verify fails. This is needed
9523 * to load non-idle pools.
9524 */
9525 spa_load_verify_dryrun = B_TRUE;
9526
9527 /*
9528 * ZDB should have ability to read spacemaps.
9529 */
9530 spa_mode_readable_spacemaps = B_TRUE;
9531
9532 if (dump_all)
9533 verbose = MAX(verbose, 1);
9534
9535 for (c = 0; c < 256; c++) {
9536 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9537 dump_opt[c] = 1;
9538 if (dump_opt[c])
9539 dump_opt[c] += verbose;
9540 }
9541
9542 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9543 zfs_recover = (dump_opt['A'] > 1);
9544
9545 argc -= optind;
9546 argv += optind;
9547 if (argc < 2 && dump_opt['R'])
9548 usage();
9549
9550 target = argv[0];
9551
9552 /*
9553 * Automate cachefile
9554 */
9555 if (!spa_config_path_env && !config_path_console && target &&
9556 libzfs_core_init() == 0) {
9557 char *pname = strdup(target);
9558 const char *value;
9559 nvlist_t *pnvl = NULL;
9560 nvlist_t *vnvl = NULL;
9561
9562 if (strpbrk(pname, "/@") != NULL)
9563 *strpbrk(pname, "/@") = '\0';
9564
9565 if (pname && lzc_get_props(pname, &pnvl) == 0) {
9566 if (nvlist_lookup_nvlist(pnvl, "cachefile",
9567 &vnvl) == 0) {
9568 value = fnvlist_lookup_string(vnvl,
9569 ZPROP_VALUE);
9570 } else {
9571 value = "-";
9572 }
9573 strlcpy(pbuf, value, sizeof (pbuf));
9574 if (pbuf[0] != '\0') {
9575 if (pbuf[0] == '/') {
9576 if (access(pbuf, F_OK) == 0)
9577 spa_config_path = pbuf;
9578 else
9579 force_import = B_TRUE;
9580 } else if ((strcmp(pbuf, "-") == 0 &&
9581 access(ZPOOL_CACHE, F_OK) != 0) ||
9582 strcmp(pbuf, "none") == 0) {
9583 force_import = B_TRUE;
9584 }
9585 }
9586 nvlist_free(vnvl);
9587 }
9588
9589 free(pname);
9590 nvlist_free(pnvl);
9591 libzfs_core_fini();
9592 }
9593
9594 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9595 kernel_init(SPA_MODE_READ);
9596 kernel_init_done = B_TRUE;
9597
9598 if (dump_opt['E']) {
9599 if (argc != 1)
9600 usage();
9601 zdb_embedded_block(argv[0]);
9602 error = 0;
9603 goto fini;
9604 }
9605
9606 if (argc < 1) {
9607 if (!dump_opt['e'] && dump_opt['C']) {
9608 dump_cachefile(spa_config_path);
9609 error = 0;
9610 goto fini;
9611 }
9612 if (dump_opt['o'])
9613 /*
9614 * Avoid blasting tunable options off the top of the
9615 * screen.
9616 */
9617 zdb_exit(1);
9618 usage();
9619 }
9620
9621 if (dump_opt['l']) {
9622 error = dump_label(argv[0]);
9623 goto fini;
9624 }
9625
9626 if (dump_opt['X'] || dump_opt['F'])
9627 rewind = ZPOOL_DO_REWIND |
9628 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9629
9630 /* -N implies -d */
9631 if (dump_opt['N'] && dump_opt['d'] == 0)
9632 dump_opt['d'] = dump_opt['N'];
9633
9634 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9635 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9636 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9637 fatal("internal error: %s", strerror(ENOMEM));
9638
9639 error = 0;
9640
9641 if (strpbrk(target, "/@") != NULL) {
9642 size_t targetlen;
9643
9644 target_pool = strdup(target);
9645 *strpbrk(target_pool, "/@") = '\0';
9646
9647 target_is_spa = B_FALSE;
9648 targetlen = strlen(target);
9649 if (targetlen && target[targetlen - 1] == '/')
9650 target[targetlen - 1] = '\0';
9651
9652 /*
9653 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9654 * To disambiguate tank/100, consider the 100 as objsetID
9655 * if -N was given, otherwise 100 is an objsetID iff
9656 * tank/100 as a named dataset fails on lookup.
9657 */
9658 objset_str = strchr(target, '/');
9659 if (objset_str && strlen(objset_str) > 1 &&
9660 zdb_numeric(objset_str + 1)) {
9661 char *endptr;
9662 errno = 0;
9663 objset_str++;
9664 objset_id = strtoull(objset_str, &endptr, 0);
9665 /* dataset 0 is the same as opening the pool */
9666 if (errno == 0 && endptr != objset_str &&
9667 objset_id != 0) {
9668 if (dump_opt['N'])
9669 dataset_lookup = B_TRUE;
9670 }
9671 /* normal dataset name not an objset ID */
9672 if (endptr == objset_str) {
9673 objset_id = -1;
9674 }
9675 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
9676 dump_opt['N']) {
9677 printf("Supply a numeric objset ID with -N\n");
9678 error = 2;
9679 goto fini;
9680 }
9681 } else {
9682 target_pool = target;
9683 }
9684
9685 if (dump_opt['e'] || force_import) {
9686 importargs_t args = { 0 };
9687
9688 /*
9689 * If path is not provided, search in /dev
9690 */
9691 if (searchdirs == NULL) {
9692 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9693 searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9694 }
9695
9696 args.paths = nsearch;
9697 args.path = searchdirs;
9698 args.can_be_active = B_TRUE;
9699
9700 libpc_handle_t lpch = {
9701 .lpc_lib_handle = NULL,
9702 .lpc_ops = &libzpool_config_ops,
9703 .lpc_printerr = B_TRUE
9704 };
9705 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9706
9707 if (error == 0) {
9708
9709 if (nvlist_add_nvlist(cfg,
9710 ZPOOL_LOAD_POLICY, policy) != 0) {
9711 fatal("can't open '%s': %s",
9712 target, strerror(ENOMEM));
9713 }
9714
9715 if (dump_opt['C'] > 1) {
9716 (void) printf("\nConfiguration for import:\n");
9717 dump_nvlist(cfg, 8);
9718 }
9719
9720 /*
9721 * Disable the activity check to allow examination of
9722 * active pools.
9723 */
9724 error = spa_import(target_pool, cfg, NULL,
9725 flags | ZFS_IMPORT_SKIP_MMP);
9726 }
9727 }
9728
9729 if (searchdirs != NULL) {
9730 umem_free(searchdirs, nsearch * sizeof (char *));
9731 searchdirs = NULL;
9732 }
9733
9734 /*
9735 * We need to make sure to process -O option or call
9736 * dump_path after the -e option has been processed,
9737 * which imports the pool to the namespace if it's
9738 * not in the cachefile.
9739 */
9740 if (dump_opt['O']) {
9741 if (argc != 2)
9742 usage();
9743 dump_opt['v'] = verbose + 3;
9744 error = dump_path(argv[0], argv[1], NULL);
9745 goto fini;
9746 }
9747
9748 if (dump_opt['r']) {
9749 target_is_spa = B_FALSE;
9750 if (argc != 3)
9751 usage();
9752 dump_opt['v'] = verbose;
9753 error = dump_path(argv[0], argv[1], &object);
9754 if (error != 0)
9755 fatal("internal error: %s", strerror(error));
9756 }
9757
9758 /*
9759 * import_checkpointed_state makes the assumption that the
9760 * target pool that we pass it is already part of the spa
9761 * namespace. Because of that we need to make sure to call
9762 * it always after the -e option has been processed, which
9763 * imports the pool to the namespace if it's not in the
9764 * cachefile.
9765 */
9766 char *checkpoint_pool = NULL;
9767 char *checkpoint_target = NULL;
9768 if (dump_opt['k']) {
9769 checkpoint_pool = import_checkpointed_state(target, cfg,
9770 target_is_spa, &checkpoint_target);
9771
9772 if (checkpoint_target != NULL)
9773 target = checkpoint_target;
9774 }
9775
9776 if (cfg != NULL) {
9777 nvlist_free(cfg);
9778 cfg = NULL;
9779 }
9780
9781 if (target_pool != target)
9782 free(target_pool);
9783
9784 if (error == 0) {
9785 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9786 ASSERT(checkpoint_pool != NULL);
9787 ASSERT0P(checkpoint_target);
9788
9789 error = spa_open(checkpoint_pool, &spa, FTAG);
9790 if (error != 0) {
9791 fatal("Tried to open pool \"%s\" but "
9792 "spa_open() failed with error %d\n",
9793 checkpoint_pool, error);
9794 }
9795
9796 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9797 objset_id == 0) {
9798 zdb_set_skip_mmp(target);
9799 error = spa_open_rewind(target, &spa, FTAG, policy,
9800 NULL);
9801 if (error) {
9802 /*
9803 * If we're missing the log device then
9804 * try opening the pool after clearing the
9805 * log state.
9806 */
9807 mutex_enter(&spa_namespace_lock);
9808 if ((spa = spa_lookup(target)) != NULL &&
9809 spa->spa_log_state == SPA_LOG_MISSING) {
9810 spa->spa_log_state = SPA_LOG_CLEAR;
9811 error = 0;
9812 }
9813 mutex_exit(&spa_namespace_lock);
9814
9815 if (!error) {
9816 error = spa_open_rewind(target, &spa,
9817 FTAG, policy, NULL);
9818 }
9819 }
9820 } else if (strpbrk(target, "#") != NULL) {
9821 dsl_pool_t *dp;
9822 error = dsl_pool_hold(target, FTAG, &dp);
9823 if (error != 0) {
9824 fatal("can't dump '%s': %s", target,
9825 strerror(error));
9826 }
9827 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9828 dsl_pool_rele(dp, FTAG);
9829 if (error != 0) {
9830 fatal("can't dump '%s': %s", target,
9831 strerror(error));
9832 }
9833 goto fini;
9834 } else {
9835 target_pool = strdup(target);
9836 if (strpbrk(target, "/@") != NULL)
9837 *strpbrk(target_pool, "/@") = '\0';
9838
9839 zdb_set_skip_mmp(target);
9840 /*
9841 * If -N was supplied, the user has indicated that
9842 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9843 * we first assume that the dataset string is the
9844 * dataset name. If dmu_objset_hold fails with the
9845 * dataset string, and we have an objset_id, retry the
9846 * lookup with the objsetID.
9847 */
9848 boolean_t retry = B_TRUE;
9849 retry_lookup:
9850 if (dataset_lookup == B_TRUE) {
9851 /*
9852 * Use the supplied id to get the name
9853 * for open_objset.
9854 */
9855 error = spa_open(target_pool, &spa, FTAG);
9856 if (error == 0) {
9857 error = name_from_objset_id(spa,
9858 objset_id, dsname);
9859 spa_close(spa, FTAG);
9860 if (error == 0)
9861 target = dsname;
9862 }
9863 }
9864 if (error == 0) {
9865 if (objset_id > 0 && retry) {
9866 int err = dmu_objset_hold(target, FTAG,
9867 &os);
9868 if (err) {
9869 dataset_lookup = B_TRUE;
9870 retry = B_FALSE;
9871 goto retry_lookup;
9872 } else {
9873 dmu_objset_rele(os, FTAG);
9874 }
9875 }
9876 error = open_objset(target, FTAG, &os);
9877 }
9878 if (error == 0)
9879 spa = dmu_objset_spa(os);
9880 free(target_pool);
9881 }
9882 }
9883 nvlist_free(policy);
9884
9885 if (error)
9886 fatal("can't open '%s': %s", target, strerror(error));
9887
9888 /*
9889 * Set the pool failure mode to panic in order to prevent the pool
9890 * from suspending. A suspended I/O will have no way to resume and
9891 * can prevent the zdb(8) command from terminating as expected.
9892 */
9893 if (spa != NULL)
9894 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9895
9896 argv++;
9897 argc--;
9898 if (dump_opt['r']) {
9899 error = zdb_copy_object(os, object, argv[1]);
9900 } else if (!dump_opt['R']) {
9901 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9902 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9903 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9904 flagbits['z'] = ZOR_FLAG_ZAP;
9905 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9906
9907 if (argc > 0 && dump_opt['d']) {
9908 zopt_object_args = argc;
9909 zopt_object_ranges = calloc(zopt_object_args,
9910 sizeof (zopt_object_range_t));
9911 for (unsigned i = 0; i < zopt_object_args; i++) {
9912 int err;
9913 const char *msg = NULL;
9914
9915 err = parse_object_range(argv[i],
9916 &zopt_object_ranges[i], &msg);
9917 if (err != 0)
9918 fatal("Bad object or range: '%s': %s\n",
9919 argv[i], msg ?: "");
9920 }
9921 } else if (argc > 0 && dump_opt['m']) {
9922 zopt_metaslab_args = argc;
9923 zopt_metaslab = calloc(zopt_metaslab_args,
9924 sizeof (uint64_t));
9925 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9926 errno = 0;
9927 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9928 if (zopt_metaslab[i] == 0 && errno != 0)
9929 fatal("bad number %s: %s", argv[i],
9930 strerror(errno));
9931 }
9932 }
9933 if (dump_opt['B']) {
9934 dump_backup(target, objset_id,
9935 argc > 0 ? argv[0] : NULL);
9936 } else if (os != NULL) {
9937 dump_objset(os);
9938 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9939 dump_objset(spa->spa_meta_objset);
9940 } else {
9941 dump_zpool(spa);
9942 }
9943 } else {
9944 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9945 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9946 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9947 flagbits['e'] = ZDB_FLAG_BSWAP;
9948 flagbits['g'] = ZDB_FLAG_GBH;
9949 flagbits['i'] = ZDB_FLAG_INDIRECT;
9950 flagbits['r'] = ZDB_FLAG_RAW;
9951 flagbits['v'] = ZDB_FLAG_VERBOSE;
9952
9953 for (int i = 0; i < argc; i++)
9954 zdb_read_block(argv[i], spa);
9955 }
9956
9957 if (dump_opt['k']) {
9958 free(checkpoint_pool);
9959 if (!target_is_spa)
9960 free(checkpoint_target);
9961 }
9962
9963 fini:
9964 if (spa != NULL)
9965 zdb_ddt_cleanup(spa);
9966
9967 if (os != NULL) {
9968 close_objset(os, FTAG);
9969 } else if (spa != NULL) {
9970 spa_close(spa, FTAG);
9971 }
9972
9973 fuid_table_destroy();
9974
9975 dump_debug_buffer();
9976
9977 if (kernel_init_done)
9978 kernel_fini();
9979
9980 if (corruption_found && error == 0)
9981 error = 3;
9982
9983 return (error);
9984 }
9985