xref: /linux/arch/x86/kvm/vmx/vmx.h (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 #include <asm/posted_intr.h>
11 
12 #include "capabilities.h"
13 #include "../kvm_cache_regs.h"
14 #include "pmu_intel.h"
15 #include "vmcs.h"
16 #include "vmx_ops.h"
17 #include "../cpuid.h"
18 #include "run_flags.h"
19 #include "../mmu.h"
20 #include "common.h"
21 
22 #ifdef CONFIG_X86_64
23 #define MAX_NR_USER_RETURN_MSRS	7
24 #else
25 #define MAX_NR_USER_RETURN_MSRS	4
26 #endif
27 
28 #define MAX_NR_LOADSTORE_MSRS	8
29 
30 struct vmx_msrs {
31 	unsigned int		nr;
32 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
33 };
34 
35 struct vmx_uret_msr {
36 	bool load_into_hardware;
37 	u64 data;
38 	u64 mask;
39 };
40 
41 enum segment_cache_field {
42 	SEG_FIELD_SEL = 0,
43 	SEG_FIELD_BASE = 1,
44 	SEG_FIELD_LIMIT = 2,
45 	SEG_FIELD_AR = 3,
46 
47 	SEG_FIELD_NR = 4
48 };
49 
50 #define RTIT_ADDR_RANGE		4
51 
52 struct pt_ctx {
53 	u64 ctl;
54 	u64 status;
55 	u64 output_base;
56 	u64 output_mask;
57 	u64 cr3_match;
58 	u64 addr_a[RTIT_ADDR_RANGE];
59 	u64 addr_b[RTIT_ADDR_RANGE];
60 };
61 
62 struct pt_desc {
63 	u64 ctl_bitmask;
64 	u32 num_address_ranges;
65 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
66 	struct pt_ctx host;
67 	struct pt_ctx guest;
68 };
69 
70 /*
71  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
72  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
73  */
74 struct nested_vmx {
75 	/* Has the level1 guest done vmxon? */
76 	bool vmxon;
77 	gpa_t vmxon_ptr;
78 	bool pml_full;
79 
80 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
81 	gpa_t current_vmptr;
82 	/*
83 	 * Cache of the guest's VMCS, existing outside of guest memory.
84 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
85 	 * memory during VMCLEAR and VMPTRLD.
86 	 */
87 	struct vmcs12 *cached_vmcs12;
88 	/*
89 	 * Cache of the guest's shadow VMCS, existing outside of guest
90 	 * memory. Loaded from guest memory during VM entry. Flushed
91 	 * to guest memory during VM exit.
92 	 */
93 	struct vmcs12 *cached_shadow_vmcs12;
94 
95 	/*
96 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
97 	 */
98 	struct gfn_to_hva_cache shadow_vmcs12_cache;
99 
100 	/*
101 	 * GPA to HVA cache for VMCS12
102 	 */
103 	struct gfn_to_hva_cache vmcs12_cache;
104 
105 	/*
106 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
107 	 * with the data held by struct vmcs12.
108 	 */
109 	bool need_vmcs12_to_shadow_sync;
110 	bool dirty_vmcs12;
111 
112 	/*
113 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
114 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
115 	 * this flag can only be used reliably in conjunction with a paravirt L1
116 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
117 	 * on its side.
118 	 */
119 	bool force_msr_bitmap_recalc;
120 
121 	/*
122 	 * Indicates lazily loaded guest state has not yet been decached from
123 	 * vmcs02.
124 	 */
125 	bool need_sync_vmcs02_to_vmcs12_rare;
126 
127 	/*
128 	 * vmcs02 has been initialized, i.e. state that is constant for
129 	 * vmcs02 has been written to the backing VMCS.  Initialization
130 	 * is delayed until L1 actually attempts to run a nested VM.
131 	 */
132 	bool vmcs02_initialized;
133 
134 	bool change_vmcs01_virtual_apic_mode;
135 	bool reload_vmcs01_apic_access_page;
136 	bool update_vmcs01_cpu_dirty_logging;
137 	bool update_vmcs01_apicv_status;
138 	bool update_vmcs01_hwapic_isr;
139 
140 	/*
141 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
142 	 * use it. However, VMX features available to L1 will be limited based
143 	 * on what the enlightened VMCS supports.
144 	 */
145 	bool enlightened_vmcs_enabled;
146 
147 	/* L2 must run next, and mustn't decide to exit to L1. */
148 	bool nested_run_pending;
149 
150 	/* Pending MTF VM-exit into L1.  */
151 	bool mtf_pending;
152 
153 	struct loaded_vmcs vmcs02;
154 
155 	/*
156 	 * Guest pages referred to in the vmcs02 with host-physical
157 	 * pointers, so we must keep them pinned while L2 runs.
158 	 */
159 	struct kvm_host_map apic_access_page_map;
160 	struct kvm_host_map virtual_apic_map;
161 	struct kvm_host_map pi_desc_map;
162 
163 	struct pi_desc *pi_desc;
164 	bool pi_pending;
165 	u16 posted_intr_nv;
166 
167 	struct hrtimer preemption_timer;
168 	u64 preemption_timer_deadline;
169 	bool has_preemption_timer_deadline;
170 	bool preemption_timer_expired;
171 
172 	/*
173 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
174 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
175 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
176 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
177 	 * userspace restores MSRs before nested state.  If userspace restores
178 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
179 	 * detect that, and the garbage value in vmcs02 will be overwritten by
180 	 * MSR restoration in any case.
181 	 */
182 	u64 pre_vmenter_debugctl;
183 	u64 pre_vmenter_bndcfgs;
184 	u64 pre_vmenter_s_cet;
185 	u64 pre_vmenter_ssp;
186 	u64 pre_vmenter_ssp_tbl;
187 
188 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
189 	int l1_tpr_threshold;
190 
191 	u16 vpid02;
192 	u16 last_vpid;
193 
194 	struct nested_vmx_msrs msrs;
195 
196 	/* SMM related state */
197 	struct {
198 		/* in VMX operation on SMM entry? */
199 		bool vmxon;
200 		/* in guest mode on SMM entry? */
201 		bool guest_mode;
202 	} smm;
203 
204 #ifdef CONFIG_KVM_HYPERV
205 	gpa_t hv_evmcs_vmptr;
206 	struct kvm_host_map hv_evmcs_map;
207 	struct hv_enlightened_vmcs *hv_evmcs;
208 #endif
209 };
210 
211 struct vcpu_vmx {
212 	struct kvm_vcpu       vcpu;
213 	struct vcpu_vt	      vt;
214 	u8                    fail;
215 	u8		      x2apic_msr_bitmap_mode;
216 
217 	u32                   idt_vectoring_info;
218 	ulong                 rflags;
219 
220 	/*
221 	 * User return MSRs are always emulated when enabled in the guest, but
222 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
223 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
224 	 * be loaded into hardware if those conditions aren't met.
225 	 */
226 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
227 	bool                  guest_uret_msrs_loaded;
228 #ifdef CONFIG_X86_64
229 	u64		      msr_guest_kernel_gs_base;
230 #endif
231 
232 	u64		      spec_ctrl;
233 	u32		      msr_ia32_umwait_control;
234 
235 	/*
236 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
237 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
238 	 * guest (L2), it points to a different VMCS.
239 	 */
240 	struct loaded_vmcs    vmcs01;
241 	struct loaded_vmcs   *loaded_vmcs;
242 
243 	struct msr_autoload {
244 		struct vmx_msrs guest;
245 		struct vmx_msrs host;
246 	} msr_autoload;
247 
248 	struct msr_autostore {
249 		struct vmx_msrs guest;
250 	} msr_autostore;
251 
252 	struct {
253 		int vm86_active;
254 		ulong save_rflags;
255 		struct kvm_segment segs[8];
256 	} rmode;
257 	struct {
258 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
259 		struct kvm_save_segment {
260 			u16 selector;
261 			unsigned long base;
262 			u32 limit;
263 			u32 ar;
264 		} seg[8];
265 	} segment_cache;
266 	int vpid;
267 
268 	/* Support for a guest hypervisor (nested VMX) */
269 	struct nested_vmx nested;
270 
271 	/* Dynamic PLE window. */
272 	unsigned int ple_window;
273 	bool ple_window_dirty;
274 
275 	/* Support for PML */
276 #define PML_LOG_NR_ENTRIES	512
277 	/* PML is written backwards: this is the first entry written by the CPU */
278 #define PML_HEAD_INDEX		(PML_LOG_NR_ENTRIES-1)
279 
280 	struct page *pml_pg;
281 
282 	/* apic deadline value in host tsc */
283 	u64 hv_deadline_tsc;
284 
285 	/*
286 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
287 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
288 	 * in msr_ia32_feature_control_valid_bits.
289 	 */
290 	u64 msr_ia32_feature_control;
291 	u64 msr_ia32_feature_control_valid_bits;
292 	/* SGX Launch Control public key hash */
293 	u64 msr_ia32_sgxlepubkeyhash[4];
294 	u64 msr_ia32_mcu_opt_ctrl;
295 	bool disable_fb_clear;
296 
297 	struct pt_desc pt_desc;
298 	struct lbr_desc lbr_desc;
299 
300 	/* ve_info must be page aligned. */
301 	struct vmx_ve_information *ve_info;
302 };
303 
304 struct kvm_vmx {
305 	struct kvm kvm;
306 
307 	unsigned int tss_addr;
308 	bool ept_identity_pagetable_done;
309 	gpa_t ept_identity_map_addr;
310 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
311 	u64 *pid_table;
312 };
313 
to_vt(struct kvm_vcpu * vcpu)314 static __always_inline struct vcpu_vt *to_vt(struct kvm_vcpu *vcpu)
315 {
316 	return &(container_of(vcpu, struct vcpu_vmx, vcpu)->vt);
317 }
318 
vt_to_vcpu(struct vcpu_vt * vt)319 static __always_inline struct kvm_vcpu *vt_to_vcpu(struct vcpu_vt *vt)
320 {
321 	return &(container_of(vt, struct vcpu_vmx, vt)->vcpu);
322 }
323 
vmx_get_exit_reason(struct kvm_vcpu * vcpu)324 static __always_inline union vmx_exit_reason vmx_get_exit_reason(struct kvm_vcpu *vcpu)
325 {
326 	return to_vt(vcpu)->exit_reason;
327 }
328 
vmx_get_exit_qual(struct kvm_vcpu * vcpu)329 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
330 {
331 	struct vcpu_vt *vt = to_vt(vcpu);
332 
333 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1) &&
334 	    !WARN_ON_ONCE(is_td_vcpu(vcpu)))
335 		vt->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
336 
337 	return vt->exit_qualification;
338 }
339 
vmx_get_intr_info(struct kvm_vcpu * vcpu)340 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
341 {
342 	struct vcpu_vt *vt = to_vt(vcpu);
343 
344 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2) &&
345 	    !WARN_ON_ONCE(is_td_vcpu(vcpu)))
346 		vt->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
347 
348 	return vt->exit_intr_info;
349 }
350 
351 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
352 int allocate_vpid(void);
353 void free_vpid(int vpid);
354 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
355 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
356 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
357 			unsigned long fs_base, unsigned long gs_base);
358 int vmx_get_cpl(struct kvm_vcpu *vcpu);
359 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu);
360 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
361 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
362 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
363 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
364 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
365 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
366 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
367 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
368 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
369 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
370 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
371 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
372 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
373 
374 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
375 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
376 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
377 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
378 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
379 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
380 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
381 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
382 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
383 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
384 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
385 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
386 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
387 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
388 		    unsigned int flags);
389 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
390 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
391 
392 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
393 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)394 static inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
395 						 u32 msr, int type)
396 {
397 	vmx_set_intercept_for_msr(vcpu, msr, type, false);
398 }
399 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)400 static inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
401 						u32 msr, int type)
402 {
403 	vmx_set_intercept_for_msr(vcpu, msr, type, true);
404 }
405 
406 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
407 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
408 
409 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
410 
411 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
412 
413 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated);
414 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated);
415 
416 #define VMX_HOST_OWNED_DEBUGCTL_BITS	(DEBUGCTLMSR_FREEZE_IN_SMM)
417 
vmx_guest_debugctl_write(struct kvm_vcpu * vcpu,u64 val)418 static inline void vmx_guest_debugctl_write(struct kvm_vcpu *vcpu, u64 val)
419 {
420 	WARN_ON_ONCE(val & VMX_HOST_OWNED_DEBUGCTL_BITS);
421 
422 	val |= vcpu->arch.host_debugctl & VMX_HOST_OWNED_DEBUGCTL_BITS;
423 	vmcs_write64(GUEST_IA32_DEBUGCTL, val);
424 }
425 
vmx_guest_debugctl_read(void)426 static inline u64 vmx_guest_debugctl_read(void)
427 {
428 	return vmcs_read64(GUEST_IA32_DEBUGCTL) & ~VMX_HOST_OWNED_DEBUGCTL_BITS;
429 }
430 
vmx_reload_guest_debugctl(struct kvm_vcpu * vcpu)431 static inline void vmx_reload_guest_debugctl(struct kvm_vcpu *vcpu)
432 {
433 	u64 val = vmcs_read64(GUEST_IA32_DEBUGCTL);
434 
435 	if (!((val ^ vcpu->arch.host_debugctl) & VMX_HOST_OWNED_DEBUGCTL_BITS))
436 		return;
437 
438 	vmx_guest_debugctl_write(vcpu, val & ~VMX_HOST_OWNED_DEBUGCTL_BITS);
439 }
440 
441 /*
442  * Note, early Intel manuals have the write-low and read-high bitmap offsets
443  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
444  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
445  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
446  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
447  * VM-Exit.
448  */
449 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
450 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
451 						       u32 msr)		       \
452 {									       \
453 	int f = sizeof(unsigned long);					       \
454 									       \
455 	if (msr <= 0x1fff)						       \
456 		return bitop##_bit(msr, bitmap + base / f);		       \
457 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
458 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
459 	return (rtype)true;						       \
460 }
461 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
462 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
463 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
464 
BUILD_VMX_MSR_BITMAP_HELPERS(bool,test,test)465 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
466 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
467 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
468 
469 static inline u8 vmx_get_rvi(void)
470 {
471 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
472 }
473 
474 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
475 	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
476 #ifdef CONFIG_X86_64
477 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
478 		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
479 		 VM_ENTRY_IA32E_MODE)
480 #else
481 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
482 		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
483 #endif
484 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
485 	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
486 	 VM_ENTRY_LOAD_IA32_PAT |					\
487 	 VM_ENTRY_LOAD_IA32_EFER |					\
488 	 VM_ENTRY_LOAD_BNDCFGS |					\
489 	 VM_ENTRY_PT_CONCEAL_PIP |					\
490 	 VM_ENTRY_LOAD_IA32_RTIT_CTL |					\
491 	 VM_ENTRY_LOAD_CET_STATE)
492 
493 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
494 	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
495 	 VM_EXIT_ACK_INTR_ON_EXIT)
496 #ifdef CONFIG_X86_64
497 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
498 		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
499 		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
500 #else
501 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
502 		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
503 #endif
504 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
505 	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
506 	       VM_EXIT_SAVE_IA32_PAT |					\
507 	       VM_EXIT_LOAD_IA32_PAT |					\
508 	       VM_EXIT_SAVE_IA32_EFER |					\
509 	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
510 	       VM_EXIT_LOAD_IA32_EFER |					\
511 	       VM_EXIT_CLEAR_BNDCFGS |					\
512 	       VM_EXIT_PT_CONCEAL_PIP |					\
513 	       VM_EXIT_CLEAR_IA32_RTIT_CTL |				\
514 	       VM_EXIT_LOAD_CET_STATE)
515 
516 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
517 	(PIN_BASED_EXT_INTR_MASK |					\
518 	 PIN_BASED_NMI_EXITING)
519 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
520 	(PIN_BASED_VIRTUAL_NMIS |					\
521 	 PIN_BASED_POSTED_INTR |					\
522 	 PIN_BASED_VMX_PREEMPTION_TIMER)
523 
524 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
525 	(CPU_BASED_HLT_EXITING |					\
526 	 CPU_BASED_CR3_LOAD_EXITING |					\
527 	 CPU_BASED_CR3_STORE_EXITING |					\
528 	 CPU_BASED_UNCOND_IO_EXITING |					\
529 	 CPU_BASED_MOV_DR_EXITING |					\
530 	 CPU_BASED_USE_TSC_OFFSETTING |					\
531 	 CPU_BASED_MWAIT_EXITING |					\
532 	 CPU_BASED_MONITOR_EXITING |					\
533 	 CPU_BASED_INVLPG_EXITING |					\
534 	 CPU_BASED_RDPMC_EXITING |					\
535 	 CPU_BASED_INTR_WINDOW_EXITING)
536 
537 #ifdef CONFIG_X86_64
538 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
539 		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
540 		 CPU_BASED_CR8_LOAD_EXITING |				\
541 		 CPU_BASED_CR8_STORE_EXITING)
542 #else
543 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
544 		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
545 #endif
546 
547 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
548 	(CPU_BASED_RDTSC_EXITING |					\
549 	 CPU_BASED_TPR_SHADOW |						\
550 	 CPU_BASED_USE_IO_BITMAPS |					\
551 	 CPU_BASED_MONITOR_TRAP_FLAG |					\
552 	 CPU_BASED_USE_MSR_BITMAPS |					\
553 	 CPU_BASED_NMI_WINDOW_EXITING |					\
554 	 CPU_BASED_PAUSE_EXITING |					\
555 	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
556 	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
557 
558 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
559 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
560 	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
561 	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
562 	 SECONDARY_EXEC_WBINVD_EXITING |				\
563 	 SECONDARY_EXEC_ENABLE_VPID |					\
564 	 SECONDARY_EXEC_ENABLE_EPT |					\
565 	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
566 	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
567 	 SECONDARY_EXEC_DESC |						\
568 	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
569 	 SECONDARY_EXEC_ENABLE_INVPCID |				\
570 	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
571 	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
572 	 SECONDARY_EXEC_SHADOW_VMCS |					\
573 	 SECONDARY_EXEC_ENABLE_XSAVES |					\
574 	 SECONDARY_EXEC_RDSEED_EXITING |				\
575 	 SECONDARY_EXEC_RDRAND_EXITING |				\
576 	 SECONDARY_EXEC_ENABLE_PML |					\
577 	 SECONDARY_EXEC_TSC_SCALING |					\
578 	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
579 	 SECONDARY_EXEC_PT_USE_GPA |					\
580 	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
581 	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
582 	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
583 	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
584 	 SECONDARY_EXEC_ENCLS_EXITING |					\
585 	 SECONDARY_EXEC_EPT_VIOLATION_VE)
586 
587 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
588 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
589 	(TERTIARY_EXEC_IPI_VIRT)
590 
591 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
592 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
593 {												\
594 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
595 		vmcs_write##bits(uname, val);							\
596 		vmx->loaded_vmcs->controls_shadow.lname = val;					\
597 	}											\
598 }												\
599 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
600 {												\
601 	return vmcs->controls_shadow.lname;							\
602 }												\
603 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
604 {												\
605 	return __##lname##_controls_get(vmx->loaded_vmcs);					\
606 }												\
607 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
608 {												\
609 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
610 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
611 }												\
612 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
613 {												\
614 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
615 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
616 }												\
617 static __always_inline void lname##_controls_changebit(struct vcpu_vmx *vmx, u##bits val,	\
618 						       bool set)				\
619 {												\
620 	if (set)										\
621 		lname##_controls_setbit(vmx, val);						\
622 	else											\
623 		lname##_controls_clearbit(vmx, val);						\
624 }
625 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
626 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
627 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
628 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
629 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
630 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
631 
632 /*
633  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
634  * cache on demand.  Other registers not listed here are synced to
635  * the cache immediately after VM-Exit.
636  */
637 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
638 				(1 << VCPU_REGS_RSP) |          \
639 				(1 << VCPU_EXREG_RFLAGS) |      \
640 				(1 << VCPU_EXREG_PDPTR) |       \
641 				(1 << VCPU_EXREG_SEGMENTS) |    \
642 				(1 << VCPU_EXREG_CR0) |         \
643 				(1 << VCPU_EXREG_CR3) |         \
644 				(1 << VCPU_EXREG_CR4) |         \
645 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
646 				(1 << VCPU_EXREG_EXIT_INFO_2))
647 
vmx_l1_guest_owned_cr0_bits(void)648 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
649 {
650 	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
651 
652 	/*
653 	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
654 	 * in order to construct shadow PTEs with the correct protections.
655 	 * Note!  CR0.WP technically can be passed through to the guest if
656 	 * paging is disabled, but checking CR0.PG would generate a cyclical
657 	 * dependency of sorts due to forcing the caller to ensure CR0 holds
658 	 * the correct value prior to determining which CR0 bits can be owned
659 	 * by L1.  Keep it simple and limit the optimization to EPT.
660 	 */
661 	if (!enable_ept)
662 		bits &= ~X86_CR0_WP;
663 	return bits;
664 }
665 
to_kvm_vmx(struct kvm * kvm)666 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
667 {
668 	return container_of(kvm, struct kvm_vmx, kvm);
669 }
670 
to_vmx(struct kvm_vcpu * vcpu)671 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
672 {
673 	return container_of(vcpu, struct vcpu_vmx, vcpu);
674 }
675 
676 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
677 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
678 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
679 
680 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
681 void free_vmcs(struct vmcs *vmcs);
682 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
683 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
684 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
685 
alloc_vmcs(bool shadow)686 static inline struct vmcs *alloc_vmcs(bool shadow)
687 {
688 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
689 			      GFP_KERNEL_ACCOUNT);
690 }
691 
vmx_has_waitpkg(struct vcpu_vmx * vmx)692 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
693 {
694 	return secondary_exec_controls_get(vmx) &
695 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
696 }
697 
vmx_need_pf_intercept(struct kvm_vcpu * vcpu)698 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
699 {
700 	if (!enable_ept)
701 		return true;
702 
703 	return allow_smaller_maxphyaddr &&
704 	       cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
705 }
706 
is_unrestricted_guest(struct kvm_vcpu * vcpu)707 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
708 {
709 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
710 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
711 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
712 }
713 
714 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
vmx_guest_state_valid(struct kvm_vcpu * vcpu)715 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
716 {
717 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
718 }
719 
720 void dump_vmcs(struct kvm_vcpu *vcpu);
721 
vmx_get_instr_info_reg(u32 vmx_instr_info)722 static inline int vmx_get_instr_info_reg(u32 vmx_instr_info)
723 {
724 	return (vmx_instr_info >> 3) & 0xf;
725 }
726 
vmx_get_instr_info_reg2(u32 vmx_instr_info)727 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
728 {
729 	return (vmx_instr_info >> 28) & 0xf;
730 }
731 
vmx_can_use_ipiv(struct kvm_vcpu * vcpu)732 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
733 {
734 	return  lapic_in_kernel(vcpu) && enable_ipiv;
735 }
736 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)737 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
738 {
739 	vmx->segment_cache.bitmask = 0;
740 }
741 
742 int vmx_init(void);
743 void vmx_exit(void);
744 
745 #endif /* __KVM_X86_VMX_H */
746