xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 36c970ed985ff3dd5443db4bf2aa58799028512c)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, 2025, Klara, Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 static int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 char *
vdev_rt_name(vdev_t * vd,const char * name)247 vdev_rt_name(vdev_t *vd, const char *name)
248 {
249 	return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}",
250 	    spa_name(vd->vdev_spa),
251 	    (u_longlong_t)vd->vdev_guid,
252 	    name));
253 }
254 
255 static char *
vdev_rt_name_dtl(vdev_t * vd,const char * name,vdev_dtl_type_t dtl_type)256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type)
257 {
258 	return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}",
259 	    spa_name(vd->vdev_spa),
260 	    (u_longlong_t)vd->vdev_guid,
261 	    name,
262 	    dtl_type));
263 }
264 
265 /*
266  * Virtual device management.
267  */
268 
269 static vdev_ops_t *const vdev_ops_table[] = {
270 	&vdev_root_ops,
271 	&vdev_raidz_ops,
272 	&vdev_draid_ops,
273 	&vdev_draid_spare_ops,
274 	&vdev_mirror_ops,
275 	&vdev_replacing_ops,
276 	&vdev_spare_ops,
277 	&vdev_disk_ops,
278 	&vdev_file_ops,
279 	&vdev_missing_ops,
280 	&vdev_hole_ops,
281 	&vdev_indirect_ops,
282 	NULL
283 };
284 
285 /*
286  * Given a vdev type, return the appropriate ops vector.
287  */
288 static vdev_ops_t *
vdev_getops(const char * type)289 vdev_getops(const char *type)
290 {
291 	vdev_ops_t *ops, *const *opspp;
292 
293 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
294 		if (strcmp(ops->vdev_op_type, type) == 0)
295 			break;
296 
297 	return (ops);
298 }
299 
300 /*
301  * Given a vdev and a metaslab class, find which metaslab group we're
302  * interested in. All vdevs may belong to two different metaslab classes.
303  * Dedicated slog devices use only the primary metaslab group, rather than a
304  * separate log group.  For embedded slogs, vdev_log_mg will be non-NULL and
305  * will point to a metaslab group of either embedded_log_class (for normal
306  * vdevs) or special_embedded_log_class (for special vdevs).
307  */
308 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
310 {
311 	if ((mc == spa_embedded_log_class(vd->vdev_spa) ||
312 	    mc == spa_special_embedded_log_class(vd->vdev_spa)) &&
313 	    vd->vdev_log_mg != NULL)
314 		return (vd->vdev_log_mg);
315 	else
316 		return (vd->vdev_mg);
317 }
318 
319 void
vdev_default_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
321     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
322 {
323 	(void) vd, (void) remain_rs;
324 
325 	physical_rs->rs_start = logical_rs->rs_start;
326 	physical_rs->rs_end = logical_rs->rs_end;
327 }
328 
329 /*
330  * Derive the enumerated allocation bias from string input.
331  * String origin is either the per-vdev zap or zpool(8).
332  */
333 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)334 vdev_derive_alloc_bias(const char *bias)
335 {
336 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
337 
338 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
339 		alloc_bias = VDEV_BIAS_LOG;
340 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
341 		alloc_bias = VDEV_BIAS_SPECIAL;
342 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
343 		alloc_bias = VDEV_BIAS_DEDUP;
344 
345 	return (alloc_bias);
346 }
347 
348 uint64_t
vdev_default_psize(vdev_t * vd,uint64_t asize,uint64_t txg)349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
350 {
351 	ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
352 	uint64_t csize, psize = asize;
353 	for (int c = 0; c < vd->vdev_children; c++) {
354 		csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
355 		psize = MIN(psize, csize);
356 	}
357 
358 	return (psize);
359 }
360 
361 /*
362  * Default asize function: return the MAX of psize with the asize of
363  * all children.  This is what's used by anything other than RAID-Z.
364  */
365 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
367 {
368 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
369 	uint64_t csize;
370 
371 	for (int c = 0; c < vd->vdev_children; c++) {
372 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
373 		asize = MAX(asize, csize);
374 	}
375 
376 	return (asize);
377 }
378 
379 uint64_t
vdev_default_min_asize(vdev_t * vd)380 vdev_default_min_asize(vdev_t *vd)
381 {
382 	return (vd->vdev_min_asize);
383 }
384 
385 /*
386  * Get the minimum allocatable size. We define the allocatable size as
387  * the vdev's asize rounded to the nearest metaslab. This allows us to
388  * replace or attach devices which don't have the same physical size but
389  * can still satisfy the same number of allocations.
390  */
391 uint64_t
vdev_get_min_asize(vdev_t * vd)392 vdev_get_min_asize(vdev_t *vd)
393 {
394 	vdev_t *pvd = vd->vdev_parent;
395 
396 	/*
397 	 * If our parent is NULL (inactive spare or cache) or is the root,
398 	 * just return our own asize.
399 	 */
400 	if (pvd == NULL)
401 		return (vd->vdev_asize);
402 
403 	/*
404 	 * The top-level vdev just returns the allocatable size rounded
405 	 * to the nearest metaslab.
406 	 */
407 	if (vd == vd->vdev_top)
408 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
409 		    uint64_t));
410 
411 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
412 }
413 
414 void
vdev_set_min_asize(vdev_t * vd)415 vdev_set_min_asize(vdev_t *vd)
416 {
417 	vd->vdev_min_asize = vdev_get_min_asize(vd);
418 
419 	for (int c = 0; c < vd->vdev_children; c++)
420 		vdev_set_min_asize(vd->vdev_child[c]);
421 }
422 
423 /*
424  * Get the minimal allocation size for the top-level vdev.
425  */
426 uint64_t
vdev_get_min_alloc(vdev_t * vd)427 vdev_get_min_alloc(vdev_t *vd)
428 {
429 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
430 
431 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
432 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
433 
434 	return (min_alloc);
435 }
436 
437 /*
438  * Get the parity level for a top-level vdev.
439  */
440 uint64_t
vdev_get_nparity(vdev_t * vd)441 vdev_get_nparity(vdev_t *vd)
442 {
443 	uint64_t nparity = 0;
444 
445 	if (vd->vdev_ops->vdev_op_nparity != NULL)
446 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
447 
448 	return (nparity);
449 }
450 
451 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)452 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
453 {
454 	spa_t *spa = vd->vdev_spa;
455 	objset_t *mos = spa->spa_meta_objset;
456 	uint64_t objid;
457 	int err;
458 
459 	if (vd->vdev_root_zap != 0) {
460 		objid = vd->vdev_root_zap;
461 	} else if (vd->vdev_top_zap != 0) {
462 		objid = vd->vdev_top_zap;
463 	} else if (vd->vdev_leaf_zap != 0) {
464 		objid = vd->vdev_leaf_zap;
465 	} else {
466 		return (EINVAL);
467 	}
468 
469 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
470 	    sizeof (uint64_t), 1, value);
471 
472 	if (err == ENOENT)
473 		*value = vdev_prop_default_numeric(prop);
474 
475 	return (err);
476 }
477 
478 /*
479  * Get the number of data disks for a top-level vdev.
480  */
481 uint64_t
vdev_get_ndisks(vdev_t * vd)482 vdev_get_ndisks(vdev_t *vd)
483 {
484 	uint64_t ndisks = 1;
485 
486 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
487 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
488 
489 	return (ndisks);
490 }
491 
492 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)493 vdev_lookup_top(spa_t *spa, uint64_t vdev)
494 {
495 	vdev_t *rvd = spa->spa_root_vdev;
496 
497 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
498 
499 	if (vdev < rvd->vdev_children) {
500 		ASSERT(rvd->vdev_child[vdev] != NULL);
501 		return (rvd->vdev_child[vdev]);
502 	}
503 
504 	return (NULL);
505 }
506 
507 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)508 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
509 {
510 	vdev_t *mvd;
511 
512 	if (vd->vdev_guid == guid)
513 		return (vd);
514 
515 	for (int c = 0; c < vd->vdev_children; c++)
516 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
517 		    NULL)
518 			return (mvd);
519 
520 	return (NULL);
521 }
522 
523 static int
vdev_count_leaves_impl(vdev_t * vd)524 vdev_count_leaves_impl(vdev_t *vd)
525 {
526 	int n = 0;
527 
528 	if (vd->vdev_ops->vdev_op_leaf)
529 		return (1);
530 
531 	for (int c = 0; c < vd->vdev_children; c++)
532 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
533 
534 	return (n);
535 }
536 
537 int
vdev_count_leaves(spa_t * spa)538 vdev_count_leaves(spa_t *spa)
539 {
540 	int rc;
541 
542 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
543 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
544 	spa_config_exit(spa, SCL_VDEV, FTAG);
545 
546 	return (rc);
547 }
548 
549 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)550 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
551 {
552 	size_t oldsize, newsize;
553 	uint64_t id = cvd->vdev_id;
554 	vdev_t **newchild;
555 
556 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
557 	ASSERT0P(cvd->vdev_parent);
558 
559 	cvd->vdev_parent = pvd;
560 
561 	if (pvd == NULL)
562 		return;
563 
564 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
565 
566 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
567 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
568 	newsize = pvd->vdev_children * sizeof (vdev_t *);
569 
570 	newchild = kmem_alloc(newsize, KM_SLEEP);
571 	if (pvd->vdev_child != NULL) {
572 		memcpy(newchild, pvd->vdev_child, oldsize);
573 		kmem_free(pvd->vdev_child, oldsize);
574 	}
575 
576 	pvd->vdev_child = newchild;
577 	pvd->vdev_child[id] = cvd;
578 	pvd->vdev_nonrot &= cvd->vdev_nonrot;
579 
580 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
581 	ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent);
582 
583 	/*
584 	 * Walk up all ancestors to update guid sum.
585 	 */
586 	for (; pvd != NULL; pvd = pvd->vdev_parent)
587 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
588 
589 	if (cvd->vdev_ops->vdev_op_leaf) {
590 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
591 		cvd->vdev_spa->spa_leaf_list_gen++;
592 	}
593 }
594 
595 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)596 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
597 {
598 	int c;
599 	uint_t id = cvd->vdev_id;
600 
601 	ASSERT(cvd->vdev_parent == pvd);
602 
603 	if (pvd == NULL)
604 		return;
605 
606 	ASSERT(id < pvd->vdev_children);
607 	ASSERT(pvd->vdev_child[id] == cvd);
608 
609 	pvd->vdev_child[id] = NULL;
610 	cvd->vdev_parent = NULL;
611 
612 	for (c = 0; c < pvd->vdev_children; c++)
613 		if (pvd->vdev_child[c])
614 			break;
615 
616 	if (c == pvd->vdev_children) {
617 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
618 		pvd->vdev_child = NULL;
619 		pvd->vdev_children = 0;
620 	}
621 
622 	if (cvd->vdev_ops->vdev_op_leaf) {
623 		spa_t *spa = cvd->vdev_spa;
624 		list_remove(&spa->spa_leaf_list, cvd);
625 		spa->spa_leaf_list_gen++;
626 	}
627 
628 	/*
629 	 * Walk up all ancestors to update guid sum.
630 	 */
631 	for (; pvd != NULL; pvd = pvd->vdev_parent)
632 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
633 }
634 
635 /*
636  * Remove any holes in the child array.
637  */
638 void
vdev_compact_children(vdev_t * pvd)639 vdev_compact_children(vdev_t *pvd)
640 {
641 	vdev_t **newchild, *cvd;
642 	int oldc = pvd->vdev_children;
643 	int newc;
644 
645 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
646 
647 	if (oldc == 0)
648 		return;
649 
650 	for (int c = newc = 0; c < oldc; c++)
651 		if (pvd->vdev_child[c])
652 			newc++;
653 
654 	if (newc > 0) {
655 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
656 
657 		for (int c = newc = 0; c < oldc; c++) {
658 			if ((cvd = pvd->vdev_child[c]) != NULL) {
659 				newchild[newc] = cvd;
660 				cvd->vdev_id = newc++;
661 			}
662 		}
663 	} else {
664 		newchild = NULL;
665 	}
666 
667 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
668 	pvd->vdev_child = newchild;
669 	pvd->vdev_children = newc;
670 }
671 
672 /*
673  * Allocate and minimally initialize a vdev_t.
674  */
675 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)676 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
677 {
678 	vdev_t *vd;
679 	vdev_indirect_config_t *vic;
680 
681 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
682 	vic = &vd->vdev_indirect_config;
683 
684 	if (spa->spa_root_vdev == NULL) {
685 		ASSERT(ops == &vdev_root_ops);
686 		spa->spa_root_vdev = vd;
687 		spa->spa_load_guid = spa_generate_load_guid();
688 	}
689 
690 	if (guid == 0 && ops != &vdev_hole_ops) {
691 		if (spa->spa_root_vdev == vd) {
692 			/*
693 			 * The root vdev's guid will also be the pool guid,
694 			 * which must be unique among all pools.
695 			 */
696 			guid = spa_generate_guid(NULL);
697 		} else {
698 			/*
699 			 * Any other vdev's guid must be unique within the pool.
700 			 */
701 			guid = spa_generate_guid(spa);
702 		}
703 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
704 	}
705 
706 	vd->vdev_spa = spa;
707 	vd->vdev_id = id;
708 	vd->vdev_guid = guid;
709 	vd->vdev_guid_sum = guid;
710 	vd->vdev_ops = ops;
711 	vd->vdev_state = VDEV_STATE_CLOSED;
712 	vd->vdev_ishole = (ops == &vdev_hole_ops);
713 	vic->vic_prev_indirect_vdev = UINT64_MAX;
714 
715 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
716 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
717 	vd->vdev_obsolete_segments = zfs_range_tree_create_flags(
718 	    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
719 	    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments"));
720 
721 	/*
722 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
723 	 * and checksum events so that we don't overwhelm ZED with thousands
724 	 * of events when a disk is acting up.
725 	 */
726 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
727 	    1);
728 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
729 	    1);
730 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
731 	    &zfs_dio_write_verify_events_per_second, 1);
732 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
733 	    &zfs_checksum_events_per_second, 1);
734 
735 	/*
736 	 * Default Thresholds for tuning ZED
737 	 */
738 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
739 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
740 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
741 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
742 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
743 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
744 
745 	list_link_init(&vd->vdev_config_dirty_node);
746 	list_link_init(&vd->vdev_state_dirty_node);
747 	list_link_init(&vd->vdev_initialize_node);
748 	list_link_init(&vd->vdev_leaf_node);
749 	list_link_init(&vd->vdev_trim_node);
750 
751 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
752 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
753 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
754 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
755 
756 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
757 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
758 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
759 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
760 
761 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
762 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
763 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
764 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
765 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
766 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
767 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
768 
769 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
770 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
771 
772 	for (int t = 0; t < DTL_TYPES; t++) {
773 		vd->vdev_dtl[t] = zfs_range_tree_create_flags(
774 		    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
775 		    ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t));
776 	}
777 
778 	txg_list_create(&vd->vdev_ms_list, spa,
779 	    offsetof(struct metaslab, ms_txg_node));
780 	txg_list_create(&vd->vdev_dtl_list, spa,
781 	    offsetof(struct vdev, vdev_dtl_node));
782 	vd->vdev_stat.vs_timestamp = gethrtime();
783 	vdev_queue_init(vd);
784 
785 	return (vd);
786 }
787 
788 /*
789  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
790  * creating a new vdev or loading an existing one - the behavior is slightly
791  * different for each case.
792  */
793 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)794 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
795     int alloctype)
796 {
797 	vdev_ops_t *ops;
798 	const char *type;
799 	uint64_t guid = 0, islog;
800 	vdev_t *vd;
801 	vdev_indirect_config_t *vic;
802 	const char *tmp = NULL;
803 	int rc;
804 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
805 	boolean_t top_level = (parent && !parent->vdev_parent);
806 
807 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
808 
809 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
810 		return (SET_ERROR(EINVAL));
811 
812 	if ((ops = vdev_getops(type)) == NULL)
813 		return (SET_ERROR(EINVAL));
814 
815 	/*
816 	 * If this is a load, get the vdev guid from the nvlist.
817 	 * Otherwise, vdev_alloc_common() will generate one for us.
818 	 */
819 	if (alloctype == VDEV_ALLOC_LOAD) {
820 		uint64_t label_id;
821 
822 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
823 		    label_id != id)
824 			return (SET_ERROR(EINVAL));
825 
826 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
827 			return (SET_ERROR(EINVAL));
828 	} else if (alloctype == VDEV_ALLOC_SPARE) {
829 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
830 			return (SET_ERROR(EINVAL));
831 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
832 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
833 			return (SET_ERROR(EINVAL));
834 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
835 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
836 			return (SET_ERROR(EINVAL));
837 	}
838 
839 	/*
840 	 * The first allocated vdev must be of type 'root'.
841 	 */
842 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
843 		return (SET_ERROR(EINVAL));
844 
845 	/*
846 	 * Determine whether we're a log vdev.
847 	 */
848 	islog = 0;
849 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
850 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
851 		return (SET_ERROR(ENOTSUP));
852 
853 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
854 		return (SET_ERROR(ENOTSUP));
855 
856 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
857 		const char *bias;
858 
859 		/*
860 		 * If creating a top-level vdev, check for allocation
861 		 * classes input.
862 		 */
863 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
864 		    &bias) == 0) {
865 			alloc_bias = vdev_derive_alloc_bias(bias);
866 
867 			/* spa_vdev_add() expects feature to be enabled */
868 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
869 			    !spa_feature_is_enabled(spa,
870 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
871 				return (SET_ERROR(ENOTSUP));
872 			}
873 		}
874 
875 		/* spa_vdev_add() expects feature to be enabled */
876 		if (ops == &vdev_draid_ops &&
877 		    spa->spa_load_state != SPA_LOAD_CREATE &&
878 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
879 			return (SET_ERROR(ENOTSUP));
880 		}
881 	}
882 
883 	/*
884 	 * Initialize the vdev specific data.  This is done before calling
885 	 * vdev_alloc_common() since it may fail and this simplifies the
886 	 * error reporting and cleanup code paths.
887 	 */
888 	void *tsd = NULL;
889 	if (ops->vdev_op_init != NULL) {
890 		rc = ops->vdev_op_init(spa, nv, &tsd);
891 		if (rc != 0) {
892 			return (rc);
893 		}
894 	}
895 
896 	vd = vdev_alloc_common(spa, id, guid, ops);
897 	vd->vdev_tsd = tsd;
898 	vd->vdev_islog = islog;
899 
900 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
901 		vd->vdev_alloc_bias = alloc_bias;
902 
903 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
904 		vd->vdev_path = spa_strdup(tmp);
905 
906 	/*
907 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
908 	 * fault on a vdev and want it to persist across imports (like with
909 	 * zpool offline -f).
910 	 */
911 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
912 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
913 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
914 		vd->vdev_faulted = 1;
915 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
916 	}
917 
918 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
919 		vd->vdev_devid = spa_strdup(tmp);
920 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
921 		vd->vdev_physpath = spa_strdup(tmp);
922 
923 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
924 	    &tmp) == 0)
925 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
926 
927 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
928 		vd->vdev_fru = spa_strdup(tmp);
929 
930 	/*
931 	 * Set the whole_disk property.  If it's not specified, leave the value
932 	 * as -1.
933 	 */
934 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
935 	    &vd->vdev_wholedisk) != 0)
936 		vd->vdev_wholedisk = -1ULL;
937 
938 	vic = &vd->vdev_indirect_config;
939 
940 	ASSERT0(vic->vic_mapping_object);
941 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
942 	    &vic->vic_mapping_object);
943 	ASSERT0(vic->vic_births_object);
944 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
945 	    &vic->vic_births_object);
946 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
947 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
948 	    &vic->vic_prev_indirect_vdev);
949 
950 	/*
951 	 * Look for the 'not present' flag.  This will only be set if the device
952 	 * was not present at the time of import.
953 	 */
954 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
955 	    &vd->vdev_not_present);
956 
957 	/*
958 	 * Get the alignment requirement. Ignore pool ashift for vdev
959 	 * attach case.
960 	 */
961 	if (alloctype != VDEV_ALLOC_ATTACH) {
962 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
963 		    &vd->vdev_ashift);
964 	} else {
965 		vd->vdev_attaching = B_TRUE;
966 	}
967 
968 	/*
969 	 * Retrieve the vdev creation time.
970 	 */
971 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
972 	    &vd->vdev_crtxg);
973 
974 	if (vd->vdev_ops == &vdev_root_ops &&
975 	    (alloctype == VDEV_ALLOC_LOAD ||
976 	    alloctype == VDEV_ALLOC_SPLIT ||
977 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
978 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
979 		    &vd->vdev_root_zap);
980 	}
981 
982 	/*
983 	 * If we're a top-level vdev, try to load the allocation parameters.
984 	 */
985 	if (top_level &&
986 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
987 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
988 		    &vd->vdev_ms_array);
989 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
990 		    &vd->vdev_ms_shift);
991 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
992 		    &vd->vdev_asize);
993 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
994 		    &vd->vdev_noalloc);
995 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
996 		    &vd->vdev_removing);
997 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
998 		    &vd->vdev_top_zap);
999 		vd->vdev_rz_expanding = nvlist_exists(nv,
1000 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
1001 	} else {
1002 		ASSERT0(vd->vdev_top_zap);
1003 	}
1004 
1005 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
1006 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
1007 		    alloctype == VDEV_ALLOC_ADD ||
1008 		    alloctype == VDEV_ALLOC_SPLIT ||
1009 		    alloctype == VDEV_ALLOC_ROOTPOOL);
1010 		/* Note: metaslab_group_create() is now deferred */
1011 	}
1012 
1013 	if (vd->vdev_ops->vdev_op_leaf &&
1014 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
1015 		(void) nvlist_lookup_uint64(nv,
1016 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
1017 	} else {
1018 		ASSERT0(vd->vdev_leaf_zap);
1019 	}
1020 
1021 	/*
1022 	 * If we're a leaf vdev, try to load the DTL object and other state.
1023 	 */
1024 
1025 	if (vd->vdev_ops->vdev_op_leaf &&
1026 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1027 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
1028 		if (alloctype == VDEV_ALLOC_LOAD) {
1029 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1030 			    &vd->vdev_dtl_object);
1031 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1032 			    &vd->vdev_unspare);
1033 		}
1034 
1035 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1036 			uint64_t spare = 0;
1037 
1038 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1039 			    &spare) == 0 && spare)
1040 				spa_spare_add(vd);
1041 		}
1042 
1043 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1044 		    &vd->vdev_offline);
1045 
1046 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1047 		    &vd->vdev_resilver_txg);
1048 
1049 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1050 		    &vd->vdev_rebuild_txg);
1051 
1052 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1053 			vdev_defer_resilver(vd);
1054 
1055 		/*
1056 		 * In general, when importing a pool we want to ignore the
1057 		 * persistent fault state, as the diagnosis made on another
1058 		 * system may not be valid in the current context.  The only
1059 		 * exception is if we forced a vdev to a persistently faulted
1060 		 * state with 'zpool offline -f'.  The persistent fault will
1061 		 * remain across imports until cleared.
1062 		 *
1063 		 * Local vdevs will remain in the faulted state.
1064 		 */
1065 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1066 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1067 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1068 			    &vd->vdev_faulted);
1069 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1070 			    &vd->vdev_degraded);
1071 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1072 			    &vd->vdev_removed);
1073 
1074 			if (vd->vdev_faulted || vd->vdev_degraded) {
1075 				const char *aux;
1076 
1077 				vd->vdev_label_aux =
1078 				    VDEV_AUX_ERR_EXCEEDED;
1079 				if (nvlist_lookup_string(nv,
1080 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1081 				    strcmp(aux, "external") == 0)
1082 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1083 				else
1084 					vd->vdev_faulted = 0ULL;
1085 			}
1086 		}
1087 	}
1088 
1089 	if (top_level && (ops == &vdev_raidz_ops || ops == &vdev_draid_ops))
1090 		vd->vdev_autosit =
1091 		    vdev_prop_default_numeric(VDEV_PROP_AUTOSIT);
1092 
1093 	/*
1094 	 * Add ourselves to the parent's list of children.
1095 	 */
1096 	vdev_add_child(parent, vd);
1097 
1098 	*vdp = vd;
1099 
1100 	return (0);
1101 }
1102 
1103 void
vdev_free(vdev_t * vd)1104 vdev_free(vdev_t *vd)
1105 {
1106 	spa_t *spa = vd->vdev_spa;
1107 
1108 	ASSERT0P(vd->vdev_initialize_thread);
1109 	ASSERT0P(vd->vdev_trim_thread);
1110 	ASSERT0P(vd->vdev_autotrim_thread);
1111 	ASSERT0P(vd->vdev_rebuild_thread);
1112 
1113 	/*
1114 	 * Scan queues are normally destroyed at the end of a scan. If the
1115 	 * queue exists here, that implies the vdev is being removed while
1116 	 * the scan is still running.
1117 	 */
1118 	if (vd->vdev_scan_io_queue != NULL) {
1119 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1120 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1121 		vd->vdev_scan_io_queue = NULL;
1122 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1123 	}
1124 
1125 	/*
1126 	 * vdev_free() implies closing the vdev first.  This is simpler than
1127 	 * trying to ensure complicated semantics for all callers.
1128 	 */
1129 	vdev_close(vd);
1130 
1131 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1132 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1133 
1134 	/*
1135 	 * Free all children.
1136 	 */
1137 	for (int c = 0; c < vd->vdev_children; c++)
1138 		vdev_free(vd->vdev_child[c]);
1139 
1140 	ASSERT0P(vd->vdev_child);
1141 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1142 
1143 	if (vd->vdev_ops->vdev_op_fini != NULL)
1144 		vd->vdev_ops->vdev_op_fini(vd);
1145 
1146 	/*
1147 	 * Discard allocation state.
1148 	 */
1149 	if (vd->vdev_mg != NULL) {
1150 		vdev_metaslab_fini(vd);
1151 		metaslab_group_destroy(vd->vdev_mg);
1152 		vd->vdev_mg = NULL;
1153 	}
1154 	if (vd->vdev_log_mg != NULL) {
1155 		ASSERT0(vd->vdev_ms_count);
1156 		metaslab_group_destroy(vd->vdev_log_mg);
1157 		vd->vdev_log_mg = NULL;
1158 	}
1159 
1160 	ASSERT0(vd->vdev_stat.vs_space);
1161 	ASSERT0(vd->vdev_stat.vs_dspace);
1162 	ASSERT0(vd->vdev_stat.vs_alloc);
1163 
1164 	/*
1165 	 * Remove this vdev from its parent's child list.
1166 	 */
1167 	vdev_remove_child(vd->vdev_parent, vd);
1168 
1169 	ASSERT0P(vd->vdev_parent);
1170 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1171 
1172 	/*
1173 	 * Clean up vdev structure.
1174 	 */
1175 	vdev_queue_fini(vd);
1176 
1177 	if (vd->vdev_path)
1178 		spa_strfree(vd->vdev_path);
1179 	if (vd->vdev_devid)
1180 		spa_strfree(vd->vdev_devid);
1181 	if (vd->vdev_physpath)
1182 		spa_strfree(vd->vdev_physpath);
1183 
1184 	if (vd->vdev_enc_sysfs_path)
1185 		spa_strfree(vd->vdev_enc_sysfs_path);
1186 
1187 	if (vd->vdev_fru)
1188 		spa_strfree(vd->vdev_fru);
1189 
1190 	if (vd->vdev_isspare)
1191 		spa_spare_remove(vd);
1192 	if (vd->vdev_isl2cache)
1193 		spa_l2cache_remove(vd);
1194 	if (vd->vdev_prev_histo)
1195 		kmem_free(vd->vdev_prev_histo,
1196 		    sizeof (uint64_t) * VDEV_L_HISTO_BUCKETS);
1197 
1198 	txg_list_destroy(&vd->vdev_ms_list);
1199 	txg_list_destroy(&vd->vdev_dtl_list);
1200 
1201 	mutex_enter(&vd->vdev_dtl_lock);
1202 	space_map_close(vd->vdev_dtl_sm);
1203 	for (int t = 0; t < DTL_TYPES; t++) {
1204 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1205 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1206 	}
1207 	mutex_exit(&vd->vdev_dtl_lock);
1208 
1209 	EQUIV(vd->vdev_indirect_births != NULL,
1210 	    vd->vdev_indirect_mapping != NULL);
1211 	if (vd->vdev_indirect_births != NULL) {
1212 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1213 		vdev_indirect_births_close(vd->vdev_indirect_births);
1214 	}
1215 
1216 	if (vd->vdev_obsolete_sm != NULL) {
1217 		ASSERT(vd->vdev_removing ||
1218 		    vd->vdev_ops == &vdev_indirect_ops);
1219 		space_map_close(vd->vdev_obsolete_sm);
1220 		vd->vdev_obsolete_sm = NULL;
1221 	}
1222 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1223 	rw_destroy(&vd->vdev_indirect_rwlock);
1224 	mutex_destroy(&vd->vdev_obsolete_lock);
1225 
1226 	mutex_destroy(&vd->vdev_dtl_lock);
1227 	mutex_destroy(&vd->vdev_stat_lock);
1228 	mutex_destroy(&vd->vdev_probe_lock);
1229 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1230 
1231 	mutex_destroy(&vd->vdev_initialize_lock);
1232 	mutex_destroy(&vd->vdev_initialize_io_lock);
1233 	cv_destroy(&vd->vdev_initialize_io_cv);
1234 	cv_destroy(&vd->vdev_initialize_cv);
1235 
1236 	mutex_destroy(&vd->vdev_trim_lock);
1237 	mutex_destroy(&vd->vdev_autotrim_lock);
1238 	mutex_destroy(&vd->vdev_trim_io_lock);
1239 	cv_destroy(&vd->vdev_trim_cv);
1240 	cv_destroy(&vd->vdev_autotrim_cv);
1241 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1242 	cv_destroy(&vd->vdev_trim_io_cv);
1243 
1244 	mutex_destroy(&vd->vdev_rebuild_lock);
1245 	cv_destroy(&vd->vdev_rebuild_cv);
1246 
1247 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1248 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1249 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1250 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1251 
1252 	if (vd == spa->spa_root_vdev)
1253 		spa->spa_root_vdev = NULL;
1254 
1255 	kmem_free(vd, sizeof (vdev_t));
1256 }
1257 
1258 /*
1259  * Transfer top-level vdev state from svd to tvd.
1260  */
1261 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1262 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1263 {
1264 	spa_t *spa = svd->vdev_spa;
1265 	metaslab_t *msp;
1266 	vdev_t *vd;
1267 	int t;
1268 
1269 	ASSERT(tvd == tvd->vdev_top);
1270 
1271 	tvd->vdev_ms_array = svd->vdev_ms_array;
1272 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1273 	tvd->vdev_ms_count = svd->vdev_ms_count;
1274 	tvd->vdev_top_zap = svd->vdev_top_zap;
1275 
1276 	svd->vdev_ms_array = 0;
1277 	svd->vdev_ms_shift = 0;
1278 	svd->vdev_ms_count = 0;
1279 	svd->vdev_top_zap = 0;
1280 
1281 	if (tvd->vdev_mg)
1282 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1283 	if (tvd->vdev_log_mg)
1284 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1285 	tvd->vdev_mg = svd->vdev_mg;
1286 	tvd->vdev_log_mg = svd->vdev_log_mg;
1287 	tvd->vdev_ms = svd->vdev_ms;
1288 
1289 	svd->vdev_mg = NULL;
1290 	svd->vdev_log_mg = NULL;
1291 	svd->vdev_ms = NULL;
1292 
1293 	if (tvd->vdev_mg != NULL)
1294 		tvd->vdev_mg->mg_vd = tvd;
1295 	if (tvd->vdev_log_mg != NULL)
1296 		tvd->vdev_log_mg->mg_vd = tvd;
1297 
1298 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1299 	svd->vdev_checkpoint_sm = NULL;
1300 
1301 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1302 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1303 
1304 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1305 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1306 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1307 
1308 	svd->vdev_stat.vs_alloc = 0;
1309 	svd->vdev_stat.vs_space = 0;
1310 	svd->vdev_stat.vs_dspace = 0;
1311 
1312 	/*
1313 	 * State which may be set on a top-level vdev that's in the
1314 	 * process of being removed.
1315 	 */
1316 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1317 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1318 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1319 	ASSERT0P(tvd->vdev_indirect_mapping);
1320 	ASSERT0P(tvd->vdev_indirect_births);
1321 	ASSERT0P(tvd->vdev_obsolete_sm);
1322 	ASSERT0(tvd->vdev_noalloc);
1323 	ASSERT0(tvd->vdev_removing);
1324 	ASSERT0(tvd->vdev_rebuilding);
1325 	tvd->vdev_noalloc = svd->vdev_noalloc;
1326 	tvd->vdev_removing = svd->vdev_removing;
1327 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1328 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1329 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1330 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1331 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1332 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1333 	    &tvd->vdev_obsolete_segments);
1334 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1335 	svd->vdev_indirect_config.vic_mapping_object = 0;
1336 	svd->vdev_indirect_config.vic_births_object = 0;
1337 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1338 	svd->vdev_indirect_mapping = NULL;
1339 	svd->vdev_indirect_births = NULL;
1340 	svd->vdev_obsolete_sm = NULL;
1341 	svd->vdev_noalloc = 0;
1342 	svd->vdev_removing = 0;
1343 	svd->vdev_rebuilding = 0;
1344 
1345 	for (t = 0; t < TXG_SIZE; t++) {
1346 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1347 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1348 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1349 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1350 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1351 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1352 	}
1353 
1354 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1355 		vdev_config_clean(svd);
1356 		vdev_config_dirty(tvd);
1357 	}
1358 
1359 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1360 		vdev_state_clean(svd);
1361 		vdev_state_dirty(tvd);
1362 	}
1363 
1364 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1365 	svd->vdev_deflate_ratio = 0;
1366 
1367 	tvd->vdev_islog = svd->vdev_islog;
1368 	svd->vdev_islog = 0;
1369 
1370 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1371 }
1372 
1373 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1374 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1375 {
1376 	if (vd == NULL)
1377 		return;
1378 
1379 	vd->vdev_top = tvd;
1380 
1381 	for (int c = 0; c < vd->vdev_children; c++)
1382 		vdev_top_update(tvd, vd->vdev_child[c]);
1383 }
1384 
1385 /*
1386  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1387  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1388  */
1389 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1390 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1391 {
1392 	spa_t *spa = cvd->vdev_spa;
1393 	vdev_t *pvd = cvd->vdev_parent;
1394 	vdev_t *mvd;
1395 
1396 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1397 
1398 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1399 
1400 	mvd->vdev_asize = cvd->vdev_asize;
1401 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1402 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1403 	mvd->vdev_psize = cvd->vdev_psize;
1404 	mvd->vdev_ashift = cvd->vdev_ashift;
1405 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1406 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1407 	mvd->vdev_state = cvd->vdev_state;
1408 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1409 	mvd->vdev_nonrot = cvd->vdev_nonrot;
1410 
1411 	vdev_remove_child(pvd, cvd);
1412 	vdev_add_child(pvd, mvd);
1413 	cvd->vdev_id = mvd->vdev_children;
1414 	vdev_add_child(mvd, cvd);
1415 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1416 
1417 	if (mvd == mvd->vdev_top)
1418 		vdev_top_transfer(cvd, mvd);
1419 
1420 	return (mvd);
1421 }
1422 
1423 /*
1424  * Remove a 1-way mirror/replacing vdev from the tree.
1425  */
1426 void
vdev_remove_parent(vdev_t * cvd)1427 vdev_remove_parent(vdev_t *cvd)
1428 {
1429 	vdev_t *mvd = cvd->vdev_parent;
1430 	vdev_t *pvd = mvd->vdev_parent;
1431 
1432 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1433 
1434 	ASSERT(mvd->vdev_children == 1);
1435 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1436 	    mvd->vdev_ops == &vdev_replacing_ops ||
1437 	    mvd->vdev_ops == &vdev_spare_ops);
1438 	cvd->vdev_ashift = mvd->vdev_ashift;
1439 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1440 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1441 	vdev_remove_child(mvd, cvd);
1442 	vdev_remove_child(pvd, mvd);
1443 
1444 	/*
1445 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1446 	 * Otherwise, we could have detached an offline device, and when we
1447 	 * go to import the pool we'll think we have two top-level vdevs,
1448 	 * instead of a different version of the same top-level vdev.
1449 	 */
1450 	if (mvd->vdev_top == mvd) {
1451 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1452 		cvd->vdev_orig_guid = cvd->vdev_guid;
1453 		cvd->vdev_guid += guid_delta;
1454 		cvd->vdev_guid_sum += guid_delta;
1455 
1456 		/*
1457 		 * If pool not set for autoexpand, we need to also preserve
1458 		 * mvd's asize to prevent automatic expansion of cvd.
1459 		 * Otherwise if we are adjusting the mirror by attaching and
1460 		 * detaching children of non-uniform sizes, the mirror could
1461 		 * autoexpand, unexpectedly requiring larger devices to
1462 		 * re-establish the mirror.
1463 		 */
1464 		if (!cvd->vdev_spa->spa_autoexpand)
1465 			cvd->vdev_asize = mvd->vdev_asize;
1466 	}
1467 	cvd->vdev_id = mvd->vdev_id;
1468 	vdev_add_child(pvd, cvd);
1469 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1470 
1471 	if (cvd == cvd->vdev_top)
1472 		vdev_top_transfer(mvd, cvd);
1473 
1474 	ASSERT0(mvd->vdev_children);
1475 	vdev_free(mvd);
1476 }
1477 
1478 /*
1479  * Choose GCD for spa_gcd_alloc.
1480  */
1481 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1482 vdev_gcd(uint64_t a, uint64_t b)
1483 {
1484 	while (b != 0) {
1485 		uint64_t t = b;
1486 		b = a % b;
1487 		a = t;
1488 	}
1489 	return (a);
1490 }
1491 
1492 /*
1493  * Set spa_min_alloc and spa_gcd_alloc.
1494  */
1495 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1496 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1497 {
1498 	if (min_alloc < spa->spa_min_alloc)
1499 		spa->spa_min_alloc = min_alloc;
1500 
1501 	if (min_alloc > spa->spa_max_alloc)
1502 		spa->spa_max_alloc = min_alloc;
1503 
1504 	if (spa->spa_gcd_alloc == INT_MAX)
1505 		spa->spa_gcd_alloc = min_alloc;
1506 	else
1507 		spa->spa_gcd_alloc = vdev_gcd(min_alloc, spa->spa_gcd_alloc);
1508 }
1509 
1510 void
vdev_metaslab_group_create(vdev_t * vd)1511 vdev_metaslab_group_create(vdev_t *vd)
1512 {
1513 	spa_t *spa = vd->vdev_spa;
1514 
1515 	/*
1516 	 * metaslab_group_create was delayed until allocation bias was available
1517 	 */
1518 	if (vd->vdev_mg == NULL) {
1519 		metaslab_class_t *mc;
1520 
1521 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1522 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1523 
1524 		ASSERT3U(vd->vdev_islog, ==,
1525 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1526 
1527 		switch (vd->vdev_alloc_bias) {
1528 		case VDEV_BIAS_LOG:
1529 			mc = spa_log_class(spa);
1530 			break;
1531 		case VDEV_BIAS_SPECIAL:
1532 			mc = spa_special_class(spa);
1533 			break;
1534 		case VDEV_BIAS_DEDUP:
1535 			mc = spa_dedup_class(spa);
1536 			break;
1537 		default:
1538 			mc = spa_normal_class(spa);
1539 		}
1540 
1541 		vd->vdev_mg = metaslab_group_create(mc, vd);
1542 
1543 		if (!vd->vdev_islog) {
1544 			if (mc == spa_special_class(spa)) {
1545 				vd->vdev_log_mg = metaslab_group_create(
1546 				    spa_special_embedded_log_class(spa), vd);
1547 			} else {
1548 				vd->vdev_log_mg = metaslab_group_create(
1549 				    spa_embedded_log_class(spa), vd);
1550 			}
1551 		}
1552 
1553 		/*
1554 		 * The spa ashift min/max only apply for the normal metaslab
1555 		 * class. Class destination is late binding so ashift boundary
1556 		 * setting had to wait until now.
1557 		 */
1558 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1559 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1560 			if (vd->vdev_ashift > spa->spa_max_ashift)
1561 				spa->spa_max_ashift = vd->vdev_ashift;
1562 			if (vd->vdev_ashift < spa->spa_min_ashift)
1563 				spa->spa_min_ashift = vd->vdev_ashift;
1564 
1565 			vdev_spa_set_alloc(spa, vdev_get_min_alloc(vd));
1566 		}
1567 	}
1568 }
1569 
1570 void
vdev_update_nonallocating_space(vdev_t * vd,boolean_t add)1571 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1572 {
1573 	spa_t *spa = vd->vdev_spa;
1574 
1575 	if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1576 		return;
1577 
1578 	uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1579 	uint64_t dspace = spa_deflate(spa) ?
1580 	    vdev_deflated_space(vd, raw_space) : raw_space;
1581 	if (add) {
1582 		spa->spa_nonallocating_dspace += dspace;
1583 	} else {
1584 		ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1585 		spa->spa_nonallocating_dspace -= dspace;
1586 	}
1587 }
1588 
1589 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1590 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1591 {
1592 	spa_t *spa = vd->vdev_spa;
1593 	uint64_t oldc = vd->vdev_ms_count;
1594 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1595 	metaslab_t **mspp;
1596 	int error;
1597 	boolean_t expanding = (oldc != 0);
1598 
1599 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1600 
1601 	/*
1602 	 * This vdev is not being allocated from yet or is a hole.
1603 	 */
1604 	if (vd->vdev_ms_shift == 0)
1605 		return (0);
1606 
1607 	ASSERT(!vd->vdev_ishole);
1608 
1609 	ASSERT(oldc <= newc);
1610 
1611 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1612 
1613 	if (expanding) {
1614 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1615 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1616 	}
1617 
1618 	vd->vdev_ms = mspp;
1619 	vd->vdev_ms_count = newc;
1620 
1621 	/*
1622 	 * Weighting algorithms can depend on the number of metaslabs in the
1623 	 * vdev. In order to ensure that all weights are correct at all times,
1624 	 * we need to recalculate here.
1625 	 */
1626 	for (uint64_t m = 0; m < oldc; m++) {
1627 		metaslab_t *msp = vd->vdev_ms[m];
1628 		mutex_enter(&msp->ms_lock);
1629 		metaslab_recalculate_weight_and_sort(msp);
1630 		mutex_exit(&msp->ms_lock);
1631 	}
1632 
1633 	for (uint64_t m = oldc; m < newc; m++) {
1634 		uint64_t object = 0;
1635 		/*
1636 		 * vdev_ms_array may be 0 if we are creating the "fake"
1637 		 * metaslabs for an indirect vdev for zdb's leak detection.
1638 		 * See zdb_leak_init().
1639 		 */
1640 		if (txg == 0 && vd->vdev_ms_array != 0) {
1641 			error = dmu_read(spa->spa_meta_objset,
1642 			    vd->vdev_ms_array,
1643 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1644 			    DMU_READ_PREFETCH);
1645 			if (error != 0) {
1646 				vdev_dbgmsg(vd, "unable to read the metaslab "
1647 				    "array [error=%d]", error);
1648 				return (error);
1649 			}
1650 		}
1651 
1652 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1653 		    &(vd->vdev_ms[m]));
1654 		if (error != 0) {
1655 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1656 			    error);
1657 			return (error);
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * Find the emptiest metaslab on the vdev and mark it for use for
1663 	 * embedded slog by moving it from the regular to the log metaslab
1664 	 * group.  This works for normal and special vdevs.
1665 	 */
1666 	if ((vd->vdev_mg->mg_class == spa_normal_class(spa) ||
1667 	    vd->vdev_mg->mg_class == spa_special_class(spa)) &&
1668 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1669 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1670 		uint64_t slog_msid = 0;
1671 		uint64_t smallest = UINT64_MAX;
1672 
1673 		/*
1674 		 * Note, we only search the new metaslabs, because the old
1675 		 * (pre-existing) ones may be active (e.g. have non-empty
1676 		 * range_tree's), and we don't move them to the new
1677 		 * metaslab_t.
1678 		 */
1679 		for (uint64_t m = oldc; m < newc; m++) {
1680 			uint64_t alloc =
1681 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1682 			if (alloc < smallest) {
1683 				slog_msid = m;
1684 				smallest = alloc;
1685 			}
1686 		}
1687 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1688 		/*
1689 		 * The metaslab was marked as dirty at the end of
1690 		 * metaslab_init(). Remove it from the dirty list so that we
1691 		 * can uninitialize and reinitialize it to the new class.
1692 		 */
1693 		if (txg != 0) {
1694 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1695 			    slog_ms, txg);
1696 		}
1697 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1698 		metaslab_fini(slog_ms);
1699 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1700 		    &vd->vdev_ms[slog_msid]));
1701 	}
1702 
1703 	if (txg == 0)
1704 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1705 
1706 	/*
1707 	 * If the vdev is marked as non-allocating then don't
1708 	 * activate the metaslabs since we want to ensure that
1709 	 * no allocations are performed on this device.
1710 	 */
1711 	if (vd->vdev_noalloc) {
1712 		/* track non-allocating vdev space */
1713 		vdev_update_nonallocating_space(vd, B_TRUE);
1714 	} else if (!expanding) {
1715 		metaslab_group_activate(vd->vdev_mg);
1716 		if (vd->vdev_log_mg != NULL)
1717 			metaslab_group_activate(vd->vdev_log_mg);
1718 	}
1719 
1720 	if (txg == 0)
1721 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1722 
1723 	return (0);
1724 }
1725 
1726 void
vdev_metaslab_fini(vdev_t * vd)1727 vdev_metaslab_fini(vdev_t *vd)
1728 {
1729 	if (vd->vdev_checkpoint_sm != NULL) {
1730 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1731 		    SPA_FEATURE_POOL_CHECKPOINT));
1732 		space_map_close(vd->vdev_checkpoint_sm);
1733 		/*
1734 		 * Even though we close the space map, we need to set its
1735 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1736 		 * may be called multiple times for certain operations
1737 		 * (i.e. when destroying a pool) so we need to ensure that
1738 		 * this clause never executes twice. This logic is similar
1739 		 * to the one used for the vdev_ms clause below.
1740 		 */
1741 		vd->vdev_checkpoint_sm = NULL;
1742 	}
1743 
1744 	if (vd->vdev_ms != NULL) {
1745 		metaslab_group_t *mg = vd->vdev_mg;
1746 
1747 		metaslab_group_passivate(mg);
1748 		if (vd->vdev_log_mg != NULL) {
1749 			ASSERT(!vd->vdev_islog);
1750 			metaslab_group_passivate(vd->vdev_log_mg);
1751 		}
1752 
1753 		uint64_t count = vd->vdev_ms_count;
1754 		for (uint64_t m = 0; m < count; m++) {
1755 			metaslab_t *msp = vd->vdev_ms[m];
1756 			if (msp != NULL)
1757 				metaslab_fini(msp);
1758 		}
1759 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1760 		vd->vdev_ms = NULL;
1761 		vd->vdev_ms_count = 0;
1762 
1763 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1764 			ASSERT0(mg->mg_histogram[i]);
1765 			if (vd->vdev_log_mg != NULL)
1766 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1767 		}
1768 	}
1769 	ASSERT0(vd->vdev_ms_count);
1770 }
1771 
1772 typedef struct vdev_probe_stats {
1773 	boolean_t	vps_readable;
1774 	boolean_t	vps_writeable;
1775 	boolean_t	vps_zio_done_probe;
1776 	int		vps_flags;
1777 } vdev_probe_stats_t;
1778 
1779 static void
vdev_probe_done(zio_t * zio)1780 vdev_probe_done(zio_t *zio)
1781 {
1782 	spa_t *spa = zio->io_spa;
1783 	vdev_t *vd = zio->io_vd;
1784 	vdev_probe_stats_t *vps = zio->io_private;
1785 
1786 	ASSERT(vd->vdev_probe_zio != NULL);
1787 
1788 	if (zio->io_type == ZIO_TYPE_READ) {
1789 		if (zio->io_error == 0)
1790 			vps->vps_readable = 1;
1791 		if (zio->io_error == 0 && spa_writeable(spa)) {
1792 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1793 			    zio->io_offset, zio->io_size, zio->io_abd,
1794 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1795 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1796 		} else {
1797 			abd_free(zio->io_abd);
1798 		}
1799 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1800 		if (zio->io_error == 0)
1801 			vps->vps_writeable = 1;
1802 		abd_free(zio->io_abd);
1803 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1804 		zio_t *pio;
1805 		zio_link_t *zl;
1806 
1807 		vd->vdev_cant_read |= !vps->vps_readable;
1808 		vd->vdev_cant_write |= !vps->vps_writeable;
1809 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1810 		    vd->vdev_cant_read, vd->vdev_cant_write);
1811 
1812 		if (vdev_readable(vd) &&
1813 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1814 			zio->io_error = 0;
1815 		} else {
1816 			ASSERT(zio->io_error != 0);
1817 			vdev_dbgmsg(vd, "failed probe");
1818 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1819 			    spa, vd, NULL, NULL, 0);
1820 			zio->io_error = SET_ERROR(ENXIO);
1821 
1822 			/*
1823 			 * If this probe was initiated from zio pipeline, then
1824 			 * change the state in a spa_async_request. Probes that
1825 			 * were initiated from a vdev_open can change the state
1826 			 * as part of the open call.
1827 			 * Skip fault injection if this vdev is already removed
1828 			 * or a removal is pending.
1829 			 */
1830 			if (vps->vps_zio_done_probe &&
1831 			    !vd->vdev_remove_wanted && !vd->vdev_removed) {
1832 				vd->vdev_fault_wanted = B_TRUE;
1833 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1834 			}
1835 		}
1836 
1837 		mutex_enter(&vd->vdev_probe_lock);
1838 		ASSERT(vd->vdev_probe_zio == zio);
1839 		vd->vdev_probe_zio = NULL;
1840 		mutex_exit(&vd->vdev_probe_lock);
1841 
1842 		zl = NULL;
1843 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1844 			if (!vdev_accessible(vd, pio))
1845 				pio->io_error = SET_ERROR(ENXIO);
1846 
1847 		kmem_free(vps, sizeof (*vps));
1848 	}
1849 }
1850 
1851 /*
1852  * Determine whether this device is accessible.
1853  *
1854  * Read and write to several known locations: the pad regions of each
1855  * vdev label but the first, which we leave alone in case it contains
1856  * a VTOC.
1857  */
1858 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1859 vdev_probe(vdev_t *vd, zio_t *zio)
1860 {
1861 	spa_t *spa = vd->vdev_spa;
1862 	vdev_probe_stats_t *vps = NULL;
1863 	zio_t *pio;
1864 
1865 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1866 
1867 	/*
1868 	 * Don't probe the probe.
1869 	 */
1870 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1871 		return (NULL);
1872 
1873 	/*
1874 	 * To prevent 'probe storms' when a device fails, we create
1875 	 * just one probe i/o at a time.  All zios that want to probe
1876 	 * this vdev will become parents of the probe io.
1877 	 */
1878 	mutex_enter(&vd->vdev_probe_lock);
1879 
1880 	if ((pio = vd->vdev_probe_zio) == NULL) {
1881 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1882 
1883 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1884 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1885 		vps->vps_zio_done_probe = (zio != NULL);
1886 
1887 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1888 			/*
1889 			 * vdev_cant_read and vdev_cant_write can only
1890 			 * transition from TRUE to FALSE when we have the
1891 			 * SCL_ZIO lock as writer; otherwise they can only
1892 			 * transition from FALSE to TRUE.  This ensures that
1893 			 * any zio looking at these values can assume that
1894 			 * failures persist for the life of the I/O.  That's
1895 			 * important because when a device has intermittent
1896 			 * connectivity problems, we want to ensure that
1897 			 * they're ascribed to the device (ENXIO) and not
1898 			 * the zio (EIO).
1899 			 *
1900 			 * Since we hold SCL_ZIO as writer here, clear both
1901 			 * values so the probe can reevaluate from first
1902 			 * principles.
1903 			 */
1904 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1905 			vd->vdev_cant_read = B_FALSE;
1906 			vd->vdev_cant_write = B_FALSE;
1907 		}
1908 
1909 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1910 		    vdev_probe_done, vps,
1911 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1912 	}
1913 
1914 	if (zio != NULL)
1915 		zio_add_child(zio, pio);
1916 
1917 	mutex_exit(&vd->vdev_probe_lock);
1918 
1919 	if (vps == NULL) {
1920 		ASSERT(zio != NULL);
1921 		return (NULL);
1922 	}
1923 
1924 	for (int l = 1; l < VDEV_LABELS; l++) {
1925 		zio_nowait(zio_read_phys(pio, vd,
1926 		    vdev_label_offset(vd->vdev_psize, l,
1927 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1928 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1929 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1930 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1931 	}
1932 
1933 	if (zio == NULL)
1934 		return (pio);
1935 
1936 	zio_nowait(pio);
1937 	return (NULL);
1938 }
1939 
1940 static void
vdev_load_child(void * arg)1941 vdev_load_child(void *arg)
1942 {
1943 	vdev_t *vd = arg;
1944 
1945 	vd->vdev_load_error = vdev_load(vd);
1946 }
1947 
1948 static void
vdev_open_child(void * arg)1949 vdev_open_child(void *arg)
1950 {
1951 	vdev_t *vd = arg;
1952 
1953 	vd->vdev_open_thread = curthread;
1954 	vd->vdev_open_error = vdev_open(vd);
1955 	vd->vdev_open_thread = NULL;
1956 }
1957 
1958 static boolean_t
vdev_uses_zvols(vdev_t * vd)1959 vdev_uses_zvols(vdev_t *vd)
1960 {
1961 #ifdef _KERNEL
1962 	if (zvol_is_zvol(vd->vdev_path))
1963 		return (B_TRUE);
1964 #endif
1965 
1966 	for (int c = 0; c < vd->vdev_children; c++)
1967 		if (vdev_uses_zvols(vd->vdev_child[c]))
1968 			return (B_TRUE);
1969 
1970 	return (B_FALSE);
1971 }
1972 
1973 /*
1974  * Returns B_TRUE if the passed child should be opened.
1975  */
1976 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1977 vdev_default_open_children_func(vdev_t *vd)
1978 {
1979 	(void) vd;
1980 	return (B_TRUE);
1981 }
1982 
1983 /*
1984  * Open the requested child vdevs.  If any of the leaf vdevs are using
1985  * a ZFS volume then do the opens in a single thread.  This avoids a
1986  * deadlock when the current thread is holding the spa_namespace_lock.
1987  */
1988 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1989 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1990 {
1991 	int children = vd->vdev_children;
1992 
1993 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1994 	    children, children, TASKQ_PREPOPULATE);
1995 	vd->vdev_nonrot = B_TRUE;
1996 
1997 	for (int c = 0; c < children; c++) {
1998 		vdev_t *cvd = vd->vdev_child[c];
1999 
2000 		if (open_func(cvd) == B_FALSE)
2001 			continue;
2002 
2003 		if (tq == NULL || vdev_uses_zvols(vd)) {
2004 			cvd->vdev_open_error = vdev_open(cvd);
2005 		} else {
2006 			VERIFY(taskq_dispatch(tq, vdev_open_child,
2007 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
2008 		}
2009 	}
2010 
2011 	if (tq != NULL)
2012 		taskq_wait(tq);
2013 	for (int c = 0; c < children; c++) {
2014 		vdev_t *cvd = vd->vdev_child[c];
2015 
2016 		if (open_func(cvd) == B_FALSE ||
2017 		    cvd->vdev_state <= VDEV_STATE_FAULTED)
2018 			continue;
2019 		vd->vdev_nonrot &= cvd->vdev_nonrot;
2020 	}
2021 
2022 	if (tq != NULL)
2023 		taskq_destroy(tq);
2024 }
2025 
2026 /*
2027  * Open all child vdevs.
2028  */
2029 void
vdev_open_children(vdev_t * vd)2030 vdev_open_children(vdev_t *vd)
2031 {
2032 	vdev_open_children_impl(vd, vdev_default_open_children_func);
2033 }
2034 
2035 /*
2036  * Conditionally open a subset of child vdevs.
2037  */
2038 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)2039 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
2040 {
2041 	vdev_open_children_impl(vd, open_func);
2042 }
2043 
2044 /*
2045  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
2046  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
2047  * changed, this algorithm can not change, otherwise it would inconsistently
2048  * account for existing bp's.  We also hard-code txg 0 for the same reason
2049  * since expanded RAIDZ vdevs can use a different asize for different birth
2050  * txg's.
2051  */
2052 static void
vdev_set_deflate_ratio(vdev_t * vd)2053 vdev_set_deflate_ratio(vdev_t *vd)
2054 {
2055 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2056 		vd->vdev_deflate_ratio = (1 << 17) /
2057 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2058 		    SPA_MINBLOCKSHIFT);
2059 	}
2060 }
2061 
2062 /*
2063  * Choose the best of two ashifts, preferring one between logical ashift
2064  * (absolute minimum) and administrator defined maximum, otherwise take
2065  * the biggest of the two.
2066  */
2067 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)2068 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2069 {
2070 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2071 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
2072 			return (a);
2073 		else
2074 			return (MAX(a, b));
2075 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2076 		return (MAX(a, b));
2077 	return (b);
2078 }
2079 
2080 /*
2081  * Maximize performance by inflating the configured ashift for top level
2082  * vdevs to be as close to the physical ashift as possible while maintaining
2083  * administrator defined limits and ensuring it doesn't go below the
2084  * logical ashift.
2085  */
2086 static void
vdev_ashift_optimize(vdev_t * vd)2087 vdev_ashift_optimize(vdev_t *vd)
2088 {
2089 	ASSERT(vd == vd->vdev_top);
2090 
2091 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2092 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2093 		vd->vdev_ashift = MIN(
2094 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2095 		    MAX(zfs_vdev_min_auto_ashift,
2096 		    vd->vdev_physical_ashift));
2097 	} else {
2098 		/*
2099 		 * If the logical and physical ashifts are the same, then
2100 		 * we ensure that the top-level vdev's ashift is not smaller
2101 		 * than our minimum ashift value. For the unusual case
2102 		 * where logical ashift > physical ashift, we can't cap
2103 		 * the calculated ashift based on max ashift as that
2104 		 * would cause failures.
2105 		 * We still check if we need to increase it to match
2106 		 * the min ashift.
2107 		 */
2108 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2109 		    vd->vdev_ashift);
2110 	}
2111 }
2112 
2113 /*
2114  * Prepare a virtual device for access.
2115  */
2116 int
vdev_open(vdev_t * vd)2117 vdev_open(vdev_t *vd)
2118 {
2119 	spa_t *spa = vd->vdev_spa;
2120 	int error;
2121 	uint64_t osize = 0;
2122 	uint64_t max_osize = 0;
2123 	uint64_t asize, max_asize, psize;
2124 	uint64_t logical_ashift = 0;
2125 	uint64_t physical_ashift = 0;
2126 
2127 	ASSERT(vd->vdev_open_thread == curthread ||
2128 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2129 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2130 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2131 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2132 
2133 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2134 	vd->vdev_cant_read = B_FALSE;
2135 	vd->vdev_cant_write = B_FALSE;
2136 	vd->vdev_fault_wanted = B_FALSE;
2137 	vd->vdev_remove_wanted = B_FALSE;
2138 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2139 
2140 	/*
2141 	 * If this vdev is not removed, check its fault status.  If it's
2142 	 * faulted, bail out of the open.
2143 	 */
2144 	if (!vd->vdev_removed && vd->vdev_faulted) {
2145 		ASSERT0(vd->vdev_children);
2146 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2147 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2148 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2149 		    vd->vdev_label_aux);
2150 		return (SET_ERROR(ENXIO));
2151 	} else if (vd->vdev_offline) {
2152 		ASSERT0(vd->vdev_children);
2153 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2154 		return (SET_ERROR(ENXIO));
2155 	}
2156 
2157 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2158 	    &logical_ashift, &physical_ashift);
2159 
2160 	/* Keep the device in removed state if unplugged */
2161 	if (error == ENOENT && vd->vdev_removed) {
2162 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2163 		    VDEV_AUX_NONE);
2164 		return (error);
2165 	}
2166 
2167 	/*
2168 	 * Physical volume size should never be larger than its max size, unless
2169 	 * the disk has shrunk while we were reading it or the device is buggy
2170 	 * or damaged: either way it's not safe for use, bail out of the open.
2171 	 */
2172 	if (osize > max_osize) {
2173 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2174 		    VDEV_AUX_OPEN_FAILED);
2175 		return (SET_ERROR(ENXIO));
2176 	}
2177 
2178 	/*
2179 	 * Reset the vdev_reopening flag so that we actually close
2180 	 * the vdev on error.
2181 	 */
2182 	vd->vdev_reopening = B_FALSE;
2183 	if (zio_injection_enabled && error == 0)
2184 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2185 
2186 	if (error) {
2187 		if (vd->vdev_removed &&
2188 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2189 			vd->vdev_removed = B_FALSE;
2190 
2191 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2192 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2193 			    vd->vdev_stat.vs_aux);
2194 		} else {
2195 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2196 			    vd->vdev_stat.vs_aux);
2197 		}
2198 		return (error);
2199 	}
2200 
2201 	vd->vdev_removed = B_FALSE;
2202 
2203 	/*
2204 	 * Recheck the faulted flag now that we have confirmed that
2205 	 * the vdev is accessible.  If we're faulted, bail.
2206 	 */
2207 	if (vd->vdev_faulted) {
2208 		ASSERT0(vd->vdev_children);
2209 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2210 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2211 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2212 		    vd->vdev_label_aux);
2213 		return (SET_ERROR(ENXIO));
2214 	}
2215 
2216 	if (vd->vdev_degraded) {
2217 		ASSERT0(vd->vdev_children);
2218 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2219 		    VDEV_AUX_ERR_EXCEEDED);
2220 	} else {
2221 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2222 	}
2223 
2224 	/*
2225 	 * For hole or missing vdevs we just return success.
2226 	 */
2227 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2228 		return (0);
2229 
2230 	for (int c = 0; c < vd->vdev_children; c++) {
2231 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2232 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2233 			    VDEV_AUX_NONE);
2234 			break;
2235 		}
2236 	}
2237 
2238 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2239 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2240 
2241 	if (vd->vdev_children == 0) {
2242 		if (osize < SPA_MINDEVSIZE) {
2243 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2244 			    VDEV_AUX_TOO_SMALL);
2245 			return (SET_ERROR(EOVERFLOW));
2246 		}
2247 		psize = osize;
2248 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2249 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2250 		    VDEV_LABEL_END_SIZE);
2251 	} else {
2252 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2253 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2254 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2255 			    VDEV_AUX_TOO_SMALL);
2256 			return (SET_ERROR(EOVERFLOW));
2257 		}
2258 		psize = 0;
2259 		asize = osize;
2260 		max_asize = max_osize;
2261 	}
2262 
2263 	/*
2264 	 * If the vdev was expanded, record this so that we can re-create the
2265 	 * uberblock rings in labels {2,3}, during the next sync.
2266 	 */
2267 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2268 		vd->vdev_copy_uberblocks = B_TRUE;
2269 
2270 	vd->vdev_psize = psize;
2271 
2272 	/*
2273 	 * Make sure the allocatable size hasn't shrunk too much.
2274 	 */
2275 	if (asize < vd->vdev_min_asize) {
2276 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2277 		    VDEV_AUX_BAD_LABEL);
2278 		return (SET_ERROR(EINVAL));
2279 	}
2280 
2281 	/*
2282 	 * We can always set the logical/physical ashift members since
2283 	 * their values are only used to calculate the vdev_ashift when
2284 	 * the device is first added to the config. These values should
2285 	 * not be used for anything else since they may change whenever
2286 	 * the device is reopened and we don't store them in the label.
2287 	 */
2288 	vd->vdev_physical_ashift =
2289 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2290 	vd->vdev_logical_ashift = MAX(logical_ashift,
2291 	    vd->vdev_logical_ashift);
2292 
2293 	if (vd->vdev_asize == 0) {
2294 		/*
2295 		 * This is the first-ever open, so use the computed values.
2296 		 * For compatibility, a different ashift can be requested.
2297 		 */
2298 		vd->vdev_asize = asize;
2299 		vd->vdev_max_asize = max_asize;
2300 
2301 		/*
2302 		 * If the vdev_ashift was not overridden at creation time
2303 		 * (0) or the override value is impossible for the device,
2304 		 * then set it the logical ashift and optimize the ashift.
2305 		 */
2306 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2307 			vd->vdev_ashift = vd->vdev_logical_ashift;
2308 
2309 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2310 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2311 				    VDEV_AUX_ASHIFT_TOO_BIG);
2312 				return (SET_ERROR(EDOM));
2313 			}
2314 
2315 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2316 				vdev_ashift_optimize(vd);
2317 			vd->vdev_attaching = B_FALSE;
2318 		}
2319 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2320 		    vd->vdev_ashift > ASHIFT_MAX)) {
2321 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2322 			    VDEV_AUX_BAD_ASHIFT);
2323 			return (SET_ERROR(EDOM));
2324 		}
2325 	} else {
2326 		/*
2327 		 * Make sure the alignment required hasn't increased.
2328 		 */
2329 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2330 		    vd->vdev_ops->vdev_op_leaf) {
2331 			(void) zfs_ereport_post(
2332 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2333 			    spa, vd, NULL, NULL, 0);
2334 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2335 			    VDEV_AUX_BAD_LABEL);
2336 			return (SET_ERROR(EDOM));
2337 		}
2338 		vd->vdev_max_asize = max_asize;
2339 	}
2340 
2341 	/*
2342 	 * If all children are healthy we update asize if either:
2343 	 * The asize has increased, due to a device expansion caused by dynamic
2344 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2345 	 * making the additional space available.
2346 	 *
2347 	 * The asize has decreased, due to a device shrink usually caused by a
2348 	 * vdev replace with a smaller device. This ensures that calculations
2349 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2350 	 * to do this as we've already validated that asize is greater than
2351 	 * vdev_min_asize.
2352 	 */
2353 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2354 	    ((asize > vd->vdev_asize &&
2355 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2356 	    (asize < vd->vdev_asize)))
2357 		vd->vdev_asize = asize;
2358 
2359 	vdev_set_min_asize(vd);
2360 
2361 	/*
2362 	 * Ensure we can issue some IO before declaring the
2363 	 * vdev open for business.
2364 	 */
2365 	if (vd->vdev_ops->vdev_op_leaf &&
2366 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2367 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2368 		    VDEV_AUX_ERR_EXCEEDED);
2369 		return (error);
2370 	}
2371 
2372 	/*
2373 	 * Track the minimum allocation size.
2374 	 */
2375 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2376 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2377 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2378 		vdev_spa_set_alloc(spa, min_alloc);
2379 	}
2380 
2381 	/*
2382 	 * If this is a leaf vdev, assess whether a resilver is needed.
2383 	 * But don't do this if we are doing a reopen for a scrub, since
2384 	 * this would just restart the scrub we are already doing.
2385 	 */
2386 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2387 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2388 
2389 	return (0);
2390 }
2391 
2392 static void
vdev_validate_child(void * arg)2393 vdev_validate_child(void *arg)
2394 {
2395 	vdev_t *vd = arg;
2396 
2397 	vd->vdev_validate_thread = curthread;
2398 	vd->vdev_validate_error = vdev_validate(vd);
2399 	vd->vdev_validate_thread = NULL;
2400 }
2401 
2402 /*
2403  * Called once the vdevs are all opened, this routine validates the label
2404  * contents. This needs to be done before vdev_load() so that we don't
2405  * inadvertently do repair I/Os to the wrong device.
2406  *
2407  * This function will only return failure if one of the vdevs indicates that it
2408  * has since been destroyed or exported.  This is only possible if
2409  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2410  * will be updated but the function will return 0.
2411  */
2412 int
vdev_validate(vdev_t * vd)2413 vdev_validate(vdev_t *vd)
2414 {
2415 	spa_t *spa = vd->vdev_spa;
2416 	taskq_t *tq = NULL;
2417 	nvlist_t *label;
2418 	uint64_t guid = 0, aux_guid = 0, top_guid;
2419 	uint64_t state;
2420 	nvlist_t *nvl;
2421 	uint64_t txg;
2422 	int children = vd->vdev_children;
2423 
2424 	if (vdev_validate_skip)
2425 		return (0);
2426 
2427 	if (children > 0) {
2428 		tq = taskq_create("vdev_validate", children, minclsyspri,
2429 		    children, children, TASKQ_PREPOPULATE);
2430 	}
2431 
2432 	for (uint64_t c = 0; c < children; c++) {
2433 		vdev_t *cvd = vd->vdev_child[c];
2434 
2435 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2436 			vdev_validate_child(cvd);
2437 		} else {
2438 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2439 			    TQ_SLEEP) != TASKQID_INVALID);
2440 		}
2441 	}
2442 	if (tq != NULL) {
2443 		taskq_wait(tq);
2444 		taskq_destroy(tq);
2445 	}
2446 	for (int c = 0; c < children; c++) {
2447 		int error = vd->vdev_child[c]->vdev_validate_error;
2448 
2449 		if (error != 0)
2450 			return (SET_ERROR(EBADF));
2451 	}
2452 
2453 
2454 	/*
2455 	 * If the device has already failed, or was marked offline, don't do
2456 	 * any further validation.  Otherwise, label I/O will fail and we will
2457 	 * overwrite the previous state.
2458 	 */
2459 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2460 		return (0);
2461 
2462 	/*
2463 	 * If we are performing an extreme rewind, we allow for a label that
2464 	 * was modified at a point after the current txg.
2465 	 * If config lock is not held do not check for the txg. spa_sync could
2466 	 * be updating the vdev's label before updating spa_last_synced_txg.
2467 	 */
2468 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2469 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2470 		txg = UINT64_MAX;
2471 	else
2472 		txg = spa_last_synced_txg(spa);
2473 
2474 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2475 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2476 		    VDEV_AUX_BAD_LABEL);
2477 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2478 		    "txg %llu", (u_longlong_t)txg);
2479 		return (0);
2480 	}
2481 
2482 	/*
2483 	 * Determine if this vdev has been split off into another
2484 	 * pool.  If so, then refuse to open it.
2485 	 */
2486 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2487 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2488 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2489 		    VDEV_AUX_SPLIT_POOL);
2490 		nvlist_free(label);
2491 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2492 		return (0);
2493 	}
2494 
2495 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2496 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2497 		    VDEV_AUX_CORRUPT_DATA);
2498 		nvlist_free(label);
2499 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2500 		    ZPOOL_CONFIG_POOL_GUID);
2501 		return (0);
2502 	}
2503 
2504 	/*
2505 	 * If config is not trusted then ignore the spa guid check. This is
2506 	 * necessary because if the machine crashed during a re-guid the new
2507 	 * guid might have been written to all of the vdev labels, but not the
2508 	 * cached config. The check will be performed again once we have the
2509 	 * trusted config from the MOS.
2510 	 */
2511 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2512 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2513 		    VDEV_AUX_CORRUPT_DATA);
2514 		nvlist_free(label);
2515 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2516 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2517 		    (u_longlong_t)spa_guid(spa));
2518 		return (0);
2519 	}
2520 
2521 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2522 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2523 	    &aux_guid) != 0)
2524 		aux_guid = 0;
2525 
2526 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2527 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2528 		    VDEV_AUX_CORRUPT_DATA);
2529 		nvlist_free(label);
2530 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2531 		    ZPOOL_CONFIG_GUID);
2532 		return (0);
2533 	}
2534 
2535 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2536 	    != 0) {
2537 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2538 		    VDEV_AUX_CORRUPT_DATA);
2539 		nvlist_free(label);
2540 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2541 		    ZPOOL_CONFIG_TOP_GUID);
2542 		return (0);
2543 	}
2544 
2545 	/*
2546 	 * If this vdev just became a top-level vdev because its sibling was
2547 	 * detached, it will have adopted the parent's vdev guid -- but the
2548 	 * label may or may not be on disk yet. Fortunately, either version
2549 	 * of the label will have the same top guid, so if we're a top-level
2550 	 * vdev, we can safely compare to that instead.
2551 	 * However, if the config comes from a cachefile that failed to update
2552 	 * after the detach, a top-level vdev will appear as a non top-level
2553 	 * vdev in the config. Also relax the constraints if we perform an
2554 	 * extreme rewind.
2555 	 *
2556 	 * If we split this vdev off instead, then we also check the
2557 	 * original pool's guid. We don't want to consider the vdev
2558 	 * corrupt if it is partway through a split operation.
2559 	 */
2560 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2561 		boolean_t mismatch = B_FALSE;
2562 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2563 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2564 				mismatch = B_TRUE;
2565 		} else {
2566 			if (vd->vdev_guid != top_guid &&
2567 			    vd->vdev_top->vdev_guid != guid)
2568 				mismatch = B_TRUE;
2569 		}
2570 
2571 		if (mismatch) {
2572 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2573 			    VDEV_AUX_CORRUPT_DATA);
2574 			nvlist_free(label);
2575 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2576 			    "doesn't match label guid");
2577 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2578 			    (u_longlong_t)vd->vdev_guid,
2579 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2580 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2581 			    "aux_guid %llu", (u_longlong_t)guid,
2582 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2583 			return (0);
2584 		}
2585 	}
2586 
2587 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2588 	    &state) != 0) {
2589 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2590 		    VDEV_AUX_CORRUPT_DATA);
2591 		nvlist_free(label);
2592 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2593 		    ZPOOL_CONFIG_POOL_STATE);
2594 		return (0);
2595 	}
2596 
2597 	nvlist_free(label);
2598 
2599 	/*
2600 	 * If this is a verbatim import, no need to check the
2601 	 * state of the pool.
2602 	 */
2603 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2604 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2605 	    state != POOL_STATE_ACTIVE) {
2606 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2607 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2608 		return (SET_ERROR(EBADF));
2609 	}
2610 
2611 	/*
2612 	 * If we were able to open and validate a vdev that was
2613 	 * previously marked permanently unavailable, clear that state
2614 	 * now.
2615 	 */
2616 	if (vd->vdev_not_present)
2617 		vd->vdev_not_present = 0;
2618 
2619 	return (0);
2620 }
2621 
2622 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2623 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2624 {
2625 	if (svd != NULL && *dvd != NULL) {
2626 		if (strcmp(svd, *dvd) != 0) {
2627 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2628 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2629 			    *dvd, svd);
2630 			spa_strfree(*dvd);
2631 			*dvd = spa_strdup(svd);
2632 		}
2633 	} else if (svd != NULL) {
2634 		*dvd = spa_strdup(svd);
2635 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2636 		    (u_longlong_t)guid, *dvd);
2637 	}
2638 }
2639 
2640 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2641 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2642 {
2643 	char *old, *new;
2644 
2645 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2646 	    dvd->vdev_guid);
2647 
2648 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2649 	    dvd->vdev_guid);
2650 
2651 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2652 	    &dvd->vdev_physpath, dvd->vdev_guid);
2653 
2654 	/*
2655 	 * Our enclosure sysfs path may have changed between imports
2656 	 */
2657 	old = dvd->vdev_enc_sysfs_path;
2658 	new = svd->vdev_enc_sysfs_path;
2659 	if ((old != NULL && new == NULL) ||
2660 	    (old == NULL && new != NULL) ||
2661 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2662 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2663 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2664 		    old, new);
2665 
2666 		if (dvd->vdev_enc_sysfs_path)
2667 			spa_strfree(dvd->vdev_enc_sysfs_path);
2668 
2669 		if (svd->vdev_enc_sysfs_path) {
2670 			dvd->vdev_enc_sysfs_path = spa_strdup(
2671 			    svd->vdev_enc_sysfs_path);
2672 		} else {
2673 			dvd->vdev_enc_sysfs_path = NULL;
2674 		}
2675 	}
2676 }
2677 
2678 /*
2679  * Recursively copy vdev paths from one vdev to another. Source and destination
2680  * vdev trees must have same geometry otherwise return error. Intended to copy
2681  * paths from userland config into MOS config.
2682  */
2683 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2684 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2685 {
2686 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2687 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2688 	    (dvd->vdev_ops == &vdev_indirect_ops))
2689 		return (0);
2690 
2691 	if (svd->vdev_ops != dvd->vdev_ops) {
2692 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2693 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2694 		return (SET_ERROR(EINVAL));
2695 	}
2696 
2697 	if (svd->vdev_guid != dvd->vdev_guid) {
2698 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2699 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2700 		    (u_longlong_t)dvd->vdev_guid);
2701 		return (SET_ERROR(EINVAL));
2702 	}
2703 
2704 	if (svd->vdev_children != dvd->vdev_children) {
2705 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2706 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2707 		    (u_longlong_t)dvd->vdev_children);
2708 		return (SET_ERROR(EINVAL));
2709 	}
2710 
2711 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2712 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2713 		    dvd->vdev_child[i]);
2714 		if (error != 0)
2715 			return (error);
2716 	}
2717 
2718 	if (svd->vdev_ops->vdev_op_leaf)
2719 		vdev_copy_path_impl(svd, dvd);
2720 
2721 	return (0);
2722 }
2723 
2724 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2725 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2726 {
2727 	ASSERT(stvd->vdev_top == stvd);
2728 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2729 
2730 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2731 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2732 	}
2733 
2734 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2735 		return;
2736 
2737 	/*
2738 	 * The idea here is that while a vdev can shift positions within
2739 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2740 	 * step outside of it.
2741 	 */
2742 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2743 
2744 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2745 		return;
2746 
2747 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2748 
2749 	vdev_copy_path_impl(vd, dvd);
2750 }
2751 
2752 /*
2753  * Recursively copy vdev paths from one root vdev to another. Source and
2754  * destination vdev trees may differ in geometry. For each destination leaf
2755  * vdev, search a vdev with the same guid and top vdev id in the source.
2756  * Intended to copy paths from userland config into MOS config.
2757  */
2758 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2759 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2760 {
2761 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2762 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2763 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2764 
2765 	for (uint64_t i = 0; i < children; i++) {
2766 		vdev_copy_path_search(srvd->vdev_child[i],
2767 		    drvd->vdev_child[i]);
2768 	}
2769 }
2770 
2771 /*
2772  * Close a virtual device.
2773  */
2774 void
vdev_close(vdev_t * vd)2775 vdev_close(vdev_t *vd)
2776 {
2777 	vdev_t *pvd = vd->vdev_parent;
2778 	spa_t *spa __maybe_unused = vd->vdev_spa;
2779 
2780 	ASSERT(vd != NULL);
2781 	ASSERT(vd->vdev_open_thread == curthread ||
2782 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2783 
2784 	/*
2785 	 * If our parent is reopening, then we are as well, unless we are
2786 	 * going offline.
2787 	 */
2788 	if (pvd != NULL && pvd->vdev_reopening)
2789 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2790 
2791 	vd->vdev_ops->vdev_op_close(vd);
2792 
2793 	/*
2794 	 * We record the previous state before we close it, so that if we are
2795 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2796 	 * it's still faulted.
2797 	 */
2798 	vd->vdev_prevstate = vd->vdev_state;
2799 
2800 	if (vd->vdev_offline)
2801 		vd->vdev_state = VDEV_STATE_OFFLINE;
2802 	else
2803 		vd->vdev_state = VDEV_STATE_CLOSED;
2804 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2805 }
2806 
2807 void
vdev_hold(vdev_t * vd)2808 vdev_hold(vdev_t *vd)
2809 {
2810 	spa_t *spa = vd->vdev_spa;
2811 
2812 	ASSERT(spa_is_root(spa));
2813 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2814 		return;
2815 
2816 	for (int c = 0; c < vd->vdev_children; c++)
2817 		vdev_hold(vd->vdev_child[c]);
2818 
2819 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2820 		vd->vdev_ops->vdev_op_hold(vd);
2821 }
2822 
2823 void
vdev_rele(vdev_t * vd)2824 vdev_rele(vdev_t *vd)
2825 {
2826 	ASSERT(spa_is_root(vd->vdev_spa));
2827 	for (int c = 0; c < vd->vdev_children; c++)
2828 		vdev_rele(vd->vdev_child[c]);
2829 
2830 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2831 		vd->vdev_ops->vdev_op_rele(vd);
2832 }
2833 
2834 /*
2835  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2836  * reopen leaf vdevs which had previously been opened as they might deadlock
2837  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2838  * If the leaf has never been opened then open it, as usual.
2839  */
2840 void
vdev_reopen(vdev_t * vd)2841 vdev_reopen(vdev_t *vd)
2842 {
2843 	spa_t *spa = vd->vdev_spa;
2844 
2845 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2846 
2847 	/* set the reopening flag unless we're taking the vdev offline */
2848 	vd->vdev_reopening = !vd->vdev_offline;
2849 	vdev_close(vd);
2850 	(void) vdev_open(vd);
2851 
2852 	/*
2853 	 * Call vdev_validate() here to make sure we have the same device.
2854 	 * Otherwise, a device with an invalid label could be successfully
2855 	 * opened in response to vdev_reopen().
2856 	 */
2857 	if (vd->vdev_aux) {
2858 		(void) vdev_validate_aux(vd);
2859 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2860 		    vd->vdev_aux == &spa->spa_l2cache) {
2861 			/*
2862 			 * In case the vdev is present we should evict all ARC
2863 			 * buffers and pointers to log blocks and reclaim their
2864 			 * space before restoring its contents to L2ARC.
2865 			 */
2866 			if (l2arc_vdev_present(vd)) {
2867 				l2arc_rebuild_vdev(vd, B_TRUE);
2868 			} else {
2869 				l2arc_add_vdev(spa, vd);
2870 			}
2871 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2872 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2873 		}
2874 	} else {
2875 		(void) vdev_validate(vd);
2876 	}
2877 
2878 	/*
2879 	 * Recheck if resilver is still needed and cancel any
2880 	 * scheduled resilver if resilver is unneeded.
2881 	 */
2882 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2883 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2884 		mutex_enter(&spa->spa_async_lock);
2885 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2886 		mutex_exit(&spa->spa_async_lock);
2887 	}
2888 
2889 	/*
2890 	 * Reassess parent vdev's health.
2891 	 */
2892 	vdev_propagate_state(vd);
2893 }
2894 
2895 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2896 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2897 {
2898 	int error;
2899 
2900 	/*
2901 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2902 	 * For a create, however, we want to fail the request if
2903 	 * there are any components we can't open.
2904 	 */
2905 	error = vdev_open(vd);
2906 
2907 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2908 		vdev_close(vd);
2909 		return (error ? error : SET_ERROR(ENXIO));
2910 	}
2911 
2912 	/*
2913 	 * Recursively load DTLs and initialize all labels.
2914 	 */
2915 	if ((error = vdev_dtl_load(vd)) != 0 ||
2916 	    (error = vdev_label_init(vd, txg, isreplacing ?
2917 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2918 		vdev_close(vd);
2919 		return (error);
2920 	}
2921 
2922 	return (0);
2923 }
2924 
2925 void
vdev_metaslab_set_size(vdev_t * vd)2926 vdev_metaslab_set_size(vdev_t *vd)
2927 {
2928 	uint64_t asize = vd->vdev_asize;
2929 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2930 	uint64_t ms_shift;
2931 
2932 	/*
2933 	 * There are two dimensions to the metaslab sizing calculation:
2934 	 * the size of the metaslab and the count of metaslabs per vdev.
2935 	 *
2936 	 * The default values used below are a good balance between memory
2937 	 * usage (larger metaslab size means more memory needed for loaded
2938 	 * metaslabs; more metaslabs means more memory needed for the
2939 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2940 	 * longer to load), and metaslab sync time (more metaslabs means
2941 	 * more time spent syncing all of them).
2942 	 *
2943 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2944 	 * The range of the dimensions are as follows:
2945 	 *
2946 	 *	2^29 <= ms_size  <= 2^34
2947 	 *	  16 <= ms_count <= 131,072
2948 	 *
2949 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2950 	 * at least 512MB (2^29) to minimize fragmentation effects when
2951 	 * testing with smaller devices.  However, the count constraint
2952 	 * of at least 16 metaslabs will override this minimum size goal.
2953 	 *
2954 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2955 	 * size of 16GB.  However, we will cap the total count to 2^17
2956 	 * metaslabs to keep our memory footprint in check and let the
2957 	 * metaslab size grow from there if that limit is hit.
2958 	 *
2959 	 * The net effect of applying above constrains is summarized below.
2960 	 *
2961 	 *   vdev size       metaslab count
2962 	 *  --------------|-----------------
2963 	 *      < 8GB        ~16
2964 	 *  8GB   - 100GB   one per 512MB
2965 	 *  100GB - 3TB     ~200
2966 	 *  3TB   - 2PB     one per 16GB
2967 	 *      > 2PB       ~131,072
2968 	 *  --------------------------------
2969 	 *
2970 	 *  Finally, note that all of the above calculate the initial
2971 	 *  number of metaslabs. Expanding a top-level vdev will result
2972 	 *  in additional metaslabs being allocated making it possible
2973 	 *  to exceed the zfs_vdev_ms_count_limit.
2974 	 */
2975 
2976 	if (ms_count < zfs_vdev_min_ms_count)
2977 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2978 	else if (ms_count > zfs_vdev_default_ms_count)
2979 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2980 	else
2981 		ms_shift = zfs_vdev_default_ms_shift;
2982 
2983 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2984 		ms_shift = SPA_MAXBLOCKSHIFT;
2985 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2986 		ms_shift = zfs_vdev_max_ms_shift;
2987 		/* cap the total count to constrain memory footprint */
2988 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2989 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2990 	}
2991 
2992 	vd->vdev_ms_shift = ms_shift;
2993 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2994 }
2995 
2996 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2997 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2998 {
2999 	ASSERT(vd == vd->vdev_top);
3000 	/* indirect vdevs don't have metaslabs or dtls */
3001 	ASSERT(vdev_is_concrete(vd) || flags == 0);
3002 	ASSERT(ISP2(flags));
3003 	ASSERT(spa_writeable(vd->vdev_spa));
3004 
3005 	if (flags & VDD_METASLAB)
3006 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
3007 
3008 	if (flags & VDD_DTL)
3009 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
3010 
3011 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
3012 }
3013 
3014 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)3015 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
3016 {
3017 	for (int c = 0; c < vd->vdev_children; c++)
3018 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
3019 
3020 	if (vd->vdev_ops->vdev_op_leaf)
3021 		vdev_dirty(vd->vdev_top, flags, vd, txg);
3022 }
3023 
3024 /*
3025  * DTLs.
3026  *
3027  * A vdev's DTL (dirty time log) is the set of transaction groups for which
3028  * the vdev has less than perfect replication.  There are four kinds of DTL:
3029  *
3030  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
3031  *
3032  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
3033  *
3034  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
3035  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
3036  *	txgs that was scrubbed.
3037  *
3038  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
3039  *	persistent errors or just some device being offline.
3040  *	Unlike the other three, the DTL_OUTAGE map is not generally
3041  *	maintained; it's only computed when needed, typically to
3042  *	determine whether a device can be detached.
3043  *
3044  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
3045  * either has the data or it doesn't.
3046  *
3047  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
3048  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
3049  * if any child is less than fully replicated, then so is its parent.
3050  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
3051  * comprising only those txgs which appear in 'maxfaults' or more children;
3052  * those are the txgs we don't have enough replication to read.  For example,
3053  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
3054  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
3055  * two child DTL_MISSING maps.
3056  *
3057  * It should be clear from the above that to compute the DTLs and outage maps
3058  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3059  * Therefore, that is all we keep on disk.  When loading the pool, or after
3060  * a configuration change, we generate all other DTLs from first principles.
3061  */
3062 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3063 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3064 {
3065 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3066 
3067 	ASSERT(t < DTL_TYPES);
3068 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3069 	ASSERT(spa_writeable(vd->vdev_spa));
3070 
3071 	mutex_enter(&vd->vdev_dtl_lock);
3072 	if (!zfs_range_tree_contains(rt, txg, size))
3073 		zfs_range_tree_add(rt, txg, size);
3074 	mutex_exit(&vd->vdev_dtl_lock);
3075 }
3076 
3077 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)3078 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3079 {
3080 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3081 	boolean_t dirty = B_FALSE;
3082 
3083 	ASSERT(t < DTL_TYPES);
3084 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3085 
3086 	/*
3087 	 * While we are loading the pool, the DTLs have not been loaded yet.
3088 	 * This isn't a problem but it can result in devices being tried
3089 	 * which are known to not have the data.  In which case, the import
3090 	 * is relying on the checksum to ensure that we get the right data.
3091 	 * Note that while importing we are only reading the MOS, which is
3092 	 * always checksummed.
3093 	 */
3094 	mutex_enter(&vd->vdev_dtl_lock);
3095 	if (!zfs_range_tree_is_empty(rt))
3096 		dirty = zfs_range_tree_contains(rt, txg, size);
3097 	mutex_exit(&vd->vdev_dtl_lock);
3098 
3099 	return (dirty);
3100 }
3101 
3102 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3103 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3104 {
3105 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3106 	boolean_t empty;
3107 
3108 	mutex_enter(&vd->vdev_dtl_lock);
3109 	empty = zfs_range_tree_is_empty(rt);
3110 	mutex_exit(&vd->vdev_dtl_lock);
3111 
3112 	return (empty);
3113 }
3114 
3115 /*
3116  * Check if the txg falls within the range which must be
3117  * resilvered.  DVAs outside this range can always be skipped.
3118  */
3119 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3120 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3121     uint64_t phys_birth)
3122 {
3123 	(void) dva, (void) psize;
3124 
3125 	/* Set by sequential resilver. */
3126 	if (phys_birth == TXG_UNKNOWN)
3127 		return (B_TRUE);
3128 
3129 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3130 }
3131 
3132 /*
3133  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3134  */
3135 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3136 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3137     uint64_t phys_birth)
3138 {
3139 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3140 
3141 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3142 	    vd->vdev_ops->vdev_op_leaf)
3143 		return (B_TRUE);
3144 
3145 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3146 	    phys_birth));
3147 }
3148 
3149 /*
3150  * Returns the lowest txg in the DTL range.
3151  */
3152 static uint64_t
vdev_dtl_min(vdev_t * vd)3153 vdev_dtl_min(vdev_t *vd)
3154 {
3155 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3156 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3157 	ASSERT0(vd->vdev_children);
3158 
3159 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3160 }
3161 
3162 /*
3163  * Returns the highest txg in the DTL.
3164  */
3165 static uint64_t
vdev_dtl_max(vdev_t * vd)3166 vdev_dtl_max(vdev_t *vd)
3167 {
3168 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3169 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3170 	ASSERT0(vd->vdev_children);
3171 
3172 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3173 }
3174 
3175 /*
3176  * Determine if a resilvering vdev should remove any DTL entries from
3177  * its range. If the vdev was resilvering for the entire duration of the
3178  * scan then it should excise that range from its DTLs. Otherwise, this
3179  * vdev is considered partially resilvered and should leave its DTL
3180  * entries intact. The comment in vdev_dtl_reassess() describes how we
3181  * excise the DTLs.
3182  */
3183 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3184 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3185 {
3186 	ASSERT0(vd->vdev_children);
3187 
3188 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3189 		return (B_FALSE);
3190 
3191 	if (vd->vdev_resilver_deferred)
3192 		return (B_FALSE);
3193 
3194 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3195 		return (B_TRUE);
3196 
3197 	if (rebuild_done) {
3198 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3199 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3200 
3201 		/* Rebuild not initiated by attach */
3202 		if (vd->vdev_rebuild_txg == 0)
3203 			return (B_TRUE);
3204 
3205 		/*
3206 		 * When a rebuild completes without error then all missing data
3207 		 * up to the rebuild max txg has been reconstructed and the DTL
3208 		 * is eligible for excision.
3209 		 */
3210 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3211 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3212 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3213 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3214 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3215 			return (B_TRUE);
3216 		}
3217 	} else {
3218 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3219 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3220 
3221 		/* Resilver not initiated by attach */
3222 		if (vd->vdev_resilver_txg == 0)
3223 			return (B_TRUE);
3224 
3225 		/*
3226 		 * When a resilver is initiated the scan will assign the
3227 		 * scn_max_txg value to the highest txg value that exists
3228 		 * in all DTLs. If this device's max DTL is not part of this
3229 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3230 		 * then it is not eligible for excision.
3231 		 */
3232 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3233 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3234 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3235 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3236 			return (B_TRUE);
3237 		}
3238 	}
3239 
3240 	return (B_FALSE);
3241 }
3242 
3243 /*
3244  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3245  * write operations will be issued to the pool.
3246  */
3247 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3248 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3249     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3250 {
3251 	spa_t *spa = vd->vdev_spa;
3252 	avl_tree_t reftree;
3253 	int minref;
3254 
3255 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3256 
3257 	for (int c = 0; c < vd->vdev_children; c++)
3258 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3259 		    scrub_txg, scrub_done, rebuild_done, faulting);
3260 
3261 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3262 		return;
3263 
3264 	if (vd->vdev_ops->vdev_op_leaf) {
3265 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3266 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3267 		boolean_t check_excise = B_FALSE;
3268 		boolean_t wasempty = B_TRUE;
3269 
3270 		mutex_enter(&vd->vdev_dtl_lock);
3271 
3272 		/*
3273 		 * If requested, pretend the scan or rebuild completed cleanly.
3274 		 */
3275 		if (zfs_scan_ignore_errors) {
3276 			if (scn != NULL)
3277 				scn->scn_phys.scn_errors = 0;
3278 			if (vr != NULL)
3279 				vr->vr_rebuild_phys.vrp_errors = 0;
3280 		}
3281 
3282 		if (scrub_txg != 0 &&
3283 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3284 			wasempty = B_FALSE;
3285 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3286 			    "dtl:%llu/%llu errors:%llu",
3287 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3288 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3289 			    (u_longlong_t)vdev_dtl_min(vd),
3290 			    (u_longlong_t)vdev_dtl_max(vd),
3291 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3292 		}
3293 
3294 		/*
3295 		 * If we've completed a scrub/resilver or a rebuild cleanly
3296 		 * then determine if this vdev should remove any DTLs. We
3297 		 * only want to excise regions on vdevs that were available
3298 		 * during the entire duration of this scan.
3299 		 */
3300 		if (rebuild_done &&
3301 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3302 			check_excise = B_TRUE;
3303 		} else {
3304 			if (spa->spa_scrub_started ||
3305 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3306 				check_excise = B_TRUE;
3307 			}
3308 		}
3309 
3310 		if (scrub_txg && check_excise &&
3311 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3312 			/*
3313 			 * We completed a scrub, resilver or rebuild up to
3314 			 * scrub_txg.  If we did it without rebooting, then
3315 			 * the scrub dtl will be valid, so excise the old
3316 			 * region and fold in the scrub dtl.  Otherwise,
3317 			 * leave the dtl as-is if there was an error.
3318 			 *
3319 			 * There's little trick here: to excise the beginning
3320 			 * of the DTL_MISSING map, we put it into a reference
3321 			 * tree and then add a segment with refcnt -1 that
3322 			 * covers the range [0, scrub_txg).  This means
3323 			 * that each txg in that range has refcnt -1 or 0.
3324 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3325 			 * entries in the range [0, scrub_txg) will have a
3326 			 * positive refcnt -- either 1 or 2.  We then convert
3327 			 * the reference tree into the new DTL_MISSING map.
3328 			 */
3329 			space_reftree_create(&reftree);
3330 			space_reftree_add_map(&reftree,
3331 			    vd->vdev_dtl[DTL_MISSING], 1);
3332 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3333 			space_reftree_add_map(&reftree,
3334 			    vd->vdev_dtl[DTL_SCRUB], 2);
3335 			space_reftree_generate_map(&reftree,
3336 			    vd->vdev_dtl[DTL_MISSING], 1);
3337 			space_reftree_destroy(&reftree);
3338 
3339 			if (!zfs_range_tree_is_empty(
3340 			    vd->vdev_dtl[DTL_MISSING])) {
3341 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3342 				    (u_longlong_t)vdev_dtl_min(vd),
3343 				    (u_longlong_t)vdev_dtl_max(vd));
3344 			} else if (!wasempty) {
3345 				zfs_dbgmsg("DTL_MISSING is now empty");
3346 			}
3347 		}
3348 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3349 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3350 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3351 		if (scrub_done)
3352 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3353 			    NULL);
3354 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3355 
3356 		/*
3357 		 * For the faulting case, treat members of a replacing vdev
3358 		 * as if they are not available. It's more likely than not that
3359 		 * a vdev in a replacing vdev could encounter read errors so
3360 		 * treat it as not being able to contribute.
3361 		 */
3362 		if (!vdev_readable(vd) ||
3363 		    (faulting && vd->vdev_parent != NULL &&
3364 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3365 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3366 		} else {
3367 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3368 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3369 		}
3370 
3371 		/*
3372 		 * If the vdev was resilvering or rebuilding and no longer
3373 		 * has any DTLs then reset the appropriate flag and dirty
3374 		 * the top level so that we persist the change.
3375 		 */
3376 		if (txg != 0 &&
3377 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3378 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3379 			if (vd->vdev_rebuild_txg != 0) {
3380 				vd->vdev_rebuild_txg = 0;
3381 				vdev_config_dirty(vd->vdev_top);
3382 			} else if (vd->vdev_resilver_txg != 0) {
3383 				vd->vdev_resilver_txg = 0;
3384 				vdev_config_dirty(vd->vdev_top);
3385 			}
3386 		}
3387 
3388 		mutex_exit(&vd->vdev_dtl_lock);
3389 
3390 		if (txg != 0)
3391 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3392 	} else {
3393 		mutex_enter(&vd->vdev_dtl_lock);
3394 		for (int t = 0; t < DTL_TYPES; t++) {
3395 			/* account for child's outage in parent's missing map */
3396 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3397 			if (t == DTL_SCRUB) {
3398 				/* leaf vdevs only */
3399 				continue;
3400 			}
3401 			if (t == DTL_PARTIAL) {
3402 				/* i.e. non-zero */
3403 				minref = 1;
3404 			} else if (vdev_get_nparity(vd) != 0) {
3405 				/* RAIDZ, DRAID */
3406 				minref = vdev_get_nparity(vd) + 1;
3407 			} else {
3408 				/* any kind of mirror */
3409 				minref = vd->vdev_children;
3410 			}
3411 			space_reftree_create(&reftree);
3412 			for (int c = 0; c < vd->vdev_children; c++) {
3413 				vdev_t *cvd = vd->vdev_child[c];
3414 				mutex_enter(&cvd->vdev_dtl_lock);
3415 				space_reftree_add_map(&reftree,
3416 				    cvd->vdev_dtl[s], 1);
3417 				mutex_exit(&cvd->vdev_dtl_lock);
3418 			}
3419 			space_reftree_generate_map(&reftree,
3420 			    vd->vdev_dtl[t], minref);
3421 			space_reftree_destroy(&reftree);
3422 		}
3423 		mutex_exit(&vd->vdev_dtl_lock);
3424 	}
3425 
3426 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3427 		raidz_dtl_reassessed(vd);
3428 	}
3429 }
3430 
3431 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3432 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3433     boolean_t scrub_done, boolean_t rebuild_done)
3434 {
3435 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3436 	    rebuild_done, B_FALSE));
3437 }
3438 
3439 /*
3440  * Iterate over all the vdevs except spare, and post kobj events
3441  */
3442 void
vdev_post_kobj_evt(vdev_t * vd)3443 vdev_post_kobj_evt(vdev_t *vd)
3444 {
3445 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3446 	    vd->vdev_kobj_flag == B_FALSE) {
3447 		vd->vdev_kobj_flag = B_TRUE;
3448 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3449 	}
3450 
3451 	for (int c = 0; c < vd->vdev_children; c++)
3452 		vdev_post_kobj_evt(vd->vdev_child[c]);
3453 }
3454 
3455 /*
3456  * Iterate over all the vdevs except spare, and clear kobj events
3457  */
3458 void
vdev_clear_kobj_evt(vdev_t * vd)3459 vdev_clear_kobj_evt(vdev_t *vd)
3460 {
3461 	vd->vdev_kobj_flag = B_FALSE;
3462 
3463 	for (int c = 0; c < vd->vdev_children; c++)
3464 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3465 }
3466 
3467 int
vdev_dtl_load(vdev_t * vd)3468 vdev_dtl_load(vdev_t *vd)
3469 {
3470 	spa_t *spa = vd->vdev_spa;
3471 	objset_t *mos = spa->spa_meta_objset;
3472 	zfs_range_tree_t *rt;
3473 	int error = 0;
3474 
3475 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3476 		ASSERT(vdev_is_concrete(vd));
3477 
3478 		/*
3479 		 * If the dtl cannot be sync'd there is no need to open it.
3480 		 */
3481 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3482 			return (0);
3483 
3484 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3485 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3486 		if (error)
3487 			return (error);
3488 		ASSERT(vd->vdev_dtl_sm != NULL);
3489 
3490 		rt = zfs_range_tree_create_flags(
3491 		    NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3492 		    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt"));
3493 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3494 		if (error == 0) {
3495 			mutex_enter(&vd->vdev_dtl_lock);
3496 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3497 			    vd->vdev_dtl[DTL_MISSING]);
3498 			mutex_exit(&vd->vdev_dtl_lock);
3499 		}
3500 
3501 		zfs_range_tree_vacate(rt, NULL, NULL);
3502 		zfs_range_tree_destroy(rt);
3503 
3504 		return (error);
3505 	}
3506 
3507 	for (int c = 0; c < vd->vdev_children; c++) {
3508 		error = vdev_dtl_load(vd->vdev_child[c]);
3509 		if (error != 0)
3510 			break;
3511 	}
3512 
3513 	return (error);
3514 }
3515 
3516 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3517 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3518 {
3519 	spa_t *spa = vd->vdev_spa;
3520 	objset_t *mos = spa->spa_meta_objset;
3521 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3522 	const char *string;
3523 
3524 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3525 
3526 	string =
3527 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3528 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3529 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3530 
3531 	ASSERT(string != NULL);
3532 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3533 	    1, strlen(string) + 1, string, tx));
3534 
3535 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3536 		spa_activate_allocation_classes(spa, tx);
3537 	}
3538 }
3539 
3540 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3541 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3542 {
3543 	spa_t *spa = vd->vdev_spa;
3544 
3545 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3546 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3547 	    zapobj, tx));
3548 }
3549 
3550 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3551 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3552 {
3553 	spa_t *spa = vd->vdev_spa;
3554 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3555 	    DMU_OT_NONE, 0, tx);
3556 
3557 	ASSERT(zap != 0);
3558 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3559 	    zap, tx));
3560 
3561 	return (zap);
3562 }
3563 
3564 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3565 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3566 {
3567 	if (vd->vdev_ops != &vdev_hole_ops &&
3568 	    vd->vdev_ops != &vdev_missing_ops &&
3569 	    vd->vdev_ops != &vdev_root_ops &&
3570 	    !vd->vdev_top->vdev_removing) {
3571 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3572 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3573 		}
3574 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3575 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3576 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3577 				vdev_zap_allocation_data(vd, tx);
3578 		}
3579 	}
3580 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3581 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3582 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3583 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3584 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3585 	}
3586 
3587 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3588 		vdev_construct_zaps(vd->vdev_child[i], tx);
3589 	}
3590 }
3591 
3592 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3593 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3594 {
3595 	spa_t *spa = vd->vdev_spa;
3596 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3597 	objset_t *mos = spa->spa_meta_objset;
3598 	zfs_range_tree_t *rtsync;
3599 	dmu_tx_t *tx;
3600 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3601 
3602 	ASSERT(vdev_is_concrete(vd));
3603 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3604 
3605 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3606 
3607 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3608 		mutex_enter(&vd->vdev_dtl_lock);
3609 		space_map_free(vd->vdev_dtl_sm, tx);
3610 		space_map_close(vd->vdev_dtl_sm);
3611 		vd->vdev_dtl_sm = NULL;
3612 		mutex_exit(&vd->vdev_dtl_lock);
3613 
3614 		/*
3615 		 * We only destroy the leaf ZAP for detached leaves or for
3616 		 * removed log devices. Removed data devices handle leaf ZAP
3617 		 * cleanup later, once cancellation is no longer possible.
3618 		 */
3619 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3620 		    vd->vdev_top->vdev_islog)) {
3621 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3622 			vd->vdev_leaf_zap = 0;
3623 		}
3624 
3625 		dmu_tx_commit(tx);
3626 		return;
3627 	}
3628 
3629 	if (vd->vdev_dtl_sm == NULL) {
3630 		uint64_t new_object;
3631 
3632 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3633 		VERIFY3U(new_object, !=, 0);
3634 
3635 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3636 		    0, -1ULL, 0));
3637 		ASSERT(vd->vdev_dtl_sm != NULL);
3638 	}
3639 
3640 	rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
3641 	    ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync"));
3642 
3643 	mutex_enter(&vd->vdev_dtl_lock);
3644 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3645 	mutex_exit(&vd->vdev_dtl_lock);
3646 
3647 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3648 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3649 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3650 
3651 	zfs_range_tree_destroy(rtsync);
3652 
3653 	/*
3654 	 * If the object for the space map has changed then dirty
3655 	 * the top level so that we update the config.
3656 	 */
3657 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3658 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3659 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3660 		    (u_longlong_t)object,
3661 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3662 		vdev_config_dirty(vd->vdev_top);
3663 	}
3664 
3665 	dmu_tx_commit(tx);
3666 }
3667 
3668 /*
3669  * Determine whether the specified vdev can be
3670  * - offlined
3671  * - detached
3672  * - removed
3673  * - faulted
3674  * without losing data.
3675  */
3676 boolean_t
vdev_dtl_required(vdev_t * vd)3677 vdev_dtl_required(vdev_t *vd)
3678 {
3679 	spa_t *spa = vd->vdev_spa;
3680 	vdev_t *tvd = vd->vdev_top;
3681 	uint8_t cant_read = vd->vdev_cant_read;
3682 	boolean_t required;
3683 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3684 
3685 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3686 
3687 	if (vd == spa->spa_root_vdev || vd == tvd)
3688 		return (B_TRUE);
3689 
3690 	/*
3691 	 * Temporarily mark the device as unreadable, and then determine
3692 	 * whether this results in any DTL outages in the top-level vdev.
3693 	 * If not, we can safely offline/detach/remove the device.
3694 	 */
3695 	vd->vdev_cant_read = B_TRUE;
3696 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3697 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3698 	vd->vdev_cant_read = cant_read;
3699 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3700 
3701 	if (!required && zio_injection_enabled) {
3702 		required = !!zio_handle_device_injection(vd, NULL,
3703 		    SET_ERROR(ECHILD));
3704 	}
3705 
3706 	return (required);
3707 }
3708 
3709 /*
3710  * Determine if resilver is needed, and if so the txg range.
3711  */
3712 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3713 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3714 {
3715 	boolean_t needed = B_FALSE;
3716 	uint64_t thismin = UINT64_MAX;
3717 	uint64_t thismax = 0;
3718 
3719 	if (vd->vdev_children == 0) {
3720 		mutex_enter(&vd->vdev_dtl_lock);
3721 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3722 		    vdev_writeable(vd)) {
3723 
3724 			thismin = vdev_dtl_min(vd);
3725 			thismax = vdev_dtl_max(vd);
3726 			needed = B_TRUE;
3727 		}
3728 		mutex_exit(&vd->vdev_dtl_lock);
3729 	} else {
3730 		for (int c = 0; c < vd->vdev_children; c++) {
3731 			vdev_t *cvd = vd->vdev_child[c];
3732 			uint64_t cmin, cmax;
3733 
3734 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3735 				thismin = MIN(thismin, cmin);
3736 				thismax = MAX(thismax, cmax);
3737 				needed = B_TRUE;
3738 			}
3739 		}
3740 	}
3741 
3742 	if (needed && minp) {
3743 		*minp = thismin;
3744 		*maxp = thismax;
3745 	}
3746 	return (needed);
3747 }
3748 
3749 /*
3750  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3751  * will contain either the checkpoint spacemap object or zero if none exists.
3752  * All other errors are returned to the caller.
3753  */
3754 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3755 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3756 {
3757 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3758 
3759 	if (vd->vdev_top_zap == 0) {
3760 		*sm_obj = 0;
3761 		return (0);
3762 	}
3763 
3764 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3765 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3766 	if (error == ENOENT) {
3767 		*sm_obj = 0;
3768 		error = 0;
3769 	}
3770 
3771 	return (error);
3772 }
3773 
3774 int
vdev_load(vdev_t * vd)3775 vdev_load(vdev_t *vd)
3776 {
3777 	int children = vd->vdev_children;
3778 	int error = 0;
3779 	taskq_t *tq = NULL;
3780 
3781 	/*
3782 	 * It's only worthwhile to use the taskq for the root vdev, because the
3783 	 * slow part is metaslab_init, and that only happens for top-level
3784 	 * vdevs.
3785 	 */
3786 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3787 		tq = taskq_create("vdev_load", children, minclsyspri,
3788 		    children, children, TASKQ_PREPOPULATE);
3789 	}
3790 
3791 	/*
3792 	 * Recursively load all children.
3793 	 */
3794 	for (int c = 0; c < vd->vdev_children; c++) {
3795 		vdev_t *cvd = vd->vdev_child[c];
3796 
3797 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3798 			cvd->vdev_load_error = vdev_load(cvd);
3799 		} else {
3800 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3801 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3802 		}
3803 	}
3804 
3805 	if (tq != NULL) {
3806 		taskq_wait(tq);
3807 		taskq_destroy(tq);
3808 	}
3809 
3810 	for (int c = 0; c < vd->vdev_children; c++) {
3811 		int error = vd->vdev_child[c]->vdev_load_error;
3812 
3813 		if (error != 0)
3814 			return (error);
3815 	}
3816 
3817 	vdev_set_deflate_ratio(vd);
3818 
3819 	if (vd->vdev_ops == &vdev_raidz_ops) {
3820 		error = vdev_raidz_load(vd);
3821 		if (error != 0)
3822 			return (error);
3823 	}
3824 
3825 	/*
3826 	 * On spa_load path, grab the allocation bias from our zap
3827 	 */
3828 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3829 		spa_t *spa = vd->vdev_spa;
3830 		char bias_str[64];
3831 
3832 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3833 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3834 		    bias_str);
3835 		if (error == 0) {
3836 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3837 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3838 		} else if (error != ENOENT) {
3839 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3840 			    VDEV_AUX_CORRUPT_DATA);
3841 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3842 			    "failed [error=%d]",
3843 			    (u_longlong_t)vd->vdev_top_zap, error);
3844 			return (error);
3845 		}
3846 	}
3847 
3848 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3849 		spa_t *spa = vd->vdev_spa;
3850 		uint64_t failfast;
3851 
3852 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3853 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3854 		    1, &failfast);
3855 		if (error == 0) {
3856 			vd->vdev_failfast = failfast & 1;
3857 		} else if (error == ENOENT) {
3858 			vd->vdev_failfast = vdev_prop_default_numeric(
3859 			    VDEV_PROP_FAILFAST);
3860 		} else {
3861 			vdev_dbgmsg(vd,
3862 			    "vdev_load: zap_lookup(top_zap=%llu) "
3863 			    "failed [error=%d]",
3864 			    (u_longlong_t)vd->vdev_top_zap, error);
3865 		}
3866 	}
3867 
3868 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3869 		spa_t *spa = vd->vdev_spa;
3870 		uint64_t autosit;
3871 
3872 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3873 		    vdev_prop_to_name(VDEV_PROP_AUTOSIT), sizeof (autosit),
3874 		    1, &autosit);
3875 		if (error == 0) {
3876 			vd->vdev_autosit = autosit == 1;
3877 		} else if (error == ENOENT) {
3878 			vd->vdev_autosit = vdev_prop_default_numeric(
3879 			    VDEV_PROP_AUTOSIT);
3880 		} else {
3881 			vdev_dbgmsg(vd,
3882 			    "vdev_load: zap_lookup(top_zap=%llu) "
3883 			    "failed [error=%d]",
3884 			    (u_longlong_t)vd->vdev_top_zap, error);
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * Load any rebuild state from the top-level vdev zap.
3890 	 */
3891 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3892 		error = vdev_rebuild_load(vd);
3893 		if (error && error != ENOTSUP) {
3894 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3895 			    VDEV_AUX_CORRUPT_DATA);
3896 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3897 			    "failed [error=%d]", error);
3898 			return (error);
3899 		}
3900 	}
3901 
3902 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3903 		uint64_t zapobj;
3904 
3905 		if (vd->vdev_top_zap != 0)
3906 			zapobj = vd->vdev_top_zap;
3907 		else
3908 			zapobj = vd->vdev_leaf_zap;
3909 
3910 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3911 		    &vd->vdev_checksum_n);
3912 		if (error && error != ENOENT)
3913 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3914 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3915 
3916 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3917 		    &vd->vdev_checksum_t);
3918 		if (error && error != ENOENT)
3919 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3920 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3921 
3922 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3923 		    &vd->vdev_io_n);
3924 		if (error && error != ENOENT)
3925 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3926 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3927 
3928 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3929 		    &vd->vdev_io_t);
3930 		if (error && error != ENOENT)
3931 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3932 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3933 
3934 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3935 		    &vd->vdev_slow_io_n);
3936 		if (error && error != ENOENT)
3937 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3938 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3939 
3940 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3941 		    &vd->vdev_slow_io_t);
3942 		if (error && error != ENOENT)
3943 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3944 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3945 	}
3946 
3947 	/*
3948 	 * If this is a top-level vdev, initialize its metaslabs.
3949 	 */
3950 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3951 		vdev_metaslab_group_create(vd);
3952 
3953 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3954 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3955 			    VDEV_AUX_CORRUPT_DATA);
3956 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3957 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3958 			    (u_longlong_t)vd->vdev_asize);
3959 			return (SET_ERROR(ENXIO));
3960 		}
3961 
3962 		error = vdev_metaslab_init(vd, 0);
3963 		if (error != 0) {
3964 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3965 			    "[error=%d]", error);
3966 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3967 			    VDEV_AUX_CORRUPT_DATA);
3968 			return (error);
3969 		}
3970 
3971 		uint64_t checkpoint_sm_obj;
3972 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3973 		if (error == 0 && checkpoint_sm_obj != 0) {
3974 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3975 			ASSERT(vd->vdev_asize != 0);
3976 			ASSERT0P(vd->vdev_checkpoint_sm);
3977 
3978 			error = space_map_open(&vd->vdev_checkpoint_sm,
3979 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3980 			    vd->vdev_ashift);
3981 			if (error != 0) {
3982 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3983 				    "failed for checkpoint spacemap (obj %llu) "
3984 				    "[error=%d]",
3985 				    (u_longlong_t)checkpoint_sm_obj, error);
3986 				return (error);
3987 			}
3988 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3989 
3990 			/*
3991 			 * Since the checkpoint_sm contains free entries
3992 			 * exclusively we can use space_map_allocated() to
3993 			 * indicate the cumulative checkpointed space that
3994 			 * has been freed.
3995 			 */
3996 			vd->vdev_stat.vs_checkpoint_space =
3997 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3998 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3999 			    vd->vdev_stat.vs_checkpoint_space;
4000 		} else if (error != 0) {
4001 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
4002 			    "checkpoint space map object from vdev ZAP "
4003 			    "[error=%d]", error);
4004 			return (error);
4005 		}
4006 	}
4007 
4008 	/*
4009 	 * If this is a leaf vdev, load its DTL.
4010 	 */
4011 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
4012 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4013 		    VDEV_AUX_CORRUPT_DATA);
4014 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
4015 		    "[error=%d]", error);
4016 		return (error);
4017 	}
4018 
4019 	uint64_t obsolete_sm_object;
4020 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
4021 	if (error == 0 && obsolete_sm_object != 0) {
4022 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
4023 		ASSERT(vd->vdev_asize != 0);
4024 		ASSERT0P(vd->vdev_obsolete_sm);
4025 
4026 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
4027 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
4028 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
4029 			    VDEV_AUX_CORRUPT_DATA);
4030 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
4031 			    "obsolete spacemap (obj %llu) [error=%d]",
4032 			    (u_longlong_t)obsolete_sm_object, error);
4033 			return (error);
4034 		}
4035 	} else if (error != 0) {
4036 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
4037 		    "space map object from vdev ZAP [error=%d]", error);
4038 		return (error);
4039 	}
4040 
4041 	return (0);
4042 }
4043 
4044 /*
4045  * The special vdev case is used for hot spares and l2cache devices.  Its
4046  * sole purpose it to set the vdev state for the associated vdev.  To do this,
4047  * we make sure that we can open the underlying device, then try to read the
4048  * label, and make sure that the label is sane and that it hasn't been
4049  * repurposed to another pool.
4050  */
4051 int
vdev_validate_aux(vdev_t * vd)4052 vdev_validate_aux(vdev_t *vd)
4053 {
4054 	nvlist_t *label;
4055 	uint64_t guid, version;
4056 	uint64_t state;
4057 
4058 	if (!vdev_readable(vd))
4059 		return (0);
4060 
4061 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
4062 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4063 		    VDEV_AUX_CORRUPT_DATA);
4064 		return (-1);
4065 	}
4066 
4067 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
4068 	    !SPA_VERSION_IS_SUPPORTED(version) ||
4069 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
4070 	    guid != vd->vdev_guid ||
4071 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
4072 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
4073 		    VDEV_AUX_CORRUPT_DATA);
4074 		nvlist_free(label);
4075 		return (-1);
4076 	}
4077 
4078 	/*
4079 	 * We don't actually check the pool state here.  If it's in fact in
4080 	 * use by another pool, we update this fact on the fly when requested.
4081 	 */
4082 	nvlist_free(label);
4083 	return (0);
4084 }
4085 
4086 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)4087 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4088 {
4089 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
4090 
4091 	if (vd->vdev_top_zap == 0)
4092 		return;
4093 
4094 	uint64_t object = 0;
4095 	int err = zap_lookup(mos, vd->vdev_top_zap,
4096 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4097 	if (err == ENOENT)
4098 		return;
4099 	VERIFY0(err);
4100 
4101 	VERIFY0(dmu_object_free(mos, object, tx));
4102 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4103 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4104 }
4105 
4106 /*
4107  * Free the objects used to store this vdev's spacemaps, and the array
4108  * that points to them.
4109  */
4110 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)4111 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4112 {
4113 	if (vd->vdev_ms_array == 0)
4114 		return;
4115 
4116 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4117 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4118 	size_t array_bytes = array_count * sizeof (uint64_t);
4119 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4120 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4121 	    array_bytes, smobj_array, 0));
4122 
4123 	for (uint64_t i = 0; i < array_count; i++) {
4124 		uint64_t smobj = smobj_array[i];
4125 		if (smobj == 0)
4126 			continue;
4127 
4128 		space_map_free_obj(mos, smobj, tx);
4129 	}
4130 
4131 	kmem_free(smobj_array, array_bytes);
4132 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4133 	vdev_destroy_ms_flush_data(vd, tx);
4134 	vd->vdev_ms_array = 0;
4135 }
4136 
4137 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4138 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4139 {
4140 	spa_t *spa = vd->vdev_spa;
4141 
4142 	ASSERT(vd->vdev_islog);
4143 	ASSERT(vd == vd->vdev_top);
4144 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4145 
4146 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4147 
4148 	vdev_destroy_spacemaps(vd, tx);
4149 	if (vd->vdev_top_zap != 0) {
4150 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4151 		vd->vdev_top_zap = 0;
4152 	}
4153 
4154 	dmu_tx_commit(tx);
4155 }
4156 
4157 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4158 vdev_sync_done(vdev_t *vd, uint64_t txg)
4159 {
4160 	metaslab_t *msp;
4161 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4162 
4163 	ASSERT(vdev_is_concrete(vd));
4164 
4165 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4166 	    != NULL)
4167 		metaslab_sync_done(msp, txg);
4168 
4169 	if (reassess) {
4170 		metaslab_sync_reassess(vd->vdev_mg);
4171 		if (vd->vdev_log_mg != NULL)
4172 			metaslab_sync_reassess(vd->vdev_log_mg);
4173 	}
4174 }
4175 
4176 void
vdev_sync(vdev_t * vd,uint64_t txg)4177 vdev_sync(vdev_t *vd, uint64_t txg)
4178 {
4179 	spa_t *spa = vd->vdev_spa;
4180 	vdev_t *lvd;
4181 	metaslab_t *msp;
4182 
4183 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4184 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4185 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4186 		ASSERT(vd->vdev_removing ||
4187 		    vd->vdev_ops == &vdev_indirect_ops);
4188 
4189 		vdev_indirect_sync_obsolete(vd, tx);
4190 
4191 		/*
4192 		 * If the vdev is indirect, it can't have dirty
4193 		 * metaslabs or DTLs.
4194 		 */
4195 		if (vd->vdev_ops == &vdev_indirect_ops) {
4196 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4197 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4198 			dmu_tx_commit(tx);
4199 			return;
4200 		}
4201 	}
4202 
4203 	ASSERT(vdev_is_concrete(vd));
4204 
4205 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4206 	    !vd->vdev_removing) {
4207 		ASSERT(vd == vd->vdev_top);
4208 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4209 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4210 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4211 		ASSERT(vd->vdev_ms_array != 0);
4212 		vdev_config_dirty(vd);
4213 	}
4214 
4215 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4216 		metaslab_sync(msp, txg);
4217 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4218 	}
4219 
4220 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4221 		vdev_dtl_sync(lvd, txg);
4222 
4223 	/*
4224 	 * If this is an empty log device being removed, destroy the
4225 	 * metadata associated with it.
4226 	 */
4227 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4228 		vdev_remove_empty_log(vd, txg);
4229 
4230 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4231 	dmu_tx_commit(tx);
4232 }
4233 uint64_t
vdev_asize_to_psize_txg(vdev_t * vd,uint64_t asize,uint64_t txg)4234 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4235 {
4236 	return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4237 }
4238 
4239 /*
4240  * Return the amount of space that should be (or was) allocated for the given
4241  * psize (compressed block size) in the given TXG. Note that for expanded
4242  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4243  * vdev_raidz_psize_to_asize().
4244  */
4245 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4246 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4247 {
4248 	return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4249 }
4250 
4251 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4252 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4253 {
4254 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4255 }
4256 
4257 /*
4258  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4259  * not be opened, and no I/O is attempted.
4260  */
4261 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4262 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4263 {
4264 	vdev_t *vd, *tvd;
4265 
4266 	spa_vdev_state_enter(spa, SCL_NONE);
4267 
4268 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4269 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4270 
4271 	if (!vd->vdev_ops->vdev_op_leaf)
4272 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4273 
4274 	tvd = vd->vdev_top;
4275 
4276 	/*
4277 	 * If user did a 'zpool offline -f' then make the fault persist across
4278 	 * reboots.
4279 	 */
4280 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4281 		/*
4282 		 * There are two kinds of forced faults: temporary and
4283 		 * persistent.  Temporary faults go away at pool import, while
4284 		 * persistent faults stay set.  Both types of faults can be
4285 		 * cleared with a zpool clear.
4286 		 *
4287 		 * We tell if a vdev is persistently faulted by looking at the
4288 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4289 		 * import then it's a persistent fault.  Otherwise, it's
4290 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4291 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4292 		 * tells vdev_config_generate() (which gets run later) to set
4293 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4294 		 */
4295 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4296 		vd->vdev_tmpoffline = B_FALSE;
4297 		aux = VDEV_AUX_EXTERNAL;
4298 	} else {
4299 		vd->vdev_tmpoffline = B_TRUE;
4300 	}
4301 
4302 	/*
4303 	 * We don't directly use the aux state here, but if we do a
4304 	 * vdev_reopen(), we need this value to be present to remember why we
4305 	 * were faulted.
4306 	 */
4307 	vd->vdev_label_aux = aux;
4308 
4309 	/*
4310 	 * Faulted state takes precedence over degraded.
4311 	 */
4312 	vd->vdev_delayed_close = B_FALSE;
4313 	vd->vdev_faulted = 1ULL;
4314 	vd->vdev_degraded = 0ULL;
4315 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4316 
4317 	/*
4318 	 * If this device has the only valid copy of the data, then
4319 	 * back off and simply mark the vdev as degraded instead.
4320 	 */
4321 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4322 		vd->vdev_degraded = 1ULL;
4323 		vd->vdev_faulted = 0ULL;
4324 
4325 		/*
4326 		 * If we reopen the device and it's not dead, only then do we
4327 		 * mark it degraded.
4328 		 */
4329 		vdev_reopen(tvd);
4330 
4331 		if (vdev_readable(vd))
4332 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4333 	}
4334 
4335 	return (spa_vdev_state_exit(spa, vd, 0));
4336 }
4337 
4338 /*
4339  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4340  * user that something is wrong.  The vdev continues to operate as normal as far
4341  * as I/O is concerned.
4342  */
4343 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4344 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4345 {
4346 	vdev_t *vd;
4347 
4348 	spa_vdev_state_enter(spa, SCL_NONE);
4349 
4350 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4351 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4352 
4353 	if (!vd->vdev_ops->vdev_op_leaf)
4354 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4355 
4356 	/*
4357 	 * If the vdev is already faulted, then don't do anything.
4358 	 */
4359 	if (vd->vdev_faulted || vd->vdev_degraded)
4360 		return (spa_vdev_state_exit(spa, NULL, 0));
4361 
4362 	vd->vdev_degraded = 1ULL;
4363 	if (!vdev_is_dead(vd))
4364 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4365 		    aux);
4366 
4367 	return (spa_vdev_state_exit(spa, vd, 0));
4368 }
4369 
4370 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4371 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4372 {
4373 	vdev_t *vd;
4374 
4375 	spa_vdev_state_enter(spa, SCL_NONE);
4376 
4377 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4378 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4379 
4380 	/*
4381 	 * If the vdev is already removed, or expanding which can trigger
4382 	 * repartition add/remove events, then don't do anything.
4383 	 */
4384 	if (vd->vdev_removed || vd->vdev_expanding)
4385 		return (spa_vdev_state_exit(spa, NULL, 0));
4386 
4387 	/*
4388 	 * Confirm the vdev has been removed, otherwise don't do anything.
4389 	 */
4390 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4391 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4392 
4393 	vd->vdev_remove_wanted = B_TRUE;
4394 	spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4395 
4396 	return (spa_vdev_state_exit(spa, vd, 0));
4397 }
4398 
4399 
4400 /*
4401  * Online the given vdev.
4402  *
4403  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4404  * spare device should be detached when the device finishes resilvering.
4405  * Second, the online should be treated like a 'test' online case, so no FMA
4406  * events are generated if the device fails to open.
4407  */
4408 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4409 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4410 {
4411 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4412 	boolean_t wasoffline;
4413 	vdev_state_t oldstate;
4414 
4415 	spa_vdev_state_enter(spa, SCL_NONE);
4416 
4417 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4418 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4419 
4420 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4421 	oldstate = vd->vdev_state;
4422 
4423 	tvd = vd->vdev_top;
4424 	vd->vdev_offline = B_FALSE;
4425 	vd->vdev_tmpoffline = B_FALSE;
4426 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4427 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4428 
4429 	/* XXX - L2ARC 1.0 does not support expansion */
4430 	if (!vd->vdev_aux) {
4431 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4432 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4433 			    spa->spa_autoexpand);
4434 		vd->vdev_expansion_time = gethrestime_sec();
4435 	}
4436 
4437 	vdev_reopen(tvd);
4438 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4439 
4440 	if (!vd->vdev_aux) {
4441 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4442 			pvd->vdev_expanding = B_FALSE;
4443 	}
4444 
4445 	if (newstate)
4446 		*newstate = vd->vdev_state;
4447 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4448 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4449 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4450 	    vd->vdev_parent->vdev_child[0] == vd)
4451 		vd->vdev_unspare = B_TRUE;
4452 
4453 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4454 
4455 		/* XXX - L2ARC 1.0 does not support expansion */
4456 		if (vd->vdev_aux)
4457 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4458 		spa->spa_ccw_fail_time = 0;
4459 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4460 	}
4461 
4462 	/* Restart initializing if necessary */
4463 	mutex_enter(&vd->vdev_initialize_lock);
4464 	if (vdev_writeable(vd) &&
4465 	    vd->vdev_initialize_thread == NULL &&
4466 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4467 		(void) vdev_initialize(vd);
4468 	}
4469 	mutex_exit(&vd->vdev_initialize_lock);
4470 
4471 	/*
4472 	 * Restart trimming if necessary. We do not restart trimming for cache
4473 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4474 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4475 	 * space for upcoming writes.
4476 	 */
4477 	mutex_enter(&vd->vdev_trim_lock);
4478 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4479 	    vd->vdev_trim_thread == NULL &&
4480 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4481 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4482 		    vd->vdev_trim_secure);
4483 	}
4484 	mutex_exit(&vd->vdev_trim_lock);
4485 
4486 	if (wasoffline ||
4487 	    (oldstate < VDEV_STATE_DEGRADED &&
4488 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4489 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4490 
4491 		/*
4492 		 * Asynchronously detach spare vdev if resilver or
4493 		 * rebuild is not required
4494 		 */
4495 		if (vd->vdev_unspare &&
4496 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4497 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4498 		    !vdev_rebuild_active(tvd))
4499 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4500 	}
4501 	return (spa_vdev_state_exit(spa, vd, 0));
4502 }
4503 
4504 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4505 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4506 {
4507 	vdev_t *vd, *tvd;
4508 	int error = 0;
4509 	uint64_t generation;
4510 	metaslab_group_t *mg;
4511 
4512 top:
4513 	spa_vdev_state_enter(spa, SCL_ALLOC);
4514 
4515 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4516 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4517 
4518 	if (!vd->vdev_ops->vdev_op_leaf)
4519 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4520 
4521 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4522 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4523 
4524 	tvd = vd->vdev_top;
4525 	mg = tvd->vdev_mg;
4526 	generation = spa->spa_config_generation + 1;
4527 
4528 	/*
4529 	 * If the device isn't already offline, try to offline it.
4530 	 */
4531 	if (!vd->vdev_offline) {
4532 		/*
4533 		 * If this device has the only valid copy of some data,
4534 		 * don't allow it to be offlined. Log devices are always
4535 		 * expendable.
4536 		 */
4537 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4538 		    vdev_dtl_required(vd))
4539 			return (spa_vdev_state_exit(spa, NULL,
4540 			    SET_ERROR(EBUSY)));
4541 
4542 		/*
4543 		 * If the top-level is a slog and it has had allocations
4544 		 * then proceed.  We check that the vdev's metaslab group
4545 		 * is not NULL since it's possible that we may have just
4546 		 * added this vdev but not yet initialized its metaslabs.
4547 		 */
4548 		if (tvd->vdev_islog && mg != NULL) {
4549 			/*
4550 			 * Prevent any future allocations.
4551 			 */
4552 			ASSERT0P(tvd->vdev_log_mg);
4553 			metaslab_group_passivate(mg);
4554 			(void) spa_vdev_state_exit(spa, vd, 0);
4555 
4556 			error = spa_reset_logs(spa);
4557 
4558 			/*
4559 			 * If the log device was successfully reset but has
4560 			 * checkpointed data, do not offline it.
4561 			 */
4562 			if (error == 0 &&
4563 			    tvd->vdev_checkpoint_sm != NULL) {
4564 				ASSERT3U(space_map_allocated(
4565 				    tvd->vdev_checkpoint_sm), !=, 0);
4566 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4567 			}
4568 
4569 			spa_vdev_state_enter(spa, SCL_ALLOC);
4570 
4571 			/*
4572 			 * Check to see if the config has changed.
4573 			 */
4574 			if (error || generation != spa->spa_config_generation) {
4575 				metaslab_group_activate(mg);
4576 				if (error)
4577 					return (spa_vdev_state_exit(spa,
4578 					    vd, error));
4579 				(void) spa_vdev_state_exit(spa, vd, 0);
4580 				goto top;
4581 			}
4582 			ASSERT0(tvd->vdev_stat.vs_alloc);
4583 		}
4584 
4585 		/*
4586 		 * Offline this device and reopen its top-level vdev.
4587 		 * If the top-level vdev is a log device then just offline
4588 		 * it. Otherwise, if this action results in the top-level
4589 		 * vdev becoming unusable, undo it and fail the request.
4590 		 */
4591 		vd->vdev_offline = B_TRUE;
4592 		vdev_reopen(tvd);
4593 
4594 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4595 		    vdev_is_dead(tvd)) {
4596 			vd->vdev_offline = B_FALSE;
4597 			vdev_reopen(tvd);
4598 			return (spa_vdev_state_exit(spa, NULL,
4599 			    SET_ERROR(EBUSY)));
4600 		}
4601 
4602 		/*
4603 		 * Add the device back into the metaslab rotor so that
4604 		 * once we online the device it's open for business.
4605 		 */
4606 		if (tvd->vdev_islog && mg != NULL)
4607 			metaslab_group_activate(mg);
4608 	}
4609 
4610 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4611 
4612 	return (spa_vdev_state_exit(spa, vd, 0));
4613 }
4614 
4615 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4616 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4617 {
4618 	int error;
4619 
4620 	mutex_enter(&spa->spa_vdev_top_lock);
4621 	error = vdev_offline_locked(spa, guid, flags);
4622 	mutex_exit(&spa->spa_vdev_top_lock);
4623 
4624 	return (error);
4625 }
4626 
4627 /*
4628  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4629  * vdev_offline(), we assume the spa config is locked.  We also clear all
4630  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4631  */
4632 void
vdev_clear(spa_t * spa,vdev_t * vd)4633 vdev_clear(spa_t *spa, vdev_t *vd)
4634 {
4635 	vdev_t *rvd = spa->spa_root_vdev;
4636 
4637 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4638 
4639 	if (vd == NULL)
4640 		vd = rvd;
4641 
4642 	vd->vdev_stat.vs_read_errors = 0;
4643 	vd->vdev_stat.vs_write_errors = 0;
4644 	vd->vdev_stat.vs_checksum_errors = 0;
4645 	vd->vdev_stat.vs_dio_verify_errors = 0;
4646 	vd->vdev_stat.vs_slow_ios = 0;
4647 	atomic_store_64(&vd->vdev_outlier_count, 0);
4648 	vd->vdev_read_sit_out_expire = 0;
4649 
4650 	for (int c = 0; c < vd->vdev_children; c++)
4651 		vdev_clear(spa, vd->vdev_child[c]);
4652 
4653 	/*
4654 	 * It makes no sense to "clear" an indirect  or removed vdev.
4655 	 */
4656 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4657 		return;
4658 
4659 	/*
4660 	 * If we're in the FAULTED state or have experienced failed I/O, then
4661 	 * clear the persistent state and attempt to reopen the device.  We
4662 	 * also mark the vdev config dirty, so that the new faulted state is
4663 	 * written out to disk.
4664 	 */
4665 	if (vd->vdev_faulted || vd->vdev_degraded ||
4666 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4667 		/*
4668 		 * When reopening in response to a clear event, it may be due to
4669 		 * a fmadm repair request.  In this case, if the device is
4670 		 * still broken, we want to still post the ereport again.
4671 		 */
4672 		vd->vdev_forcefault = B_TRUE;
4673 
4674 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4675 		vd->vdev_cant_read = B_FALSE;
4676 		vd->vdev_cant_write = B_FALSE;
4677 		vd->vdev_stat.vs_aux = 0;
4678 
4679 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4680 
4681 		vd->vdev_forcefault = B_FALSE;
4682 
4683 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4684 			vdev_state_dirty(vd->vdev_top);
4685 
4686 		/* If a resilver isn't required, check if vdevs can be culled */
4687 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4688 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4689 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4690 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4691 
4692 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4693 	}
4694 
4695 	/*
4696 	 * When clearing a FMA-diagnosed fault, we always want to
4697 	 * unspare the device, as we assume that the original spare was
4698 	 * done in response to the FMA fault.
4699 	 */
4700 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4701 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4702 	    vd->vdev_parent->vdev_child[0] == vd)
4703 		vd->vdev_unspare = B_TRUE;
4704 
4705 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4706 	zfs_ereport_clear(spa, vd);
4707 }
4708 
4709 boolean_t
vdev_is_dead(vdev_t * vd)4710 vdev_is_dead(vdev_t *vd)
4711 {
4712 	/*
4713 	 * Holes and missing devices are always considered "dead".
4714 	 * This simplifies the code since we don't have to check for
4715 	 * these types of devices in the various code paths.
4716 	 * Instead we rely on the fact that we skip over dead devices
4717 	 * before issuing I/O to them.
4718 	 */
4719 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4720 	    vd->vdev_ops == &vdev_hole_ops ||
4721 	    vd->vdev_ops == &vdev_missing_ops);
4722 }
4723 
4724 boolean_t
vdev_readable(vdev_t * vd)4725 vdev_readable(vdev_t *vd)
4726 {
4727 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4728 }
4729 
4730 boolean_t
vdev_writeable(vdev_t * vd)4731 vdev_writeable(vdev_t *vd)
4732 {
4733 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4734 	    vdev_is_concrete(vd));
4735 }
4736 
4737 boolean_t
vdev_allocatable(vdev_t * vd)4738 vdev_allocatable(vdev_t *vd)
4739 {
4740 	uint64_t state = vd->vdev_state;
4741 
4742 	/*
4743 	 * We currently allow allocations from vdevs which may be in the
4744 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4745 	 * fails to reopen then we'll catch it later when we're holding
4746 	 * the proper locks.  Note that we have to get the vdev state
4747 	 * in a local variable because although it changes atomically,
4748 	 * we're asking two separate questions about it.
4749 	 */
4750 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4751 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4752 	    vd->vdev_mg->mg_initialized);
4753 }
4754 
4755 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4756 vdev_accessible(vdev_t *vd, zio_t *zio)
4757 {
4758 	ASSERT(zio->io_vd == vd);
4759 
4760 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4761 		return (B_FALSE);
4762 
4763 	if (zio->io_type == ZIO_TYPE_READ)
4764 		return (!vd->vdev_cant_read);
4765 
4766 	if (zio->io_type == ZIO_TYPE_WRITE)
4767 		return (!vd->vdev_cant_write);
4768 
4769 	return (B_TRUE);
4770 }
4771 
4772 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4773 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4774 {
4775 	/*
4776 	 * Exclude the dRAID spare when aggregating to avoid double counting
4777 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4778 	 */
4779 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4780 		return;
4781 
4782 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4783 		vs->vs_ops[t] += cvs->vs_ops[t];
4784 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4785 	}
4786 
4787 	cvs->vs_scan_removing = cvd->vdev_removing;
4788 }
4789 
4790 /*
4791  * Get extended stats
4792  */
4793 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4794 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4795 {
4796 	(void) cvd;
4797 
4798 	int t, b;
4799 	for (t = 0; t < ZIO_TYPES; t++) {
4800 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4801 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4802 
4803 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4804 			vsx->vsx_total_histo[t][b] +=
4805 			    cvsx->vsx_total_histo[t][b];
4806 		}
4807 	}
4808 
4809 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4810 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4811 			vsx->vsx_queue_histo[t][b] +=
4812 			    cvsx->vsx_queue_histo[t][b];
4813 		}
4814 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4815 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4816 
4817 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4818 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4819 
4820 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4821 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4822 	}
4823 
4824 }
4825 
4826 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4827 vdev_is_spacemap_addressable(vdev_t *vd)
4828 {
4829 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4830 		return (B_TRUE);
4831 
4832 	/*
4833 	 * If double-word space map entries are not enabled we assume
4834 	 * 47 bits of the space map entry are dedicated to the entry's
4835 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4836 	 * to calculate the maximum address that can be described by a
4837 	 * space map entry for the given device.
4838 	 */
4839 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4840 
4841 	if (shift >= 63) /* detect potential overflow */
4842 		return (B_TRUE);
4843 
4844 	return (vd->vdev_asize < (1ULL << shift));
4845 }
4846 
4847 /*
4848  * Get statistics for the given vdev.
4849  */
4850 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4851 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4852 {
4853 	int t;
4854 	/*
4855 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4856 	 * over all top-level vdevs (i.e. the direct children of the root).
4857 	 */
4858 	if (!vd->vdev_ops->vdev_op_leaf) {
4859 		if (vs) {
4860 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4861 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4862 		}
4863 		if (vsx)
4864 			memset(vsx, 0, sizeof (*vsx));
4865 
4866 		for (int c = 0; c < vd->vdev_children; c++) {
4867 			vdev_t *cvd = vd->vdev_child[c];
4868 			vdev_stat_t *cvs = &cvd->vdev_stat;
4869 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4870 
4871 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4872 			if (vs)
4873 				vdev_get_child_stat(cvd, vs, cvs);
4874 			if (vsx)
4875 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4876 		}
4877 	} else {
4878 		/*
4879 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4880 		 * other leaf stats are updated in vdev_stat_update().
4881 		 */
4882 		if (!vsx)
4883 			return;
4884 
4885 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4886 
4887 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4888 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4889 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4890 		}
4891 	}
4892 }
4893 
4894 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4895 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4896 {
4897 	vdev_t *tvd = vd->vdev_top;
4898 	mutex_enter(&vd->vdev_stat_lock);
4899 	if (vs) {
4900 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4901 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4902 		vs->vs_state = vd->vdev_state;
4903 		vs->vs_rsize = vdev_get_min_asize(vd);
4904 
4905 		if (vd->vdev_ops->vdev_op_leaf) {
4906 			vs->vs_pspace = vd->vdev_psize;
4907 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4908 			    VDEV_LABEL_END_SIZE;
4909 			/*
4910 			 * Report initializing progress. Since we don't
4911 			 * have the initializing locks held, this is only
4912 			 * an estimate (although a fairly accurate one).
4913 			 */
4914 			vs->vs_initialize_bytes_done =
4915 			    vd->vdev_initialize_bytes_done;
4916 			vs->vs_initialize_bytes_est =
4917 			    vd->vdev_initialize_bytes_est;
4918 			vs->vs_initialize_state = vd->vdev_initialize_state;
4919 			vs->vs_initialize_action_time =
4920 			    vd->vdev_initialize_action_time;
4921 
4922 			/*
4923 			 * Report manual TRIM progress. Since we don't have
4924 			 * the manual TRIM locks held, this is only an
4925 			 * estimate (although fairly accurate one).
4926 			 */
4927 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4928 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4929 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4930 			vs->vs_trim_state = vd->vdev_trim_state;
4931 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4932 
4933 			/* Set when there is a deferred resilver. */
4934 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4935 		}
4936 
4937 		/*
4938 		 * Report expandable space on top-level, non-auxiliary devices
4939 		 * only. The expandable space is reported in terms of metaslab
4940 		 * sized units since that determines how much space the pool
4941 		 * can expand.
4942 		 */
4943 		if (vd->vdev_aux == NULL && tvd != NULL) {
4944 			vs->vs_esize = P2ALIGN_TYPED(
4945 			    vd->vdev_max_asize - vd->vdev_asize,
4946 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4947 		}
4948 
4949 		vs->vs_configured_ashift = vd->vdev_top != NULL
4950 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4951 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4952 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4953 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4954 		else
4955 			vs->vs_physical_ashift = 0;
4956 
4957 		/*
4958 		 * Report fragmentation and rebuild progress for top-level,
4959 		 * non-auxiliary, concrete devices.
4960 		 */
4961 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4962 		    vdev_is_concrete(vd)) {
4963 			/*
4964 			 * The vdev fragmentation rating doesn't take into
4965 			 * account the embedded slog metaslab (vdev_log_mg).
4966 			 * Since it's only one metaslab, it would have a tiny
4967 			 * impact on the overall fragmentation.
4968 			 */
4969 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4970 			    vd->vdev_mg->mg_fragmentation : 0;
4971 		}
4972 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4973 		    tvd ? tvd->vdev_noalloc : 0);
4974 	}
4975 
4976 	vdev_get_stats_ex_impl(vd, vs, vsx);
4977 	mutex_exit(&vd->vdev_stat_lock);
4978 }
4979 
4980 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4981 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4982 {
4983 	return (vdev_get_stats_ex(vd, vs, NULL));
4984 }
4985 
4986 void
vdev_clear_stats(vdev_t * vd)4987 vdev_clear_stats(vdev_t *vd)
4988 {
4989 	mutex_enter(&vd->vdev_stat_lock);
4990 	vd->vdev_stat.vs_space = 0;
4991 	vd->vdev_stat.vs_dspace = 0;
4992 	vd->vdev_stat.vs_alloc = 0;
4993 	mutex_exit(&vd->vdev_stat_lock);
4994 }
4995 
4996 void
vdev_scan_stat_init(vdev_t * vd)4997 vdev_scan_stat_init(vdev_t *vd)
4998 {
4999 	vdev_stat_t *vs = &vd->vdev_stat;
5000 
5001 	for (int c = 0; c < vd->vdev_children; c++)
5002 		vdev_scan_stat_init(vd->vdev_child[c]);
5003 
5004 	mutex_enter(&vd->vdev_stat_lock);
5005 	vs->vs_scan_processed = 0;
5006 	mutex_exit(&vd->vdev_stat_lock);
5007 }
5008 
5009 void
vdev_stat_update(zio_t * zio,uint64_t psize)5010 vdev_stat_update(zio_t *zio, uint64_t psize)
5011 {
5012 	spa_t *spa = zio->io_spa;
5013 	vdev_t *rvd = spa->spa_root_vdev;
5014 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
5015 	vdev_t *pvd;
5016 	uint64_t txg = zio->io_txg;
5017 /* Suppress ASAN false positive */
5018 #ifdef __SANITIZE_ADDRESS__
5019 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
5020 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
5021 #else
5022 	vdev_stat_t *vs = &vd->vdev_stat;
5023 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
5024 #endif
5025 	zio_type_t type = zio->io_type;
5026 	int flags = zio->io_flags;
5027 
5028 	/*
5029 	 * If this i/o is a gang leader, it didn't do any actual work.
5030 	 */
5031 	if (zio->io_gang_tree)
5032 		return;
5033 
5034 	if (zio->io_error == 0) {
5035 		/*
5036 		 * If this is a root i/o, don't count it -- we've already
5037 		 * counted the top-level vdevs, and vdev_get_stats() will
5038 		 * aggregate them when asked.  This reduces contention on
5039 		 * the root vdev_stat_lock and implicitly handles blocks
5040 		 * that compress away to holes, for which there is no i/o.
5041 		 * (Holes never create vdev children, so all the counters
5042 		 * remain zero, which is what we want.)
5043 		 *
5044 		 * Note: this only applies to successful i/o (io_error == 0)
5045 		 * because unlike i/o counts, errors are not additive.
5046 		 * When reading a ditto block, for example, failure of
5047 		 * one top-level vdev does not imply a root-level error.
5048 		 */
5049 		if (vd == rvd)
5050 			return;
5051 
5052 		ASSERT(vd == zio->io_vd);
5053 
5054 		if (flags & ZIO_FLAG_IO_BYPASS)
5055 			return;
5056 
5057 		mutex_enter(&vd->vdev_stat_lock);
5058 
5059 		if (flags & ZIO_FLAG_IO_REPAIR) {
5060 			/*
5061 			 * Repair is the result of a resilver issued by the
5062 			 * scan thread (spa_sync).
5063 			 */
5064 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5065 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
5066 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
5067 				uint64_t *processed = &scn_phys->scn_processed;
5068 
5069 				if (vd->vdev_ops->vdev_op_leaf)
5070 					atomic_add_64(processed, psize);
5071 				vs->vs_scan_processed += psize;
5072 			}
5073 
5074 			/*
5075 			 * Repair is the result of a rebuild issued by the
5076 			 * rebuild thread (vdev_rebuild_thread).  To avoid
5077 			 * double counting repaired bytes the virtual dRAID
5078 			 * spare vdev is excluded from the processed bytes.
5079 			 */
5080 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5081 				vdev_t *tvd = vd->vdev_top;
5082 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5083 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5084 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5085 
5086 				if (vd->vdev_ops->vdev_op_leaf &&
5087 				    vd->vdev_ops != &vdev_draid_spare_ops) {
5088 					atomic_add_64(rebuilt, psize);
5089 				}
5090 				vs->vs_rebuild_processed += psize;
5091 			}
5092 
5093 			if (flags & ZIO_FLAG_SELF_HEAL)
5094 				vs->vs_self_healed += psize;
5095 		}
5096 
5097 		/*
5098 		 * The bytes/ops/histograms are recorded at the leaf level and
5099 		 * aggregated into the higher level vdevs in vdev_get_stats().
5100 		 */
5101 		if (vd->vdev_ops->vdev_op_leaf &&
5102 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5103 			zio_type_t vs_type = type;
5104 			zio_priority_t priority = zio->io_priority;
5105 
5106 			/*
5107 			 * TRIM ops and bytes are reported to user space as
5108 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
5109 			 * vdev_stat_t structure layout for user space.
5110 			 */
5111 			if (type == ZIO_TYPE_TRIM)
5112 				vs_type = ZIO_TYPE_FLUSH;
5113 
5114 			/*
5115 			 * Solely for the purposes of 'zpool iostat -lqrw'
5116 			 * reporting use the priority to categorize the IO.
5117 			 * Only the following are reported to user space:
5118 			 *
5119 			 *   ZIO_PRIORITY_SYNC_READ,
5120 			 *   ZIO_PRIORITY_SYNC_WRITE,
5121 			 *   ZIO_PRIORITY_ASYNC_READ,
5122 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5123 			 *   ZIO_PRIORITY_SCRUB,
5124 			 *   ZIO_PRIORITY_TRIM,
5125 			 *   ZIO_PRIORITY_REBUILD.
5126 			 */
5127 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5128 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5129 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5130 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5131 				priority = ((type == ZIO_TYPE_WRITE) ?
5132 				    ZIO_PRIORITY_ASYNC_WRITE :
5133 				    ZIO_PRIORITY_ASYNC_READ);
5134 			}
5135 
5136 			vs->vs_ops[vs_type]++;
5137 			vs->vs_bytes[vs_type] += psize;
5138 
5139 			if (flags & ZIO_FLAG_DELEGATED) {
5140 				vsx->vsx_agg_histo[priority]
5141 				    [RQ_HISTO(zio->io_size)]++;
5142 			} else {
5143 				vsx->vsx_ind_histo[priority]
5144 				    [RQ_HISTO(zio->io_size)]++;
5145 			}
5146 
5147 			if (zio->io_delta && zio->io_delay) {
5148 				vsx->vsx_queue_histo[priority]
5149 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5150 				vsx->vsx_disk_histo[type]
5151 				    [L_HISTO(zio->io_delay)]++;
5152 				vsx->vsx_total_histo[type]
5153 				    [L_HISTO(zio->io_delta)]++;
5154 			}
5155 		}
5156 
5157 		mutex_exit(&vd->vdev_stat_lock);
5158 		return;
5159 	}
5160 
5161 	if (flags & ZIO_FLAG_SPECULATIVE)
5162 		return;
5163 
5164 	/*
5165 	 * If this is an I/O error that is going to be retried, then ignore the
5166 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5167 	 * hard errors, when in reality they can happen for any number of
5168 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5169 	 */
5170 	if (zio->io_error == EIO &&
5171 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5172 		return;
5173 
5174 	/*
5175 	 * Intent logs writes won't propagate their error to the root
5176 	 * I/O so don't mark these types of failures as pool-level
5177 	 * errors.
5178 	 */
5179 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5180 		return;
5181 
5182 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5183 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5184 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5185 	    spa->spa_claiming)) {
5186 		/*
5187 		 * This is either a normal write (not a repair), or it's
5188 		 * a repair induced by the scrub thread, or it's a repair
5189 		 * made by zil_claim() during spa_load() in the first txg.
5190 		 * In the normal case, we commit the DTL change in the same
5191 		 * txg as the block was born.  In the scrub-induced repair
5192 		 * case, we know that scrubs run in first-pass syncing context,
5193 		 * so we commit the DTL change in spa_syncing_txg(spa).
5194 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5195 		 *
5196 		 * We currently do not make DTL entries for failed spontaneous
5197 		 * self-healing writes triggered by normal (non-scrubbing)
5198 		 * reads, because we have no transactional context in which to
5199 		 * do so -- and it's not clear that it'd be desirable anyway.
5200 		 */
5201 		if (vd->vdev_ops->vdev_op_leaf) {
5202 			uint64_t commit_txg = txg;
5203 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5204 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5205 				ASSERT(spa_sync_pass(spa) == 1);
5206 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5207 				commit_txg = spa_syncing_txg(spa);
5208 			} else if (spa->spa_claiming) {
5209 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5210 				commit_txg = spa_first_txg(spa);
5211 			}
5212 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5213 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5214 				return;
5215 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5216 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5217 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5218 		}
5219 		if (vd != rvd)
5220 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5221 	}
5222 }
5223 
5224 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5225 vdev_deflated_space(vdev_t *vd, int64_t space)
5226 {
5227 	ASSERT0((space & (SPA_MINBLOCKSIZE-1)));
5228 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5229 
5230 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5231 }
5232 
5233 /*
5234  * Update the in-core space usage stats for this vdev, its metaslab class,
5235  * and the root vdev.
5236  */
5237 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5238 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5239     int64_t space_delta)
5240 {
5241 	(void) defer_delta;
5242 	int64_t dspace_delta;
5243 	spa_t *spa = vd->vdev_spa;
5244 	vdev_t *rvd = spa->spa_root_vdev;
5245 
5246 	ASSERT(vd == vd->vdev_top);
5247 
5248 	/*
5249 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5250 	 * factor.  We must calculate this here and not at the root vdev
5251 	 * because the root vdev's psize-to-asize is simply the max of its
5252 	 * children's, thus not accurate enough for us.
5253 	 */
5254 	dspace_delta = vdev_deflated_space(vd, space_delta);
5255 
5256 	mutex_enter(&vd->vdev_stat_lock);
5257 	/* ensure we won't underflow */
5258 	if (alloc_delta < 0) {
5259 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5260 	}
5261 
5262 	vd->vdev_stat.vs_alloc += alloc_delta;
5263 	vd->vdev_stat.vs_space += space_delta;
5264 	vd->vdev_stat.vs_dspace += dspace_delta;
5265 	mutex_exit(&vd->vdev_stat_lock);
5266 
5267 	/* every class but log contributes to root space stats */
5268 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5269 		ASSERT(!vd->vdev_isl2cache);
5270 		mutex_enter(&rvd->vdev_stat_lock);
5271 		rvd->vdev_stat.vs_alloc += alloc_delta;
5272 		rvd->vdev_stat.vs_space += space_delta;
5273 		rvd->vdev_stat.vs_dspace += dspace_delta;
5274 		mutex_exit(&rvd->vdev_stat_lock);
5275 	}
5276 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5277 }
5278 
5279 /*
5280  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5281  * so that it will be written out next time the vdev configuration is synced.
5282  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5283  */
5284 void
vdev_config_dirty(vdev_t * vd)5285 vdev_config_dirty(vdev_t *vd)
5286 {
5287 	spa_t *spa = vd->vdev_spa;
5288 	vdev_t *rvd = spa->spa_root_vdev;
5289 	int c;
5290 
5291 	ASSERT(spa_writeable(spa));
5292 
5293 	/*
5294 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5295 	 * update the vdev config manually and set the sync flag.
5296 	 */
5297 	if (vd->vdev_aux != NULL) {
5298 		spa_aux_vdev_t *sav = vd->vdev_aux;
5299 		nvlist_t **aux;
5300 		uint_t naux;
5301 
5302 		for (c = 0; c < sav->sav_count; c++) {
5303 			if (sav->sav_vdevs[c] == vd)
5304 				break;
5305 		}
5306 
5307 		if (c == sav->sav_count) {
5308 			/*
5309 			 * We're being removed.  There's nothing more to do.
5310 			 */
5311 			ASSERT(sav->sav_sync == B_TRUE);
5312 			return;
5313 		}
5314 
5315 		sav->sav_sync = B_TRUE;
5316 
5317 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5318 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5319 			VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
5320 			    ZPOOL_CONFIG_SPARES, &aux, &naux));
5321 		}
5322 
5323 		ASSERT(c < naux);
5324 
5325 		/*
5326 		 * Setting the nvlist in the middle if the array is a little
5327 		 * sketchy, but it will work.
5328 		 */
5329 		nvlist_free(aux[c]);
5330 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5331 
5332 		return;
5333 	}
5334 
5335 	/*
5336 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5337 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5338 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5339 	 * so this is sufficient to ensure mutual exclusion.
5340 	 */
5341 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5342 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5343 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5344 
5345 	if (vd == rvd) {
5346 		for (c = 0; c < rvd->vdev_children; c++)
5347 			vdev_config_dirty(rvd->vdev_child[c]);
5348 	} else {
5349 		ASSERT(vd == vd->vdev_top);
5350 
5351 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5352 		    vdev_is_concrete(vd)) {
5353 			list_insert_head(&spa->spa_config_dirty_list, vd);
5354 		}
5355 	}
5356 }
5357 
5358 void
vdev_config_clean(vdev_t * vd)5359 vdev_config_clean(vdev_t *vd)
5360 {
5361 	spa_t *spa = vd->vdev_spa;
5362 
5363 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5364 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5365 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5366 
5367 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5368 	list_remove(&spa->spa_config_dirty_list, vd);
5369 }
5370 
5371 /*
5372  * Mark a top-level vdev's state as dirty, so that the next pass of
5373  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5374  * the state changes from larger config changes because they require
5375  * much less locking, and are often needed for administrative actions.
5376  */
5377 void
vdev_state_dirty(vdev_t * vd)5378 vdev_state_dirty(vdev_t *vd)
5379 {
5380 	spa_t *spa = vd->vdev_spa;
5381 
5382 	ASSERT(spa_writeable(spa));
5383 	ASSERT(vd == vd->vdev_top);
5384 
5385 	/*
5386 	 * The state list is protected by the SCL_STATE lock.  The caller
5387 	 * must either hold SCL_STATE as writer, or must be the sync thread
5388 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5389 	 * so this is sufficient to ensure mutual exclusion.
5390 	 */
5391 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5392 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5393 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5394 
5395 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5396 	    vdev_is_concrete(vd))
5397 		list_insert_head(&spa->spa_state_dirty_list, vd);
5398 }
5399 
5400 void
vdev_state_clean(vdev_t * vd)5401 vdev_state_clean(vdev_t *vd)
5402 {
5403 	spa_t *spa = vd->vdev_spa;
5404 
5405 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5406 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5407 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5408 
5409 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5410 	list_remove(&spa->spa_state_dirty_list, vd);
5411 }
5412 
5413 /*
5414  * Propagate vdev state up from children to parent.
5415  */
5416 void
vdev_propagate_state(vdev_t * vd)5417 vdev_propagate_state(vdev_t *vd)
5418 {
5419 	spa_t *spa = vd->vdev_spa;
5420 	vdev_t *rvd = spa->spa_root_vdev;
5421 	int degraded = 0, faulted = 0;
5422 	int corrupted = 0;
5423 	vdev_t *child;
5424 
5425 	if (vd->vdev_children > 0) {
5426 		for (int c = 0; c < vd->vdev_children; c++) {
5427 			child = vd->vdev_child[c];
5428 
5429 			/*
5430 			 * Don't factor holes or indirect vdevs into the
5431 			 * decision.
5432 			 */
5433 			if (!vdev_is_concrete(child))
5434 				continue;
5435 
5436 			if (!vdev_readable(child) ||
5437 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5438 				/*
5439 				 * Root special: if there is a top-level log
5440 				 * device, treat the root vdev as if it were
5441 				 * degraded.
5442 				 */
5443 				if (child->vdev_islog && vd == rvd)
5444 					degraded++;
5445 				else
5446 					faulted++;
5447 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5448 				degraded++;
5449 			}
5450 
5451 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5452 				corrupted++;
5453 		}
5454 
5455 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5456 
5457 		/*
5458 		 * Root special: if there is a top-level vdev that cannot be
5459 		 * opened due to corrupted metadata, then propagate the root
5460 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5461 		 * replicas'.
5462 		 */
5463 		if (corrupted && vd == rvd &&
5464 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5465 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5466 			    VDEV_AUX_CORRUPT_DATA);
5467 	}
5468 
5469 	if (vd->vdev_parent)
5470 		vdev_propagate_state(vd->vdev_parent);
5471 }
5472 
5473 /*
5474  * Set a vdev's state.  If this is during an open, we don't update the parent
5475  * state, because we're in the process of opening children depth-first.
5476  * Otherwise, we propagate the change to the parent.
5477  *
5478  * If this routine places a device in a faulted state, an appropriate ereport is
5479  * generated.
5480  */
5481 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5482 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5483 {
5484 	uint64_t save_state;
5485 	spa_t *spa = vd->vdev_spa;
5486 
5487 	if (state == vd->vdev_state) {
5488 		/*
5489 		 * Since vdev_offline() code path is already in an offline
5490 		 * state we can miss a statechange event to OFFLINE. Check
5491 		 * the previous state to catch this condition.
5492 		 */
5493 		if (vd->vdev_ops->vdev_op_leaf &&
5494 		    (state == VDEV_STATE_OFFLINE) &&
5495 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5496 			/* post an offline state change */
5497 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5498 		}
5499 		vd->vdev_stat.vs_aux = aux;
5500 		return;
5501 	}
5502 
5503 	save_state = vd->vdev_state;
5504 
5505 	vd->vdev_state = state;
5506 	vd->vdev_stat.vs_aux = aux;
5507 
5508 	/*
5509 	 * If we are setting the vdev state to anything but an open state, then
5510 	 * always close the underlying device unless the device has requested
5511 	 * a delayed close (i.e. we're about to remove or fault the device).
5512 	 * Otherwise, we keep accessible but invalid devices open forever.
5513 	 * We don't call vdev_close() itself, because that implies some extra
5514 	 * checks (offline, etc) that we don't want here.  This is limited to
5515 	 * leaf devices, because otherwise closing the device will affect other
5516 	 * children.
5517 	 */
5518 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5519 	    vd->vdev_ops->vdev_op_leaf)
5520 		vd->vdev_ops->vdev_op_close(vd);
5521 
5522 	if (vd->vdev_removed &&
5523 	    state == VDEV_STATE_CANT_OPEN &&
5524 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5525 		/*
5526 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5527 		 * device was previously marked removed and someone attempted to
5528 		 * reopen it.  If this failed due to a nonexistent device, then
5529 		 * keep the device in the REMOVED state.  We also let this be if
5530 		 * it is one of our special test online cases, which is only
5531 		 * attempting to online the device and shouldn't generate an FMA
5532 		 * fault.
5533 		 */
5534 		vd->vdev_state = VDEV_STATE_REMOVED;
5535 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5536 	} else if (state == VDEV_STATE_REMOVED) {
5537 		vd->vdev_removed = B_TRUE;
5538 	} else if (state == VDEV_STATE_CANT_OPEN) {
5539 		/*
5540 		 * If we fail to open a vdev during an import or recovery, we
5541 		 * mark it as "not available", which signifies that it was
5542 		 * never there to begin with.  Failure to open such a device
5543 		 * is not considered an error.
5544 		 */
5545 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5546 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5547 		    vd->vdev_ops->vdev_op_leaf)
5548 			vd->vdev_not_present = 1;
5549 
5550 		/*
5551 		 * Post the appropriate ereport.  If the 'prevstate' field is
5552 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5553 		 * that this is part of a vdev_reopen().  In this case, we don't
5554 		 * want to post the ereport if the device was already in the
5555 		 * CANT_OPEN state beforehand.
5556 		 *
5557 		 * If the 'checkremove' flag is set, then this is an attempt to
5558 		 * online the device in response to an insertion event.  If we
5559 		 * hit this case, then we have detected an insertion event for a
5560 		 * faulted or offline device that wasn't in the removed state.
5561 		 * In this scenario, we don't post an ereport because we are
5562 		 * about to replace the device, or attempt an online with
5563 		 * vdev_forcefault, which will generate the fault for us.
5564 		 */
5565 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5566 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5567 		    vd != spa->spa_root_vdev) {
5568 			const char *class;
5569 
5570 			switch (aux) {
5571 			case VDEV_AUX_OPEN_FAILED:
5572 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5573 				break;
5574 			case VDEV_AUX_CORRUPT_DATA:
5575 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5576 				break;
5577 			case VDEV_AUX_NO_REPLICAS:
5578 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5579 				break;
5580 			case VDEV_AUX_BAD_GUID_SUM:
5581 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5582 				break;
5583 			case VDEV_AUX_TOO_SMALL:
5584 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5585 				break;
5586 			case VDEV_AUX_BAD_LABEL:
5587 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5588 				break;
5589 			case VDEV_AUX_BAD_ASHIFT:
5590 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5591 				break;
5592 			default:
5593 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5594 			}
5595 
5596 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5597 			    save_state);
5598 		}
5599 
5600 		/* Erase any notion of persistent removed state */
5601 		vd->vdev_removed = B_FALSE;
5602 	} else {
5603 		vd->vdev_removed = B_FALSE;
5604 	}
5605 
5606 	/*
5607 	 * Notify ZED of any significant state-change on a leaf vdev.
5608 	 *
5609 	 */
5610 	if (vd->vdev_ops->vdev_op_leaf) {
5611 		/* preserve original state from a vdev_reopen() */
5612 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5613 		    (vd->vdev_prevstate != vd->vdev_state) &&
5614 		    (save_state <= VDEV_STATE_CLOSED))
5615 			save_state = vd->vdev_prevstate;
5616 
5617 		/* filter out state change due to initial vdev_open */
5618 		if (save_state > VDEV_STATE_CLOSED)
5619 			zfs_post_state_change(spa, vd, save_state);
5620 	}
5621 
5622 	if (!isopen && vd->vdev_parent)
5623 		vdev_propagate_state(vd->vdev_parent);
5624 }
5625 
5626 boolean_t
vdev_children_are_offline(vdev_t * vd)5627 vdev_children_are_offline(vdev_t *vd)
5628 {
5629 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5630 
5631 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5632 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5633 			return (B_FALSE);
5634 	}
5635 
5636 	return (B_TRUE);
5637 }
5638 
5639 /*
5640  * Check the vdev configuration to ensure that it's capable of supporting
5641  * a root pool. We do not support partial configuration.
5642  */
5643 boolean_t
vdev_is_bootable(vdev_t * vd)5644 vdev_is_bootable(vdev_t *vd)
5645 {
5646 	if (!vd->vdev_ops->vdev_op_leaf) {
5647 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5648 
5649 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5650 			return (B_FALSE);
5651 	}
5652 
5653 	for (int c = 0; c < vd->vdev_children; c++) {
5654 		if (!vdev_is_bootable(vd->vdev_child[c]))
5655 			return (B_FALSE);
5656 	}
5657 	return (B_TRUE);
5658 }
5659 
5660 boolean_t
vdev_is_concrete(vdev_t * vd)5661 vdev_is_concrete(vdev_t *vd)
5662 {
5663 	vdev_ops_t *ops = vd->vdev_ops;
5664 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5665 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5666 		return (B_FALSE);
5667 	} else {
5668 		return (B_TRUE);
5669 	}
5670 }
5671 
5672 /*
5673  * Determine if a log device has valid content.  If the vdev was
5674  * removed or faulted in the MOS config then we know that
5675  * the content on the log device has already been written to the pool.
5676  */
5677 boolean_t
vdev_log_state_valid(vdev_t * vd)5678 vdev_log_state_valid(vdev_t *vd)
5679 {
5680 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5681 	    !vd->vdev_removed)
5682 		return (B_TRUE);
5683 
5684 	for (int c = 0; c < vd->vdev_children; c++)
5685 		if (vdev_log_state_valid(vd->vdev_child[c]))
5686 			return (B_TRUE);
5687 
5688 	return (B_FALSE);
5689 }
5690 
5691 /*
5692  * Expand a vdev if possible.
5693  */
5694 void
vdev_expand(vdev_t * vd,uint64_t txg)5695 vdev_expand(vdev_t *vd, uint64_t txg)
5696 {
5697 	ASSERT(vd->vdev_top == vd);
5698 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5699 	ASSERT(vdev_is_concrete(vd));
5700 
5701 	vdev_set_deflate_ratio(vd);
5702 
5703 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5704 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5705 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5706 	    vdev_is_concrete(vd)) {
5707 		vdev_metaslab_group_create(vd);
5708 		VERIFY0(vdev_metaslab_init(vd, txg));
5709 		vdev_config_dirty(vd);
5710 	}
5711 }
5712 
5713 /*
5714  * Split a vdev.
5715  */
5716 void
vdev_split(vdev_t * vd)5717 vdev_split(vdev_t *vd)
5718 {
5719 	vdev_t *cvd, *pvd = vd->vdev_parent;
5720 
5721 	VERIFY3U(pvd->vdev_children, >, 1);
5722 
5723 	vdev_remove_child(pvd, vd);
5724 	vdev_compact_children(pvd);
5725 
5726 	ASSERT3P(pvd->vdev_child, !=, NULL);
5727 
5728 	cvd = pvd->vdev_child[0];
5729 	if (pvd->vdev_children == 1) {
5730 		vdev_remove_parent(cvd);
5731 		cvd->vdev_splitting = B_TRUE;
5732 	}
5733 	vdev_propagate_state(cvd);
5734 }
5735 
5736 void
vdev_deadman(vdev_t * vd,const char * tag)5737 vdev_deadman(vdev_t *vd, const char *tag)
5738 {
5739 	for (int c = 0; c < vd->vdev_children; c++) {
5740 		vdev_t *cvd = vd->vdev_child[c];
5741 
5742 		vdev_deadman(cvd, tag);
5743 	}
5744 
5745 	if (vd->vdev_ops->vdev_op_leaf) {
5746 		vdev_queue_t *vq = &vd->vdev_queue;
5747 
5748 		mutex_enter(&vq->vq_lock);
5749 		if (vq->vq_active > 0) {
5750 			spa_t *spa = vd->vdev_spa;
5751 			zio_t *fio;
5752 			uint64_t delta;
5753 
5754 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5755 			    vd->vdev_path, vq->vq_active);
5756 
5757 			/*
5758 			 * Look at the head of all the pending queues,
5759 			 * if any I/O has been outstanding for longer than
5760 			 * the spa_deadman_synctime invoke the deadman logic.
5761 			 */
5762 			fio = list_head(&vq->vq_active_list);
5763 			delta = gethrtime() - fio->io_timestamp;
5764 			if (delta > spa_deadman_synctime(spa))
5765 				zio_deadman(fio, tag);
5766 		}
5767 		mutex_exit(&vq->vq_lock);
5768 	}
5769 }
5770 
5771 void
vdev_defer_resilver(vdev_t * vd)5772 vdev_defer_resilver(vdev_t *vd)
5773 {
5774 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5775 
5776 	vd->vdev_resilver_deferred = B_TRUE;
5777 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5778 }
5779 
5780 /*
5781  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5782  * B_TRUE if we have devices that need to be resilvered and are available to
5783  * accept resilver I/Os.
5784  */
5785 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5786 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5787 {
5788 	boolean_t resilver_needed = B_FALSE;
5789 	spa_t *spa = vd->vdev_spa;
5790 
5791 	for (int c = 0; c < vd->vdev_children; c++) {
5792 		vdev_t *cvd = vd->vdev_child[c];
5793 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5794 	}
5795 
5796 	if (vd == spa->spa_root_vdev &&
5797 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5798 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5799 		vdev_config_dirty(vd);
5800 		spa->spa_resilver_deferred = B_FALSE;
5801 		return (resilver_needed);
5802 	}
5803 
5804 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5805 	    !vd->vdev_ops->vdev_op_leaf)
5806 		return (resilver_needed);
5807 
5808 	vd->vdev_resilver_deferred = B_FALSE;
5809 
5810 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5811 	    vdev_resilver_needed(vd, NULL, NULL));
5812 }
5813 
5814 boolean_t
vdev_xlate_is_empty(zfs_range_seg64_t * rs)5815 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5816 {
5817 	return (rs->rs_start == rs->rs_end);
5818 }
5819 
5820 /*
5821  * Translate a logical range to the first contiguous physical range for the
5822  * specified vdev_t.  This function is initially called with a leaf vdev and
5823  * will walk each parent vdev until it reaches a top-level vdev. Once the
5824  * top-level is reached the physical range is initialized and the recursive
5825  * function begins to unwind. As it unwinds it calls the parent's vdev
5826  * specific translation function to do the real conversion.
5827  */
5828 void
vdev_xlate(vdev_t * vd,const zfs_range_seg64_t * logical_rs,zfs_range_seg64_t * physical_rs,zfs_range_seg64_t * remain_rs)5829 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5830     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5831 {
5832 	/*
5833 	 * Walk up the vdev tree
5834 	 */
5835 	if (vd != vd->vdev_top) {
5836 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5837 		    remain_rs);
5838 	} else {
5839 		/*
5840 		 * We've reached the top-level vdev, initialize the physical
5841 		 * range to the logical range and set an empty remaining
5842 		 * range then start to unwind.
5843 		 */
5844 		physical_rs->rs_start = logical_rs->rs_start;
5845 		physical_rs->rs_end = logical_rs->rs_end;
5846 
5847 		remain_rs->rs_start = logical_rs->rs_start;
5848 		remain_rs->rs_end = logical_rs->rs_start;
5849 
5850 		return;
5851 	}
5852 
5853 	vdev_t *pvd = vd->vdev_parent;
5854 	ASSERT3P(pvd, !=, NULL);
5855 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5856 
5857 	/*
5858 	 * As this recursive function unwinds, translate the logical
5859 	 * range into its physical and any remaining components by calling
5860 	 * the vdev specific translate function.
5861 	 */
5862 	zfs_range_seg64_t intermediate = { 0 };
5863 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5864 
5865 	physical_rs->rs_start = intermediate.rs_start;
5866 	physical_rs->rs_end = intermediate.rs_end;
5867 }
5868 
5869 void
vdev_xlate_walk(vdev_t * vd,const zfs_range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5870 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5871     vdev_xlate_func_t *func, void *arg)
5872 {
5873 	zfs_range_seg64_t iter_rs = *logical_rs;
5874 	zfs_range_seg64_t physical_rs;
5875 	zfs_range_seg64_t remain_rs;
5876 
5877 	while (!vdev_xlate_is_empty(&iter_rs)) {
5878 
5879 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5880 
5881 		/*
5882 		 * With raidz and dRAID, it's possible that the logical range
5883 		 * does not live on this leaf vdev. Only when there is a non-
5884 		 * zero physical size call the provided function.
5885 		 */
5886 		if (!vdev_xlate_is_empty(&physical_rs))
5887 			func(arg, &physical_rs);
5888 
5889 		iter_rs = remain_rs;
5890 	}
5891 }
5892 
5893 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5894 vdev_name(vdev_t *vd, char *buf, int buflen)
5895 {
5896 	if (vd->vdev_path == NULL) {
5897 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5898 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5899 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5900 			snprintf(buf, buflen, "%s-%llu",
5901 			    vd->vdev_ops->vdev_op_type,
5902 			    (u_longlong_t)vd->vdev_id);
5903 		}
5904 	} else {
5905 		strlcpy(buf, vd->vdev_path, buflen);
5906 	}
5907 	return (buf);
5908 }
5909 
5910 /*
5911  * Look at the vdev tree and determine whether any devices are currently being
5912  * replaced.
5913  */
5914 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5915 vdev_replace_in_progress(vdev_t *vdev)
5916 {
5917 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5918 
5919 	if (vdev->vdev_ops == &vdev_replacing_ops)
5920 		return (B_TRUE);
5921 
5922 	/*
5923 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5924 	 * it has exactly two children, and the second, the hot spare, has
5925 	 * finished being resilvered.
5926 	 */
5927 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5928 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5929 		return (B_TRUE);
5930 
5931 	for (int i = 0; i < vdev->vdev_children; i++) {
5932 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5933 			return (B_TRUE);
5934 	}
5935 
5936 	return (B_FALSE);
5937 }
5938 
5939 /*
5940  * Add a (source=src, propname=propval) list to an nvlist.
5941  */
5942 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5943 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5944     uint64_t intval, zprop_source_t src)
5945 {
5946 	nvlist_t *propval;
5947 
5948 	propval = fnvlist_alloc();
5949 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5950 
5951 	if (strval != NULL)
5952 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5953 	else
5954 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5955 
5956 	fnvlist_add_nvlist(nvl, propname, propval);
5957 	nvlist_free(propval);
5958 }
5959 
5960 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5961 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5962 {
5963 	vdev_t *vd;
5964 	nvlist_t *nvp = arg;
5965 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5966 	objset_t *mos = spa->spa_meta_objset;
5967 	nvpair_t *elem = NULL;
5968 	uint64_t vdev_guid;
5969 	uint64_t objid;
5970 	nvlist_t *nvprops;
5971 
5972 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5973 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5974 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5975 
5976 	/* this vdev could get removed while waiting for this sync task */
5977 	if (vd == NULL)
5978 		return;
5979 
5980 	/*
5981 	 * Set vdev property values in the vdev props mos object.
5982 	 */
5983 	if (vd->vdev_root_zap != 0) {
5984 		objid = vd->vdev_root_zap;
5985 	} else if (vd->vdev_top_zap != 0) {
5986 		objid = vd->vdev_top_zap;
5987 	} else if (vd->vdev_leaf_zap != 0) {
5988 		objid = vd->vdev_leaf_zap;
5989 	} else {
5990 		panic("unexpected vdev type");
5991 	}
5992 
5993 	mutex_enter(&spa->spa_props_lock);
5994 
5995 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5996 		uint64_t intval;
5997 		const char *strval;
5998 		vdev_prop_t prop;
5999 		const char *propname = nvpair_name(elem);
6000 		zprop_type_t proptype;
6001 
6002 		switch (prop = vdev_name_to_prop(propname)) {
6003 		case VDEV_PROP_USERPROP:
6004 			if (vdev_prop_user(propname)) {
6005 				strval = fnvpair_value_string(elem);
6006 				if (strlen(strval) == 0) {
6007 					/* remove the property if value == "" */
6008 					(void) zap_remove(mos, objid, propname,
6009 					    tx);
6010 				} else {
6011 					VERIFY0(zap_update(mos, objid, propname,
6012 					    1, strlen(strval) + 1, strval, tx));
6013 				}
6014 				spa_history_log_internal(spa, "vdev set", tx,
6015 				    "vdev_guid=%llu: %s=%s",
6016 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
6017 				    strval);
6018 			}
6019 			break;
6020 		default:
6021 			/* normalize the property name */
6022 			propname = vdev_prop_to_name(prop);
6023 			proptype = vdev_prop_get_type(prop);
6024 
6025 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6026 				ASSERT(proptype == PROP_TYPE_STRING);
6027 				strval = fnvpair_value_string(elem);
6028 				VERIFY0(zap_update(mos, objid, propname,
6029 				    1, strlen(strval) + 1, strval, tx));
6030 				spa_history_log_internal(spa, "vdev set", tx,
6031 				    "vdev_guid=%llu: %s=%s",
6032 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
6033 				    strval);
6034 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6035 				intval = fnvpair_value_uint64(elem);
6036 
6037 				if (proptype == PROP_TYPE_INDEX) {
6038 					const char *unused;
6039 					VERIFY0(vdev_prop_index_to_string(
6040 					    prop, intval, &unused));
6041 				}
6042 				VERIFY0(zap_update(mos, objid, propname,
6043 				    sizeof (uint64_t), 1, &intval, tx));
6044 				spa_history_log_internal(spa, "vdev set", tx,
6045 				    "vdev_guid=%llu: %s=%lld",
6046 				    (u_longlong_t)vdev_guid,
6047 				    nvpair_name(elem), (longlong_t)intval);
6048 			} else {
6049 				panic("invalid vdev property type %u",
6050 				    nvpair_type(elem));
6051 			}
6052 		}
6053 
6054 	}
6055 
6056 	mutex_exit(&spa->spa_props_lock);
6057 }
6058 
6059 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6060 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6061 {
6062 	spa_t *spa = vd->vdev_spa;
6063 	nvpair_t *elem = NULL;
6064 	uint64_t vdev_guid;
6065 	nvlist_t *nvprops;
6066 	int error = 0;
6067 
6068 	ASSERT(vd != NULL);
6069 
6070 	/* Check that vdev has a zap we can use */
6071 	if (vd->vdev_root_zap == 0 &&
6072 	    vd->vdev_top_zap == 0 &&
6073 	    vd->vdev_leaf_zap == 0)
6074 		return (SET_ERROR(EINVAL));
6075 
6076 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
6077 	    &vdev_guid) != 0)
6078 		return (SET_ERROR(EINVAL));
6079 
6080 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6081 	    &nvprops) != 0)
6082 		return (SET_ERROR(EINVAL));
6083 
6084 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6085 		return (SET_ERROR(EINVAL));
6086 
6087 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6088 		const char *propname = nvpair_name(elem);
6089 		vdev_prop_t prop = vdev_name_to_prop(propname);
6090 		uint64_t intval = 0;
6091 		const char *strval = NULL;
6092 
6093 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6094 			error = EINVAL;
6095 			goto end;
6096 		}
6097 
6098 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6099 			error = EROFS;
6100 			goto end;
6101 		}
6102 
6103 		/* Special Processing */
6104 		switch (prop) {
6105 		case VDEV_PROP_PATH:
6106 			if (vd->vdev_path == NULL) {
6107 				error = EROFS;
6108 				break;
6109 			}
6110 			if (nvpair_value_string(elem, &strval) != 0) {
6111 				error = EINVAL;
6112 				break;
6113 			}
6114 			/* New path must start with /dev/ */
6115 			if (strncmp(strval, "/dev/", 5)) {
6116 				error = EINVAL;
6117 				break;
6118 			}
6119 			error = spa_vdev_setpath(spa, vdev_guid, strval);
6120 			break;
6121 		case VDEV_PROP_ALLOCATING:
6122 			if (nvpair_value_uint64(elem, &intval) != 0) {
6123 				error = EINVAL;
6124 				break;
6125 			}
6126 			if (intval != vd->vdev_noalloc)
6127 				break;
6128 			if (intval == 0)
6129 				error = spa_vdev_noalloc(spa, vdev_guid);
6130 			else
6131 				error = spa_vdev_alloc(spa, vdev_guid);
6132 			break;
6133 		case VDEV_PROP_FAILFAST:
6134 			if (nvpair_value_uint64(elem, &intval) != 0) {
6135 				error = EINVAL;
6136 				break;
6137 			}
6138 			vd->vdev_failfast = intval & 1;
6139 			break;
6140 		case VDEV_PROP_SIT_OUT:
6141 			/* Only expose this for a draid or raidz leaf */
6142 			if (!vd->vdev_ops->vdev_op_leaf ||
6143 			    vd->vdev_top == NULL ||
6144 			    (vd->vdev_top->vdev_ops != &vdev_raidz_ops &&
6145 			    vd->vdev_top->vdev_ops != &vdev_draid_ops)) {
6146 				error = ENOTSUP;
6147 				break;
6148 			}
6149 			if (nvpair_value_uint64(elem, &intval) != 0) {
6150 				error = EINVAL;
6151 				break;
6152 			}
6153 			if (intval == 1) {
6154 				vdev_t *ancestor = vd;
6155 				while (ancestor->vdev_parent != vd->vdev_top)
6156 					ancestor = ancestor->vdev_parent;
6157 				vdev_t *pvd = vd->vdev_top;
6158 				uint_t sitouts = 0;
6159 				for (int i = 0; i < pvd->vdev_children; i++) {
6160 					if (pvd->vdev_child[i] == ancestor)
6161 						continue;
6162 					if (vdev_sit_out_reads(
6163 					    pvd->vdev_child[i], 0)) {
6164 						sitouts++;
6165 					}
6166 				}
6167 				if (sitouts >= vdev_get_nparity(pvd)) {
6168 					error = ZFS_ERR_TOO_MANY_SITOUTS;
6169 					break;
6170 				}
6171 				if (error == 0)
6172 					vdev_raidz_sit_child(vd,
6173 					    INT64_MAX - gethrestime_sec());
6174 			} else {
6175 				vdev_raidz_unsit_child(vd);
6176 			}
6177 			break;
6178 		case VDEV_PROP_AUTOSIT:
6179 			if (vd->vdev_ops != &vdev_raidz_ops &&
6180 			    vd->vdev_ops != &vdev_draid_ops) {
6181 				error = ENOTSUP;
6182 				break;
6183 			}
6184 			if (nvpair_value_uint64(elem, &intval) != 0) {
6185 				error = EINVAL;
6186 				break;
6187 			}
6188 			vd->vdev_autosit = intval == 1;
6189 			break;
6190 		case VDEV_PROP_CHECKSUM_N:
6191 			if (nvpair_value_uint64(elem, &intval) != 0) {
6192 				error = EINVAL;
6193 				break;
6194 			}
6195 			vd->vdev_checksum_n = intval;
6196 			break;
6197 		case VDEV_PROP_CHECKSUM_T:
6198 			if (nvpair_value_uint64(elem, &intval) != 0) {
6199 				error = EINVAL;
6200 				break;
6201 			}
6202 			vd->vdev_checksum_t = intval;
6203 			break;
6204 		case VDEV_PROP_IO_N:
6205 			if (nvpair_value_uint64(elem, &intval) != 0) {
6206 				error = EINVAL;
6207 				break;
6208 			}
6209 			vd->vdev_io_n = intval;
6210 			break;
6211 		case VDEV_PROP_IO_T:
6212 			if (nvpair_value_uint64(elem, &intval) != 0) {
6213 				error = EINVAL;
6214 				break;
6215 			}
6216 			vd->vdev_io_t = intval;
6217 			break;
6218 		case VDEV_PROP_SLOW_IO_N:
6219 			if (nvpair_value_uint64(elem, &intval) != 0) {
6220 				error = EINVAL;
6221 				break;
6222 			}
6223 			vd->vdev_slow_io_n = intval;
6224 			break;
6225 		case VDEV_PROP_SLOW_IO_T:
6226 			if (nvpair_value_uint64(elem, &intval) != 0) {
6227 				error = EINVAL;
6228 				break;
6229 			}
6230 			vd->vdev_slow_io_t = intval;
6231 			break;
6232 		default:
6233 			/* Most processing is done in vdev_props_set_sync */
6234 			break;
6235 		}
6236 end:
6237 		if (error != 0) {
6238 			intval = error;
6239 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6240 			return (error);
6241 		}
6242 	}
6243 
6244 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6245 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6246 }
6247 
6248 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6249 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6250 {
6251 	spa_t *spa = vd->vdev_spa;
6252 	objset_t *mos = spa->spa_meta_objset;
6253 	int err = 0;
6254 	uint64_t objid;
6255 	uint64_t vdev_guid;
6256 	nvpair_t *elem = NULL;
6257 	nvlist_t *nvprops = NULL;
6258 	uint64_t intval = 0;
6259 	char *strval = NULL;
6260 	const char *propname = NULL;
6261 	vdev_prop_t prop;
6262 
6263 	ASSERT(vd != NULL);
6264 	ASSERT(mos != NULL);
6265 
6266 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6267 	    &vdev_guid) != 0)
6268 		return (SET_ERROR(EINVAL));
6269 
6270 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6271 
6272 	if (vd->vdev_root_zap != 0) {
6273 		objid = vd->vdev_root_zap;
6274 	} else if (vd->vdev_top_zap != 0) {
6275 		objid = vd->vdev_top_zap;
6276 	} else if (vd->vdev_leaf_zap != 0) {
6277 		objid = vd->vdev_leaf_zap;
6278 	} else {
6279 		return (SET_ERROR(EINVAL));
6280 	}
6281 	ASSERT(objid != 0);
6282 
6283 	mutex_enter(&spa->spa_props_lock);
6284 
6285 	if (nvprops != NULL) {
6286 		char namebuf[64] = { 0 };
6287 
6288 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6289 			intval = 0;
6290 			strval = NULL;
6291 			propname = nvpair_name(elem);
6292 			prop = vdev_name_to_prop(propname);
6293 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6294 			uint64_t integer_size, num_integers;
6295 
6296 			switch (prop) {
6297 			/* Special Read-only Properties */
6298 			case VDEV_PROP_NAME:
6299 				strval = vdev_name(vd, namebuf,
6300 				    sizeof (namebuf));
6301 				if (strval == NULL)
6302 					continue;
6303 				vdev_prop_add_list(outnvl, propname, strval, 0,
6304 				    ZPROP_SRC_NONE);
6305 				continue;
6306 			case VDEV_PROP_CAPACITY:
6307 				/* percent used */
6308 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6309 				    (vd->vdev_stat.vs_alloc * 100 /
6310 				    vd->vdev_stat.vs_dspace);
6311 				vdev_prop_add_list(outnvl, propname, NULL,
6312 				    intval, ZPROP_SRC_NONE);
6313 				continue;
6314 			case VDEV_PROP_STATE:
6315 				vdev_prop_add_list(outnvl, propname, NULL,
6316 				    vd->vdev_state, ZPROP_SRC_NONE);
6317 				continue;
6318 			case VDEV_PROP_GUID:
6319 				vdev_prop_add_list(outnvl, propname, NULL,
6320 				    vd->vdev_guid, ZPROP_SRC_NONE);
6321 				continue;
6322 			case VDEV_PROP_ASIZE:
6323 				vdev_prop_add_list(outnvl, propname, NULL,
6324 				    vd->vdev_asize, ZPROP_SRC_NONE);
6325 				continue;
6326 			case VDEV_PROP_PSIZE:
6327 				vdev_prop_add_list(outnvl, propname, NULL,
6328 				    vd->vdev_psize, ZPROP_SRC_NONE);
6329 				continue;
6330 			case VDEV_PROP_ASHIFT:
6331 				vdev_prop_add_list(outnvl, propname, NULL,
6332 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6333 				continue;
6334 			case VDEV_PROP_SIZE:
6335 				vdev_prop_add_list(outnvl, propname, NULL,
6336 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6337 				continue;
6338 			case VDEV_PROP_FREE:
6339 				vdev_prop_add_list(outnvl, propname, NULL,
6340 				    vd->vdev_stat.vs_dspace -
6341 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6342 				continue;
6343 			case VDEV_PROP_ALLOCATED:
6344 				vdev_prop_add_list(outnvl, propname, NULL,
6345 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6346 				continue;
6347 			case VDEV_PROP_EXPANDSZ:
6348 				vdev_prop_add_list(outnvl, propname, NULL,
6349 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6350 				continue;
6351 			case VDEV_PROP_FRAGMENTATION:
6352 				vdev_prop_add_list(outnvl, propname, NULL,
6353 				    vd->vdev_stat.vs_fragmentation,
6354 				    ZPROP_SRC_NONE);
6355 				continue;
6356 			case VDEV_PROP_PARITY:
6357 				vdev_prop_add_list(outnvl, propname, NULL,
6358 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6359 				continue;
6360 			case VDEV_PROP_PATH:
6361 				if (vd->vdev_path == NULL)
6362 					continue;
6363 				vdev_prop_add_list(outnvl, propname,
6364 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6365 				continue;
6366 			case VDEV_PROP_DEVID:
6367 				if (vd->vdev_devid == NULL)
6368 					continue;
6369 				vdev_prop_add_list(outnvl, propname,
6370 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6371 				continue;
6372 			case VDEV_PROP_PHYS_PATH:
6373 				if (vd->vdev_physpath == NULL)
6374 					continue;
6375 				vdev_prop_add_list(outnvl, propname,
6376 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6377 				continue;
6378 			case VDEV_PROP_ENC_PATH:
6379 				if (vd->vdev_enc_sysfs_path == NULL)
6380 					continue;
6381 				vdev_prop_add_list(outnvl, propname,
6382 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6383 				continue;
6384 			case VDEV_PROP_FRU:
6385 				if (vd->vdev_fru == NULL)
6386 					continue;
6387 				vdev_prop_add_list(outnvl, propname,
6388 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6389 				continue;
6390 			case VDEV_PROP_PARENT:
6391 				if (vd->vdev_parent != NULL) {
6392 					strval = vdev_name(vd->vdev_parent,
6393 					    namebuf, sizeof (namebuf));
6394 					vdev_prop_add_list(outnvl, propname,
6395 					    strval, 0, ZPROP_SRC_NONE);
6396 				}
6397 				continue;
6398 			case VDEV_PROP_CHILDREN:
6399 				if (vd->vdev_children > 0)
6400 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6401 					    KM_SLEEP);
6402 				for (uint64_t i = 0; i < vd->vdev_children;
6403 				    i++) {
6404 					const char *vname;
6405 
6406 					vname = vdev_name(vd->vdev_child[i],
6407 					    namebuf, sizeof (namebuf));
6408 					if (vname == NULL)
6409 						vname = "(unknown)";
6410 					if (strlen(strval) > 0)
6411 						strlcat(strval, ",",
6412 						    ZAP_MAXVALUELEN);
6413 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6414 				}
6415 				if (strval != NULL) {
6416 					vdev_prop_add_list(outnvl, propname,
6417 					    strval, 0, ZPROP_SRC_NONE);
6418 					kmem_free(strval, ZAP_MAXVALUELEN);
6419 				}
6420 				continue;
6421 			case VDEV_PROP_NUMCHILDREN:
6422 				vdev_prop_add_list(outnvl, propname, NULL,
6423 				    vd->vdev_children, ZPROP_SRC_NONE);
6424 				continue;
6425 			case VDEV_PROP_READ_ERRORS:
6426 				vdev_prop_add_list(outnvl, propname, NULL,
6427 				    vd->vdev_stat.vs_read_errors,
6428 				    ZPROP_SRC_NONE);
6429 				continue;
6430 			case VDEV_PROP_WRITE_ERRORS:
6431 				vdev_prop_add_list(outnvl, propname, NULL,
6432 				    vd->vdev_stat.vs_write_errors,
6433 				    ZPROP_SRC_NONE);
6434 				continue;
6435 			case VDEV_PROP_CHECKSUM_ERRORS:
6436 				vdev_prop_add_list(outnvl, propname, NULL,
6437 				    vd->vdev_stat.vs_checksum_errors,
6438 				    ZPROP_SRC_NONE);
6439 				continue;
6440 			case VDEV_PROP_INITIALIZE_ERRORS:
6441 				vdev_prop_add_list(outnvl, propname, NULL,
6442 				    vd->vdev_stat.vs_initialize_errors,
6443 				    ZPROP_SRC_NONE);
6444 				continue;
6445 			case VDEV_PROP_TRIM_ERRORS:
6446 				vdev_prop_add_list(outnvl, propname, NULL,
6447 				    vd->vdev_stat.vs_trim_errors,
6448 				    ZPROP_SRC_NONE);
6449 				continue;
6450 			case VDEV_PROP_SLOW_IOS:
6451 				vdev_prop_add_list(outnvl, propname, NULL,
6452 				    vd->vdev_stat.vs_slow_ios,
6453 				    ZPROP_SRC_NONE);
6454 				continue;
6455 			case VDEV_PROP_OPS_NULL:
6456 				vdev_prop_add_list(outnvl, propname, NULL,
6457 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6458 				    ZPROP_SRC_NONE);
6459 				continue;
6460 			case VDEV_PROP_OPS_READ:
6461 				vdev_prop_add_list(outnvl, propname, NULL,
6462 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6463 				    ZPROP_SRC_NONE);
6464 				continue;
6465 			case VDEV_PROP_OPS_WRITE:
6466 				vdev_prop_add_list(outnvl, propname, NULL,
6467 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6468 				    ZPROP_SRC_NONE);
6469 				continue;
6470 			case VDEV_PROP_OPS_FREE:
6471 				vdev_prop_add_list(outnvl, propname, NULL,
6472 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6473 				    ZPROP_SRC_NONE);
6474 				continue;
6475 			case VDEV_PROP_OPS_CLAIM:
6476 				vdev_prop_add_list(outnvl, propname, NULL,
6477 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6478 				    ZPROP_SRC_NONE);
6479 				continue;
6480 			case VDEV_PROP_OPS_TRIM:
6481 				/*
6482 				 * TRIM ops and bytes are reported to user
6483 				 * space as ZIO_TYPE_FLUSH.  This is done to
6484 				 * preserve the vdev_stat_t structure layout
6485 				 * for user space.
6486 				 */
6487 				vdev_prop_add_list(outnvl, propname, NULL,
6488 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6489 				    ZPROP_SRC_NONE);
6490 				continue;
6491 			case VDEV_PROP_BYTES_NULL:
6492 				vdev_prop_add_list(outnvl, propname, NULL,
6493 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6494 				    ZPROP_SRC_NONE);
6495 				continue;
6496 			case VDEV_PROP_BYTES_READ:
6497 				vdev_prop_add_list(outnvl, propname, NULL,
6498 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6499 				    ZPROP_SRC_NONE);
6500 				continue;
6501 			case VDEV_PROP_BYTES_WRITE:
6502 				vdev_prop_add_list(outnvl, propname, NULL,
6503 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6504 				    ZPROP_SRC_NONE);
6505 				continue;
6506 			case VDEV_PROP_BYTES_FREE:
6507 				vdev_prop_add_list(outnvl, propname, NULL,
6508 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6509 				    ZPROP_SRC_NONE);
6510 				continue;
6511 			case VDEV_PROP_BYTES_CLAIM:
6512 				vdev_prop_add_list(outnvl, propname, NULL,
6513 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6514 				    ZPROP_SRC_NONE);
6515 				continue;
6516 			case VDEV_PROP_BYTES_TRIM:
6517 				/*
6518 				 * TRIM ops and bytes are reported to user
6519 				 * space as ZIO_TYPE_FLUSH.  This is done to
6520 				 * preserve the vdev_stat_t structure layout
6521 				 * for user space.
6522 				 */
6523 				vdev_prop_add_list(outnvl, propname, NULL,
6524 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6525 				    ZPROP_SRC_NONE);
6526 				continue;
6527 			case VDEV_PROP_REMOVING:
6528 				vdev_prop_add_list(outnvl, propname, NULL,
6529 				    vd->vdev_removing, ZPROP_SRC_NONE);
6530 				continue;
6531 			case VDEV_PROP_RAIDZ_EXPANDING:
6532 				/* Only expose this for raidz */
6533 				if (vd->vdev_ops == &vdev_raidz_ops) {
6534 					vdev_prop_add_list(outnvl, propname,
6535 					    NULL, vd->vdev_rz_expanding,
6536 					    ZPROP_SRC_NONE);
6537 				}
6538 				continue;
6539 			case VDEV_PROP_SIT_OUT:
6540 				/* Only expose this for a draid or raidz leaf */
6541 				if (vd->vdev_ops->vdev_op_leaf &&
6542 				    vd->vdev_top != NULL &&
6543 				    (vd->vdev_top->vdev_ops ==
6544 				    &vdev_raidz_ops ||
6545 				    vd->vdev_top->vdev_ops ==
6546 				    &vdev_draid_ops)) {
6547 					vdev_prop_add_list(outnvl, propname,
6548 					    NULL, vdev_sit_out_reads(vd, 0),
6549 					    ZPROP_SRC_NONE);
6550 				}
6551 				continue;
6552 			case VDEV_PROP_TRIM_SUPPORT:
6553 				/* only valid for leaf vdevs */
6554 				if (vd->vdev_ops->vdev_op_leaf) {
6555 					vdev_prop_add_list(outnvl, propname,
6556 					    NULL, vd->vdev_has_trim,
6557 					    ZPROP_SRC_NONE);
6558 				}
6559 				continue;
6560 			/* Numeric Properites */
6561 			case VDEV_PROP_ALLOCATING:
6562 				/* Leaf vdevs cannot have this property */
6563 				if (vd->vdev_mg == NULL &&
6564 				    vd->vdev_top != NULL) {
6565 					src = ZPROP_SRC_NONE;
6566 					intval = ZPROP_BOOLEAN_NA;
6567 				} else {
6568 					err = vdev_prop_get_int(vd, prop,
6569 					    &intval);
6570 					if (err && err != ENOENT)
6571 						break;
6572 
6573 					if (intval ==
6574 					    vdev_prop_default_numeric(prop))
6575 						src = ZPROP_SRC_DEFAULT;
6576 					else
6577 						src = ZPROP_SRC_LOCAL;
6578 				}
6579 
6580 				vdev_prop_add_list(outnvl, propname, NULL,
6581 				    intval, src);
6582 				break;
6583 			case VDEV_PROP_FAILFAST:
6584 				src = ZPROP_SRC_LOCAL;
6585 				strval = NULL;
6586 
6587 				err = zap_lookup(mos, objid, nvpair_name(elem),
6588 				    sizeof (uint64_t), 1, &intval);
6589 				if (err == ENOENT) {
6590 					intval = vdev_prop_default_numeric(
6591 					    prop);
6592 					err = 0;
6593 				} else if (err) {
6594 					break;
6595 				}
6596 				if (intval == vdev_prop_default_numeric(prop))
6597 					src = ZPROP_SRC_DEFAULT;
6598 
6599 				vdev_prop_add_list(outnvl, propname, strval,
6600 				    intval, src);
6601 				break;
6602 			case VDEV_PROP_AUTOSIT:
6603 				/* Only raidz vdevs cannot have this property */
6604 				if (vd->vdev_ops != &vdev_raidz_ops &&
6605 				    vd->vdev_ops != &vdev_draid_ops) {
6606 					src = ZPROP_SRC_NONE;
6607 					intval = ZPROP_BOOLEAN_NA;
6608 				} else {
6609 					err = vdev_prop_get_int(vd, prop,
6610 					    &intval);
6611 					if (err && err != ENOENT)
6612 						break;
6613 
6614 					if (intval ==
6615 					    vdev_prop_default_numeric(prop))
6616 						src = ZPROP_SRC_DEFAULT;
6617 					else
6618 						src = ZPROP_SRC_LOCAL;
6619 				}
6620 
6621 				vdev_prop_add_list(outnvl, propname, NULL,
6622 				    intval, src);
6623 				break;
6624 
6625 			case VDEV_PROP_CHECKSUM_N:
6626 			case VDEV_PROP_CHECKSUM_T:
6627 			case VDEV_PROP_IO_N:
6628 			case VDEV_PROP_IO_T:
6629 			case VDEV_PROP_SLOW_IO_N:
6630 			case VDEV_PROP_SLOW_IO_T:
6631 				err = vdev_prop_get_int(vd, prop, &intval);
6632 				if (err && err != ENOENT)
6633 					break;
6634 
6635 				if (intval == vdev_prop_default_numeric(prop))
6636 					src = ZPROP_SRC_DEFAULT;
6637 				else
6638 					src = ZPROP_SRC_LOCAL;
6639 
6640 				vdev_prop_add_list(outnvl, propname, NULL,
6641 				    intval, src);
6642 				break;
6643 			/* Text Properties */
6644 			case VDEV_PROP_COMMENT:
6645 				/* Exists in the ZAP below */
6646 				/* FALLTHRU */
6647 			case VDEV_PROP_USERPROP:
6648 				/* User Properites */
6649 				src = ZPROP_SRC_LOCAL;
6650 
6651 				err = zap_length(mos, objid, nvpair_name(elem),
6652 				    &integer_size, &num_integers);
6653 				if (err)
6654 					break;
6655 
6656 				switch (integer_size) {
6657 				case 8:
6658 					/* User properties cannot be integers */
6659 					err = EINVAL;
6660 					break;
6661 				case 1:
6662 					/* string property */
6663 					strval = kmem_alloc(num_integers,
6664 					    KM_SLEEP);
6665 					err = zap_lookup(mos, objid,
6666 					    nvpair_name(elem), 1,
6667 					    num_integers, strval);
6668 					if (err) {
6669 						kmem_free(strval,
6670 						    num_integers);
6671 						break;
6672 					}
6673 					vdev_prop_add_list(outnvl, propname,
6674 					    strval, 0, src);
6675 					kmem_free(strval, num_integers);
6676 					break;
6677 				}
6678 				break;
6679 			default:
6680 				err = ENOENT;
6681 				break;
6682 			}
6683 			if (err)
6684 				break;
6685 		}
6686 	} else {
6687 		/*
6688 		 * Get all properties from the MOS vdev property object.
6689 		 */
6690 		zap_cursor_t zc;
6691 		zap_attribute_t *za = zap_attribute_alloc();
6692 		for (zap_cursor_init(&zc, mos, objid);
6693 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6694 		    zap_cursor_advance(&zc)) {
6695 			intval = 0;
6696 			strval = NULL;
6697 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6698 			propname = za->za_name;
6699 
6700 			switch (za->za_integer_length) {
6701 			case 8:
6702 				/* We do not allow integer user properties */
6703 				/* This is likely an internal value */
6704 				break;
6705 			case 1:
6706 				/* string property */
6707 				strval = kmem_alloc(za->za_num_integers,
6708 				    KM_SLEEP);
6709 				err = zap_lookup(mos, objid, za->za_name, 1,
6710 				    za->za_num_integers, strval);
6711 				if (err) {
6712 					kmem_free(strval, za->za_num_integers);
6713 					break;
6714 				}
6715 				vdev_prop_add_list(outnvl, propname, strval, 0,
6716 				    src);
6717 				kmem_free(strval, za->za_num_integers);
6718 				break;
6719 
6720 			default:
6721 				break;
6722 			}
6723 		}
6724 		zap_cursor_fini(&zc);
6725 		zap_attribute_free(za);
6726 	}
6727 
6728 	mutex_exit(&spa->spa_props_lock);
6729 	if (err && err != ENOENT) {
6730 		return (err);
6731 	}
6732 
6733 	return (0);
6734 }
6735 
6736 EXPORT_SYMBOL(vdev_fault);
6737 EXPORT_SYMBOL(vdev_degrade);
6738 EXPORT_SYMBOL(vdev_online);
6739 EXPORT_SYMBOL(vdev_offline);
6740 EXPORT_SYMBOL(vdev_clear);
6741 
6742 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6743 	"Target number of metaslabs per top-level vdev");
6744 
6745 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6746 	"Default lower limit for metaslab size");
6747 
6748 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6749 	"Default upper limit for metaslab size");
6750 
6751 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6752 	"Minimum number of metaslabs per top-level vdev");
6753 
6754 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6755 	"Practical upper limit of total metaslabs per top-level vdev");
6756 
6757 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6758 	"Rate limit slow IO (delay) events to this many per second");
6759 
6760 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6761 	"Rate limit hung IO (deadman) events to this many per second");
6762 
6763 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6764 	"Rate Direct I/O write verify events to this many per second");
6765 
6766 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6767 	"Direct I/O writes will perform for checksum verification before "
6768 	"commiting write");
6769 
6770 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6771 	"Rate limit checksum events to this many checksum errors per second "
6772 	"(do not set below ZED threshold).");
6773 
6774 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6775 	"Ignore errors during resilver/scrub");
6776 
6777 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6778 	"Bypass vdev_validate()");
6779 
6780 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6781 	"Disable cache flushes");
6782 
6783 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6784 	"Minimum number of metaslabs required to dedicate one for log blocks");
6785 
6786 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6787 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6788 	"Minimum ashift used when creating new top-level vdevs");
6789 
6790 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6791 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6792 	"Maximum ashift used when optimizing for logical -> physical sector "
6793 	"size on new top-level vdevs");
6794 
6795 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6796 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6797 		"RAIDZ implementation");
6798