xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision dda55f83f9b8238ebf2940c9c1e227785db540b2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2016, 2025 Chelsio Communications.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 
31 #include <sys/param.h>
32 #include <sys/eventhandler.h>
33 
34 #include "common.h"
35 #include "t4_regs.h"
36 #include "t4_regs_values.h"
37 #include "firmware/t4fw_interface.h"
38 
39 #undef msleep
40 #define msleep(x) do { \
41 	if (cold) \
42 		DELAY((x) * 1000); \
43 	else \
44 		pause("t4hw", (x) * hz / 1000); \
45 } while (0)
46 
47 /**
48  *	t4_wait_op_done_val - wait until an operation is completed
49  *	@adapter: the adapter performing the operation
50  *	@reg: the register to check for completion
51  *	@mask: a single-bit field within @reg that indicates completion
52  *	@polarity: the value of the field when the operation is completed
53  *	@attempts: number of check iterations
54  *	@delay: delay in usecs between iterations
55  *	@valp: where to store the value of the register at completion time
56  *
57  *	Wait until an operation is completed by checking a bit in a register
58  *	up to @attempts times.  If @valp is not NULL the value of the register
59  *	at the time it indicated completion is stored there.  Returns 0 if the
60  *	operation completes and	-EAGAIN	otherwise.
61  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)62 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
63 			       int polarity, int attempts, int delay, u32 *valp)
64 {
65 	while (1) {
66 		u32 val = t4_read_reg(adapter, reg);
67 
68 		if (!!(val & mask) == polarity) {
69 			if (valp)
70 				*valp = val;
71 			return 0;
72 		}
73 		if (--attempts == 0)
74 			return -EAGAIN;
75 		if (delay)
76 			udelay(delay);
77 	}
78 }
79 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)80 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
81 				  int polarity, int attempts, int delay)
82 {
83 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
84 				   delay, NULL);
85 }
86 
87  /**
88  *	t7_wait_sram_done - wait until an operation is completed
89  *	@adapter: the adapter performing the operation
90  *	@reg: the register to check for completion
91  *	@result_reg: register that holds the result value
92  *	@attempts: number of check iterations
93  *	@delay: delay in usecs between iterations
94  *	@valp: where to store the value of the result register at completion time
95  *
96  *	Waits until a specific bit in @reg is cleared, checking up to
97  *	@attempts times.Once the bit is cleared, reads from @result_reg
98  *	and stores the value in @valp if it is not NULL. Returns 0 if the
99  *	operation completes successfully and -EAGAIN if it times out.
100  */
t7_wait_sram_done(struct adapter * adap,int reg,int result_reg,int attempts,int delay,u32 * valp)101 static int t7_wait_sram_done(struct adapter *adap, int reg, int result_reg,
102 			     int attempts, int delay, u32 *valp)
103 {
104 	while (1) {
105 		u32 val = t4_read_reg(adap, reg);
106 
107 		/* Check if SramStart (bit 19) is cleared */
108 		if (!(val & (1 << 19))) {
109 			if (valp)
110 				*valp  = t4_read_reg(adap, result_reg);
111 			return 0;
112 		}
113 
114 		if (--attempts == 0)
115 			return -EAGAIN;
116 
117 		if (delay)
118 			udelay(delay);
119 	}
120 }
121 
122 /**
123  *	t4_set_reg_field - set a register field to a value
124  *	@adapter: the adapter to program
125  *	@addr: the register address
126  *	@mask: specifies the portion of the register to modify
127  *	@val: the new value for the register field
128  *
129  *	Sets a register field specified by the supplied mask to the
130  *	given value.
131  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)132 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
133 		      u32 val)
134 {
135 	u32 v = t4_read_reg(adapter, addr) & ~mask;
136 
137 	t4_write_reg(adapter, addr, v | val);
138 	(void) t4_read_reg(adapter, addr);      /* flush */
139 }
140 
141 /**
142  *	t4_read_indirect - read indirectly addressed registers
143  *	@adap: the adapter
144  *	@addr_reg: register holding the indirect address
145  *	@data_reg: register holding the value of the indirect register
146  *	@vals: where the read register values are stored
147  *	@nregs: how many indirect registers to read
148  *	@start_idx: index of first indirect register to read
149  *
150  *	Reads registers that are accessed indirectly through an address/data
151  *	register pair.
152  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)153 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
154 			     unsigned int data_reg, u32 *vals,
155 			     unsigned int nregs, unsigned int start_idx)
156 {
157 	while (nregs--) {
158 		t4_write_reg(adap, addr_reg, start_idx);
159 		*vals++ = t4_read_reg(adap, data_reg);
160 		start_idx++;
161 	}
162 }
163 
164 /**
165  *	t4_write_indirect - write indirectly addressed registers
166  *	@adap: the adapter
167  *	@addr_reg: register holding the indirect addresses
168  *	@data_reg: register holding the value for the indirect registers
169  *	@vals: values to write
170  *	@nregs: how many indirect registers to write
171  *	@start_idx: address of first indirect register to write
172  *
173  *	Writes a sequential block of registers that are accessed indirectly
174  *	through an address/data register pair.
175  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)176 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
177 		       unsigned int data_reg, const u32 *vals,
178 		       unsigned int nregs, unsigned int start_idx)
179 {
180 	while (nregs--) {
181 		t4_write_reg(adap, addr_reg, start_idx++);
182 		t4_write_reg(adap, data_reg, *vals++);
183 	}
184 }
185 
186 /*
187  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
188  * mechanism.  This guarantees that we get the real value even if we're
189  * operating within a Virtual Machine and the Hypervisor is trapping our
190  * Configuration Space accesses.
191  *
192  * N.B. This routine should only be used as a last resort: the firmware uses
193  *      the backdoor registers on a regular basis and we can end up
194  *      conflicting with it's uses!
195  */
t4_hw_pci_read_cfg4(adapter_t * adap,int reg)196 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
197 {
198 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
199 	u32 val;
200 
201 	if (chip_id(adap) <= CHELSIO_T5)
202 		req |= F_ENABLE;
203 	else
204 		req |= F_T6_ENABLE;
205 
206 	if (is_t4(adap))
207 		req |= F_LOCALCFG;
208 
209 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
210 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
211 
212 	/*
213 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
214 	 * Configuration Space read.  (None of the other fields matter when
215 	 * F_ENABLE is 0 so a simple register write is easier than a
216 	 * read-modify-write via t4_set_reg_field().)
217 	 */
218 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
219 
220 	return val;
221 }
222 
223 /*
224  * t4_report_fw_error - report firmware error
225  * @adap: the adapter
226  *
227  * The adapter firmware can indicate error conditions to the host.
228  * If the firmware has indicated an error, print out the reason for
229  * the firmware error.
230  */
t4_report_fw_error(struct adapter * adap)231 void t4_report_fw_error(struct adapter *adap)
232 {
233 	static const char *const reason[] = {
234 		"Crash",			/* PCIE_FW_EVAL_CRASH */
235 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
236 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
237 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
238 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
239 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
240 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
241 		"Reserved",			/* reserved */
242 	};
243 	u32 pcie_fw;
244 
245 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
246 	if (pcie_fw & F_PCIE_FW_ERR) {
247 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
248 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
249 	}
250 }
251 
252 /*
253  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
254  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)255 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
256 			 u32 mbox_addr)
257 {
258 	for ( ; nflit; nflit--, mbox_addr += 8)
259 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
260 }
261 
262 /*
263  * Handle a FW assertion reported in a mailbox.
264  */
fw_asrt(struct adapter * adap,struct fw_debug_cmd * asrt)265 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
266 {
267 	CH_ALERT(adap,
268 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
269 		  asrt->u.assert.filename_0_7,
270 		  be32_to_cpu(asrt->u.assert.line),
271 		  be32_to_cpu(asrt->u.assert.x),
272 		  be32_to_cpu(asrt->u.assert.y));
273 }
274 
275 struct port_tx_state {
276 	uint64_t rx_pause;
277 	uint64_t tx_frames;
278 };
279 
280 u32
t4_port_reg(struct adapter * adap,u8 port,u32 reg)281 t4_port_reg(struct adapter *adap, u8 port, u32 reg)
282 {
283 	if (chip_id(adap) > CHELSIO_T6)
284 		return T7_PORT_REG(port, reg);
285 	if (chip_id(adap) > CHELSIO_T4)
286 		return T5_PORT_REG(port, reg);
287 	return PORT_REG(port, reg);
288 }
289 
290 static void
read_tx_state_one(struct adapter * sc,int i,struct port_tx_state * tx_state)291 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
292 {
293 	uint32_t rx_pause_reg, tx_frames_reg;
294 
295 	rx_pause_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
296 	tx_frames_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
297 
298 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
299 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
300 }
301 
302 static void
read_tx_state(struct adapter * sc,struct port_tx_state * tx_state)303 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
304 {
305 	int i;
306 
307 	for (i = 0; i < MAX_NCHAN; i++) {
308 		if (sc->chan_map[i] != 0xff)
309 			read_tx_state_one(sc, i, &tx_state[i]);
310 	}
311 }
312 
313 static void
check_tx_state(struct adapter * sc,struct port_tx_state * tx_state)314 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
315 {
316 	uint32_t port_ctl_reg;
317 	uint64_t tx_frames, rx_pause;
318 	int i;
319 
320 	for (i = 0; i < MAX_NCHAN; i++) {
321 		if (sc->chan_map[i] == 0xff)
322 			continue;
323 		rx_pause = tx_state[i].rx_pause;
324 		tx_frames = tx_state[i].tx_frames;
325 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
326 
327 		port_ctl_reg = t4_port_reg(sc, i, A_MPS_PORT_CTL);
328 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
329 		    rx_pause != tx_state[i].rx_pause &&
330 		    tx_frames == tx_state[i].tx_frames) {
331 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
332 			mdelay(1);
333 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
334 		}
335 	}
336 }
337 
338 #define X_CIM_PF_NOACCESS 0xeeeeeeee
339 /**
340  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
341  *	@adap: the adapter
342  *	@mbox: index of the mailbox to use
343  *	@cmd: the command to write
344  *	@size: command length in bytes
345  *	@rpl: where to optionally store the reply
346  *	@sleep_ok: if true we may sleep while awaiting command completion
347  *	@timeout: time to wait for command to finish before timing out
348  *		(negative implies @sleep_ok=false)
349  *
350  *	Sends the given command to FW through the selected mailbox and waits
351  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
352  *	store the FW's reply to the command.  The command and its optional
353  *	reply are of the same length.  Some FW commands like RESET and
354  *	INITIALIZE can take a considerable amount of time to execute.
355  *	@sleep_ok determines whether we may sleep while awaiting the response.
356  *	If sleeping is allowed we use progressive backoff otherwise we spin.
357  *	Note that passing in a negative @timeout is an alternate mechanism
358  *	for specifying @sleep_ok=false.  This is useful when a higher level
359  *	interface allows for specification of @timeout but not @sleep_ok ...
360  *
361  *	The return value is 0 on success or a negative errno on failure.  A
362  *	failure can happen either because we are not able to execute the
363  *	command or FW executes it but signals an error.  In the latter case
364  *	the return value is the error code indicated by FW (negated).
365  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)366 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
367 			    int size, void *rpl, bool sleep_ok, int timeout)
368 {
369 	/*
370 	 * We delay in small increments at first in an effort to maintain
371 	 * responsiveness for simple, fast executing commands but then back
372 	 * off to larger delays to a maximum retry delay.
373 	 */
374 	static const int delay[] = {
375 		1, 1, 3, 5, 10, 10, 20, 50, 100
376 	};
377 	u32 v;
378 	u64 res;
379 	int i, ms, delay_idx, ret, next_tx_check;
380 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
381 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
382 	u32 ctl;
383 	__be64 cmd_rpl[MBOX_LEN/8];
384 	u32 pcie_fw;
385 	struct port_tx_state tx_state[MAX_NPORTS];
386 
387 	if (adap->flags & CHK_MBOX_ACCESS)
388 		ASSERT_SYNCHRONIZED_OP(adap);
389 
390 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
391 		return -EINVAL;
392 
393 	if (adap->flags & IS_VF) {
394 		if (chip_id(adap) >= CHELSIO_T6)
395 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
396 		else
397 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
398 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
399 	}
400 
401 	/*
402 	 * If we have a negative timeout, that implies that we can't sleep.
403 	 */
404 	if (timeout < 0) {
405 		sleep_ok = false;
406 		timeout = -timeout;
407 	}
408 
409 	/*
410 	 * Attempt to gain access to the mailbox.
411 	 */
412 	pcie_fw = 0;
413 	if (!(adap->flags & IS_VF)) {
414 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
415 		if (pcie_fw & F_PCIE_FW_ERR)
416 			goto failed;
417 	}
418 	for (i = 0; i < 4; i++) {
419 		ctl = t4_read_reg(adap, ctl_reg);
420 		v = G_MBOWNER(ctl);
421 		if (v != X_MBOWNER_NONE)
422 			break;
423 	}
424 
425 	/*
426 	 * If we were unable to gain access, report the error to our caller.
427 	 */
428 	if (v != X_MBOWNER_PL) {
429 		if (!(adap->flags & IS_VF)) {
430 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
431 			if (pcie_fw & F_PCIE_FW_ERR)
432 				goto failed;
433 		}
434 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
435 		return ret;
436 	}
437 
438 	/*
439 	 * If we gain ownership of the mailbox and there's a "valid" message
440 	 * in it, this is likely an asynchronous error message from the
441 	 * firmware.  So we'll report that and then proceed on with attempting
442 	 * to issue our own command ... which may well fail if the error
443 	 * presaged the firmware crashing ...
444 	 */
445 	if (ctl & F_MBMSGVALID) {
446 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
447 	}
448 
449 	/*
450 	 * Copy in the new mailbox command and send it on its way ...
451 	 */
452 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
453 	memcpy(cmd_rpl, cmd, size);
454 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
455 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
456 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
457 
458 	if (adap->flags & IS_VF) {
459 		/*
460 		 * For the VFs, the Mailbox Data "registers" are
461 		 * actually backed by T4's "MA" interface rather than
462 		 * PL Registers (as is the case for the PFs).  Because
463 		 * these are in different coherency domains, the write
464 		 * to the VF's PL-register-backed Mailbox Control can
465 		 * race in front of the writes to the MA-backed VF
466 		 * Mailbox Data "registers".  So we need to do a
467 		 * read-back on at least one byte of the VF Mailbox
468 		 * Data registers before doing the write to the VF
469 		 * Mailbox Control register.
470 		 */
471 		t4_read_reg(adap, data_reg);
472 	}
473 
474 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
475 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
476 	next_tx_check = 1000;
477 	delay_idx = 0;
478 	ms = delay[0];
479 
480 	/*
481 	 * Loop waiting for the reply; bail out if we time out or the firmware
482 	 * reports an error.
483 	 */
484 	for (i = 0; i < timeout; i += ms) {
485 		if (!(adap->flags & IS_VF)) {
486 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
487 			if (pcie_fw & F_PCIE_FW_ERR)
488 				break;
489 		}
490 
491 		if (i >= next_tx_check) {
492 			check_tx_state(adap, &tx_state[0]);
493 			next_tx_check = i + 1000;
494 		}
495 
496 		if (sleep_ok) {
497 			ms = delay[delay_idx];  /* last element may repeat */
498 			if (delay_idx < ARRAY_SIZE(delay) - 1)
499 				delay_idx++;
500 			msleep(ms);
501 		} else {
502 			mdelay(ms);
503 		}
504 
505 		v = t4_read_reg(adap, ctl_reg);
506 		if (v == X_CIM_PF_NOACCESS)
507 			continue;
508 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
509 			if (!(v & F_MBMSGVALID)) {
510 				t4_write_reg(adap, ctl_reg,
511 					     V_MBOWNER(X_MBOWNER_NONE));
512 				continue;
513 			}
514 
515 			/*
516 			 * Retrieve the command reply and release the mailbox.
517 			 */
518 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
519 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
520 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
521 
522 			res = be64_to_cpu(cmd_rpl[0]);
523 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
524 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
525 				res = V_FW_CMD_RETVAL(EIO);
526 			} else if (rpl)
527 				memcpy(rpl, cmd_rpl, size);
528 			return -G_FW_CMD_RETVAL((int)res);
529 		}
530 	}
531 
532 	/*
533 	 * We timed out waiting for a reply to our mailbox command.  Report
534 	 * the error and also check to see if the firmware reported any
535 	 * errors ...
536 	 */
537 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
538 	    *(const u8 *)cmd, mbox, pcie_fw);
539 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
540 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
541 failed:
542 	adap->flags &= ~FW_OK;
543 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
544 	t4_fatal_err(adap, true);
545 	return ret;
546 }
547 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)548 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
549 		    void *rpl, bool sleep_ok)
550 {
551 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
552 				       sleep_ok, FW_CMD_MAX_TIMEOUT);
553 }
554 
t4_edc_err_read(struct adapter * adap,int idx)555 static int t4_edc_err_read(struct adapter *adap, int idx)
556 {
557 	u32 edc_ecc_err_addr_reg;
558 	u32 edc_bist_status_rdata_reg;
559 
560 	if (is_t4(adap)) {
561 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
562 		return 0;
563 	}
564 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
565 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
566 		return 0;
567 	}
568 
569 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
570 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
571 
572 	CH_WARN(adap,
573 		"  edc%d err addr 0x%x: 0x%x.\n",
574 		idx, edc_ecc_err_addr_reg,
575 		t4_read_reg(adap, edc_ecc_err_addr_reg));
576 	CH_WARN(adap,
577 		"  bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
578 		edc_bist_status_rdata_reg,
579 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
580 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
581 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
582 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
583 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
584 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
585 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
586 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
587 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
588 
589 	return 0;
590 }
591 
592 /**
593  *	t4_mc_read - read from MC through backdoor accesses
594  *	@adap: the adapter
595  *	@idx: which MC to access
596  *	@addr: address of first byte requested
597  *	@data: 64 bytes of data containing the requested address
598  *	@ecc: where to store the corresponding 64-bit ECC word
599  *
600  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
601  *	that covers the requested address @addr.  If @parity is not %NULL it
602  *	is assigned the 64-bit ECC word for the read data.
603  */
t4_mc_read(struct adapter * adap,int idx,u32 addr,__be32 * data,u64 * ecc)604 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
605 {
606 	int i;
607 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
608 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
609 
610 	if (is_t4(adap)) {
611 		mc_bist_cmd_reg = A_MC_BIST_CMD;
612 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
613 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
614 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
615 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
616 	} else if (chip_id(adap) < CHELSIO_T7) {
617 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
618 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
619 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
620 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, idx);
621 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, idx);
622 	} else {
623 		/* Need to figure out split mode and the rest. */
624 		return (-ENOTSUP);
625 	}
626 
627 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
628 		return -EBUSY;
629 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
630 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
631 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
632 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
633 		     F_START_BIST | V_BIST_CMD_GAP(1));
634 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
635 	if (i)
636 		return i;
637 
638 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
639 
640 	for (i = 15; i >= 0; i--)
641 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
642 	if (ecc)
643 		*ecc = t4_read_reg64(adap, MC_DATA(16));
644 #undef MC_DATA
645 	return 0;
646 }
647 
648 /**
649  *	t4_edc_read - read from EDC through backdoor accesses
650  *	@adap: the adapter
651  *	@idx: which EDC to access
652  *	@addr: address of first byte requested
653  *	@data: 64 bytes of data containing the requested address
654  *	@ecc: where to store the corresponding 64-bit ECC word
655  *
656  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
657  *	that covers the requested address @addr.  If @parity is not %NULL it
658  *	is assigned the 64-bit ECC word for the read data.
659  */
t4_edc_read(struct adapter * adap,int idx,u32 addr,__be32 * data,u64 * ecc)660 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
661 {
662 	int i;
663 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
664 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
665 
666 	if (is_t4(adap)) {
667 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
668 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
669 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
670 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
671 						    idx);
672 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
673 						    idx);
674 	} else {
675 		edc_bist_cmd_reg = EDC_T5_REG(A_EDC_H_BIST_CMD, idx);
676 		edc_bist_cmd_addr_reg = EDC_T5_REG(A_EDC_H_BIST_CMD_ADDR, idx);
677 		edc_bist_cmd_len_reg = EDC_T5_REG(A_EDC_H_BIST_CMD_LEN, idx);
678 		edc_bist_cmd_data_pattern = EDC_T5_REG(A_EDC_H_BIST_DATA_PATTERN,
679 						    idx);
680 		edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA,
681 						    idx);
682 	}
683 
684 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
685 		return -EBUSY;
686 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
687 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
688 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
689 	t4_write_reg(adap, edc_bist_cmd_reg,
690 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
691 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
692 	if (i)
693 		return i;
694 
695 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
696 
697 	for (i = 15; i >= 0; i--)
698 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
699 	if (ecc)
700 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
701 #undef EDC_DATA
702 	return 0;
703 }
704 
705 /**
706  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
707  *	@adap: the adapter
708  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
709  *	@addr: address within indicated memory type
710  *	@len: amount of memory to read
711  *	@buf: host memory buffer
712  *
713  *	Reads an [almost] arbitrary memory region in the firmware: the
714  *	firmware memory address, length and host buffer must be aligned on
715  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
716  *	the firmware's memory.  If this memory contains data structures which
717  *	contain multi-byte integers, it's the callers responsibility to
718  *	perform appropriate byte order conversions.
719  */
t4_mem_read(struct adapter * adap,int mtype,u32 addr,u32 len,__be32 * buf)720 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
721 		__be32 *buf)
722 {
723 	u32 pos, start, end, offset;
724 	int ret;
725 
726 	/*
727 	 * Argument sanity checks ...
728 	 */
729 	if ((addr & 0x3) || (len & 0x3))
730 		return -EINVAL;
731 
732 	/*
733 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
734 	 * need to round down the start and round up the end.  We'll start
735 	 * copying out of the first line at (addr - start) a word at a time.
736 	 */
737 	start = rounddown2(addr, 64);
738 	end = roundup2(addr + len, 64);
739 	offset = (addr - start)/sizeof(__be32);
740 
741 	for (pos = start; pos < end; pos += 64, offset = 0) {
742 		__be32 data[16];
743 
744 		/*
745 		 * Read the chip's memory block and bail if there's an error.
746 		 */
747 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
748 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
749 		else
750 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
751 		if (ret)
752 			return ret;
753 
754 		/*
755 		 * Copy the data into the caller's memory buffer.
756 		 */
757 		while (offset < 16 && len > 0) {
758 			*buf++ = data[offset++];
759 			len -= sizeof(__be32);
760 		}
761 	}
762 
763 	return 0;
764 }
765 
766 /*
767  * Return the specified PCI-E Configuration Space register from our Physical
768  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
769  * since we prefer to let the firmware own all of these registers, but if that
770  * fails we go for it directly ourselves.
771  */
t4_read_pcie_cfg4(struct adapter * adap,int reg,int drv_fw_attach)772 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
773 {
774 
775 	/*
776 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
777 	 * retrieve the specified PCI-E Configuration Space register.
778 	 */
779 	if (drv_fw_attach != 0) {
780 		struct fw_ldst_cmd ldst_cmd;
781 		int ret;
782 
783 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
784 		ldst_cmd.op_to_addrspace =
785 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
786 				    F_FW_CMD_REQUEST |
787 				    F_FW_CMD_READ |
788 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
789 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
790 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
791 		ldst_cmd.u.pcie.ctrl_to_fn =
792 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
793 		ldst_cmd.u.pcie.r = reg;
794 
795 		/*
796 		 * If the LDST Command succeeds, return the result, otherwise
797 		 * fall through to reading it directly ourselves ...
798 		 */
799 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
800 				 &ldst_cmd);
801 		if (ret == 0)
802 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
803 
804 		CH_WARN(adap, "Firmware failed to return "
805 			"Configuration Space register %d, err = %d\n",
806 			reg, -ret);
807 	}
808 
809 	/*
810 	 * Read the desired Configuration Space register via the PCI-E
811 	 * Backdoor mechanism.
812 	 */
813 	return t4_hw_pci_read_cfg4(adap, reg);
814 }
815 
816 /**
817  *	t4_get_regs_len - return the size of the chips register set
818  *	@adapter: the adapter
819  *
820  *	Returns the size of the chip's BAR0 register space.
821  */
t4_get_regs_len(struct adapter * adapter)822 unsigned int t4_get_regs_len(struct adapter *adapter)
823 {
824 	unsigned int chip_version = chip_id(adapter);
825 
826 	switch (chip_version) {
827 	case CHELSIO_T4:
828 		if (adapter->flags & IS_VF)
829 			return FW_T4VF_REGMAP_SIZE;
830 		return T4_REGMAP_SIZE;
831 
832 	case CHELSIO_T5:
833 	case CHELSIO_T6:
834 	case CHELSIO_T7:
835 		if (adapter->flags & IS_VF)
836 			return FW_T4VF_REGMAP_SIZE;
837 		return T5_REGMAP_SIZE;
838 	}
839 
840 	CH_ERR(adapter,
841 		"Unsupported chip version %d\n", chip_version);
842 	return 0;
843 }
844 
845 /**
846  *	t4_get_regs - read chip registers into provided buffer
847  *	@adap: the adapter
848  *	@buf: register buffer
849  *	@buf_size: size (in bytes) of register buffer
850  *
851  *	If the provided register buffer isn't large enough for the chip's
852  *	full register range, the register dump will be truncated to the
853  *	register buffer's size.
854  */
t4_get_regs(struct adapter * adap,u8 * buf,size_t buf_size)855 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
856 {
857 	static const unsigned int t4_reg_ranges[] = {
858 		0x1008, 0x1108,
859 		0x1180, 0x1184,
860 		0x1190, 0x1194,
861 		0x11a0, 0x11a4,
862 		0x11b0, 0x11b4,
863 		0x11fc, 0x123c,
864 		0x1300, 0x173c,
865 		0x1800, 0x18fc,
866 		0x3000, 0x30d8,
867 		0x30e0, 0x30e4,
868 		0x30ec, 0x5910,
869 		0x5920, 0x5924,
870 		0x5960, 0x5960,
871 		0x5968, 0x5968,
872 		0x5970, 0x5970,
873 		0x5978, 0x5978,
874 		0x5980, 0x5980,
875 		0x5988, 0x5988,
876 		0x5990, 0x5990,
877 		0x5998, 0x5998,
878 		0x59a0, 0x59d4,
879 		0x5a00, 0x5ae0,
880 		0x5ae8, 0x5ae8,
881 		0x5af0, 0x5af0,
882 		0x5af8, 0x5af8,
883 		0x6000, 0x6098,
884 		0x6100, 0x6150,
885 		0x6200, 0x6208,
886 		0x6240, 0x6248,
887 		0x6280, 0x62b0,
888 		0x62c0, 0x6338,
889 		0x6370, 0x638c,
890 		0x6400, 0x643c,
891 		0x6500, 0x6524,
892 		0x6a00, 0x6a04,
893 		0x6a14, 0x6a38,
894 		0x6a60, 0x6a70,
895 		0x6a78, 0x6a78,
896 		0x6b00, 0x6b0c,
897 		0x6b1c, 0x6b84,
898 		0x6bf0, 0x6bf8,
899 		0x6c00, 0x6c0c,
900 		0x6c1c, 0x6c84,
901 		0x6cf0, 0x6cf8,
902 		0x6d00, 0x6d0c,
903 		0x6d1c, 0x6d84,
904 		0x6df0, 0x6df8,
905 		0x6e00, 0x6e0c,
906 		0x6e1c, 0x6e84,
907 		0x6ef0, 0x6ef8,
908 		0x6f00, 0x6f0c,
909 		0x6f1c, 0x6f84,
910 		0x6ff0, 0x6ff8,
911 		0x7000, 0x700c,
912 		0x701c, 0x7084,
913 		0x70f0, 0x70f8,
914 		0x7100, 0x710c,
915 		0x711c, 0x7184,
916 		0x71f0, 0x71f8,
917 		0x7200, 0x720c,
918 		0x721c, 0x7284,
919 		0x72f0, 0x72f8,
920 		0x7300, 0x730c,
921 		0x731c, 0x7384,
922 		0x73f0, 0x73f8,
923 		0x7400, 0x7450,
924 		0x7500, 0x7530,
925 		0x7600, 0x760c,
926 		0x7614, 0x761c,
927 		0x7680, 0x76cc,
928 		0x7700, 0x7798,
929 		0x77c0, 0x77fc,
930 		0x7900, 0x79fc,
931 		0x7b00, 0x7b58,
932 		0x7b60, 0x7b84,
933 		0x7b8c, 0x7c38,
934 		0x7d00, 0x7d38,
935 		0x7d40, 0x7d80,
936 		0x7d8c, 0x7ddc,
937 		0x7de4, 0x7e04,
938 		0x7e10, 0x7e1c,
939 		0x7e24, 0x7e38,
940 		0x7e40, 0x7e44,
941 		0x7e4c, 0x7e78,
942 		0x7e80, 0x7ea4,
943 		0x7eac, 0x7edc,
944 		0x7ee8, 0x7efc,
945 		0x8dc0, 0x8e04,
946 		0x8e10, 0x8e1c,
947 		0x8e30, 0x8e78,
948 		0x8ea0, 0x8eb8,
949 		0x8ec0, 0x8f6c,
950 		0x8fc0, 0x9008,
951 		0x9010, 0x9058,
952 		0x9060, 0x9060,
953 		0x9068, 0x9074,
954 		0x90fc, 0x90fc,
955 		0x9400, 0x9408,
956 		0x9410, 0x9458,
957 		0x9600, 0x9600,
958 		0x9608, 0x9638,
959 		0x9640, 0x96bc,
960 		0x9800, 0x9808,
961 		0x9820, 0x983c,
962 		0x9850, 0x9864,
963 		0x9c00, 0x9c6c,
964 		0x9c80, 0x9cec,
965 		0x9d00, 0x9d6c,
966 		0x9d80, 0x9dec,
967 		0x9e00, 0x9e6c,
968 		0x9e80, 0x9eec,
969 		0x9f00, 0x9f6c,
970 		0x9f80, 0x9fec,
971 		0xd004, 0xd004,
972 		0xd010, 0xd03c,
973 		0xdfc0, 0xdfe0,
974 		0xe000, 0xea7c,
975 		0xf000, 0x11110,
976 		0x11118, 0x11190,
977 		0x19040, 0x1906c,
978 		0x19078, 0x19080,
979 		0x1908c, 0x190e4,
980 		0x190f0, 0x190f8,
981 		0x19100, 0x19110,
982 		0x19120, 0x19124,
983 		0x19150, 0x19194,
984 		0x1919c, 0x191b0,
985 		0x191d0, 0x191e8,
986 		0x19238, 0x1924c,
987 		0x193f8, 0x1943c,
988 		0x1944c, 0x19474,
989 		0x19490, 0x194e0,
990 		0x194f0, 0x194f8,
991 		0x19800, 0x19c08,
992 		0x19c10, 0x19c90,
993 		0x19ca0, 0x19ce4,
994 		0x19cf0, 0x19d40,
995 		0x19d50, 0x19d94,
996 		0x19da0, 0x19de8,
997 		0x19df0, 0x19e40,
998 		0x19e50, 0x19e90,
999 		0x19ea0, 0x19f4c,
1000 		0x1a000, 0x1a004,
1001 		0x1a010, 0x1a06c,
1002 		0x1a0b0, 0x1a0e4,
1003 		0x1a0ec, 0x1a0f4,
1004 		0x1a100, 0x1a108,
1005 		0x1a114, 0x1a120,
1006 		0x1a128, 0x1a130,
1007 		0x1a138, 0x1a138,
1008 		0x1a190, 0x1a1c4,
1009 		0x1a1fc, 0x1a1fc,
1010 		0x1e040, 0x1e04c,
1011 		0x1e284, 0x1e28c,
1012 		0x1e2c0, 0x1e2c0,
1013 		0x1e2e0, 0x1e2e0,
1014 		0x1e300, 0x1e384,
1015 		0x1e3c0, 0x1e3c8,
1016 		0x1e440, 0x1e44c,
1017 		0x1e684, 0x1e68c,
1018 		0x1e6c0, 0x1e6c0,
1019 		0x1e6e0, 0x1e6e0,
1020 		0x1e700, 0x1e784,
1021 		0x1e7c0, 0x1e7c8,
1022 		0x1e840, 0x1e84c,
1023 		0x1ea84, 0x1ea8c,
1024 		0x1eac0, 0x1eac0,
1025 		0x1eae0, 0x1eae0,
1026 		0x1eb00, 0x1eb84,
1027 		0x1ebc0, 0x1ebc8,
1028 		0x1ec40, 0x1ec4c,
1029 		0x1ee84, 0x1ee8c,
1030 		0x1eec0, 0x1eec0,
1031 		0x1eee0, 0x1eee0,
1032 		0x1ef00, 0x1ef84,
1033 		0x1efc0, 0x1efc8,
1034 		0x1f040, 0x1f04c,
1035 		0x1f284, 0x1f28c,
1036 		0x1f2c0, 0x1f2c0,
1037 		0x1f2e0, 0x1f2e0,
1038 		0x1f300, 0x1f384,
1039 		0x1f3c0, 0x1f3c8,
1040 		0x1f440, 0x1f44c,
1041 		0x1f684, 0x1f68c,
1042 		0x1f6c0, 0x1f6c0,
1043 		0x1f6e0, 0x1f6e0,
1044 		0x1f700, 0x1f784,
1045 		0x1f7c0, 0x1f7c8,
1046 		0x1f840, 0x1f84c,
1047 		0x1fa84, 0x1fa8c,
1048 		0x1fac0, 0x1fac0,
1049 		0x1fae0, 0x1fae0,
1050 		0x1fb00, 0x1fb84,
1051 		0x1fbc0, 0x1fbc8,
1052 		0x1fc40, 0x1fc4c,
1053 		0x1fe84, 0x1fe8c,
1054 		0x1fec0, 0x1fec0,
1055 		0x1fee0, 0x1fee0,
1056 		0x1ff00, 0x1ff84,
1057 		0x1ffc0, 0x1ffc8,
1058 		0x20000, 0x2002c,
1059 		0x20100, 0x2013c,
1060 		0x20190, 0x201a0,
1061 		0x201a8, 0x201b8,
1062 		0x201c4, 0x201c8,
1063 		0x20200, 0x20318,
1064 		0x20400, 0x204b4,
1065 		0x204c0, 0x20528,
1066 		0x20540, 0x20614,
1067 		0x21000, 0x21040,
1068 		0x2104c, 0x21060,
1069 		0x210c0, 0x210ec,
1070 		0x21200, 0x21268,
1071 		0x21270, 0x21284,
1072 		0x212fc, 0x21388,
1073 		0x21400, 0x21404,
1074 		0x21500, 0x21500,
1075 		0x21510, 0x21518,
1076 		0x2152c, 0x21530,
1077 		0x2153c, 0x2153c,
1078 		0x21550, 0x21554,
1079 		0x21600, 0x21600,
1080 		0x21608, 0x2161c,
1081 		0x21624, 0x21628,
1082 		0x21630, 0x21634,
1083 		0x2163c, 0x2163c,
1084 		0x21700, 0x2171c,
1085 		0x21780, 0x2178c,
1086 		0x21800, 0x21818,
1087 		0x21820, 0x21828,
1088 		0x21830, 0x21848,
1089 		0x21850, 0x21854,
1090 		0x21860, 0x21868,
1091 		0x21870, 0x21870,
1092 		0x21878, 0x21898,
1093 		0x218a0, 0x218a8,
1094 		0x218b0, 0x218c8,
1095 		0x218d0, 0x218d4,
1096 		0x218e0, 0x218e8,
1097 		0x218f0, 0x218f0,
1098 		0x218f8, 0x21a18,
1099 		0x21a20, 0x21a28,
1100 		0x21a30, 0x21a48,
1101 		0x21a50, 0x21a54,
1102 		0x21a60, 0x21a68,
1103 		0x21a70, 0x21a70,
1104 		0x21a78, 0x21a98,
1105 		0x21aa0, 0x21aa8,
1106 		0x21ab0, 0x21ac8,
1107 		0x21ad0, 0x21ad4,
1108 		0x21ae0, 0x21ae8,
1109 		0x21af0, 0x21af0,
1110 		0x21af8, 0x21c18,
1111 		0x21c20, 0x21c20,
1112 		0x21c28, 0x21c30,
1113 		0x21c38, 0x21c38,
1114 		0x21c80, 0x21c98,
1115 		0x21ca0, 0x21ca8,
1116 		0x21cb0, 0x21cc8,
1117 		0x21cd0, 0x21cd4,
1118 		0x21ce0, 0x21ce8,
1119 		0x21cf0, 0x21cf0,
1120 		0x21cf8, 0x21d7c,
1121 		0x21e00, 0x21e04,
1122 		0x22000, 0x2202c,
1123 		0x22100, 0x2213c,
1124 		0x22190, 0x221a0,
1125 		0x221a8, 0x221b8,
1126 		0x221c4, 0x221c8,
1127 		0x22200, 0x22318,
1128 		0x22400, 0x224b4,
1129 		0x224c0, 0x22528,
1130 		0x22540, 0x22614,
1131 		0x23000, 0x23040,
1132 		0x2304c, 0x23060,
1133 		0x230c0, 0x230ec,
1134 		0x23200, 0x23268,
1135 		0x23270, 0x23284,
1136 		0x232fc, 0x23388,
1137 		0x23400, 0x23404,
1138 		0x23500, 0x23500,
1139 		0x23510, 0x23518,
1140 		0x2352c, 0x23530,
1141 		0x2353c, 0x2353c,
1142 		0x23550, 0x23554,
1143 		0x23600, 0x23600,
1144 		0x23608, 0x2361c,
1145 		0x23624, 0x23628,
1146 		0x23630, 0x23634,
1147 		0x2363c, 0x2363c,
1148 		0x23700, 0x2371c,
1149 		0x23780, 0x2378c,
1150 		0x23800, 0x23818,
1151 		0x23820, 0x23828,
1152 		0x23830, 0x23848,
1153 		0x23850, 0x23854,
1154 		0x23860, 0x23868,
1155 		0x23870, 0x23870,
1156 		0x23878, 0x23898,
1157 		0x238a0, 0x238a8,
1158 		0x238b0, 0x238c8,
1159 		0x238d0, 0x238d4,
1160 		0x238e0, 0x238e8,
1161 		0x238f0, 0x238f0,
1162 		0x238f8, 0x23a18,
1163 		0x23a20, 0x23a28,
1164 		0x23a30, 0x23a48,
1165 		0x23a50, 0x23a54,
1166 		0x23a60, 0x23a68,
1167 		0x23a70, 0x23a70,
1168 		0x23a78, 0x23a98,
1169 		0x23aa0, 0x23aa8,
1170 		0x23ab0, 0x23ac8,
1171 		0x23ad0, 0x23ad4,
1172 		0x23ae0, 0x23ae8,
1173 		0x23af0, 0x23af0,
1174 		0x23af8, 0x23c18,
1175 		0x23c20, 0x23c20,
1176 		0x23c28, 0x23c30,
1177 		0x23c38, 0x23c38,
1178 		0x23c80, 0x23c98,
1179 		0x23ca0, 0x23ca8,
1180 		0x23cb0, 0x23cc8,
1181 		0x23cd0, 0x23cd4,
1182 		0x23ce0, 0x23ce8,
1183 		0x23cf0, 0x23cf0,
1184 		0x23cf8, 0x23d7c,
1185 		0x23e00, 0x23e04,
1186 		0x24000, 0x2402c,
1187 		0x24100, 0x2413c,
1188 		0x24190, 0x241a0,
1189 		0x241a8, 0x241b8,
1190 		0x241c4, 0x241c8,
1191 		0x24200, 0x24318,
1192 		0x24400, 0x244b4,
1193 		0x244c0, 0x24528,
1194 		0x24540, 0x24614,
1195 		0x25000, 0x25040,
1196 		0x2504c, 0x25060,
1197 		0x250c0, 0x250ec,
1198 		0x25200, 0x25268,
1199 		0x25270, 0x25284,
1200 		0x252fc, 0x25388,
1201 		0x25400, 0x25404,
1202 		0x25500, 0x25500,
1203 		0x25510, 0x25518,
1204 		0x2552c, 0x25530,
1205 		0x2553c, 0x2553c,
1206 		0x25550, 0x25554,
1207 		0x25600, 0x25600,
1208 		0x25608, 0x2561c,
1209 		0x25624, 0x25628,
1210 		0x25630, 0x25634,
1211 		0x2563c, 0x2563c,
1212 		0x25700, 0x2571c,
1213 		0x25780, 0x2578c,
1214 		0x25800, 0x25818,
1215 		0x25820, 0x25828,
1216 		0x25830, 0x25848,
1217 		0x25850, 0x25854,
1218 		0x25860, 0x25868,
1219 		0x25870, 0x25870,
1220 		0x25878, 0x25898,
1221 		0x258a0, 0x258a8,
1222 		0x258b0, 0x258c8,
1223 		0x258d0, 0x258d4,
1224 		0x258e0, 0x258e8,
1225 		0x258f0, 0x258f0,
1226 		0x258f8, 0x25a18,
1227 		0x25a20, 0x25a28,
1228 		0x25a30, 0x25a48,
1229 		0x25a50, 0x25a54,
1230 		0x25a60, 0x25a68,
1231 		0x25a70, 0x25a70,
1232 		0x25a78, 0x25a98,
1233 		0x25aa0, 0x25aa8,
1234 		0x25ab0, 0x25ac8,
1235 		0x25ad0, 0x25ad4,
1236 		0x25ae0, 0x25ae8,
1237 		0x25af0, 0x25af0,
1238 		0x25af8, 0x25c18,
1239 		0x25c20, 0x25c20,
1240 		0x25c28, 0x25c30,
1241 		0x25c38, 0x25c38,
1242 		0x25c80, 0x25c98,
1243 		0x25ca0, 0x25ca8,
1244 		0x25cb0, 0x25cc8,
1245 		0x25cd0, 0x25cd4,
1246 		0x25ce0, 0x25ce8,
1247 		0x25cf0, 0x25cf0,
1248 		0x25cf8, 0x25d7c,
1249 		0x25e00, 0x25e04,
1250 		0x26000, 0x2602c,
1251 		0x26100, 0x2613c,
1252 		0x26190, 0x261a0,
1253 		0x261a8, 0x261b8,
1254 		0x261c4, 0x261c8,
1255 		0x26200, 0x26318,
1256 		0x26400, 0x264b4,
1257 		0x264c0, 0x26528,
1258 		0x26540, 0x26614,
1259 		0x27000, 0x27040,
1260 		0x2704c, 0x27060,
1261 		0x270c0, 0x270ec,
1262 		0x27200, 0x27268,
1263 		0x27270, 0x27284,
1264 		0x272fc, 0x27388,
1265 		0x27400, 0x27404,
1266 		0x27500, 0x27500,
1267 		0x27510, 0x27518,
1268 		0x2752c, 0x27530,
1269 		0x2753c, 0x2753c,
1270 		0x27550, 0x27554,
1271 		0x27600, 0x27600,
1272 		0x27608, 0x2761c,
1273 		0x27624, 0x27628,
1274 		0x27630, 0x27634,
1275 		0x2763c, 0x2763c,
1276 		0x27700, 0x2771c,
1277 		0x27780, 0x2778c,
1278 		0x27800, 0x27818,
1279 		0x27820, 0x27828,
1280 		0x27830, 0x27848,
1281 		0x27850, 0x27854,
1282 		0x27860, 0x27868,
1283 		0x27870, 0x27870,
1284 		0x27878, 0x27898,
1285 		0x278a0, 0x278a8,
1286 		0x278b0, 0x278c8,
1287 		0x278d0, 0x278d4,
1288 		0x278e0, 0x278e8,
1289 		0x278f0, 0x278f0,
1290 		0x278f8, 0x27a18,
1291 		0x27a20, 0x27a28,
1292 		0x27a30, 0x27a48,
1293 		0x27a50, 0x27a54,
1294 		0x27a60, 0x27a68,
1295 		0x27a70, 0x27a70,
1296 		0x27a78, 0x27a98,
1297 		0x27aa0, 0x27aa8,
1298 		0x27ab0, 0x27ac8,
1299 		0x27ad0, 0x27ad4,
1300 		0x27ae0, 0x27ae8,
1301 		0x27af0, 0x27af0,
1302 		0x27af8, 0x27c18,
1303 		0x27c20, 0x27c20,
1304 		0x27c28, 0x27c30,
1305 		0x27c38, 0x27c38,
1306 		0x27c80, 0x27c98,
1307 		0x27ca0, 0x27ca8,
1308 		0x27cb0, 0x27cc8,
1309 		0x27cd0, 0x27cd4,
1310 		0x27ce0, 0x27ce8,
1311 		0x27cf0, 0x27cf0,
1312 		0x27cf8, 0x27d7c,
1313 		0x27e00, 0x27e04,
1314 	};
1315 
1316 	static const unsigned int t4vf_reg_ranges[] = {
1317 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1318 		VF_MPS_REG(A_MPS_VF_CTL),
1319 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1320 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1321 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1322 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1323 		FW_T4VF_MBDATA_BASE_ADDR,
1324 		FW_T4VF_MBDATA_BASE_ADDR +
1325 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1326 	};
1327 
1328 	static const unsigned int t5_reg_ranges[] = {
1329 		0x1008, 0x10c0,
1330 		0x10cc, 0x10f8,
1331 		0x1100, 0x1100,
1332 		0x110c, 0x1148,
1333 		0x1180, 0x1184,
1334 		0x1190, 0x1194,
1335 		0x11a0, 0x11a4,
1336 		0x11b0, 0x11b4,
1337 		0x11fc, 0x123c,
1338 		0x1280, 0x173c,
1339 		0x1800, 0x18fc,
1340 		0x3000, 0x3028,
1341 		0x3060, 0x30b0,
1342 		0x30b8, 0x30d8,
1343 		0x30e0, 0x30fc,
1344 		0x3140, 0x357c,
1345 		0x35a8, 0x35cc,
1346 		0x35ec, 0x35ec,
1347 		0x3600, 0x5624,
1348 		0x56cc, 0x56ec,
1349 		0x56f4, 0x5720,
1350 		0x5728, 0x575c,
1351 		0x580c, 0x5814,
1352 		0x5890, 0x589c,
1353 		0x58a4, 0x58ac,
1354 		0x58b8, 0x58bc,
1355 		0x5940, 0x59c8,
1356 		0x59d0, 0x59dc,
1357 		0x59fc, 0x5a18,
1358 		0x5a60, 0x5a70,
1359 		0x5a80, 0x5a9c,
1360 		0x5b94, 0x5bfc,
1361 		0x6000, 0x6020,
1362 		0x6028, 0x6040,
1363 		0x6058, 0x609c,
1364 		0x60a8, 0x614c,
1365 		0x7700, 0x7798,
1366 		0x77c0, 0x78fc,
1367 		0x7b00, 0x7b58,
1368 		0x7b60, 0x7b84,
1369 		0x7b8c, 0x7c54,
1370 		0x7d00, 0x7d38,
1371 		0x7d40, 0x7d80,
1372 		0x7d8c, 0x7ddc,
1373 		0x7de4, 0x7e04,
1374 		0x7e10, 0x7e1c,
1375 		0x7e24, 0x7e38,
1376 		0x7e40, 0x7e44,
1377 		0x7e4c, 0x7e78,
1378 		0x7e80, 0x7edc,
1379 		0x7ee8, 0x7efc,
1380 		0x8dc0, 0x8de0,
1381 		0x8df8, 0x8e04,
1382 		0x8e10, 0x8e84,
1383 		0x8ea0, 0x8f84,
1384 		0x8fc0, 0x9058,
1385 		0x9060, 0x9060,
1386 		0x9068, 0x90f8,
1387 		0x9400, 0x9408,
1388 		0x9410, 0x9470,
1389 		0x9600, 0x9600,
1390 		0x9608, 0x9638,
1391 		0x9640, 0x96f4,
1392 		0x9800, 0x9808,
1393 		0x9810, 0x9864,
1394 		0x9c00, 0x9c6c,
1395 		0x9c80, 0x9cec,
1396 		0x9d00, 0x9d6c,
1397 		0x9d80, 0x9dec,
1398 		0x9e00, 0x9e6c,
1399 		0x9e80, 0x9eec,
1400 		0x9f00, 0x9f6c,
1401 		0x9f80, 0xa020,
1402 		0xd000, 0xd004,
1403 		0xd010, 0xd03c,
1404 		0xdfc0, 0xdfe0,
1405 		0xe000, 0x1106c,
1406 		0x11074, 0x11088,
1407 		0x1109c, 0x11110,
1408 		0x11118, 0x1117c,
1409 		0x11190, 0x11204,
1410 		0x19040, 0x1906c,
1411 		0x19078, 0x19080,
1412 		0x1908c, 0x190e8,
1413 		0x190f0, 0x190f8,
1414 		0x19100, 0x19110,
1415 		0x19120, 0x19124,
1416 		0x19150, 0x19194,
1417 		0x1919c, 0x191b0,
1418 		0x191d0, 0x191e8,
1419 		0x19238, 0x19290,
1420 		0x193f8, 0x19428,
1421 		0x19430, 0x19444,
1422 		0x1944c, 0x1946c,
1423 		0x19474, 0x19474,
1424 		0x19490, 0x194cc,
1425 		0x194f0, 0x194f8,
1426 		0x19c00, 0x19c08,
1427 		0x19c10, 0x19c60,
1428 		0x19c94, 0x19ce4,
1429 		0x19cf0, 0x19d40,
1430 		0x19d50, 0x19d94,
1431 		0x19da0, 0x19de8,
1432 		0x19df0, 0x19e10,
1433 		0x19e50, 0x19e90,
1434 		0x19ea0, 0x19f24,
1435 		0x19f34, 0x19f34,
1436 		0x19f40, 0x19f50,
1437 		0x19f90, 0x19fb4,
1438 		0x19fc4, 0x19fe4,
1439 		0x1a000, 0x1a004,
1440 		0x1a010, 0x1a06c,
1441 		0x1a0b0, 0x1a0e4,
1442 		0x1a0ec, 0x1a0f8,
1443 		0x1a100, 0x1a108,
1444 		0x1a114, 0x1a130,
1445 		0x1a138, 0x1a1c4,
1446 		0x1a1fc, 0x1a1fc,
1447 		0x1e008, 0x1e00c,
1448 		0x1e040, 0x1e044,
1449 		0x1e04c, 0x1e04c,
1450 		0x1e284, 0x1e290,
1451 		0x1e2c0, 0x1e2c0,
1452 		0x1e2e0, 0x1e2e0,
1453 		0x1e300, 0x1e384,
1454 		0x1e3c0, 0x1e3c8,
1455 		0x1e408, 0x1e40c,
1456 		0x1e440, 0x1e444,
1457 		0x1e44c, 0x1e44c,
1458 		0x1e684, 0x1e690,
1459 		0x1e6c0, 0x1e6c0,
1460 		0x1e6e0, 0x1e6e0,
1461 		0x1e700, 0x1e784,
1462 		0x1e7c0, 0x1e7c8,
1463 		0x1e808, 0x1e80c,
1464 		0x1e840, 0x1e844,
1465 		0x1e84c, 0x1e84c,
1466 		0x1ea84, 0x1ea90,
1467 		0x1eac0, 0x1eac0,
1468 		0x1eae0, 0x1eae0,
1469 		0x1eb00, 0x1eb84,
1470 		0x1ebc0, 0x1ebc8,
1471 		0x1ec08, 0x1ec0c,
1472 		0x1ec40, 0x1ec44,
1473 		0x1ec4c, 0x1ec4c,
1474 		0x1ee84, 0x1ee90,
1475 		0x1eec0, 0x1eec0,
1476 		0x1eee0, 0x1eee0,
1477 		0x1ef00, 0x1ef84,
1478 		0x1efc0, 0x1efc8,
1479 		0x1f008, 0x1f00c,
1480 		0x1f040, 0x1f044,
1481 		0x1f04c, 0x1f04c,
1482 		0x1f284, 0x1f290,
1483 		0x1f2c0, 0x1f2c0,
1484 		0x1f2e0, 0x1f2e0,
1485 		0x1f300, 0x1f384,
1486 		0x1f3c0, 0x1f3c8,
1487 		0x1f408, 0x1f40c,
1488 		0x1f440, 0x1f444,
1489 		0x1f44c, 0x1f44c,
1490 		0x1f684, 0x1f690,
1491 		0x1f6c0, 0x1f6c0,
1492 		0x1f6e0, 0x1f6e0,
1493 		0x1f700, 0x1f784,
1494 		0x1f7c0, 0x1f7c8,
1495 		0x1f808, 0x1f80c,
1496 		0x1f840, 0x1f844,
1497 		0x1f84c, 0x1f84c,
1498 		0x1fa84, 0x1fa90,
1499 		0x1fac0, 0x1fac0,
1500 		0x1fae0, 0x1fae0,
1501 		0x1fb00, 0x1fb84,
1502 		0x1fbc0, 0x1fbc8,
1503 		0x1fc08, 0x1fc0c,
1504 		0x1fc40, 0x1fc44,
1505 		0x1fc4c, 0x1fc4c,
1506 		0x1fe84, 0x1fe90,
1507 		0x1fec0, 0x1fec0,
1508 		0x1fee0, 0x1fee0,
1509 		0x1ff00, 0x1ff84,
1510 		0x1ffc0, 0x1ffc8,
1511 		0x30000, 0x30030,
1512 		0x30100, 0x30144,
1513 		0x30190, 0x301a0,
1514 		0x301a8, 0x301b8,
1515 		0x301c4, 0x301c8,
1516 		0x301d0, 0x301d0,
1517 		0x30200, 0x30318,
1518 		0x30400, 0x304b4,
1519 		0x304c0, 0x3052c,
1520 		0x30540, 0x3061c,
1521 		0x30800, 0x30828,
1522 		0x30834, 0x30834,
1523 		0x308c0, 0x30908,
1524 		0x30910, 0x309ac,
1525 		0x30a00, 0x30a14,
1526 		0x30a1c, 0x30a2c,
1527 		0x30a44, 0x30a50,
1528 		0x30a74, 0x30a74,
1529 		0x30a7c, 0x30afc,
1530 		0x30b08, 0x30c24,
1531 		0x30d00, 0x30d00,
1532 		0x30d08, 0x30d14,
1533 		0x30d1c, 0x30d20,
1534 		0x30d3c, 0x30d3c,
1535 		0x30d48, 0x30d50,
1536 		0x31200, 0x3120c,
1537 		0x31220, 0x31220,
1538 		0x31240, 0x31240,
1539 		0x31600, 0x3160c,
1540 		0x31a00, 0x31a1c,
1541 		0x31e00, 0x31e20,
1542 		0x31e38, 0x31e3c,
1543 		0x31e80, 0x31e80,
1544 		0x31e88, 0x31ea8,
1545 		0x31eb0, 0x31eb4,
1546 		0x31ec8, 0x31ed4,
1547 		0x31fb8, 0x32004,
1548 		0x32200, 0x32200,
1549 		0x32208, 0x32240,
1550 		0x32248, 0x32280,
1551 		0x32288, 0x322c0,
1552 		0x322c8, 0x322fc,
1553 		0x32600, 0x32630,
1554 		0x32a00, 0x32abc,
1555 		0x32b00, 0x32b10,
1556 		0x32b20, 0x32b30,
1557 		0x32b40, 0x32b50,
1558 		0x32b60, 0x32b70,
1559 		0x33000, 0x33028,
1560 		0x33030, 0x33048,
1561 		0x33060, 0x33068,
1562 		0x33070, 0x3309c,
1563 		0x330f0, 0x33128,
1564 		0x33130, 0x33148,
1565 		0x33160, 0x33168,
1566 		0x33170, 0x3319c,
1567 		0x331f0, 0x33238,
1568 		0x33240, 0x33240,
1569 		0x33248, 0x33250,
1570 		0x3325c, 0x33264,
1571 		0x33270, 0x332b8,
1572 		0x332c0, 0x332e4,
1573 		0x332f8, 0x33338,
1574 		0x33340, 0x33340,
1575 		0x33348, 0x33350,
1576 		0x3335c, 0x33364,
1577 		0x33370, 0x333b8,
1578 		0x333c0, 0x333e4,
1579 		0x333f8, 0x33428,
1580 		0x33430, 0x33448,
1581 		0x33460, 0x33468,
1582 		0x33470, 0x3349c,
1583 		0x334f0, 0x33528,
1584 		0x33530, 0x33548,
1585 		0x33560, 0x33568,
1586 		0x33570, 0x3359c,
1587 		0x335f0, 0x33638,
1588 		0x33640, 0x33640,
1589 		0x33648, 0x33650,
1590 		0x3365c, 0x33664,
1591 		0x33670, 0x336b8,
1592 		0x336c0, 0x336e4,
1593 		0x336f8, 0x33738,
1594 		0x33740, 0x33740,
1595 		0x33748, 0x33750,
1596 		0x3375c, 0x33764,
1597 		0x33770, 0x337b8,
1598 		0x337c0, 0x337e4,
1599 		0x337f8, 0x337fc,
1600 		0x33814, 0x33814,
1601 		0x3382c, 0x3382c,
1602 		0x33880, 0x3388c,
1603 		0x338e8, 0x338ec,
1604 		0x33900, 0x33928,
1605 		0x33930, 0x33948,
1606 		0x33960, 0x33968,
1607 		0x33970, 0x3399c,
1608 		0x339f0, 0x33a38,
1609 		0x33a40, 0x33a40,
1610 		0x33a48, 0x33a50,
1611 		0x33a5c, 0x33a64,
1612 		0x33a70, 0x33ab8,
1613 		0x33ac0, 0x33ae4,
1614 		0x33af8, 0x33b10,
1615 		0x33b28, 0x33b28,
1616 		0x33b3c, 0x33b50,
1617 		0x33bf0, 0x33c10,
1618 		0x33c28, 0x33c28,
1619 		0x33c3c, 0x33c50,
1620 		0x33cf0, 0x33cfc,
1621 		0x34000, 0x34030,
1622 		0x34100, 0x34144,
1623 		0x34190, 0x341a0,
1624 		0x341a8, 0x341b8,
1625 		0x341c4, 0x341c8,
1626 		0x341d0, 0x341d0,
1627 		0x34200, 0x34318,
1628 		0x34400, 0x344b4,
1629 		0x344c0, 0x3452c,
1630 		0x34540, 0x3461c,
1631 		0x34800, 0x34828,
1632 		0x34834, 0x34834,
1633 		0x348c0, 0x34908,
1634 		0x34910, 0x349ac,
1635 		0x34a00, 0x34a14,
1636 		0x34a1c, 0x34a2c,
1637 		0x34a44, 0x34a50,
1638 		0x34a74, 0x34a74,
1639 		0x34a7c, 0x34afc,
1640 		0x34b08, 0x34c24,
1641 		0x34d00, 0x34d00,
1642 		0x34d08, 0x34d14,
1643 		0x34d1c, 0x34d20,
1644 		0x34d3c, 0x34d3c,
1645 		0x34d48, 0x34d50,
1646 		0x35200, 0x3520c,
1647 		0x35220, 0x35220,
1648 		0x35240, 0x35240,
1649 		0x35600, 0x3560c,
1650 		0x35a00, 0x35a1c,
1651 		0x35e00, 0x35e20,
1652 		0x35e38, 0x35e3c,
1653 		0x35e80, 0x35e80,
1654 		0x35e88, 0x35ea8,
1655 		0x35eb0, 0x35eb4,
1656 		0x35ec8, 0x35ed4,
1657 		0x35fb8, 0x36004,
1658 		0x36200, 0x36200,
1659 		0x36208, 0x36240,
1660 		0x36248, 0x36280,
1661 		0x36288, 0x362c0,
1662 		0x362c8, 0x362fc,
1663 		0x36600, 0x36630,
1664 		0x36a00, 0x36abc,
1665 		0x36b00, 0x36b10,
1666 		0x36b20, 0x36b30,
1667 		0x36b40, 0x36b50,
1668 		0x36b60, 0x36b70,
1669 		0x37000, 0x37028,
1670 		0x37030, 0x37048,
1671 		0x37060, 0x37068,
1672 		0x37070, 0x3709c,
1673 		0x370f0, 0x37128,
1674 		0x37130, 0x37148,
1675 		0x37160, 0x37168,
1676 		0x37170, 0x3719c,
1677 		0x371f0, 0x37238,
1678 		0x37240, 0x37240,
1679 		0x37248, 0x37250,
1680 		0x3725c, 0x37264,
1681 		0x37270, 0x372b8,
1682 		0x372c0, 0x372e4,
1683 		0x372f8, 0x37338,
1684 		0x37340, 0x37340,
1685 		0x37348, 0x37350,
1686 		0x3735c, 0x37364,
1687 		0x37370, 0x373b8,
1688 		0x373c0, 0x373e4,
1689 		0x373f8, 0x37428,
1690 		0x37430, 0x37448,
1691 		0x37460, 0x37468,
1692 		0x37470, 0x3749c,
1693 		0x374f0, 0x37528,
1694 		0x37530, 0x37548,
1695 		0x37560, 0x37568,
1696 		0x37570, 0x3759c,
1697 		0x375f0, 0x37638,
1698 		0x37640, 0x37640,
1699 		0x37648, 0x37650,
1700 		0x3765c, 0x37664,
1701 		0x37670, 0x376b8,
1702 		0x376c0, 0x376e4,
1703 		0x376f8, 0x37738,
1704 		0x37740, 0x37740,
1705 		0x37748, 0x37750,
1706 		0x3775c, 0x37764,
1707 		0x37770, 0x377b8,
1708 		0x377c0, 0x377e4,
1709 		0x377f8, 0x377fc,
1710 		0x37814, 0x37814,
1711 		0x3782c, 0x3782c,
1712 		0x37880, 0x3788c,
1713 		0x378e8, 0x378ec,
1714 		0x37900, 0x37928,
1715 		0x37930, 0x37948,
1716 		0x37960, 0x37968,
1717 		0x37970, 0x3799c,
1718 		0x379f0, 0x37a38,
1719 		0x37a40, 0x37a40,
1720 		0x37a48, 0x37a50,
1721 		0x37a5c, 0x37a64,
1722 		0x37a70, 0x37ab8,
1723 		0x37ac0, 0x37ae4,
1724 		0x37af8, 0x37b10,
1725 		0x37b28, 0x37b28,
1726 		0x37b3c, 0x37b50,
1727 		0x37bf0, 0x37c10,
1728 		0x37c28, 0x37c28,
1729 		0x37c3c, 0x37c50,
1730 		0x37cf0, 0x37cfc,
1731 		0x38000, 0x38030,
1732 		0x38100, 0x38144,
1733 		0x38190, 0x381a0,
1734 		0x381a8, 0x381b8,
1735 		0x381c4, 0x381c8,
1736 		0x381d0, 0x381d0,
1737 		0x38200, 0x38318,
1738 		0x38400, 0x384b4,
1739 		0x384c0, 0x3852c,
1740 		0x38540, 0x3861c,
1741 		0x38800, 0x38828,
1742 		0x38834, 0x38834,
1743 		0x388c0, 0x38908,
1744 		0x38910, 0x389ac,
1745 		0x38a00, 0x38a14,
1746 		0x38a1c, 0x38a2c,
1747 		0x38a44, 0x38a50,
1748 		0x38a74, 0x38a74,
1749 		0x38a7c, 0x38afc,
1750 		0x38b08, 0x38c24,
1751 		0x38d00, 0x38d00,
1752 		0x38d08, 0x38d14,
1753 		0x38d1c, 0x38d20,
1754 		0x38d3c, 0x38d3c,
1755 		0x38d48, 0x38d50,
1756 		0x39200, 0x3920c,
1757 		0x39220, 0x39220,
1758 		0x39240, 0x39240,
1759 		0x39600, 0x3960c,
1760 		0x39a00, 0x39a1c,
1761 		0x39e00, 0x39e20,
1762 		0x39e38, 0x39e3c,
1763 		0x39e80, 0x39e80,
1764 		0x39e88, 0x39ea8,
1765 		0x39eb0, 0x39eb4,
1766 		0x39ec8, 0x39ed4,
1767 		0x39fb8, 0x3a004,
1768 		0x3a200, 0x3a200,
1769 		0x3a208, 0x3a240,
1770 		0x3a248, 0x3a280,
1771 		0x3a288, 0x3a2c0,
1772 		0x3a2c8, 0x3a2fc,
1773 		0x3a600, 0x3a630,
1774 		0x3aa00, 0x3aabc,
1775 		0x3ab00, 0x3ab10,
1776 		0x3ab20, 0x3ab30,
1777 		0x3ab40, 0x3ab50,
1778 		0x3ab60, 0x3ab70,
1779 		0x3b000, 0x3b028,
1780 		0x3b030, 0x3b048,
1781 		0x3b060, 0x3b068,
1782 		0x3b070, 0x3b09c,
1783 		0x3b0f0, 0x3b128,
1784 		0x3b130, 0x3b148,
1785 		0x3b160, 0x3b168,
1786 		0x3b170, 0x3b19c,
1787 		0x3b1f0, 0x3b238,
1788 		0x3b240, 0x3b240,
1789 		0x3b248, 0x3b250,
1790 		0x3b25c, 0x3b264,
1791 		0x3b270, 0x3b2b8,
1792 		0x3b2c0, 0x3b2e4,
1793 		0x3b2f8, 0x3b338,
1794 		0x3b340, 0x3b340,
1795 		0x3b348, 0x3b350,
1796 		0x3b35c, 0x3b364,
1797 		0x3b370, 0x3b3b8,
1798 		0x3b3c0, 0x3b3e4,
1799 		0x3b3f8, 0x3b428,
1800 		0x3b430, 0x3b448,
1801 		0x3b460, 0x3b468,
1802 		0x3b470, 0x3b49c,
1803 		0x3b4f0, 0x3b528,
1804 		0x3b530, 0x3b548,
1805 		0x3b560, 0x3b568,
1806 		0x3b570, 0x3b59c,
1807 		0x3b5f0, 0x3b638,
1808 		0x3b640, 0x3b640,
1809 		0x3b648, 0x3b650,
1810 		0x3b65c, 0x3b664,
1811 		0x3b670, 0x3b6b8,
1812 		0x3b6c0, 0x3b6e4,
1813 		0x3b6f8, 0x3b738,
1814 		0x3b740, 0x3b740,
1815 		0x3b748, 0x3b750,
1816 		0x3b75c, 0x3b764,
1817 		0x3b770, 0x3b7b8,
1818 		0x3b7c0, 0x3b7e4,
1819 		0x3b7f8, 0x3b7fc,
1820 		0x3b814, 0x3b814,
1821 		0x3b82c, 0x3b82c,
1822 		0x3b880, 0x3b88c,
1823 		0x3b8e8, 0x3b8ec,
1824 		0x3b900, 0x3b928,
1825 		0x3b930, 0x3b948,
1826 		0x3b960, 0x3b968,
1827 		0x3b970, 0x3b99c,
1828 		0x3b9f0, 0x3ba38,
1829 		0x3ba40, 0x3ba40,
1830 		0x3ba48, 0x3ba50,
1831 		0x3ba5c, 0x3ba64,
1832 		0x3ba70, 0x3bab8,
1833 		0x3bac0, 0x3bae4,
1834 		0x3baf8, 0x3bb10,
1835 		0x3bb28, 0x3bb28,
1836 		0x3bb3c, 0x3bb50,
1837 		0x3bbf0, 0x3bc10,
1838 		0x3bc28, 0x3bc28,
1839 		0x3bc3c, 0x3bc50,
1840 		0x3bcf0, 0x3bcfc,
1841 		0x3c000, 0x3c030,
1842 		0x3c100, 0x3c144,
1843 		0x3c190, 0x3c1a0,
1844 		0x3c1a8, 0x3c1b8,
1845 		0x3c1c4, 0x3c1c8,
1846 		0x3c1d0, 0x3c1d0,
1847 		0x3c200, 0x3c318,
1848 		0x3c400, 0x3c4b4,
1849 		0x3c4c0, 0x3c52c,
1850 		0x3c540, 0x3c61c,
1851 		0x3c800, 0x3c828,
1852 		0x3c834, 0x3c834,
1853 		0x3c8c0, 0x3c908,
1854 		0x3c910, 0x3c9ac,
1855 		0x3ca00, 0x3ca14,
1856 		0x3ca1c, 0x3ca2c,
1857 		0x3ca44, 0x3ca50,
1858 		0x3ca74, 0x3ca74,
1859 		0x3ca7c, 0x3cafc,
1860 		0x3cb08, 0x3cc24,
1861 		0x3cd00, 0x3cd00,
1862 		0x3cd08, 0x3cd14,
1863 		0x3cd1c, 0x3cd20,
1864 		0x3cd3c, 0x3cd3c,
1865 		0x3cd48, 0x3cd50,
1866 		0x3d200, 0x3d20c,
1867 		0x3d220, 0x3d220,
1868 		0x3d240, 0x3d240,
1869 		0x3d600, 0x3d60c,
1870 		0x3da00, 0x3da1c,
1871 		0x3de00, 0x3de20,
1872 		0x3de38, 0x3de3c,
1873 		0x3de80, 0x3de80,
1874 		0x3de88, 0x3dea8,
1875 		0x3deb0, 0x3deb4,
1876 		0x3dec8, 0x3ded4,
1877 		0x3dfb8, 0x3e004,
1878 		0x3e200, 0x3e200,
1879 		0x3e208, 0x3e240,
1880 		0x3e248, 0x3e280,
1881 		0x3e288, 0x3e2c0,
1882 		0x3e2c8, 0x3e2fc,
1883 		0x3e600, 0x3e630,
1884 		0x3ea00, 0x3eabc,
1885 		0x3eb00, 0x3eb10,
1886 		0x3eb20, 0x3eb30,
1887 		0x3eb40, 0x3eb50,
1888 		0x3eb60, 0x3eb70,
1889 		0x3f000, 0x3f028,
1890 		0x3f030, 0x3f048,
1891 		0x3f060, 0x3f068,
1892 		0x3f070, 0x3f09c,
1893 		0x3f0f0, 0x3f128,
1894 		0x3f130, 0x3f148,
1895 		0x3f160, 0x3f168,
1896 		0x3f170, 0x3f19c,
1897 		0x3f1f0, 0x3f238,
1898 		0x3f240, 0x3f240,
1899 		0x3f248, 0x3f250,
1900 		0x3f25c, 0x3f264,
1901 		0x3f270, 0x3f2b8,
1902 		0x3f2c0, 0x3f2e4,
1903 		0x3f2f8, 0x3f338,
1904 		0x3f340, 0x3f340,
1905 		0x3f348, 0x3f350,
1906 		0x3f35c, 0x3f364,
1907 		0x3f370, 0x3f3b8,
1908 		0x3f3c0, 0x3f3e4,
1909 		0x3f3f8, 0x3f428,
1910 		0x3f430, 0x3f448,
1911 		0x3f460, 0x3f468,
1912 		0x3f470, 0x3f49c,
1913 		0x3f4f0, 0x3f528,
1914 		0x3f530, 0x3f548,
1915 		0x3f560, 0x3f568,
1916 		0x3f570, 0x3f59c,
1917 		0x3f5f0, 0x3f638,
1918 		0x3f640, 0x3f640,
1919 		0x3f648, 0x3f650,
1920 		0x3f65c, 0x3f664,
1921 		0x3f670, 0x3f6b8,
1922 		0x3f6c0, 0x3f6e4,
1923 		0x3f6f8, 0x3f738,
1924 		0x3f740, 0x3f740,
1925 		0x3f748, 0x3f750,
1926 		0x3f75c, 0x3f764,
1927 		0x3f770, 0x3f7b8,
1928 		0x3f7c0, 0x3f7e4,
1929 		0x3f7f8, 0x3f7fc,
1930 		0x3f814, 0x3f814,
1931 		0x3f82c, 0x3f82c,
1932 		0x3f880, 0x3f88c,
1933 		0x3f8e8, 0x3f8ec,
1934 		0x3f900, 0x3f928,
1935 		0x3f930, 0x3f948,
1936 		0x3f960, 0x3f968,
1937 		0x3f970, 0x3f99c,
1938 		0x3f9f0, 0x3fa38,
1939 		0x3fa40, 0x3fa40,
1940 		0x3fa48, 0x3fa50,
1941 		0x3fa5c, 0x3fa64,
1942 		0x3fa70, 0x3fab8,
1943 		0x3fac0, 0x3fae4,
1944 		0x3faf8, 0x3fb10,
1945 		0x3fb28, 0x3fb28,
1946 		0x3fb3c, 0x3fb50,
1947 		0x3fbf0, 0x3fc10,
1948 		0x3fc28, 0x3fc28,
1949 		0x3fc3c, 0x3fc50,
1950 		0x3fcf0, 0x3fcfc,
1951 		0x40000, 0x4000c,
1952 		0x40040, 0x40050,
1953 		0x40060, 0x40068,
1954 		0x4007c, 0x4008c,
1955 		0x40094, 0x400b0,
1956 		0x400c0, 0x40144,
1957 		0x40180, 0x4018c,
1958 		0x40200, 0x40254,
1959 		0x40260, 0x40264,
1960 		0x40270, 0x40288,
1961 		0x40290, 0x40298,
1962 		0x402ac, 0x402c8,
1963 		0x402d0, 0x402e0,
1964 		0x402f0, 0x402f0,
1965 		0x40300, 0x4033c,
1966 		0x403f8, 0x403fc,
1967 		0x41304, 0x413c4,
1968 		0x41400, 0x4140c,
1969 		0x41414, 0x4141c,
1970 		0x41480, 0x414d0,
1971 		0x44000, 0x44054,
1972 		0x4405c, 0x44078,
1973 		0x440c0, 0x44174,
1974 		0x44180, 0x441ac,
1975 		0x441b4, 0x441b8,
1976 		0x441c0, 0x44254,
1977 		0x4425c, 0x44278,
1978 		0x442c0, 0x44374,
1979 		0x44380, 0x443ac,
1980 		0x443b4, 0x443b8,
1981 		0x443c0, 0x44454,
1982 		0x4445c, 0x44478,
1983 		0x444c0, 0x44574,
1984 		0x44580, 0x445ac,
1985 		0x445b4, 0x445b8,
1986 		0x445c0, 0x44654,
1987 		0x4465c, 0x44678,
1988 		0x446c0, 0x44774,
1989 		0x44780, 0x447ac,
1990 		0x447b4, 0x447b8,
1991 		0x447c0, 0x44854,
1992 		0x4485c, 0x44878,
1993 		0x448c0, 0x44974,
1994 		0x44980, 0x449ac,
1995 		0x449b4, 0x449b8,
1996 		0x449c0, 0x449fc,
1997 		0x45000, 0x45004,
1998 		0x45010, 0x45030,
1999 		0x45040, 0x45060,
2000 		0x45068, 0x45068,
2001 		0x45080, 0x45084,
2002 		0x450a0, 0x450b0,
2003 		0x45200, 0x45204,
2004 		0x45210, 0x45230,
2005 		0x45240, 0x45260,
2006 		0x45268, 0x45268,
2007 		0x45280, 0x45284,
2008 		0x452a0, 0x452b0,
2009 		0x460c0, 0x460e4,
2010 		0x47000, 0x4703c,
2011 		0x47044, 0x4708c,
2012 		0x47200, 0x47250,
2013 		0x47400, 0x47408,
2014 		0x47414, 0x47420,
2015 		0x47600, 0x47618,
2016 		0x47800, 0x47814,
2017 		0x48000, 0x4800c,
2018 		0x48040, 0x48050,
2019 		0x48060, 0x48068,
2020 		0x4807c, 0x4808c,
2021 		0x48094, 0x480b0,
2022 		0x480c0, 0x48144,
2023 		0x48180, 0x4818c,
2024 		0x48200, 0x48254,
2025 		0x48260, 0x48264,
2026 		0x48270, 0x48288,
2027 		0x48290, 0x48298,
2028 		0x482ac, 0x482c8,
2029 		0x482d0, 0x482e0,
2030 		0x482f0, 0x482f0,
2031 		0x48300, 0x4833c,
2032 		0x483f8, 0x483fc,
2033 		0x49304, 0x493c4,
2034 		0x49400, 0x4940c,
2035 		0x49414, 0x4941c,
2036 		0x49480, 0x494d0,
2037 		0x4c000, 0x4c054,
2038 		0x4c05c, 0x4c078,
2039 		0x4c0c0, 0x4c174,
2040 		0x4c180, 0x4c1ac,
2041 		0x4c1b4, 0x4c1b8,
2042 		0x4c1c0, 0x4c254,
2043 		0x4c25c, 0x4c278,
2044 		0x4c2c0, 0x4c374,
2045 		0x4c380, 0x4c3ac,
2046 		0x4c3b4, 0x4c3b8,
2047 		0x4c3c0, 0x4c454,
2048 		0x4c45c, 0x4c478,
2049 		0x4c4c0, 0x4c574,
2050 		0x4c580, 0x4c5ac,
2051 		0x4c5b4, 0x4c5b8,
2052 		0x4c5c0, 0x4c654,
2053 		0x4c65c, 0x4c678,
2054 		0x4c6c0, 0x4c774,
2055 		0x4c780, 0x4c7ac,
2056 		0x4c7b4, 0x4c7b8,
2057 		0x4c7c0, 0x4c854,
2058 		0x4c85c, 0x4c878,
2059 		0x4c8c0, 0x4c974,
2060 		0x4c980, 0x4c9ac,
2061 		0x4c9b4, 0x4c9b8,
2062 		0x4c9c0, 0x4c9fc,
2063 		0x4d000, 0x4d004,
2064 		0x4d010, 0x4d030,
2065 		0x4d040, 0x4d060,
2066 		0x4d068, 0x4d068,
2067 		0x4d080, 0x4d084,
2068 		0x4d0a0, 0x4d0b0,
2069 		0x4d200, 0x4d204,
2070 		0x4d210, 0x4d230,
2071 		0x4d240, 0x4d260,
2072 		0x4d268, 0x4d268,
2073 		0x4d280, 0x4d284,
2074 		0x4d2a0, 0x4d2b0,
2075 		0x4e0c0, 0x4e0e4,
2076 		0x4f000, 0x4f03c,
2077 		0x4f044, 0x4f08c,
2078 		0x4f200, 0x4f250,
2079 		0x4f400, 0x4f408,
2080 		0x4f414, 0x4f420,
2081 		0x4f600, 0x4f618,
2082 		0x4f800, 0x4f814,
2083 		0x50000, 0x50084,
2084 		0x50090, 0x500cc,
2085 		0x50400, 0x50400,
2086 		0x50800, 0x50884,
2087 		0x50890, 0x508cc,
2088 		0x50c00, 0x50c00,
2089 		0x51000, 0x5101c,
2090 		0x51300, 0x51308,
2091 	};
2092 
2093 	static const unsigned int t5vf_reg_ranges[] = {
2094 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2095 		VF_MPS_REG(A_MPS_VF_CTL),
2096 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2097 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2098 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2099 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2100 		FW_T4VF_MBDATA_BASE_ADDR,
2101 		FW_T4VF_MBDATA_BASE_ADDR +
2102 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2103 	};
2104 
2105 	static const unsigned int t6_reg_ranges[] = {
2106 		0x1008, 0x101c,
2107 		0x1024, 0x10a8,
2108 		0x10b4, 0x10f8,
2109 		0x1100, 0x1114,
2110 		0x111c, 0x112c,
2111 		0x1138, 0x113c,
2112 		0x1144, 0x114c,
2113 		0x1180, 0x1184,
2114 		0x1190, 0x1194,
2115 		0x11a0, 0x11a4,
2116 		0x11b0, 0x11c4,
2117 		0x11fc, 0x123c,
2118 		0x1254, 0x1274,
2119 		0x1280, 0x133c,
2120 		0x1800, 0x18fc,
2121 		0x3000, 0x302c,
2122 		0x3060, 0x30b0,
2123 		0x30b8, 0x30d8,
2124 		0x30e0, 0x30fc,
2125 		0x3140, 0x357c,
2126 		0x35a8, 0x35cc,
2127 		0x35ec, 0x35ec,
2128 		0x3600, 0x5624,
2129 		0x56cc, 0x56ec,
2130 		0x56f4, 0x5720,
2131 		0x5728, 0x575c,
2132 		0x580c, 0x5814,
2133 		0x5890, 0x589c,
2134 		0x58a4, 0x58ac,
2135 		0x58b8, 0x58bc,
2136 		0x5940, 0x595c,
2137 		0x5980, 0x598c,
2138 		0x59b0, 0x59c8,
2139 		0x59d0, 0x59dc,
2140 		0x59fc, 0x5a18,
2141 		0x5a60, 0x5a6c,
2142 		0x5a80, 0x5a8c,
2143 		0x5a94, 0x5a9c,
2144 		0x5b94, 0x5bfc,
2145 		0x5c10, 0x5e48,
2146 		0x5e50, 0x5e94,
2147 		0x5ea0, 0x5eb0,
2148 		0x5ec0, 0x5ec0,
2149 		0x5ec8, 0x5ed0,
2150 		0x5ee0, 0x5ee0,
2151 		0x5ef0, 0x5ef0,
2152 		0x5f00, 0x5f00,
2153 		0x6000, 0x6020,
2154 		0x6028, 0x6040,
2155 		0x6058, 0x609c,
2156 		0x60a8, 0x619c,
2157 		0x7700, 0x7798,
2158 		0x77c0, 0x7880,
2159 		0x78cc, 0x78fc,
2160 		0x7b00, 0x7b58,
2161 		0x7b60, 0x7b84,
2162 		0x7b8c, 0x7c54,
2163 		0x7d00, 0x7d38,
2164 		0x7d40, 0x7d84,
2165 		0x7d8c, 0x7ddc,
2166 		0x7de4, 0x7e04,
2167 		0x7e10, 0x7e1c,
2168 		0x7e24, 0x7e38,
2169 		0x7e40, 0x7e44,
2170 		0x7e4c, 0x7e78,
2171 		0x7e80, 0x7edc,
2172 		0x7ee8, 0x7efc,
2173 		0x8dc0, 0x8de0,
2174 		0x8df8, 0x8e04,
2175 		0x8e10, 0x8e84,
2176 		0x8ea0, 0x8f88,
2177 		0x8fb8, 0x9058,
2178 		0x9060, 0x9060,
2179 		0x9068, 0x90f8,
2180 		0x9100, 0x9124,
2181 		0x9400, 0x9470,
2182 		0x9600, 0x9600,
2183 		0x9608, 0x9638,
2184 		0x9640, 0x9704,
2185 		0x9710, 0x971c,
2186 		0x9800, 0x9808,
2187 		0x9810, 0x9864,
2188 		0x9c00, 0x9c6c,
2189 		0x9c80, 0x9cec,
2190 		0x9d00, 0x9d6c,
2191 		0x9d80, 0x9dec,
2192 		0x9e00, 0x9e6c,
2193 		0x9e80, 0x9eec,
2194 		0x9f00, 0x9f6c,
2195 		0x9f80, 0xa020,
2196 		0xd000, 0xd03c,
2197 		0xd100, 0xd118,
2198 		0xd200, 0xd214,
2199 		0xd220, 0xd234,
2200 		0xd240, 0xd254,
2201 		0xd260, 0xd274,
2202 		0xd280, 0xd294,
2203 		0xd2a0, 0xd2b4,
2204 		0xd2c0, 0xd2d4,
2205 		0xd2e0, 0xd2f4,
2206 		0xd300, 0xd31c,
2207 		0xdfc0, 0xdfe0,
2208 		0xe000, 0xf008,
2209 		0xf010, 0xf018,
2210 		0xf020, 0xf028,
2211 		0x11000, 0x11014,
2212 		0x11048, 0x1106c,
2213 		0x11074, 0x11088,
2214 		0x11098, 0x11120,
2215 		0x1112c, 0x1117c,
2216 		0x11190, 0x112e0,
2217 		0x11300, 0x1130c,
2218 		0x12000, 0x1206c,
2219 		0x19040, 0x1906c,
2220 		0x19078, 0x19080,
2221 		0x1908c, 0x190e8,
2222 		0x190f0, 0x190f8,
2223 		0x19100, 0x19110,
2224 		0x19120, 0x19124,
2225 		0x19150, 0x19194,
2226 		0x1919c, 0x191b0,
2227 		0x191d0, 0x191e8,
2228 		0x19238, 0x19290,
2229 		0x192a4, 0x192b0,
2230 		0x19348, 0x1934c,
2231 		0x193f8, 0x19418,
2232 		0x19420, 0x19428,
2233 		0x19430, 0x19444,
2234 		0x1944c, 0x1946c,
2235 		0x19474, 0x19474,
2236 		0x19490, 0x194cc,
2237 		0x194f0, 0x194f8,
2238 		0x19c00, 0x19c48,
2239 		0x19c50, 0x19c80,
2240 		0x19c94, 0x19c98,
2241 		0x19ca0, 0x19cbc,
2242 		0x19ce4, 0x19ce4,
2243 		0x19cf0, 0x19cf8,
2244 		0x19d00, 0x19d28,
2245 		0x19d50, 0x19d78,
2246 		0x19d94, 0x19d98,
2247 		0x19da0, 0x19de0,
2248 		0x19df0, 0x19e10,
2249 		0x19e50, 0x19e6c,
2250 		0x19ea0, 0x19ebc,
2251 		0x19ec4, 0x19ef4,
2252 		0x19f04, 0x19f2c,
2253 		0x19f34, 0x19f34,
2254 		0x19f40, 0x19f50,
2255 		0x19f90, 0x19fac,
2256 		0x19fc4, 0x19fc8,
2257 		0x19fd0, 0x19fe4,
2258 		0x1a000, 0x1a004,
2259 		0x1a010, 0x1a06c,
2260 		0x1a0b0, 0x1a0e4,
2261 		0x1a0ec, 0x1a0f8,
2262 		0x1a100, 0x1a108,
2263 		0x1a114, 0x1a130,
2264 		0x1a138, 0x1a1c4,
2265 		0x1a1fc, 0x1a1fc,
2266 		0x1e008, 0x1e00c,
2267 		0x1e040, 0x1e044,
2268 		0x1e04c, 0x1e04c,
2269 		0x1e284, 0x1e290,
2270 		0x1e2c0, 0x1e2c0,
2271 		0x1e2e0, 0x1e2e0,
2272 		0x1e300, 0x1e384,
2273 		0x1e3c0, 0x1e3c8,
2274 		0x1e408, 0x1e40c,
2275 		0x1e440, 0x1e444,
2276 		0x1e44c, 0x1e44c,
2277 		0x1e684, 0x1e690,
2278 		0x1e6c0, 0x1e6c0,
2279 		0x1e6e0, 0x1e6e0,
2280 		0x1e700, 0x1e784,
2281 		0x1e7c0, 0x1e7c8,
2282 		0x1e808, 0x1e80c,
2283 		0x1e840, 0x1e844,
2284 		0x1e84c, 0x1e84c,
2285 		0x1ea84, 0x1ea90,
2286 		0x1eac0, 0x1eac0,
2287 		0x1eae0, 0x1eae0,
2288 		0x1eb00, 0x1eb84,
2289 		0x1ebc0, 0x1ebc8,
2290 		0x1ec08, 0x1ec0c,
2291 		0x1ec40, 0x1ec44,
2292 		0x1ec4c, 0x1ec4c,
2293 		0x1ee84, 0x1ee90,
2294 		0x1eec0, 0x1eec0,
2295 		0x1eee0, 0x1eee0,
2296 		0x1ef00, 0x1ef84,
2297 		0x1efc0, 0x1efc8,
2298 		0x1f008, 0x1f00c,
2299 		0x1f040, 0x1f044,
2300 		0x1f04c, 0x1f04c,
2301 		0x1f284, 0x1f290,
2302 		0x1f2c0, 0x1f2c0,
2303 		0x1f2e0, 0x1f2e0,
2304 		0x1f300, 0x1f384,
2305 		0x1f3c0, 0x1f3c8,
2306 		0x1f408, 0x1f40c,
2307 		0x1f440, 0x1f444,
2308 		0x1f44c, 0x1f44c,
2309 		0x1f684, 0x1f690,
2310 		0x1f6c0, 0x1f6c0,
2311 		0x1f6e0, 0x1f6e0,
2312 		0x1f700, 0x1f784,
2313 		0x1f7c0, 0x1f7c8,
2314 		0x1f808, 0x1f80c,
2315 		0x1f840, 0x1f844,
2316 		0x1f84c, 0x1f84c,
2317 		0x1fa84, 0x1fa90,
2318 		0x1fac0, 0x1fac0,
2319 		0x1fae0, 0x1fae0,
2320 		0x1fb00, 0x1fb84,
2321 		0x1fbc0, 0x1fbc8,
2322 		0x1fc08, 0x1fc0c,
2323 		0x1fc40, 0x1fc44,
2324 		0x1fc4c, 0x1fc4c,
2325 		0x1fe84, 0x1fe90,
2326 		0x1fec0, 0x1fec0,
2327 		0x1fee0, 0x1fee0,
2328 		0x1ff00, 0x1ff84,
2329 		0x1ffc0, 0x1ffc8,
2330 		0x30000, 0x30030,
2331 		0x30100, 0x30168,
2332 		0x30190, 0x301a0,
2333 		0x301a8, 0x301b8,
2334 		0x301c4, 0x301c8,
2335 		0x301d0, 0x301d0,
2336 		0x30200, 0x30320,
2337 		0x30400, 0x304b4,
2338 		0x304c0, 0x3052c,
2339 		0x30540, 0x3061c,
2340 		0x30800, 0x308a0,
2341 		0x308c0, 0x30908,
2342 		0x30910, 0x309b8,
2343 		0x30a00, 0x30a04,
2344 		0x30a0c, 0x30a14,
2345 		0x30a1c, 0x30a2c,
2346 		0x30a44, 0x30a50,
2347 		0x30a74, 0x30a74,
2348 		0x30a7c, 0x30afc,
2349 		0x30b08, 0x30c24,
2350 		0x30d00, 0x30d14,
2351 		0x30d1c, 0x30d3c,
2352 		0x30d44, 0x30d4c,
2353 		0x30d54, 0x30d74,
2354 		0x30d7c, 0x30d7c,
2355 		0x30de0, 0x30de0,
2356 		0x30e00, 0x30ed4,
2357 		0x30f00, 0x30fa4,
2358 		0x30fc0, 0x30fc4,
2359 		0x31000, 0x31004,
2360 		0x31080, 0x310fc,
2361 		0x31208, 0x31220,
2362 		0x3123c, 0x31254,
2363 		0x31300, 0x31300,
2364 		0x31308, 0x3131c,
2365 		0x31338, 0x3133c,
2366 		0x31380, 0x31380,
2367 		0x31388, 0x313a8,
2368 		0x313b4, 0x313b4,
2369 		0x31400, 0x31420,
2370 		0x31438, 0x3143c,
2371 		0x31480, 0x31480,
2372 		0x314a8, 0x314a8,
2373 		0x314b0, 0x314b4,
2374 		0x314c8, 0x314d4,
2375 		0x31a40, 0x31a4c,
2376 		0x31af0, 0x31b20,
2377 		0x31b38, 0x31b3c,
2378 		0x31b80, 0x31b80,
2379 		0x31ba8, 0x31ba8,
2380 		0x31bb0, 0x31bb4,
2381 		0x31bc8, 0x31bd4,
2382 		0x32140, 0x3218c,
2383 		0x321f0, 0x321f4,
2384 		0x32200, 0x32200,
2385 		0x32218, 0x32218,
2386 		0x32400, 0x32400,
2387 		0x32408, 0x3241c,
2388 		0x32618, 0x32620,
2389 		0x32664, 0x32664,
2390 		0x326a8, 0x326a8,
2391 		0x326ec, 0x326ec,
2392 		0x32a00, 0x32abc,
2393 		0x32b00, 0x32b18,
2394 		0x32b20, 0x32b38,
2395 		0x32b40, 0x32b58,
2396 		0x32b60, 0x32b78,
2397 		0x32c00, 0x32c00,
2398 		0x32c08, 0x32c3c,
2399 		0x33000, 0x3302c,
2400 		0x33034, 0x33050,
2401 		0x33058, 0x33058,
2402 		0x33060, 0x3308c,
2403 		0x3309c, 0x330ac,
2404 		0x330c0, 0x330c0,
2405 		0x330c8, 0x330d0,
2406 		0x330d8, 0x330e0,
2407 		0x330ec, 0x3312c,
2408 		0x33134, 0x33150,
2409 		0x33158, 0x33158,
2410 		0x33160, 0x3318c,
2411 		0x3319c, 0x331ac,
2412 		0x331c0, 0x331c0,
2413 		0x331c8, 0x331d0,
2414 		0x331d8, 0x331e0,
2415 		0x331ec, 0x33290,
2416 		0x33298, 0x332c4,
2417 		0x332e4, 0x33390,
2418 		0x33398, 0x333c4,
2419 		0x333e4, 0x3342c,
2420 		0x33434, 0x33450,
2421 		0x33458, 0x33458,
2422 		0x33460, 0x3348c,
2423 		0x3349c, 0x334ac,
2424 		0x334c0, 0x334c0,
2425 		0x334c8, 0x334d0,
2426 		0x334d8, 0x334e0,
2427 		0x334ec, 0x3352c,
2428 		0x33534, 0x33550,
2429 		0x33558, 0x33558,
2430 		0x33560, 0x3358c,
2431 		0x3359c, 0x335ac,
2432 		0x335c0, 0x335c0,
2433 		0x335c8, 0x335d0,
2434 		0x335d8, 0x335e0,
2435 		0x335ec, 0x33690,
2436 		0x33698, 0x336c4,
2437 		0x336e4, 0x33790,
2438 		0x33798, 0x337c4,
2439 		0x337e4, 0x337fc,
2440 		0x33814, 0x33814,
2441 		0x33854, 0x33868,
2442 		0x33880, 0x3388c,
2443 		0x338c0, 0x338d0,
2444 		0x338e8, 0x338ec,
2445 		0x33900, 0x3392c,
2446 		0x33934, 0x33950,
2447 		0x33958, 0x33958,
2448 		0x33960, 0x3398c,
2449 		0x3399c, 0x339ac,
2450 		0x339c0, 0x339c0,
2451 		0x339c8, 0x339d0,
2452 		0x339d8, 0x339e0,
2453 		0x339ec, 0x33a90,
2454 		0x33a98, 0x33ac4,
2455 		0x33ae4, 0x33b10,
2456 		0x33b24, 0x33b28,
2457 		0x33b38, 0x33b50,
2458 		0x33bf0, 0x33c10,
2459 		0x33c24, 0x33c28,
2460 		0x33c38, 0x33c50,
2461 		0x33cf0, 0x33cfc,
2462 		0x34000, 0x34030,
2463 		0x34100, 0x34168,
2464 		0x34190, 0x341a0,
2465 		0x341a8, 0x341b8,
2466 		0x341c4, 0x341c8,
2467 		0x341d0, 0x341d0,
2468 		0x34200, 0x34320,
2469 		0x34400, 0x344b4,
2470 		0x344c0, 0x3452c,
2471 		0x34540, 0x3461c,
2472 		0x34800, 0x348a0,
2473 		0x348c0, 0x34908,
2474 		0x34910, 0x349b8,
2475 		0x34a00, 0x34a04,
2476 		0x34a0c, 0x34a14,
2477 		0x34a1c, 0x34a2c,
2478 		0x34a44, 0x34a50,
2479 		0x34a74, 0x34a74,
2480 		0x34a7c, 0x34afc,
2481 		0x34b08, 0x34c24,
2482 		0x34d00, 0x34d14,
2483 		0x34d1c, 0x34d3c,
2484 		0x34d44, 0x34d4c,
2485 		0x34d54, 0x34d74,
2486 		0x34d7c, 0x34d7c,
2487 		0x34de0, 0x34de0,
2488 		0x34e00, 0x34ed4,
2489 		0x34f00, 0x34fa4,
2490 		0x34fc0, 0x34fc4,
2491 		0x35000, 0x35004,
2492 		0x35080, 0x350fc,
2493 		0x35208, 0x35220,
2494 		0x3523c, 0x35254,
2495 		0x35300, 0x35300,
2496 		0x35308, 0x3531c,
2497 		0x35338, 0x3533c,
2498 		0x35380, 0x35380,
2499 		0x35388, 0x353a8,
2500 		0x353b4, 0x353b4,
2501 		0x35400, 0x35420,
2502 		0x35438, 0x3543c,
2503 		0x35480, 0x35480,
2504 		0x354a8, 0x354a8,
2505 		0x354b0, 0x354b4,
2506 		0x354c8, 0x354d4,
2507 		0x35a40, 0x35a4c,
2508 		0x35af0, 0x35b20,
2509 		0x35b38, 0x35b3c,
2510 		0x35b80, 0x35b80,
2511 		0x35ba8, 0x35ba8,
2512 		0x35bb0, 0x35bb4,
2513 		0x35bc8, 0x35bd4,
2514 		0x36140, 0x3618c,
2515 		0x361f0, 0x361f4,
2516 		0x36200, 0x36200,
2517 		0x36218, 0x36218,
2518 		0x36400, 0x36400,
2519 		0x36408, 0x3641c,
2520 		0x36618, 0x36620,
2521 		0x36664, 0x36664,
2522 		0x366a8, 0x366a8,
2523 		0x366ec, 0x366ec,
2524 		0x36a00, 0x36abc,
2525 		0x36b00, 0x36b18,
2526 		0x36b20, 0x36b38,
2527 		0x36b40, 0x36b58,
2528 		0x36b60, 0x36b78,
2529 		0x36c00, 0x36c00,
2530 		0x36c08, 0x36c3c,
2531 		0x37000, 0x3702c,
2532 		0x37034, 0x37050,
2533 		0x37058, 0x37058,
2534 		0x37060, 0x3708c,
2535 		0x3709c, 0x370ac,
2536 		0x370c0, 0x370c0,
2537 		0x370c8, 0x370d0,
2538 		0x370d8, 0x370e0,
2539 		0x370ec, 0x3712c,
2540 		0x37134, 0x37150,
2541 		0x37158, 0x37158,
2542 		0x37160, 0x3718c,
2543 		0x3719c, 0x371ac,
2544 		0x371c0, 0x371c0,
2545 		0x371c8, 0x371d0,
2546 		0x371d8, 0x371e0,
2547 		0x371ec, 0x37290,
2548 		0x37298, 0x372c4,
2549 		0x372e4, 0x37390,
2550 		0x37398, 0x373c4,
2551 		0x373e4, 0x3742c,
2552 		0x37434, 0x37450,
2553 		0x37458, 0x37458,
2554 		0x37460, 0x3748c,
2555 		0x3749c, 0x374ac,
2556 		0x374c0, 0x374c0,
2557 		0x374c8, 0x374d0,
2558 		0x374d8, 0x374e0,
2559 		0x374ec, 0x3752c,
2560 		0x37534, 0x37550,
2561 		0x37558, 0x37558,
2562 		0x37560, 0x3758c,
2563 		0x3759c, 0x375ac,
2564 		0x375c0, 0x375c0,
2565 		0x375c8, 0x375d0,
2566 		0x375d8, 0x375e0,
2567 		0x375ec, 0x37690,
2568 		0x37698, 0x376c4,
2569 		0x376e4, 0x37790,
2570 		0x37798, 0x377c4,
2571 		0x377e4, 0x377fc,
2572 		0x37814, 0x37814,
2573 		0x37854, 0x37868,
2574 		0x37880, 0x3788c,
2575 		0x378c0, 0x378d0,
2576 		0x378e8, 0x378ec,
2577 		0x37900, 0x3792c,
2578 		0x37934, 0x37950,
2579 		0x37958, 0x37958,
2580 		0x37960, 0x3798c,
2581 		0x3799c, 0x379ac,
2582 		0x379c0, 0x379c0,
2583 		0x379c8, 0x379d0,
2584 		0x379d8, 0x379e0,
2585 		0x379ec, 0x37a90,
2586 		0x37a98, 0x37ac4,
2587 		0x37ae4, 0x37b10,
2588 		0x37b24, 0x37b28,
2589 		0x37b38, 0x37b50,
2590 		0x37bf0, 0x37c10,
2591 		0x37c24, 0x37c28,
2592 		0x37c38, 0x37c50,
2593 		0x37cf0, 0x37cfc,
2594 		0x40040, 0x40040,
2595 		0x40080, 0x40084,
2596 		0x40100, 0x40100,
2597 		0x40140, 0x401bc,
2598 		0x40200, 0x40214,
2599 		0x40228, 0x40228,
2600 		0x40240, 0x40258,
2601 		0x40280, 0x40280,
2602 		0x40304, 0x40304,
2603 		0x40330, 0x4033c,
2604 		0x41304, 0x413c8,
2605 		0x413d0, 0x413dc,
2606 		0x413f0, 0x413f0,
2607 		0x41400, 0x4140c,
2608 		0x41414, 0x4141c,
2609 		0x41480, 0x414d0,
2610 		0x44000, 0x4407c,
2611 		0x440c0, 0x441ac,
2612 		0x441b4, 0x4427c,
2613 		0x442c0, 0x443ac,
2614 		0x443b4, 0x4447c,
2615 		0x444c0, 0x445ac,
2616 		0x445b4, 0x4467c,
2617 		0x446c0, 0x447ac,
2618 		0x447b4, 0x4487c,
2619 		0x448c0, 0x449ac,
2620 		0x449b4, 0x44a7c,
2621 		0x44ac0, 0x44bac,
2622 		0x44bb4, 0x44c7c,
2623 		0x44cc0, 0x44dac,
2624 		0x44db4, 0x44e7c,
2625 		0x44ec0, 0x44fac,
2626 		0x44fb4, 0x4507c,
2627 		0x450c0, 0x451ac,
2628 		0x451b4, 0x451fc,
2629 		0x45800, 0x45804,
2630 		0x45810, 0x45830,
2631 		0x45840, 0x45860,
2632 		0x45868, 0x45868,
2633 		0x45880, 0x45884,
2634 		0x458a0, 0x458b0,
2635 		0x45a00, 0x45a04,
2636 		0x45a10, 0x45a30,
2637 		0x45a40, 0x45a60,
2638 		0x45a68, 0x45a68,
2639 		0x45a80, 0x45a84,
2640 		0x45aa0, 0x45ab0,
2641 		0x460c0, 0x460e4,
2642 		0x47000, 0x4703c,
2643 		0x47044, 0x4708c,
2644 		0x47200, 0x47250,
2645 		0x47400, 0x47408,
2646 		0x47414, 0x47420,
2647 		0x47600, 0x47618,
2648 		0x47800, 0x47814,
2649 		0x47820, 0x4782c,
2650 		0x50000, 0x50084,
2651 		0x50090, 0x500cc,
2652 		0x50300, 0x50384,
2653 		0x50400, 0x50400,
2654 		0x50800, 0x50884,
2655 		0x50890, 0x508cc,
2656 		0x50b00, 0x50b84,
2657 		0x50c00, 0x50c00,
2658 		0x51000, 0x51020,
2659 		0x51028, 0x510b0,
2660 		0x51300, 0x51324,
2661 	};
2662 
2663 	static const unsigned int t6vf_reg_ranges[] = {
2664 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2665 		VF_MPS_REG(A_MPS_VF_CTL),
2666 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2667 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2668 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2669 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2670 		FW_T6VF_MBDATA_BASE_ADDR,
2671 		FW_T6VF_MBDATA_BASE_ADDR +
2672 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2673 	};
2674 
2675 	static const unsigned int t7_reg_ranges[] = {
2676 		0x1008, 0x101c,
2677 		0x1024, 0x10a8,
2678 		0x10b4, 0x10f8,
2679 		0x1100, 0x1114,
2680 		0x111c, 0x112c,
2681 		0x1138, 0x113c,
2682 		0x1144, 0x115c,
2683 		0x1180, 0x1184,
2684 		0x1190, 0x1194,
2685 		0x11a0, 0x11a4,
2686 		0x11b0, 0x11d0,
2687 		0x11fc, 0x1278,
2688 		0x1280, 0x1368,
2689 		0x1700, 0x172c,
2690 		0x173c, 0x1760,
2691 		0x1800, 0x18fc,
2692 		0x3000, 0x3044,
2693 		0x30a4, 0x30b0,
2694 		0x30b8, 0x30d8,
2695 		0x30e0, 0x30e8,
2696 		0x3140, 0x357c,
2697 		0x35a8, 0x35cc,
2698 		0x35e0, 0x35ec,
2699 		0x3600, 0x37fc,
2700 		0x3804, 0x3818,
2701 		0x3880, 0x388c,
2702 		0x3900, 0x3904,
2703 		0x3910, 0x3978,
2704 		0x3980, 0x399c,
2705 		0x4700, 0x4720,
2706 		0x4728, 0x475c,
2707 		0x480c, 0x4814,
2708 		0x4890, 0x489c,
2709 		0x48a4, 0x48ac,
2710 		0x48b8, 0x48bc,
2711 		0x4900, 0x4924,
2712 		0x4ffc, 0x4ffc,
2713 		0x5500, 0x5624,
2714 		0x56c4, 0x56ec,
2715 		0x56f4, 0x5720,
2716 		0x5728, 0x575c,
2717 		0x580c, 0x5814,
2718 		0x5890, 0x589c,
2719 		0x58a4, 0x58ac,
2720 		0x58b8, 0x58bc,
2721 		0x5940, 0x598c,
2722 		0x59b0, 0x59c8,
2723 		0x59d0, 0x59dc,
2724 		0x59fc, 0x5a18,
2725 		0x5a60, 0x5a6c,
2726 		0x5a80, 0x5a8c,
2727 		0x5a94, 0x5a9c,
2728 		0x5b94, 0x5bec,
2729 		0x5bf8, 0x5bfc,
2730 		0x5c10, 0x5c40,
2731 		0x5c4c, 0x5e48,
2732 		0x5e50, 0x5e94,
2733 		0x5ea0, 0x5eb0,
2734 		0x5ec0, 0x5ec0,
2735 		0x5ec8, 0x5ed0,
2736 		0x5ee0, 0x5ee0,
2737 		0x5ef0, 0x5ef0,
2738 		0x5f00, 0x5f04,
2739 		0x5f0c, 0x5f10,
2740 		0x5f20, 0x5f78,
2741 		0x5f84, 0x5f88,
2742 		0x5f90, 0x5fd8,
2743 		0x6000, 0x6020,
2744 		0x6028, 0x6030,
2745 		0x6044, 0x609c,
2746 		0x60a8, 0x60ac,
2747 		0x60b8, 0x60ec,
2748 		0x6100, 0x6104,
2749 		0x6118, 0x611c,
2750 		0x6150, 0x6150,
2751 		0x6180, 0x61b8,
2752 		0x7700, 0x77a8,
2753 		0x77b0, 0x7888,
2754 		0x78cc, 0x7970,
2755 		0x7b00, 0x7b00,
2756 		0x7b08, 0x7b0c,
2757 		0x7b24, 0x7b84,
2758 		0x7b8c, 0x7c2c,
2759 		0x7c34, 0x7c40,
2760 		0x7c48, 0x7c68,
2761 		0x7c70, 0x7c7c,
2762 		0x7d00, 0x7ddc,
2763 		0x7de4, 0x7e38,
2764 		0x7e40, 0x7e44,
2765 		0x7e4c, 0x7e74,
2766 		0x7e80, 0x7ee0,
2767 		0x7ee8, 0x7f0c,
2768 		0x7f20, 0x7f5c,
2769 		0x8dc0, 0x8de8,
2770 		0x8df8, 0x8e04,
2771 		0x8e10, 0x8e30,
2772 		0x8e7c, 0x8ee8,
2773 		0x8f88, 0x8f88,
2774 		0x8f90, 0x8fb0,
2775 		0x8fb8, 0x9058,
2776 		0x9074, 0x90f8,
2777 		0x9100, 0x912c,
2778 		0x9138, 0x9188,
2779 		0x9400, 0x9414,
2780 		0x9430, 0x9440,
2781 		0x9454, 0x9454,
2782 		0x945c, 0x947c,
2783 		0x9498, 0x94b8,
2784 		0x9600, 0x9600,
2785 		0x9608, 0x9638,
2786 		0x9640, 0x9704,
2787 		0x9710, 0x971c,
2788 		0x9800, 0x9804,
2789 		0x9854, 0x9854,
2790 		0x9c00, 0x9c6c,
2791 		0x9c80, 0x9cec,
2792 		0x9d00, 0x9d6c,
2793 		0x9d80, 0x9dec,
2794 		0x9e00, 0x9e6c,
2795 		0x9e80, 0x9eec,
2796 		0x9f00, 0x9f6c,
2797 		0x9f80, 0x9fec,
2798 		0xa000, 0xa06c,
2799 		0xa080, 0xa0ec,
2800 		0xa100, 0xa16c,
2801 		0xa180, 0xa1ec,
2802 		0xa200, 0xa26c,
2803 		0xa280, 0xa2ec,
2804 		0xa300, 0xa36c,
2805 		0xa380, 0xa458,
2806 		0xa460, 0xa4f8,
2807 		0xd000, 0xd03c,
2808 		0xd100, 0xd134,
2809 		0xd200, 0xd214,
2810 		0xd220, 0xd234,
2811 		0xd240, 0xd254,
2812 		0xd260, 0xd274,
2813 		0xd280, 0xd294,
2814 		0xd2a0, 0xd2b4,
2815 		0xd2c0, 0xd2d4,
2816 		0xd2e0, 0xd2f4,
2817 		0xd300, 0xd31c,
2818 		0xdfc0, 0xdfe0,
2819 		0xe000, 0xe00c,
2820 		0xf000, 0xf008,
2821 		0xf010, 0xf06c,
2822 		0x11000, 0x11014,
2823 		0x11048, 0x11120,
2824 		0x11130, 0x11144,
2825 		0x11174, 0x11178,
2826 		0x11190, 0x111a0,
2827 		0x111e4, 0x112f0,
2828 		0x11300, 0x1133c,
2829 		0x11408, 0x1146c,
2830 		0x12000, 0x12004,
2831 		0x12060, 0x122c4,
2832 		0x19040, 0x1906c,
2833 		0x19078, 0x19080,
2834 		0x1908c, 0x190e8,
2835 		0x190f0, 0x190f8,
2836 		0x19100, 0x19110,
2837 		0x19120, 0x19124,
2838 		0x19150, 0x19194,
2839 		0x1919c, 0x191a0,
2840 		0x191ac, 0x191c8,
2841 		0x191d0, 0x191e4,
2842 		0x19250, 0x19250,
2843 		0x19258, 0x19268,
2844 		0x19278, 0x19278,
2845 		0x19280, 0x192b0,
2846 		0x192bc, 0x192f0,
2847 		0x19300, 0x19308,
2848 		0x19310, 0x19318,
2849 		0x19320, 0x19328,
2850 		0x19330, 0x19330,
2851 		0x19348, 0x1934c,
2852 		0x193f8, 0x19428,
2853 		0x19430, 0x19444,
2854 		0x1944c, 0x1946c,
2855 		0x19474, 0x1947c,
2856 		0x19488, 0x194cc,
2857 		0x194f0, 0x194f8,
2858 		0x19c00, 0x19c48,
2859 		0x19c50, 0x19c80,
2860 		0x19c94, 0x19c98,
2861 		0x19ca0, 0x19cdc,
2862 		0x19ce4, 0x19cf8,
2863 		0x19d00, 0x19d30,
2864 		0x19d50, 0x19d80,
2865 		0x19d94, 0x19d98,
2866 		0x19da0, 0x19de0,
2867 		0x19df0, 0x19e10,
2868 		0x19e50, 0x19e6c,
2869 		0x19ea0, 0x19ebc,
2870 		0x19ec4, 0x19ef4,
2871 		0x19f04, 0x19f2c,
2872 		0x19f34, 0x19f34,
2873 		0x19f40, 0x19f50,
2874 		0x19f90, 0x19fb4,
2875 		0x19fbc, 0x19fbc,
2876 		0x19fc4, 0x19fc8,
2877 		0x19fd0, 0x19fe4,
2878 		0x1a000, 0x1a004,
2879 		0x1a010, 0x1a06c,
2880 		0x1a0b0, 0x1a0e4,
2881 		0x1a0ec, 0x1a108,
2882 		0x1a114, 0x1a130,
2883 		0x1a138, 0x1a1c4,
2884 		0x1a1fc, 0x1a29c,
2885 		0x1a2a8, 0x1a2b8,
2886 		0x1a2c0, 0x1a388,
2887 		0x1a398, 0x1a3ac,
2888 		0x1e008, 0x1e00c,
2889 		0x1e040, 0x1e044,
2890 		0x1e04c, 0x1e04c,
2891 		0x1e284, 0x1e290,
2892 		0x1e2c0, 0x1e2c0,
2893 		0x1e2e0, 0x1e2e4,
2894 		0x1e300, 0x1e384,
2895 		0x1e3c0, 0x1e3c8,
2896 		0x1e408, 0x1e40c,
2897 		0x1e440, 0x1e444,
2898 		0x1e44c, 0x1e44c,
2899 		0x1e684, 0x1e690,
2900 		0x1e6c0, 0x1e6c0,
2901 		0x1e6e0, 0x1e6e4,
2902 		0x1e700, 0x1e784,
2903 		0x1e7c0, 0x1e7c8,
2904 		0x1e808, 0x1e80c,
2905 		0x1e840, 0x1e844,
2906 		0x1e84c, 0x1e84c,
2907 		0x1ea84, 0x1ea90,
2908 		0x1eac0, 0x1eac0,
2909 		0x1eae0, 0x1eae4,
2910 		0x1eb00, 0x1eb84,
2911 		0x1ebc0, 0x1ebc8,
2912 		0x1ec08, 0x1ec0c,
2913 		0x1ec40, 0x1ec44,
2914 		0x1ec4c, 0x1ec4c,
2915 		0x1ee84, 0x1ee90,
2916 		0x1eec0, 0x1eec0,
2917 		0x1eee0, 0x1eee4,
2918 		0x1ef00, 0x1ef84,
2919 		0x1efc0, 0x1efc8,
2920 		0x1f008, 0x1f00c,
2921 		0x1f040, 0x1f044,
2922 		0x1f04c, 0x1f04c,
2923 		0x1f284, 0x1f290,
2924 		0x1f2c0, 0x1f2c0,
2925 		0x1f2e0, 0x1f2e4,
2926 		0x1f300, 0x1f384,
2927 		0x1f3c0, 0x1f3c8,
2928 		0x1f408, 0x1f40c,
2929 		0x1f440, 0x1f444,
2930 		0x1f44c, 0x1f44c,
2931 		0x1f684, 0x1f690,
2932 		0x1f6c0, 0x1f6c0,
2933 		0x1f6e0, 0x1f6e4,
2934 		0x1f700, 0x1f784,
2935 		0x1f7c0, 0x1f7c8,
2936 		0x1f808, 0x1f80c,
2937 		0x1f840, 0x1f844,
2938 		0x1f84c, 0x1f84c,
2939 		0x1fa84, 0x1fa90,
2940 		0x1fac0, 0x1fac0,
2941 		0x1fae0, 0x1fae4,
2942 		0x1fb00, 0x1fb84,
2943 		0x1fbc0, 0x1fbc8,
2944 		0x1fc08, 0x1fc0c,
2945 		0x1fc40, 0x1fc44,
2946 		0x1fc4c, 0x1fc4c,
2947 		0x1fe84, 0x1fe90,
2948 		0x1fec0, 0x1fec0,
2949 		0x1fee0, 0x1fee4,
2950 		0x1ff00, 0x1ff84,
2951 		0x1ffc0, 0x1ffc8,
2952 		0x30000, 0x30038,
2953 		0x30100, 0x3017c,
2954 		0x30190, 0x301a0,
2955 		0x301a8, 0x301b8,
2956 		0x301c4, 0x301c8,
2957 		0x301d0, 0x301e0,
2958 		0x30200, 0x30344,
2959 		0x30400, 0x304b4,
2960 		0x304c0, 0x3052c,
2961 		0x30540, 0x3065c,
2962 		0x30800, 0x30848,
2963 		0x30850, 0x308a8,
2964 		0x308b8, 0x308c0,
2965 		0x308cc, 0x308dc,
2966 		0x30900, 0x30904,
2967 		0x3090c, 0x30914,
2968 		0x3091c, 0x30928,
2969 		0x30930, 0x3093c,
2970 		0x30944, 0x30948,
2971 		0x30954, 0x30974,
2972 		0x3097c, 0x30980,
2973 		0x30a00, 0x30a20,
2974 		0x30a38, 0x30a3c,
2975 		0x30a50, 0x30a50,
2976 		0x30a80, 0x30a80,
2977 		0x30a88, 0x30aa8,
2978 		0x30ab0, 0x30ab4,
2979 		0x30ac8, 0x30ad4,
2980 		0x30b28, 0x30b84,
2981 		0x30b98, 0x30bb8,
2982 		0x30c98, 0x30d14,
2983 		0x31000, 0x31020,
2984 		0x31038, 0x3103c,
2985 		0x31050, 0x31050,
2986 		0x31080, 0x31080,
2987 		0x31088, 0x310a8,
2988 		0x310b0, 0x310b4,
2989 		0x310c8, 0x310d4,
2990 		0x31128, 0x31184,
2991 		0x31198, 0x311b8,
2992 		0x32000, 0x32038,
2993 		0x32100, 0x3217c,
2994 		0x32190, 0x321a0,
2995 		0x321a8, 0x321b8,
2996 		0x321c4, 0x321c8,
2997 		0x321d0, 0x321e0,
2998 		0x32200, 0x32344,
2999 		0x32400, 0x324b4,
3000 		0x324c0, 0x3252c,
3001 		0x32540, 0x3265c,
3002 		0x32800, 0x32848,
3003 		0x32850, 0x328a8,
3004 		0x328b8, 0x328c0,
3005 		0x328cc, 0x328dc,
3006 		0x32900, 0x32904,
3007 		0x3290c, 0x32914,
3008 		0x3291c, 0x32928,
3009 		0x32930, 0x3293c,
3010 		0x32944, 0x32948,
3011 		0x32954, 0x32974,
3012 		0x3297c, 0x32980,
3013 		0x32a00, 0x32a20,
3014 		0x32a38, 0x32a3c,
3015 		0x32a50, 0x32a50,
3016 		0x32a80, 0x32a80,
3017 		0x32a88, 0x32aa8,
3018 		0x32ab0, 0x32ab4,
3019 		0x32ac8, 0x32ad4,
3020 		0x32b28, 0x32b84,
3021 		0x32b98, 0x32bb8,
3022 		0x32c98, 0x32d14,
3023 		0x33000, 0x33020,
3024 		0x33038, 0x3303c,
3025 		0x33050, 0x33050,
3026 		0x33080, 0x33080,
3027 		0x33088, 0x330a8,
3028 		0x330b0, 0x330b4,
3029 		0x330c8, 0x330d4,
3030 		0x33128, 0x33184,
3031 		0x33198, 0x331b8,
3032 		0x34000, 0x34038,
3033 		0x34100, 0x3417c,
3034 		0x34190, 0x341a0,
3035 		0x341a8, 0x341b8,
3036 		0x341c4, 0x341c8,
3037 		0x341d0, 0x341e0,
3038 		0x34200, 0x34344,
3039 		0x34400, 0x344b4,
3040 		0x344c0, 0x3452c,
3041 		0x34540, 0x3465c,
3042 		0x34800, 0x34848,
3043 		0x34850, 0x348a8,
3044 		0x348b8, 0x348c0,
3045 		0x348cc, 0x348dc,
3046 		0x34900, 0x34904,
3047 		0x3490c, 0x34914,
3048 		0x3491c, 0x34928,
3049 		0x34930, 0x3493c,
3050 		0x34944, 0x34948,
3051 		0x34954, 0x34974,
3052 		0x3497c, 0x34980,
3053 		0x34a00, 0x34a20,
3054 		0x34a38, 0x34a3c,
3055 		0x34a50, 0x34a50,
3056 		0x34a80, 0x34a80,
3057 		0x34a88, 0x34aa8,
3058 		0x34ab0, 0x34ab4,
3059 		0x34ac8, 0x34ad4,
3060 		0x34b28, 0x34b84,
3061 		0x34b98, 0x34bb8,
3062 		0x34c98, 0x34d14,
3063 		0x35000, 0x35020,
3064 		0x35038, 0x3503c,
3065 		0x35050, 0x35050,
3066 		0x35080, 0x35080,
3067 		0x35088, 0x350a8,
3068 		0x350b0, 0x350b4,
3069 		0x350c8, 0x350d4,
3070 		0x35128, 0x35184,
3071 		0x35198, 0x351b8,
3072 		0x36000, 0x36038,
3073 		0x36100, 0x3617c,
3074 		0x36190, 0x361a0,
3075 		0x361a8, 0x361b8,
3076 		0x361c4, 0x361c8,
3077 		0x361d0, 0x361e0,
3078 		0x36200, 0x36344,
3079 		0x36400, 0x364b4,
3080 		0x364c0, 0x3652c,
3081 		0x36540, 0x3665c,
3082 		0x36800, 0x36848,
3083 		0x36850, 0x368a8,
3084 		0x368b8, 0x368c0,
3085 		0x368cc, 0x368dc,
3086 		0x36900, 0x36904,
3087 		0x3690c, 0x36914,
3088 		0x3691c, 0x36928,
3089 		0x36930, 0x3693c,
3090 		0x36944, 0x36948,
3091 		0x36954, 0x36974,
3092 		0x3697c, 0x36980,
3093 		0x36a00, 0x36a20,
3094 		0x36a38, 0x36a3c,
3095 		0x36a50, 0x36a50,
3096 		0x36a80, 0x36a80,
3097 		0x36a88, 0x36aa8,
3098 		0x36ab0, 0x36ab4,
3099 		0x36ac8, 0x36ad4,
3100 		0x36b28, 0x36b84,
3101 		0x36b98, 0x36bb8,
3102 		0x36c98, 0x36d14,
3103 		0x37000, 0x37020,
3104 		0x37038, 0x3703c,
3105 		0x37050, 0x37050,
3106 		0x37080, 0x37080,
3107 		0x37088, 0x370a8,
3108 		0x370b0, 0x370b4,
3109 		0x370c8, 0x370d4,
3110 		0x37128, 0x37184,
3111 		0x37198, 0x371b8,
3112 		0x38000, 0x380b0,
3113 		0x380b8, 0x38130,
3114 		0x38140, 0x38140,
3115 		0x38150, 0x38154,
3116 		0x38160, 0x381c4,
3117 		0x381d0, 0x38204,
3118 		0x3820c, 0x38214,
3119 		0x3821c, 0x3822c,
3120 		0x38244, 0x38244,
3121 		0x38254, 0x38274,
3122 		0x3827c, 0x38280,
3123 		0x38300, 0x38304,
3124 		0x3830c, 0x38314,
3125 		0x3831c, 0x3832c,
3126 		0x38344, 0x38344,
3127 		0x38354, 0x38374,
3128 		0x3837c, 0x38380,
3129 		0x38400, 0x38424,
3130 		0x38438, 0x3843c,
3131 		0x38480, 0x38480,
3132 		0x384a8, 0x384a8,
3133 		0x384b0, 0x384b4,
3134 		0x384c8, 0x38514,
3135 		0x38600, 0x3860c,
3136 		0x3861c, 0x38624,
3137 		0x38900, 0x38924,
3138 		0x38938, 0x3893c,
3139 		0x38980, 0x38980,
3140 		0x389a8, 0x389a8,
3141 		0x389b0, 0x389b4,
3142 		0x389c8, 0x38a14,
3143 		0x38b00, 0x38b0c,
3144 		0x38b1c, 0x38b24,
3145 		0x38e00, 0x38e00,
3146 		0x38e18, 0x38e20,
3147 		0x38e38, 0x38e40,
3148 		0x38e58, 0x38e60,
3149 		0x38e78, 0x38e80,
3150 		0x38e98, 0x38ea0,
3151 		0x38eb8, 0x38ec0,
3152 		0x38ed8, 0x38ee0,
3153 		0x38ef8, 0x38f08,
3154 		0x38f10, 0x38f2c,
3155 		0x38f80, 0x38ffc,
3156 		0x39080, 0x39080,
3157 		0x39088, 0x39090,
3158 		0x39100, 0x39108,
3159 		0x39120, 0x39128,
3160 		0x39140, 0x39148,
3161 		0x39160, 0x39168,
3162 		0x39180, 0x39188,
3163 		0x391a0, 0x391a8,
3164 		0x391c0, 0x391c8,
3165 		0x391e0, 0x391e8,
3166 		0x39200, 0x39200,
3167 		0x39208, 0x39240,
3168 		0x39300, 0x39300,
3169 		0x39308, 0x39340,
3170 		0x39400, 0x39400,
3171 		0x39408, 0x39440,
3172 		0x39500, 0x39500,
3173 		0x39508, 0x39540,
3174 		0x39600, 0x39600,
3175 		0x39608, 0x39640,
3176 		0x39700, 0x39700,
3177 		0x39708, 0x39740,
3178 		0x39800, 0x39800,
3179 		0x39808, 0x39840,
3180 		0x39900, 0x39900,
3181 		0x39908, 0x39940,
3182 		0x39a00, 0x39a04,
3183 		0x39a10, 0x39a14,
3184 		0x39a1c, 0x39aa8,
3185 		0x39b00, 0x39ecc,
3186 		0x3a000, 0x3a004,
3187 		0x3a050, 0x3a084,
3188 		0x3a090, 0x3a09c,
3189 		0x3a93c, 0x3a93c,
3190 		0x3b93c, 0x3b93c,
3191 		0x3c93c, 0x3c93c,
3192 		0x3d93c, 0x3d93c,
3193 		0x3e000, 0x3e020,
3194 		0x3e03c, 0x3e05c,
3195 		0x3e100, 0x3e120,
3196 		0x3e13c, 0x3e15c,
3197 		0x3e200, 0x3e220,
3198 		0x3e23c, 0x3e25c,
3199 		0x3e300, 0x3e320,
3200 		0x3e33c, 0x3e35c,
3201 		0x3f000, 0x3f034,
3202 		0x3f100, 0x3f130,
3203 		0x3f200, 0x3f218,
3204 		0x44000, 0x44014,
3205 		0x44020, 0x44028,
3206 		0x44030, 0x44030,
3207 		0x44100, 0x44114,
3208 		0x44120, 0x44128,
3209 		0x44130, 0x44130,
3210 		0x44200, 0x44214,
3211 		0x44220, 0x44228,
3212 		0x44230, 0x44230,
3213 		0x44300, 0x44314,
3214 		0x44320, 0x44328,
3215 		0x44330, 0x44330,
3216 		0x44400, 0x44414,
3217 		0x44420, 0x44428,
3218 		0x44430, 0x44430,
3219 		0x44500, 0x44514,
3220 		0x44520, 0x44528,
3221 		0x44530, 0x44530,
3222 		0x44714, 0x44718,
3223 		0x44730, 0x44730,
3224 		0x447c0, 0x447c0,
3225 		0x447f0, 0x447f0,
3226 		0x447f8, 0x447fc,
3227 		0x45000, 0x45014,
3228 		0x45020, 0x45028,
3229 		0x45030, 0x45030,
3230 		0x45100, 0x45114,
3231 		0x45120, 0x45128,
3232 		0x45130, 0x45130,
3233 		0x45200, 0x45214,
3234 		0x45220, 0x45228,
3235 		0x45230, 0x45230,
3236 		0x45300, 0x45314,
3237 		0x45320, 0x45328,
3238 		0x45330, 0x45330,
3239 		0x45400, 0x45414,
3240 		0x45420, 0x45428,
3241 		0x45430, 0x45430,
3242 		0x45500, 0x45514,
3243 		0x45520, 0x45528,
3244 		0x45530, 0x45530,
3245 		0x45714, 0x45718,
3246 		0x45730, 0x45730,
3247 		0x457c0, 0x457c0,
3248 		0x457f0, 0x457f0,
3249 		0x457f8, 0x457fc,
3250 		0x46000, 0x46010,
3251 		0x46020, 0x46034,
3252 		0x46040, 0x46050,
3253 		0x46060, 0x46088,
3254 		0x47000, 0x4709c,
3255 		0x470c0, 0x470d4,
3256 		0x47100, 0x471a8,
3257 		0x471b0, 0x471e8,
3258 		0x47200, 0x47210,
3259 		0x4721c, 0x47230,
3260 		0x47238, 0x47238,
3261 		0x47240, 0x472ac,
3262 		0x472d0, 0x472f4,
3263 		0x47300, 0x47310,
3264 		0x47318, 0x47348,
3265 		0x47350, 0x47354,
3266 		0x47380, 0x47388,
3267 		0x47390, 0x47394,
3268 		0x47400, 0x47448,
3269 		0x47450, 0x47458,
3270 		0x47500, 0x4751c,
3271 		0x47530, 0x4754c,
3272 		0x47560, 0x4757c,
3273 		0x47590, 0x475ac,
3274 		0x47600, 0x47630,
3275 		0x47640, 0x47644,
3276 		0x47660, 0x4769c,
3277 		0x47700, 0x47710,
3278 		0x47740, 0x47750,
3279 		0x4775c, 0x4779c,
3280 		0x477b0, 0x477bc,
3281 		0x477c4, 0x477c8,
3282 		0x477d4, 0x477fc,
3283 		0x48000, 0x48004,
3284 		0x48018, 0x4801c,
3285 		0x49304, 0x49320,
3286 		0x4932c, 0x4932c,
3287 		0x49334, 0x493f0,
3288 		0x49400, 0x49410,
3289 		0x49460, 0x494f4,
3290 		0x50000, 0x50084,
3291 		0x50090, 0x500cc,
3292 		0x50300, 0x50384,
3293 		0x50400, 0x50404,
3294 		0x50800, 0x50884,
3295 		0x50890, 0x508cc,
3296 		0x50b00, 0x50b84,
3297 		0x50c00, 0x50c04,
3298 		0x51000, 0x51020,
3299 		0x51028, 0x510c4,
3300 		0x51104, 0x51108,
3301 		0x51200, 0x51274,
3302 		0x51300, 0x51324,
3303 		0x51400, 0x51548,
3304 		0x51550, 0x51554,
3305 		0x5155c, 0x51584,
3306 		0x5158c, 0x515c8,
3307 		0x515f0, 0x515f4,
3308 		0x58000, 0x58004,
3309 		0x58018, 0x5801c,
3310 		0x59304, 0x59320,
3311 		0x5932c, 0x5932c,
3312 		0x59334, 0x593f0,
3313 		0x59400, 0x59410,
3314 		0x59460, 0x594f4,
3315 	};
3316 
3317 	u32 *buf_end = (u32 *)(buf + buf_size);
3318 	const unsigned int *reg_ranges;
3319 	int reg_ranges_size, range;
3320 	unsigned int chip_version = chip_id(adap);
3321 
3322 	/*
3323 	 * Select the right set of register ranges to dump depending on the
3324 	 * adapter chip type.
3325 	 */
3326 	switch (chip_version) {
3327 	case CHELSIO_T4:
3328 		if (adap->flags & IS_VF) {
3329 			reg_ranges = t4vf_reg_ranges;
3330 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
3331 		} else {
3332 			reg_ranges = t4_reg_ranges;
3333 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
3334 		}
3335 		break;
3336 
3337 	case CHELSIO_T5:
3338 		if (adap->flags & IS_VF) {
3339 			reg_ranges = t5vf_reg_ranges;
3340 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
3341 		} else {
3342 			reg_ranges = t5_reg_ranges;
3343 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
3344 		}
3345 		break;
3346 
3347 	case CHELSIO_T6:
3348 		if (adap->flags & IS_VF) {
3349 			reg_ranges = t6vf_reg_ranges;
3350 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
3351 		} else {
3352 			reg_ranges = t6_reg_ranges;
3353 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
3354 		}
3355 		break;
3356 
3357 	case CHELSIO_T7:
3358 		if (adap->flags & IS_VF) {
3359 			reg_ranges = t6vf_reg_ranges;
3360 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
3361 		} else {
3362 			reg_ranges = t7_reg_ranges;
3363 			reg_ranges_size = ARRAY_SIZE(t7_reg_ranges);
3364 		}
3365 		break;
3366 
3367 	default:
3368 		CH_ERR(adap,
3369 			"Unsupported chip version %d\n", chip_version);
3370 		return;
3371 	}
3372 
3373 	/*
3374 	 * Clear the register buffer and insert the appropriate register
3375 	 * values selected by the above register ranges.
3376 	 */
3377 	memset(buf, 0, buf_size);
3378 	for (range = 0; range < reg_ranges_size; range += 2) {
3379 		unsigned int reg = reg_ranges[range];
3380 		unsigned int last_reg = reg_ranges[range + 1];
3381 		u32 *bufp = (u32 *)(buf + reg);
3382 
3383 		/*
3384 		 * Iterate across the register range filling in the register
3385 		 * buffer but don't write past the end of the register buffer.
3386 		 */
3387 		while (reg <= last_reg && bufp < buf_end) {
3388 			*bufp++ = t4_read_reg(adap, reg);
3389 			reg += sizeof(u32);
3390 		}
3391 	}
3392 }
3393 
3394 /*
3395  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
3396  * header followed by one or more VPD-R sections, each with its own header.
3397  */
3398 struct t4_vpd_hdr {
3399 	u8  id_tag;
3400 	u8  id_len[2];
3401 	u8  id_data[ID_LEN];
3402 };
3403 
3404 struct t4_vpdr_hdr {
3405 	u8  vpdr_tag;
3406 	u8  vpdr_len[2];
3407 };
3408 
3409 /*
3410  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
3411  */
3412 #define EEPROM_DELAY		10		/* 10us per poll spin */
3413 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
3414 
3415 #define EEPROM_STAT_ADDR	0x7bfc
3416 #define VPD_SIZE		0x800
3417 #define VPD_BASE		0x400
3418 #define VPD_BASE_OLD		0
3419 #define VPD_LEN			1024
3420 #define VPD_INFO_FLD_HDR_SIZE	3
3421 #define CHELSIO_VPD_UNIQUE_ID	0x82
3422 
3423 /*
3424  * Small utility function to wait till any outstanding VPD Access is complete.
3425  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
3426  * VPD Access in flight.  This allows us to handle the problem of having a
3427  * previous VPD Access time out and prevent an attempt to inject a new VPD
3428  * Request before any in-flight VPD reguest has completed.
3429  */
t4_seeprom_wait(struct adapter * adapter)3430 static int t4_seeprom_wait(struct adapter *adapter)
3431 {
3432 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3433 	int max_poll;
3434 
3435 	/*
3436 	 * If no VPD Access is in flight, we can just return success right
3437 	 * away.
3438 	 */
3439 	if (!adapter->vpd_busy)
3440 		return 0;
3441 
3442 	/*
3443 	 * Poll the VPD Capability Address/Flag register waiting for it
3444 	 * to indicate that the operation is complete.
3445 	 */
3446 	max_poll = EEPROM_MAX_POLL;
3447 	do {
3448 		u16 val;
3449 
3450 		udelay(EEPROM_DELAY);
3451 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
3452 
3453 		/*
3454 		 * If the operation is complete, mark the VPD as no longer
3455 		 * busy and return success.
3456 		 */
3457 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
3458 			adapter->vpd_busy = 0;
3459 			return 0;
3460 		}
3461 	} while (--max_poll);
3462 
3463 	/*
3464 	 * Failure!  Note that we leave the VPD Busy status set in order to
3465 	 * avoid pushing a new VPD Access request into the VPD Capability till
3466 	 * the current operation eventually succeeds.  It's a bug to issue a
3467 	 * new request when an existing request is in flight and will result
3468 	 * in corrupt hardware state.
3469 	 */
3470 	return -ETIMEDOUT;
3471 }
3472 
3473 /**
3474  *	t4_seeprom_read - read a serial EEPROM location
3475  *	@adapter: adapter to read
3476  *	@addr: EEPROM virtual address
3477  *	@data: where to store the read data
3478  *
3479  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
3480  *	VPD capability.  Note that this function must be called with a virtual
3481  *	address.
3482  */
t4_seeprom_read(struct adapter * adapter,u32 addr,u32 * data)3483 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
3484 {
3485 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3486 	int ret;
3487 
3488 	/*
3489 	 * VPD Accesses must alway be 4-byte aligned!
3490 	 */
3491 	if (addr >= EEPROMVSIZE || (addr & 3))
3492 		return -EINVAL;
3493 
3494 	/*
3495 	 * Wait for any previous operation which may still be in flight to
3496 	 * complete.
3497 	 */
3498 	ret = t4_seeprom_wait(adapter);
3499 	if (ret) {
3500 		CH_ERR(adapter, "VPD still busy from previous operation\n");
3501 		return ret;
3502 	}
3503 
3504 	/*
3505 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
3506 	 * for our request to complete.  If it doesn't complete, note the
3507 	 * error and return it to our caller.  Note that we do not reset the
3508 	 * VPD Busy status!
3509 	 */
3510 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
3511 	adapter->vpd_busy = 1;
3512 	adapter->vpd_flag = PCI_VPD_ADDR_F;
3513 	ret = t4_seeprom_wait(adapter);
3514 	if (ret) {
3515 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
3516 		return ret;
3517 	}
3518 
3519 	/*
3520 	 * Grab the returned data, swizzle it into our endianness and
3521 	 * return success.
3522 	 */
3523 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
3524 	*data = le32_to_cpu(*data);
3525 	return 0;
3526 }
3527 
3528 /**
3529  *	t4_seeprom_write - write a serial EEPROM location
3530  *	@adapter: adapter to write
3531  *	@addr: virtual EEPROM address
3532  *	@data: value to write
3533  *
3534  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
3535  *	VPD capability.  Note that this function must be called with a virtual
3536  *	address.
3537  */
t4_seeprom_write(struct adapter * adapter,u32 addr,u32 data)3538 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
3539 {
3540 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3541 	int ret;
3542 	u32 stats_reg;
3543 	int max_poll;
3544 
3545 	/*
3546 	 * VPD Accesses must alway be 4-byte aligned!
3547 	 */
3548 	if (addr >= EEPROMVSIZE || (addr & 3))
3549 		return -EINVAL;
3550 
3551 	/*
3552 	 * Wait for any previous operation which may still be in flight to
3553 	 * complete.
3554 	 */
3555 	ret = t4_seeprom_wait(adapter);
3556 	if (ret) {
3557 		CH_ERR(adapter, "VPD still busy from previous operation\n");
3558 		return ret;
3559 	}
3560 
3561 	/*
3562 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
3563 	 * for our request to complete.  If it doesn't complete, note the
3564 	 * error and return it to our caller.  Note that we do not reset the
3565 	 * VPD Busy status!
3566 	 */
3567 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
3568 				 cpu_to_le32(data));
3569 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
3570 				 (u16)addr | PCI_VPD_ADDR_F);
3571 	adapter->vpd_busy = 1;
3572 	adapter->vpd_flag = 0;
3573 	ret = t4_seeprom_wait(adapter);
3574 	if (ret) {
3575 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
3576 		return ret;
3577 	}
3578 
3579 	/*
3580 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
3581 	 * request to complete. If it doesn't complete, return error.
3582 	 */
3583 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
3584 	max_poll = EEPROM_MAX_POLL;
3585 	do {
3586 		udelay(EEPROM_DELAY);
3587 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
3588 	} while ((stats_reg & 0x1) && --max_poll);
3589 	if (!max_poll)
3590 		return -ETIMEDOUT;
3591 
3592 	/* Return success! */
3593 	return 0;
3594 }
3595 
3596 /**
3597  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
3598  *	@phys_addr: the physical EEPROM address
3599  *	@fn: the PCI function number
3600  *	@sz: size of function-specific area
3601  *
3602  *	Translate a physical EEPROM address to virtual.  The first 1K is
3603  *	accessed through virtual addresses starting at 31K, the rest is
3604  *	accessed through virtual addresses starting at 0.
3605  *
3606  *	The mapping is as follows:
3607  *	[0..1K) -> [31K..32K)
3608  *	[1K..1K+A) -> [ES-A..ES)
3609  *	[1K+A..ES) -> [0..ES-A-1K)
3610  *
3611  *	where A = @fn * @sz, and ES = EEPROM size.
3612  */
t4_eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)3613 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
3614 {
3615 	fn *= sz;
3616 	if (phys_addr < 1024)
3617 		return phys_addr + (31 << 10);
3618 	if (phys_addr < 1024 + fn)
3619 		return EEPROMSIZE - fn + phys_addr - 1024;
3620 	if (phys_addr < EEPROMSIZE)
3621 		return phys_addr - 1024 - fn;
3622 	return -EINVAL;
3623 }
3624 
3625 /**
3626  *	t4_seeprom_wp - enable/disable EEPROM write protection
3627  *	@adapter: the adapter
3628  *	@enable: whether to enable or disable write protection
3629  *
3630  *	Enables or disables write protection on the serial EEPROM.
3631  */
t4_seeprom_wp(struct adapter * adapter,int enable)3632 int t4_seeprom_wp(struct adapter *adapter, int enable)
3633 {
3634 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
3635 }
3636 
3637 /**
3638  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
3639  *	@vpd: Pointer to buffered vpd data structure
3640  *	@kw: The keyword to search for
3641  *	@region: VPD region to search (starting from 0)
3642  *
3643  *	Returns the value of the information field keyword or
3644  *	-ENOENT otherwise.
3645  */
get_vpd_keyword_val(const u8 * vpd,const char * kw,int region)3646 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
3647 {
3648 	int i, tag;
3649 	unsigned int offset, len;
3650 	const struct t4_vpdr_hdr *vpdr;
3651 
3652 	offset = sizeof(struct t4_vpd_hdr);
3653 	vpdr = (const void *)(vpd + offset);
3654 	tag = vpdr->vpdr_tag;
3655 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
3656 	while (region--) {
3657 		offset += sizeof(struct t4_vpdr_hdr) + len;
3658 		vpdr = (const void *)(vpd + offset);
3659 		if (++tag != vpdr->vpdr_tag)
3660 			return -ENOENT;
3661 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
3662 	}
3663 	offset += sizeof(struct t4_vpdr_hdr);
3664 
3665 	if (offset + len > VPD_LEN) {
3666 		return -ENOENT;
3667 	}
3668 
3669 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3670 		if (memcmp(vpd + i , kw , 2) == 0){
3671 			i += VPD_INFO_FLD_HDR_SIZE;
3672 			return i;
3673 		}
3674 
3675 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3676 	}
3677 
3678 	return -ENOENT;
3679 }
3680 
3681 
3682 /**
3683  *	get_vpd_params - read VPD parameters from VPD EEPROM
3684  *	@adapter: adapter to read
3685  *	@p: where to store the parameters
3686  *	@vpd: caller provided temporary space to read the VPD into
3687  *
3688  *	Reads card parameters stored in VPD EEPROM.
3689  */
get_vpd_params(struct adapter * adapter,struct vpd_params * p,uint16_t device_id,u32 * buf)3690 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3691     uint16_t device_id, u32 *buf)
3692 {
3693 	int i, ret, addr;
3694 	int ec, sn, pn, na, md;
3695 	u8 csum;
3696 	const u8 *vpd = (const u8 *)buf;
3697 
3698 	/*
3699 	 * Card information normally starts at VPD_BASE but early cards had
3700 	 * it at 0.
3701 	 */
3702 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3703 	if (ret)
3704 		return (ret);
3705 
3706 	/*
3707 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3708 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3709 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3710 	 * is expected to automatically put this entry at the
3711 	 * beginning of the VPD.
3712 	 */
3713 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3714 
3715 	for (i = 0; i < VPD_LEN; i += 4) {
3716 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3717 		if (ret)
3718 			return ret;
3719 	}
3720 
3721 #define FIND_VPD_KW(var,name) do { \
3722 	var = get_vpd_keyword_val(vpd, name, 0); \
3723 	if (var < 0) { \
3724 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3725 		return -EINVAL; \
3726 	} \
3727 } while (0)
3728 
3729 	FIND_VPD_KW(i, "RV");
3730 	for (csum = 0; i >= 0; i--)
3731 		csum += vpd[i];
3732 
3733 	if (csum) {
3734 		CH_ERR(adapter,
3735 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3736 		return -EINVAL;
3737 	}
3738 
3739 	FIND_VPD_KW(ec, "EC");
3740 	FIND_VPD_KW(sn, "SN");
3741 	FIND_VPD_KW(pn, "PN");
3742 	FIND_VPD_KW(na, "NA");
3743 #undef FIND_VPD_KW
3744 
3745 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3746 	strstrip(p->id);
3747 	memcpy(p->ec, vpd + ec, EC_LEN);
3748 	strstrip(p->ec);
3749 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3750 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3751 	strstrip(p->sn);
3752 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3753 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3754 	strstrip((char *)p->pn);
3755 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3756 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3757 	strstrip((char *)p->na);
3758 
3759 	if (device_id & 0x80)
3760 		return 0;	/* Custom card */
3761 
3762 	md = get_vpd_keyword_val(vpd, "VF", 1);
3763 	if (md < 0) {
3764 		snprintf(p->md, sizeof(p->md), "unknown");
3765 	} else {
3766 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3767 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3768 		strstrip((char *)p->md);
3769 	}
3770 
3771 	return 0;
3772 }
3773 
3774 /* Flash Layout {start sector, # of sectors} for T4/T5/T6 adapters */
3775 static const struct t4_flash_loc_entry t4_flash_loc_arr[] = {
3776 	[FLASH_LOC_EXP_ROM] = { 0, 6 },
3777 	[FLASH_LOC_IBFT] = { 6, 1 },
3778 	[FLASH_LOC_BOOTCFG] = { 7, 1 },
3779 	[FLASH_LOC_FW] = { 8, 16 },
3780 	[FLASH_LOC_FWBOOTSTRAP] = { 27, 1 },
3781 	[FLASH_LOC_ISCSI_CRASH] = { 29, 1 },
3782 	[FLASH_LOC_FCOE_CRASH] = { 30, 1 },
3783 	[FLASH_LOC_CFG] = { 31, 1 },
3784 	[FLASH_LOC_CUDBG] = { 32, 32 },
3785 	[FLASH_LOC_BOOT_AREA] = { 0, 8 }, /* Spans complete Boot Area */
3786 	[FLASH_LOC_END] = { 64, 0 },
3787 };
3788 
3789 /* Flash Layout {start sector, # of sectors} for T7 adapters */
3790 static const struct t4_flash_loc_entry t7_flash_loc_arr[] = {
3791 	[FLASH_LOC_VPD] = { 0, 1 },
3792 	[FLASH_LOC_FWBOOTSTRAP] = { 1, 1 },
3793 	[FLASH_LOC_FW] = { 2, 29 },
3794 	[FLASH_LOC_CFG] = { 31, 1 },
3795 	[FLASH_LOC_EXP_ROM] = { 32, 15 },
3796 	[FLASH_LOC_IBFT] = { 47, 1 },
3797 	[FLASH_LOC_BOOTCFG] = { 48, 1 },
3798 	[FLASH_LOC_DPU_BOOT] = { 49, 13 },
3799 	[FLASH_LOC_ISCSI_CRASH] = { 62, 1 },
3800 	[FLASH_LOC_FCOE_CRASH] = { 63, 1 },
3801 	[FLASH_LOC_VPD_BACKUP] = { 64, 1 },
3802 	[FLASH_LOC_FWBOOTSTRAP_BACKUP] = { 65, 1 },
3803 	[FLASH_LOC_FW_BACKUP] = { 66, 29 },
3804 	[FLASH_LOC_CFG_BACK] = { 95, 1 },
3805 	[FLASH_LOC_CUDBG] = { 96, 48 },
3806 	[FLASH_LOC_CHIP_DUMP] = { 144, 48 },
3807 	[FLASH_LOC_DPU_AREA] = { 192, 64 },
3808 	[FLASH_LOC_BOOT_AREA] = { 32, 17 }, /* Spans complete UEFI/PXE Boot Area */
3809 	[FLASH_LOC_END] = { 256, 0 },
3810 };
3811 
3812 int
t4_flash_loc_start(struct adapter * adap,enum t4_flash_loc loc,unsigned int * lenp)3813 t4_flash_loc_start(struct adapter *adap, enum t4_flash_loc loc,
3814     unsigned int *lenp)
3815 {
3816 	const struct t4_flash_loc_entry *l = chip_id(adap) >= CHELSIO_T7 ?
3817 	    &t7_flash_loc_arr[loc] : &t4_flash_loc_arr[loc];
3818 
3819 	if (lenp != NULL)
3820 		*lenp = FLASH_MAX_SIZE(l->nsecs);
3821 	return (FLASH_START(l->start_sec));
3822 }
3823 
3824 /* serial flash and firmware constants and flash config file constants */
3825 enum {
3826 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3827 
3828 	/* flash command opcodes */
3829 	SF_PROG_PAGE    = 2,	/* program 256B page */
3830 	SF_WR_DISABLE   = 4,	/* disable writes */
3831 	SF_RD_STATUS    = 5,	/* read status register */
3832 	SF_WR_ENABLE    = 6,	/* enable writes */
3833 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3834 	SF_RD_ID	= 0x9f,	/* read ID */
3835 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3836 };
3837 
3838 /**
3839  *	sf1_read - read data from the serial flash
3840  *	@adapter: the adapter
3841  *	@byte_cnt: number of bytes to read
3842  *	@cont: whether another operation will be chained
3843  *	@lock: whether to lock SF for PL access only
3844  *	@valp: where to store the read data
3845  *
3846  *	Reads up to 4 bytes of data from the serial flash.  The location of
3847  *	the read needs to be specified prior to calling this by issuing the
3848  *	appropriate commands to the serial flash.
3849  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)3850 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3851 		    int lock, u32 *valp)
3852 {
3853 	int ret;
3854 	uint32_t op;
3855 
3856 	if (!byte_cnt || byte_cnt > 4)
3857 		return -EINVAL;
3858 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3859 		return -EBUSY;
3860 	op = V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1);
3861 	if (chip_id(adapter) >= CHELSIO_T7)
3862 		op |= F_QUADREADDISABLE;
3863 	t4_write_reg(adapter, A_SF_OP, op);
3864 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3865 	if (!ret)
3866 		*valp = t4_read_reg(adapter, A_SF_DATA);
3867 	return ret;
3868 }
3869 
3870 /**
3871  *	sf1_write - write data to the serial flash
3872  *	@adapter: the adapter
3873  *	@byte_cnt: number of bytes to write
3874  *	@cont: whether another operation will be chained
3875  *	@lock: whether to lock SF for PL access only
3876  *	@val: value to write
3877  *
3878  *	Writes up to 4 bytes of data to the serial flash.  The location of
3879  *	the write needs to be specified prior to calling this by issuing the
3880  *	appropriate commands to the serial flash.
3881  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)3882 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3883 		     int lock, u32 val)
3884 {
3885 	if (!byte_cnt || byte_cnt > 4)
3886 		return -EINVAL;
3887 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3888 		return -EBUSY;
3889 	t4_write_reg(adapter, A_SF_DATA, val);
3890 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3891 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3892 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3893 }
3894 
3895 /**
3896  *	flash_wait_op - wait for a flash operation to complete
3897  *	@adapter: the adapter
3898  *	@attempts: max number of polls of the status register
3899  *	@delay: delay between polls in ms
3900  *
3901  *	Wait for a flash operation to complete by polling the status register.
3902  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)3903 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3904 {
3905 	int ret;
3906 	u32 status;
3907 
3908 	while (1) {
3909 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3910 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3911 			return ret;
3912 		if (!(status & 1))
3913 			return 0;
3914 		if (--attempts == 0)
3915 			return -EAGAIN;
3916 		if (delay)
3917 			msleep(delay);
3918 	}
3919 }
3920 
3921 /**
3922  *	t4_read_flash - read words from serial flash
3923  *	@adapter: the adapter
3924  *	@addr: the start address for the read
3925  *	@nwords: how many 32-bit words to read
3926  *	@data: where to store the read data
3927  *	@byte_oriented: whether to store data as bytes or as words
3928  *
3929  *	Read the specified number of 32-bit words from the serial flash.
3930  *	If @byte_oriented is set the read data is stored as a byte array
3931  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3932  *	natural endianness.
3933  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)3934 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3935 		  unsigned int nwords, u32 *data, int byte_oriented)
3936 {
3937 	int ret;
3938 
3939 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3940 		return -EINVAL;
3941 
3942 	addr = swab32(addr) | SF_RD_DATA_FAST;
3943 
3944 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3945 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3946 		return ret;
3947 
3948 	for ( ; nwords; nwords--, data++) {
3949 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3950 		if (nwords == 1)
3951 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3952 		if (ret)
3953 			return ret;
3954 		if (byte_oriented)
3955 			*data = (__force __u32)(cpu_to_be32(*data));
3956 	}
3957 	return 0;
3958 }
3959 
3960 /**
3961  *	t4_write_flash - write up to a page of data to the serial flash
3962  *	@adapter: the adapter
3963  *	@addr: the start address to write
3964  *	@n: length of data to write in bytes
3965  *	@data: the data to write
3966  *	@byte_oriented: whether to store data as bytes or as words
3967  *
3968  *	Writes up to a page of data (256 bytes) to the serial flash starting
3969  *	at the given address.  All the data must be written to the same page.
3970  *	If @byte_oriented is set the write data is stored as byte stream
3971  *	(i.e. matches what on disk), otherwise in big-endian.
3972  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data,int byte_oriented)3973 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3974 			  unsigned int n, const u8 *data, int byte_oriented)
3975 {
3976 	int ret;
3977 	u32 buf[SF_PAGE_SIZE / 4];
3978 	unsigned int i, c, left, val, offset = addr & 0xff;
3979 
3980 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3981 		return -EINVAL;
3982 
3983 	val = swab32(addr) | SF_PROG_PAGE;
3984 
3985 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3986 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3987 		goto unlock;
3988 
3989 	for (left = n; left; left -= c) {
3990 		c = min(left, 4U);
3991 		for (val = 0, i = 0; i < c; ++i)
3992 			val = (val << 8) + *data++;
3993 
3994 		if (!byte_oriented)
3995 			val = cpu_to_be32(val);
3996 
3997 		ret = sf1_write(adapter, c, c != left, 1, val);
3998 		if (ret)
3999 			goto unlock;
4000 	}
4001 	ret = flash_wait_op(adapter, 8, 1);
4002 	if (ret)
4003 		goto unlock;
4004 
4005 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4006 
4007 	/* Read the page to verify the write succeeded */
4008 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
4009 			    byte_oriented);
4010 	if (ret)
4011 		return ret;
4012 
4013 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
4014 		CH_ERR(adapter,
4015 			"failed to correctly write the flash page at %#x\n",
4016 			addr);
4017 		return -EIO;
4018 	}
4019 	return 0;
4020 
4021 unlock:
4022 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4023 	return ret;
4024 }
4025 
4026 /**
4027  *	t4_get_fw_version - read the firmware version
4028  *	@adapter: the adapter
4029  *	@vers: where to place the version
4030  *
4031  *	Reads the FW version from flash.
4032  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)4033 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
4034 {
4035 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4036 
4037 	return t4_read_flash(adapter, start + offsetof(struct fw_hdr, fw_ver),
4038 	    1, vers, 0);
4039 }
4040 
4041 /**
4042  *	t4_get_fw_hdr - read the firmware header
4043  *	@adapter: the adapter
4044  *	@hdr: where to place the version
4045  *
4046  *	Reads the FW header from flash into caller provided buffer.
4047  */
t4_get_fw_hdr(struct adapter * adapter,struct fw_hdr * hdr)4048 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
4049 {
4050 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4051 
4052 	return t4_read_flash(adapter, start, sizeof (*hdr) / sizeof (uint32_t),
4053 	    (uint32_t *)hdr, 1);
4054 }
4055 
4056 /**
4057  *	t4_get_bs_version - read the firmware bootstrap version
4058  *	@adapter: the adapter
4059  *	@vers: where to place the version
4060  *
4061  *	Reads the FW Bootstrap version from flash.
4062  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)4063 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
4064 {
4065 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FWBOOTSTRAP,
4066 	    NULL);
4067 
4068 	return t4_read_flash(adapter, start + offsetof(struct fw_hdr, fw_ver),
4069 	    1, vers, 0);
4070 }
4071 
4072 /**
4073  *	t4_get_tp_version - read the TP microcode version
4074  *	@adapter: the adapter
4075  *	@vers: where to place the version
4076  *
4077  *	Reads the TP microcode version from flash.
4078  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)4079 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
4080 {
4081 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4082 
4083 	return t4_read_flash(adapter, start +
4084 	    offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0);
4085 }
4086 
4087 /**
4088  *	t4_get_exprom_version - return the Expansion ROM version (if any)
4089  *	@adapter: the adapter
4090  *	@vers: where to place the version
4091  *
4092  *	Reads the Expansion ROM header from FLASH and returns the version
4093  *	number (if present) through the @vers return value pointer.  We return
4094  *	this in the Firmware Version Format since it's convenient.  Return
4095  *	0 on success, -ENOENT if no Expansion ROM is present.
4096  */
t4_get_exprom_version(struct adapter * adapter,u32 * vers)4097 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
4098 {
4099 	struct exprom_header {
4100 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
4101 		unsigned char hdr_ver[4];	/* Expansion ROM version */
4102 	} *hdr;
4103 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
4104 					   sizeof(u32))];
4105 	int ret;
4106 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_EXP_ROM, NULL);
4107 
4108 	ret = t4_read_flash(adapter, start, ARRAY_SIZE(exprom_header_buf),
4109 	    exprom_header_buf, 0);
4110 	if (ret)
4111 		return ret;
4112 
4113 	hdr = (struct exprom_header *)exprom_header_buf;
4114 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
4115 		return -ENOENT;
4116 
4117 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
4118 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
4119 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
4120 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
4121 	return 0;
4122 }
4123 
4124 /**
4125  *	t4_get_scfg_version - return the Serial Configuration version
4126  *	@adapter: the adapter
4127  *	@vers: where to place the version
4128  *
4129  *	Reads the Serial Configuration Version via the Firmware interface
4130  *	(thus this can only be called once we're ready to issue Firmware
4131  *	commands).  The format of the Serial Configuration version is
4132  *	adapter specific.  Returns 0 on success, an error on failure.
4133  *
4134  *	Note that early versions of the Firmware didn't include the ability
4135  *	to retrieve the Serial Configuration version, so we zero-out the
4136  *	return-value parameter in that case to avoid leaving it with
4137  *	garbage in it.
4138  *
4139  *	Also note that the Firmware will return its cached copy of the Serial
4140  *	Initialization Revision ID, not the actual Revision ID as written in
4141  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
4142  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
4143  *	it's best to defer calling this routine till after a FW_RESET_CMD has
4144  *	been issued if the Host Driver will be performing a full adapter
4145  *	initialization.
4146  */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)4147 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
4148 {
4149 	u32 scfgrev_param;
4150 	int ret;
4151 
4152 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4153 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
4154 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4155 			      1, &scfgrev_param, vers);
4156 	if (ret)
4157 		*vers = 0;
4158 	return ret;
4159 }
4160 
4161 /**
4162  *	t4_get_vpd_version - return the VPD version
4163  *	@adapter: the adapter
4164  *	@vers: where to place the version
4165  *
4166  *	Reads the VPD via the Firmware interface (thus this can only be called
4167  *	once we're ready to issue Firmware commands).  The format of the
4168  *	VPD version is adapter specific.  Returns 0 on success, an error on
4169  *	failure.
4170  *
4171  *	Note that early versions of the Firmware didn't include the ability
4172  *	to retrieve the VPD version, so we zero-out the return-value parameter
4173  *	in that case to avoid leaving it with garbage in it.
4174  *
4175  *	Also note that the Firmware will return its cached copy of the VPD
4176  *	Revision ID, not the actual Revision ID as written in the Serial
4177  *	EEPROM.  This is only an issue if a new VPD has been written and the
4178  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
4179  *	to defer calling this routine till after a FW_RESET_CMD has been issued
4180  *	if the Host Driver will be performing a full adapter initialization.
4181  */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)4182 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
4183 {
4184 	u32 vpdrev_param;
4185 	int ret;
4186 
4187 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4188 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
4189 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4190 			      1, &vpdrev_param, vers);
4191 	if (ret)
4192 		*vers = 0;
4193 	return ret;
4194 }
4195 
4196 /**
4197  *	t4_get_version_info - extract various chip/firmware version information
4198  *	@adapter: the adapter
4199  *
4200  *	Reads various chip/firmware version numbers and stores them into the
4201  *	adapter Adapter Parameters structure.  If any of the efforts fails
4202  *	the first failure will be returned, but all of the version numbers
4203  *	will be read.
4204  */
t4_get_version_info(struct adapter * adapter)4205 int t4_get_version_info(struct adapter *adapter)
4206 {
4207 	int ret = 0;
4208 
4209 	#define FIRST_RET(__getvinfo) \
4210 	do { \
4211 		int __ret = __getvinfo; \
4212 		if (__ret && !ret) \
4213 			ret = __ret; \
4214 	} while (0)
4215 
4216 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
4217 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
4218 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
4219 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
4220 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
4221 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
4222 
4223 	#undef FIRST_RET
4224 
4225 	return ret;
4226 }
4227 
4228 /**
4229  *	t4_flash_erase_sectors - erase a range of flash sectors
4230  *	@adapter: the adapter
4231  *	@start: the first sector to erase
4232  *	@end: the last sector to erase
4233  *
4234  *	Erases the sectors in the given inclusive range.
4235  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)4236 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
4237 {
4238 	int ret = 0;
4239 
4240 	if (end >= adapter->params.sf_nsec)
4241 		return -EINVAL;
4242 
4243 	while (start <= end) {
4244 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
4245 		    (ret = sf1_write(adapter, 4, 0, 1,
4246 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
4247 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
4248 			CH_ERR(adapter,
4249 				"erase of flash sector %d failed, error %d\n",
4250 				start, ret);
4251 			break;
4252 		}
4253 		start++;
4254 	}
4255 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4256 	return ret;
4257 }
4258 
4259 /**
4260  *	t4_flash_cfg_addr - return the address of the flash configuration file
4261  *	@adapter: the adapter
4262  *
4263  *	Return the address within the flash where the Firmware Configuration
4264  *	File is stored, or an error if the device FLASH is too small to contain
4265  *	a Firmware Configuration File.
4266  */
t4_flash_cfg_addr(struct adapter * adapter,unsigned int * lenp)4267 int t4_flash_cfg_addr(struct adapter *adapter, unsigned int *lenp)
4268 {
4269 	unsigned int len = 0;
4270 	const int cfg_start = t4_flash_loc_start(adapter, FLASH_LOC_CFG, &len);
4271 
4272 	/*
4273 	 * If the device FLASH isn't large enough to hold a Firmware
4274 	 * Configuration File, return an error.
4275 	 */
4276 	if (adapter->params.sf_size < cfg_start + len)
4277 		return -ENOSPC;
4278 	if (lenp != NULL)
4279 		*lenp = len;
4280 	return (cfg_start);
4281 }
4282 
4283 /*
4284  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
4285  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
4286  * and emit an error message for mismatched firmware to save our caller the
4287  * effort ...
4288  */
t4_fw_matches_chip(struct adapter * adap,const struct fw_hdr * hdr)4289 static int t4_fw_matches_chip(struct adapter *adap,
4290 			      const struct fw_hdr *hdr)
4291 {
4292 	/*
4293 	 * The expression below will return FALSE for any unsupported adapter
4294 	 * which will keep us "honest" in the future ...
4295 	 */
4296 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
4297 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
4298 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6) ||
4299 	    (is_t7(adap) && hdr->chip == FW_HDR_CHIP_T7))
4300 		return 1;
4301 
4302 	CH_ERR(adap,
4303 		"FW image (%d) is not suitable for this adapter (%d)\n",
4304 		hdr->chip, chip_id(adap));
4305 	return 0;
4306 }
4307 
4308 /**
4309  *	t4_load_fw - download firmware
4310  *	@adap: the adapter
4311  *	@fw_data: the firmware image to write
4312  *	@size: image size
4313  *
4314  *	Write the supplied firmware image to the card's serial flash.
4315  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)4316 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
4317 {
4318 	u32 csum;
4319 	int ret, addr;
4320 	unsigned int i;
4321 	u8 first_page[SF_PAGE_SIZE];
4322 	const u32 *p = (const u32 *)fw_data;
4323 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
4324 	unsigned int fw_start_sec;
4325 	unsigned int fw_start;
4326 	unsigned int fw_size;
4327 	enum t4_flash_loc loc;
4328 
4329 	loc = ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP ?
4330 	    FLASH_LOC_FWBOOTSTRAP : FLASH_LOC_FW;
4331 	fw_start = t4_flash_loc_start(adap, loc, &fw_size);
4332 	fw_start_sec = fw_start / SF_SEC_SIZE;
4333 
4334 	if (!size) {
4335 		CH_ERR(adap, "FW image has no data\n");
4336 		return -EINVAL;
4337 	}
4338 	if (size & 511) {
4339 		CH_ERR(adap,
4340 			"FW image size not multiple of 512 bytes\n");
4341 		return -EINVAL;
4342 	}
4343 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
4344 		CH_ERR(adap,
4345 			"FW image size differs from size in FW header\n");
4346 		return -EINVAL;
4347 	}
4348 	if (size > fw_size) {
4349 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
4350 			fw_size);
4351 		return -EFBIG;
4352 	}
4353 	if (!t4_fw_matches_chip(adap, hdr))
4354 		return -EINVAL;
4355 
4356 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
4357 		csum += be32_to_cpu(p[i]);
4358 
4359 	if (csum != 0xffffffff) {
4360 		CH_ERR(adap,
4361 			"corrupted firmware image, checksum %#x\n", csum);
4362 		return -EINVAL;
4363 	}
4364 
4365 	i = DIV_ROUND_UP(size, SF_SEC_SIZE);	/* # of sectors spanned */
4366 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
4367 	if (ret)
4368 		goto out;
4369 
4370 	/*
4371 	 * We write the correct version at the end so the driver can see a bad
4372 	 * version if the FW write fails.  Start by writing a copy of the
4373 	 * first page with a bad version.
4374 	 */
4375 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
4376 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
4377 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
4378 	if (ret)
4379 		goto out;
4380 
4381 	addr = fw_start;
4382 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
4383 		addr += SF_PAGE_SIZE;
4384 		fw_data += SF_PAGE_SIZE;
4385 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
4386 		if (ret)
4387 			goto out;
4388 	}
4389 
4390 	ret = t4_write_flash(adap,
4391 			     fw_start + offsetof(struct fw_hdr, fw_ver),
4392 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
4393 out:
4394 	if (ret)
4395 		CH_ERR(adap, "firmware download failed, error %d\n",
4396 			ret);
4397 	return ret;
4398 }
4399 
4400 /**
4401  *	t4_fwcache - firmware cache operation
4402  *	@adap: the adapter
4403  *	@op  : the operation (flush or flush and invalidate)
4404  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)4405 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
4406 {
4407 	struct fw_params_cmd c;
4408 
4409 	memset(&c, 0, sizeof(c));
4410 	c.op_to_vfn =
4411 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
4412 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4413 				V_FW_PARAMS_CMD_PFN(adap->pf) |
4414 				V_FW_PARAMS_CMD_VFN(0));
4415 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4416 	c.param[0].mnem =
4417 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4418 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
4419 	c.param[0].val = cpu_to_be32(op);
4420 
4421 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
4422 }
4423 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)4424 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
4425 			unsigned int *pif_req_wrptr,
4426 			unsigned int *pif_rsp_wrptr)
4427 {
4428 	int i, j;
4429 	u32 cfg, val, req, rsp;
4430 
4431 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
4432 	if (cfg & F_LADBGEN)
4433 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
4434 
4435 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
4436 	req = G_POLADBGWRPTR(val);
4437 	rsp = G_PILADBGWRPTR(val);
4438 	if (pif_req_wrptr)
4439 		*pif_req_wrptr = req;
4440 	if (pif_rsp_wrptr)
4441 		*pif_rsp_wrptr = rsp;
4442 
4443 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
4444 		for (j = 0; j < 6; j++) {
4445 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
4446 				     V_PILADBGRDPTR(rsp));
4447 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
4448 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
4449 			req++;
4450 			rsp++;
4451 		}
4452 		req = (req + 2) & M_POLADBGRDPTR;
4453 		rsp = (rsp + 2) & M_PILADBGRDPTR;
4454 	}
4455 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
4456 }
4457 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)4458 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
4459 {
4460 	u32 cfg;
4461 	int i, j, idx;
4462 
4463 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
4464 	if (cfg & F_LADBGEN)
4465 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
4466 
4467 	for (i = 0; i < CIM_MALA_SIZE; i++) {
4468 		for (j = 0; j < 5; j++) {
4469 			idx = 8 * i + j;
4470 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
4471 				     V_PILADBGRDPTR(idx));
4472 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
4473 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
4474 		}
4475 	}
4476 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
4477 }
4478 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)4479 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
4480 {
4481 	unsigned int i, j;
4482 
4483 	for (i = 0; i < 8; i++) {
4484 		u32 *p = la_buf + i;
4485 
4486 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
4487 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
4488 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
4489 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
4490 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
4491 	}
4492 }
4493 
4494 /**
4495  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
4496  *	@caps16: a 16-bit Port Capabilities value
4497  *
4498  *	Returns the equivalent 32-bit Port Capabilities value.
4499  */
fwcaps16_to_caps32(uint16_t caps16)4500 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
4501 {
4502 	uint32_t caps32 = 0;
4503 
4504 	#define CAP16_TO_CAP32(__cap) \
4505 		do { \
4506 			if (caps16 & FW_PORT_CAP_##__cap) \
4507 				caps32 |= FW_PORT_CAP32_##__cap; \
4508 		} while (0)
4509 
4510 	CAP16_TO_CAP32(SPEED_100M);
4511 	CAP16_TO_CAP32(SPEED_1G);
4512 	CAP16_TO_CAP32(SPEED_25G);
4513 	CAP16_TO_CAP32(SPEED_10G);
4514 	CAP16_TO_CAP32(SPEED_40G);
4515 	CAP16_TO_CAP32(SPEED_100G);
4516 	CAP16_TO_CAP32(FC_RX);
4517 	CAP16_TO_CAP32(FC_TX);
4518 	CAP16_TO_CAP32(ANEG);
4519 	CAP16_TO_CAP32(FORCE_PAUSE);
4520 	CAP16_TO_CAP32(MDIAUTO);
4521 	CAP16_TO_CAP32(MDISTRAIGHT);
4522 	CAP16_TO_CAP32(FEC_RS);
4523 	CAP16_TO_CAP32(FEC_BASER_RS);
4524 	CAP16_TO_CAP32(802_3_PAUSE);
4525 	CAP16_TO_CAP32(802_3_ASM_DIR);
4526 
4527 	#undef CAP16_TO_CAP32
4528 
4529 	return caps32;
4530 }
4531 
4532 /**
4533  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4534  *	@caps32: a 32-bit Port Capabilities value
4535  *
4536  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4537  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4538  *	Port Capabilities and some fields/values may not make it.
4539  */
fwcaps32_to_caps16(uint32_t caps32)4540 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
4541 {
4542 	uint16_t caps16 = 0;
4543 
4544 	#define CAP32_TO_CAP16(__cap) \
4545 		do { \
4546 			if (caps32 & FW_PORT_CAP32_##__cap) \
4547 				caps16 |= FW_PORT_CAP_##__cap; \
4548 		} while (0)
4549 
4550 	CAP32_TO_CAP16(SPEED_100M);
4551 	CAP32_TO_CAP16(SPEED_1G);
4552 	CAP32_TO_CAP16(SPEED_10G);
4553 	CAP32_TO_CAP16(SPEED_25G);
4554 	CAP32_TO_CAP16(SPEED_40G);
4555 	CAP32_TO_CAP16(SPEED_100G);
4556 	CAP32_TO_CAP16(FC_RX);
4557 	CAP32_TO_CAP16(FC_TX);
4558 	CAP32_TO_CAP16(802_3_PAUSE);
4559 	CAP32_TO_CAP16(802_3_ASM_DIR);
4560 	CAP32_TO_CAP16(ANEG);
4561 	CAP32_TO_CAP16(FORCE_PAUSE);
4562 	CAP32_TO_CAP16(MDIAUTO);
4563 	CAP32_TO_CAP16(MDISTRAIGHT);
4564 	CAP32_TO_CAP16(FEC_RS);
4565 	CAP32_TO_CAP16(FEC_BASER_RS);
4566 
4567 	#undef CAP32_TO_CAP16
4568 
4569 	return caps16;
4570 }
4571 
fwcap_to_fec(uint32_t caps,bool unset_means_none)4572 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
4573 {
4574 	int8_t fec = 0;
4575 
4576 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
4577 		return (unset_means_none ? FEC_NONE : 0);
4578 
4579 	if (caps & FW_PORT_CAP32_FEC_RS)
4580 		fec |= FEC_RS;
4581 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
4582 		fec |= FEC_BASER_RS;
4583 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
4584 		fec |= FEC_NONE;
4585 
4586 	return (fec);
4587 }
4588 
4589 /*
4590  * Note that 0 is not translated to NO_FEC.
4591  */
fec_to_fwcap(int8_t fec)4592 static uint32_t fec_to_fwcap(int8_t fec)
4593 {
4594 	uint32_t caps = 0;
4595 
4596 	/* Only real FECs allowed. */
4597 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
4598 
4599 	if (fec & FEC_RS)
4600 		caps |= FW_PORT_CAP32_FEC_RS;
4601 	if (fec & FEC_BASER_RS)
4602 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
4603 	if (fec & FEC_NONE)
4604 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
4605 
4606 	return (caps);
4607 }
4608 
4609 /**
4610  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4611  *	@phy: the PHY to setup
4612  *	@mac: the MAC to setup
4613  *	@lc: the requested link configuration
4614  *
4615  *	Set up a port's MAC and PHY according to a desired link configuration.
4616  *	- If the PHY can auto-negotiate first decide what to advertise, then
4617  *	  enable/disable auto-negotiation as desired, and reset.
4618  *	- If the PHY does not auto-negotiate just reset it.
4619  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4620  *	  otherwise do it later based on the outcome of auto-negotiation.
4621  */
t4_link_l1cfg(struct adapter * adap,unsigned int mbox,unsigned int port,struct link_config * lc)4622 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
4623 		  struct link_config *lc)
4624 {
4625 	struct fw_port_cmd c;
4626 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4627 	unsigned int aneg, fc, fec, speed, rcap;
4628 
4629 	fc = 0;
4630 	if (lc->requested_fc & PAUSE_RX)
4631 		fc |= FW_PORT_CAP32_FC_RX;
4632 	if (lc->requested_fc & PAUSE_TX)
4633 		fc |= FW_PORT_CAP32_FC_TX;
4634 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4635 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
4636 
4637 	if (lc->requested_aneg == AUTONEG_DISABLE)
4638 		aneg = 0;
4639 	else if (lc->requested_aneg == AUTONEG_ENABLE)
4640 		aneg = FW_PORT_CAP32_ANEG;
4641 	else
4642 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
4643 
4644 	if (aneg) {
4645 		speed = lc->pcaps &
4646 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4647 	} else if (lc->requested_speed != 0)
4648 		speed = speed_to_fwcap(lc->requested_speed);
4649 	else
4650 		speed = fwcap_top_speed(lc->pcaps);
4651 
4652 	fec = 0;
4653 	if (fec_supported(speed)) {
4654 		int force_fec;
4655 
4656 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4657 			force_fec = lc->force_fec;
4658 		else
4659 			force_fec = 0;
4660 
4661 		if (lc->requested_fec == FEC_AUTO) {
4662 			if (force_fec > 0) {
4663 				/*
4664 				 * Must use FORCE_FEC even though requested FEC
4665 				 * is AUTO. Set all the FEC bits valid for the
4666 				 * speed and let the firmware pick one.
4667 				 */
4668 				fec |= FW_PORT_CAP32_FORCE_FEC;
4669 				if (speed & FW_PORT_CAP32_SPEED_25G) {
4670 					fec |= FW_PORT_CAP32_FEC_RS;
4671 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
4672 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
4673 				} else {
4674 					fec |= FW_PORT_CAP32_FEC_RS;
4675 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
4676 				}
4677 			} else {
4678 				/*
4679 				 * Set only 1b. Old firmwares can't deal with
4680 				 * multiple bits and new firmwares are free to
4681 				 * ignore this and try whatever FECs they want
4682 				 * because we aren't setting FORCE_FEC here.
4683 				 */
4684 				fec |= fec_to_fwcap(lc->fec_hint);
4685 				MPASS(powerof2(fec));
4686 
4687 				/*
4688 				 * Override the hint if the FEC is not valid for
4689 				 * the potential top speed.  Request the best
4690 				 * FEC at that speed instead.
4691 				 */
4692 				if ((speed & FW_PORT_CAP32_SPEED_25G) == 0 &&
4693 				    fec == FW_PORT_CAP32_FEC_BASER_RS) {
4694 					fec = FW_PORT_CAP32_FEC_RS;
4695 				}
4696 			}
4697 		} else {
4698 			/*
4699 			 * User has explicitly requested some FEC(s). Set
4700 			 * FORCE_FEC unless prohibited from using it.
4701 			 */
4702 			if (force_fec != 0)
4703 				fec |= FW_PORT_CAP32_FORCE_FEC;
4704 			fec |= fec_to_fwcap(lc->requested_fec &
4705 			    M_FW_PORT_CAP32_FEC);
4706 			if (lc->requested_fec & FEC_MODULE)
4707 				fec |= fec_to_fwcap(lc->fec_hint);
4708 		}
4709 
4710 		/*
4711 		 * This is for compatibility with old firmwares. The original
4712 		 * way to request NO_FEC was to not set any of the FEC bits. New
4713 		 * firmwares understand this too.
4714 		 */
4715 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
4716 			fec = 0;
4717 	}
4718 
4719 	/* Force AN on for BT cards. */
4720 	if (isset(&adap->bt_map, port))
4721 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
4722 
4723 	rcap = aneg | speed | fc | fec;
4724 	if ((rcap | lc->pcaps) != lc->pcaps) {
4725 #ifdef INVARIANTS
4726 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
4727 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
4728 #endif
4729 		rcap &= lc->pcaps;
4730 	}
4731 	rcap |= mdi;
4732 
4733 	memset(&c, 0, sizeof(c));
4734 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4735 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4736 				     V_FW_PORT_CMD_PORTID(port));
4737 	if (adap->params.port_caps32) {
4738 		c.action_to_len16 =
4739 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4740 			FW_LEN16(c));
4741 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4742 	} else {
4743 		c.action_to_len16 =
4744 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4745 			    FW_LEN16(c));
4746 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4747 	}
4748 
4749 	lc->requested_caps = rcap;
4750 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4751 }
4752 
4753 /**
4754  *	t4_restart_aneg - restart autonegotiation
4755  *	@adap: the adapter
4756  *	@mbox: mbox to use for the FW command
4757  *	@port: the port id
4758  *
4759  *	Restarts autonegotiation for the selected port.
4760  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4761 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4762 {
4763 	struct fw_port_cmd c;
4764 
4765 	memset(&c, 0, sizeof(c));
4766 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4767 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4768 				     V_FW_PORT_CMD_PORTID(port));
4769 	c.action_to_len16 =
4770 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4771 			    FW_LEN16(c));
4772 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4773 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4774 }
4775 
4776 struct intr_details {
4777 	u32 mask;
4778 	const char *msg;
4779 };
4780 
4781 struct intr_action {
4782 	u32 mask;
4783 	int arg;
4784 	bool (*action)(struct adapter *, int, int);
4785 };
4786 
4787 struct intr_info {
4788 	const char *name;	/* name of the INT_CAUSE register */
4789 	int cause_reg;		/* INT_CAUSE register */
4790 	int enable_reg;		/* INT_ENABLE register */
4791 	u32 fatal;		/* bits that are fatal */
4792 	int flags;		/* hints */
4793 	const struct intr_details *details;
4794 	const struct intr_action *actions;
4795 };
4796 
4797 static inline char
intr_alert_char(u32 cause,u32 enable,u32 fatal)4798 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4799 {
4800 
4801 	if (cause & fatal)
4802 		return ('!');
4803 	if (cause & enable)
4804 		return ('*');
4805 	return ('-');
4806 }
4807 
4808 static void
show_intr_info(struct adapter * sc,const struct intr_info * ii,uint32_t cause,uint32_t ucause,uint32_t enabled,uint32_t fatal,int flags)4809 show_intr_info(struct adapter *sc, const struct intr_info *ii, uint32_t cause,
4810     uint32_t ucause, uint32_t enabled, uint32_t fatal, int flags)
4811 {
4812 	uint32_t leftover, msgbits;
4813 	const struct intr_details *details;
4814 	char alert;
4815 	const bool verbose = flags & IHF_VERBOSE;
4816 
4817 	if (verbose || ucause != 0 || flags & IHF_RUN_ALL_ACTIONS) {
4818 		alert = intr_alert_char(cause, enabled, fatal);
4819 		CH_ALERT(sc, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", alert,
4820 		    ii->name, ii->cause_reg, cause, enabled, fatal);
4821 	}
4822 
4823 	leftover = verbose ? cause : ucause;
4824 	for (details = ii->details; details && details->mask != 0; details++) {
4825 		msgbits = details->mask & leftover;
4826 		if (msgbits == 0)
4827 			continue;
4828 		alert = intr_alert_char(msgbits, enabled, fatal);
4829 		CH_ALERT(sc, "  %c [0x%08x] %s\n", alert, msgbits, details->msg);
4830 		leftover &= ~msgbits;
4831 	}
4832 	if (leftover != 0 && leftover != (verbose ? cause : ucause))
4833 		CH_ALERT(sc, "  ? [0x%08x]\n", leftover);
4834 }
4835 
4836 /*
4837  * Returns true for fatal error.
4838  */
4839 static bool
t4_handle_intr(struct adapter * sc,const struct intr_info * ii,uint32_t acause,int flags)4840 t4_handle_intr(struct adapter *sc, const struct intr_info *ii, uint32_t acause,
4841     int flags)
4842 {
4843 	uint32_t cause, ucause, enabled, fatal;
4844 	bool rc;
4845 	const struct intr_action *action;
4846 
4847 	cause = t4_read_reg(sc, ii->cause_reg);
4848 	enabled = t4_read_reg(sc, ii->enable_reg);
4849 	flags |= ii->flags;
4850 	fatal = ii->fatal & cause;
4851 	if (flags & IHF_FATAL_IFF_ENABLED)
4852 		fatal &= enabled;
4853 	ucause = cause;
4854 	if (flags & IHF_IGNORE_IF_DISABLED)
4855 		ucause &= enabled;
4856 	if (!(flags & IHF_NO_SHOW))
4857 		show_intr_info(sc, ii, cause, ucause, enabled, fatal, flags);
4858 
4859 	rc = fatal != 0;
4860 	for (action = ii->actions; action && action->mask != 0; action++) {
4861 		if (action->action == NULL)
4862 			continue;
4863 		if (action->mask & (ucause | acause) ||
4864 		    flags & IHF_RUN_ALL_ACTIONS) {
4865 			bool rc1 = (action->action)(sc, action->arg, flags);
4866 			if (action->mask & ucause)
4867 				rc |= rc1;
4868 		}
4869 	}
4870 
4871 	/* clear */
4872 	if (cause != 0) {
4873 		if (flags & IHF_CLR_ALL_SET) {
4874 			t4_write_reg(sc, ii->cause_reg, cause);
4875 			(void)t4_read_reg(sc, ii->cause_reg);
4876 		} else if (ucause != 0 && flags & IHF_CLR_ALL_UNIGNORED) {
4877 			t4_write_reg(sc, ii->cause_reg, ucause);
4878 			(void)t4_read_reg(sc, ii->cause_reg);
4879 		}
4880 	}
4881 
4882 	return (rc);
4883 }
4884 
4885 /*
4886  * Interrupt handler for the PCIE module.
4887  */
pcie_intr_handler(struct adapter * adap,int arg,int flags)4888 static bool pcie_intr_handler(struct adapter *adap, int arg, int flags)
4889 {
4890 	static const struct intr_details sysbus_intr_details[] = {
4891 		{ F_RNPP, "RXNP array parity error" },
4892 		{ F_RPCP, "RXPC array parity error" },
4893 		{ F_RCIP, "RXCIF array parity error" },
4894 		{ F_RCCP, "Rx completions control array parity error" },
4895 		{ F_RFTP, "RXFT array parity error" },
4896 		{ 0 }
4897 	};
4898 	static const struct intr_info sysbus_intr_info = {
4899 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4900 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4901 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4902 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4903 		.flags = 0,
4904 		.details = sysbus_intr_details,
4905 		.actions = NULL,
4906 	};
4907 	static const struct intr_details pcie_port_intr_details[] = {
4908 		{ F_TPCP, "TXPC array parity error" },
4909 		{ F_TNPP, "TXNP array parity error" },
4910 		{ F_TFTP, "TXFT array parity error" },
4911 		{ F_TCAP, "TXCA array parity error" },
4912 		{ F_TCIP, "TXCIF array parity error" },
4913 		{ F_RCAP, "RXCA array parity error" },
4914 		{ F_OTDD, "outbound request TLP discarded" },
4915 		{ F_RDPE, "Rx data parity error" },
4916 		{ F_TDUE, "Tx uncorrectable data error" },
4917 		{ 0 }
4918 	};
4919 	static const struct intr_info pcie_port_intr_info = {
4920 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4921 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4922 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4923 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4924 		    F_OTDD | F_RDPE | F_TDUE,
4925 		.flags = 0,
4926 		.details = pcie_port_intr_details,
4927 		.actions = NULL,
4928 	};
4929 	static const struct intr_details pcie_intr_details[] = {
4930 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4931 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4932 		{ F_MSIDATAPERR, "MSI data parity error" },
4933 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4934 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4935 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4936 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4937 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4938 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4939 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4940 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4941 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4942 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4943 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4944 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4945 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4946 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4947 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4948 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4949 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4950 		{ F_FIDPERR, "PCIe FID parity error" },
4951 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4952 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4953 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4954 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4955 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4956 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4957 		{ F_PCIESINT, "PCIe core secondary fault" },
4958 		{ F_PCIEPINT, "PCIe core primary fault" },
4959 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4960 		{ 0 }
4961 	};
4962 	static const struct intr_details t5_pcie_intr_details[] = {
4963 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4964 		{ F_NONFATALERR, "PCIe non-fatal error" },
4965 		{ F_READRSPERR, "Outbound read error" },
4966 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4967 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4968 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4969 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4970 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4971 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4972 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4973 		{ F_VFIDPERR, "VFID SRAM parity error" },
4974 		{ F_FIDPERR, "FID SRAM parity error" },
4975 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4976 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4977 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4978 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4979 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4980 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4981 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4982 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4983 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4984 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4985 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4986 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4987 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4988 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4989 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4990 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4991 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4992 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4993 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4994 		{ 0 }
4995 	};
4996 	struct intr_info pcie_intr_info = {
4997 		.name = "PCIE_INT_CAUSE",
4998 		.cause_reg = A_PCIE_INT_CAUSE,
4999 		.enable_reg = A_PCIE_INT_ENABLE,
5000 		.fatal = 0xffffffff,
5001 		.flags = IHF_FATAL_IFF_ENABLED,
5002 		.details = NULL,
5003 		.actions = NULL,
5004 	};
5005 	struct intr_info pcie_int_cause_ext = {
5006 		.name = "PCIE_INT_CAUSE_EXT",
5007 		.cause_reg = A_PCIE_INT_CAUSE_EXT,
5008 		.enable_reg = A_PCIE_INT_ENABLE_EXT,
5009 		.fatal = 0,
5010 		.flags = 0,
5011 		.details = NULL,
5012 		.actions = NULL,
5013 	};
5014 	struct intr_info pcie_int_cause_x8 = {
5015 		.name = "PCIE_INT_CAUSE_X8",
5016 		.cause_reg = A_PCIE_INT_CAUSE_X8,
5017 		.enable_reg = A_PCIE_INT_ENABLE_X8,
5018 		.fatal = 0,
5019 		.flags = 0,
5020 		.details = NULL,
5021 		.actions = NULL,
5022 	};
5023 	bool fatal = false;
5024 
5025 	if (is_t4(adap)) {
5026 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, flags);
5027 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, flags);
5028 
5029 		pcie_intr_info.details = pcie_intr_details;
5030 	} else {
5031 		pcie_intr_info.details = t5_pcie_intr_details;
5032 	}
5033 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, flags);
5034 	if (chip_id(adap) > CHELSIO_T6) {
5035 		fatal |= t4_handle_intr(adap, &pcie_int_cause_ext, 0, flags);
5036 		fatal |= t4_handle_intr(adap, &pcie_int_cause_x8, 0, flags);
5037 	}
5038 
5039 	return (fatal);
5040 }
5041 
5042 /*
5043  * TP interrupt handler.
5044  */
tp_intr_handler(struct adapter * adap,int arg,int flags)5045 static bool tp_intr_handler(struct adapter *adap, int arg, int flags)
5046 {
5047 	static const struct intr_details tp_intr_details[] = {
5048 		{ 0x3fffffff, "TP parity error" },
5049 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
5050 		{ 0 }
5051 	};
5052 	static const struct intr_info tp_intr_info = {
5053 		.name = "TP_INT_CAUSE",
5054 		.cause_reg = A_TP_INT_CAUSE,
5055 		.enable_reg = A_TP_INT_ENABLE,
5056 		.fatal = 0x7fffffff,
5057 		.flags = IHF_FATAL_IFF_ENABLED,
5058 		.details = tp_intr_details,
5059 		.actions = NULL,
5060 	};
5061 	static const struct intr_info tp_inic_perr_cause = {
5062 		.name = "TP_INIC_PERR_CAUSE",
5063 		.cause_reg = A_TP_INIC_PERR_CAUSE,
5064 		.enable_reg = A_TP_INIC_PERR_ENABLE,
5065 		.fatal = 0xffffffff,
5066 		.flags = IHF_FATAL_IFF_ENABLED,
5067 		.details = NULL,
5068 		.actions = NULL,
5069 	};
5070 	static const struct intr_info tp_c_perr_cause = {
5071 		.name = "TP_C_PERR_CAUSE",
5072 		.cause_reg = A_TP_C_PERR_CAUSE,
5073 		.enable_reg = A_TP_C_PERR_ENABLE,
5074 		.fatal = 0xffffffff,
5075 		.flags = IHF_FATAL_IFF_ENABLED,
5076 		.details = NULL,
5077 		.actions = NULL,
5078 	};
5079 	static const struct intr_info tp_e_eg_perr_cause = {
5080 		.name = "TP_E_EG_PERR_CAUSE",
5081 		.cause_reg = A_TP_E_EG_PERR_CAUSE,
5082 		.enable_reg = A_TP_E_EG_PERR_ENABLE,
5083 		.fatal = 0xffffffff,
5084 		.flags = IHF_FATAL_IFF_ENABLED,
5085 		.details = NULL,
5086 		.actions = NULL,
5087 	};
5088 	static const struct intr_info tp_e_in0_perr_cause = {
5089 		.name = "TP_E_IN0_PERR_CAUSE",
5090 		.cause_reg = A_TP_E_IN0_PERR_CAUSE,
5091 		.enable_reg = A_TP_E_IN0_PERR_ENABLE,
5092 		.fatal = 0xffffffff,
5093 		.flags = IHF_FATAL_IFF_ENABLED,
5094 		.details = NULL,
5095 		.actions = NULL,
5096 	};
5097 	static const struct intr_info tp_e_in1_perr_cause = {
5098 		.name = "TP_E_IN1_PERR_CAUSE",
5099 		.cause_reg = A_TP_E_IN1_PERR_CAUSE,
5100 		.enable_reg = A_TP_E_IN1_PERR_ENABLE,
5101 		.fatal = 0xffffffff,
5102 		.flags = IHF_FATAL_IFF_ENABLED,
5103 		.details = NULL,
5104 		.actions = NULL,
5105 	};
5106 	static const struct intr_info tp_o_perr_cause = {
5107 		.name = "TP_O_PERR_CAUSE",
5108 		.cause_reg = A_TP_O_PERR_CAUSE,
5109 		.enable_reg = A_TP_O_PERR_ENABLE,
5110 		.fatal = 0xffffffff,
5111 		.flags = IHF_FATAL_IFF_ENABLED,
5112 		.details = NULL,
5113 		.actions = NULL,
5114 	};
5115 	bool fatal;
5116 
5117 	fatal = t4_handle_intr(adap, &tp_intr_info, 0, flags);
5118 	if (chip_id(adap) > CHELSIO_T6) {
5119 		fatal |= t4_handle_intr(adap, &tp_inic_perr_cause, 0, flags);
5120 		fatal |= t4_handle_intr(adap, &tp_c_perr_cause, 0, flags);
5121 		fatal |= t4_handle_intr(adap, &tp_e_eg_perr_cause, 0, flags);
5122 		fatal |= t4_handle_intr(adap, &tp_e_in0_perr_cause, 0, flags);
5123 		fatal |= t4_handle_intr(adap, &tp_e_in1_perr_cause, 0, flags);
5124 		fatal |= t4_handle_intr(adap, &tp_o_perr_cause, 0, flags);
5125 	}
5126 
5127 	return (fatal);
5128 }
5129 
5130 /*
5131  * SGE interrupt handler.
5132  */
sge_intr_handler(struct adapter * adap,int arg,int flags)5133 static bool sge_intr_handler(struct adapter *adap, int arg, int flags)
5134 {
5135 	static const struct intr_info sge_int1_info = {
5136 		.name = "SGE_INT_CAUSE1",
5137 		.cause_reg = A_SGE_INT_CAUSE1,
5138 		.enable_reg = A_SGE_INT_ENABLE1,
5139 		.fatal = 0xffffffff,
5140 		.flags = IHF_FATAL_IFF_ENABLED,
5141 		.details = NULL,
5142 		.actions = NULL,
5143 	};
5144 	static const struct intr_info sge_int2_info = {
5145 		.name = "SGE_INT_CAUSE2",
5146 		.cause_reg = A_SGE_INT_CAUSE2,
5147 		.enable_reg = A_SGE_INT_ENABLE2,
5148 		.fatal = 0xffffffff,
5149 		.flags = IHF_FATAL_IFF_ENABLED,
5150 		.details = NULL,
5151 		.actions = NULL,
5152 	};
5153 	static const struct intr_details sge_int3_details[] = {
5154 		{ F_ERR_FLM_DBP,
5155 			"DBP pointer delivery for invalid context or QID" },
5156 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
5157 			"Invalid QID or header request by IDMA" },
5158 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
5159 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
5160 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
5161 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
5162 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
5163 		{ F_ERR_TIMER_ABOVE_MAX_QID,
5164 			"SGE GTS with timer 0-5 for IQID > 1023" },
5165 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
5166 			"SGE received CPL exceeding IQE size" },
5167 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
5168 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
5169 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
5170 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
5171 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
5172 		  "SGE IQID > 1023 received CPL for FL" },
5173 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5174 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
5175 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
5176 		{ F_ERR_ING_CTXT_PRIO,
5177 			"Ingress context manager priority user error" },
5178 		{ F_ERR_EGR_CTXT_PRIO,
5179 			"Egress context manager priority user error" },
5180 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
5181 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
5182 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
5183 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
5184 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
5185 		{ 0x0000000f, "SGE context access for invalid queue" },
5186 		{ 0 }
5187 	};
5188 	static const struct intr_details t6_sge_int3_details[] = {
5189 		{ F_ERR_FLM_DBP,
5190 			"DBP pointer delivery for invalid context or QID" },
5191 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
5192 			"Invalid QID or header request by IDMA" },
5193 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
5194 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
5195 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
5196 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
5197 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
5198 		{ F_ERR_TIMER_ABOVE_MAX_QID,
5199 			"SGE GTS with timer 0-5 for IQID > 1023" },
5200 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
5201 			"SGE received CPL exceeding IQE size" },
5202 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
5203 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
5204 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
5205 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
5206 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
5207 			"SGE IQID > 1023 received CPL for FL" },
5208 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5209 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
5210 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
5211 		{ F_ERR_ING_CTXT_PRIO,
5212 			"Ingress context manager priority user error" },
5213 		{ F_ERR_EGR_CTXT_PRIO,
5214 			"Egress context manager priority user error" },
5215 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
5216 		{ F_FATAL_WRE_LEN,
5217 			"SGE WRE packet less than advertized length" },
5218 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
5219 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
5220 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
5221 		{ 0x0000000f, "SGE context access for invalid queue" },
5222 		{ 0 }
5223 	};
5224 	struct intr_info sge_int3_info = {
5225 		.name = "SGE_INT_CAUSE3",
5226 		.cause_reg = A_SGE_INT_CAUSE3,
5227 		.enable_reg = A_SGE_INT_ENABLE3,
5228 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
5229 		.flags = 0,
5230 		.details = NULL,
5231 		.actions = NULL,
5232 	};
5233 	static const struct intr_info sge_int4_info = {
5234 		.name = "SGE_INT_CAUSE4",
5235 		.cause_reg = A_SGE_INT_CAUSE4,
5236 		.enable_reg = A_SGE_INT_ENABLE4,
5237 		.fatal = 0,
5238 		.flags = 0,
5239 		.details = NULL,
5240 		.actions = NULL,
5241 	};
5242 	static const struct intr_info sge_int5_info = {
5243 		.name = "SGE_INT_CAUSE5",
5244 		.cause_reg = A_SGE_INT_CAUSE5,
5245 		.enable_reg = A_SGE_INT_ENABLE5,
5246 		.fatal = 0xffffffff,
5247 		.flags = IHF_FATAL_IFF_ENABLED,
5248 		.details = NULL,
5249 		.actions = NULL,
5250 	};
5251 	static const struct intr_info sge_int6_info = {
5252 		.name = "SGE_INT_CAUSE6",
5253 		.cause_reg = A_SGE_INT_CAUSE6,
5254 		.enable_reg = A_SGE_INT_ENABLE6,
5255 		.fatal = 0,
5256 		.flags = 0,
5257 		.details = NULL,
5258 		.actions = NULL,
5259 	};
5260 	static const struct intr_info sge_int7_info = {
5261 		.name = "SGE_INT_CAUSE7",
5262 		.cause_reg = A_SGE_INT_CAUSE7,
5263 		.enable_reg = A_SGE_INT_ENABLE7,
5264 		.fatal = 0,
5265 		.flags = 0,
5266 		.details = NULL,
5267 		.actions = NULL,
5268 	};
5269 	static const struct intr_info sge_int8_info = {
5270 		.name = "SGE_INT_CAUSE8",
5271 		.cause_reg = A_SGE_INT_CAUSE8,
5272 		.enable_reg = A_SGE_INT_ENABLE8,
5273 		.fatal = 0,
5274 		.flags = 0,
5275 		.details = NULL,
5276 		.actions = NULL,
5277 	};
5278 	bool fatal;
5279 	u32 v;
5280 
5281 	if (chip_id(adap) <= CHELSIO_T5) {
5282 		sge_int3_info.details = sge_int3_details;
5283 	} else {
5284 		sge_int3_info.details = t6_sge_int3_details;
5285 	}
5286 
5287 	fatal = false;
5288 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, flags);
5289 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, flags);
5290 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, flags);
5291 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, flags);
5292 	if (chip_id(adap) >= CHELSIO_T5)
5293 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, flags);
5294 	if (chip_id(adap) >= CHELSIO_T6)
5295 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, flags);
5296 	if (chip_id(adap) >= CHELSIO_T7) {
5297 		fatal |= t4_handle_intr(adap, &sge_int7_info, 0, flags);
5298 		fatal |= t4_handle_intr(adap, &sge_int8_info, 0, flags);
5299 	}
5300 
5301 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
5302 	if (v & F_ERROR_QID_VALID) {
5303 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
5304 		if (v & F_UNCAPTURED_ERROR)
5305 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
5306 		t4_write_reg(adap, A_SGE_ERROR_STATS,
5307 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
5308 	}
5309 
5310 	return (fatal);
5311 }
5312 
5313 /*
5314  * CIM interrupt handler.
5315  */
cim_intr_handler(struct adapter * adap,int arg,int flags)5316 static bool cim_intr_handler(struct adapter *adap, int arg, int flags)
5317 {
5318 	static const struct intr_details cim_host_intr_details[] = {
5319 		/* T6+ */
5320 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
5321 
5322 		/* T5+ */
5323 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
5324 		{ F_PLCIM_MSTRSPDATAPARERR,
5325 			"PL2CIM master response data parity error" },
5326 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
5327 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
5328 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
5329 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
5330 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
5331 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
5332 
5333 		/* T4+ */
5334 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
5335 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
5336 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
5337 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
5338 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
5339 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
5340 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
5341 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
5342 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
5343 			"CIM IBQ PCIe/SGE_HI parity error" },
5344 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
5345 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
5346 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
5347 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
5348 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
5349 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
5350 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
5351 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
5352 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
5353 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
5354 		{ 0}
5355 	};
5356 	static const struct intr_info cim_host_intr_info = {
5357 		.name = "CIM_HOST_INT_CAUSE",
5358 		.cause_reg = A_CIM_HOST_INT_CAUSE,
5359 		.enable_reg = A_CIM_HOST_INT_ENABLE,
5360 		.fatal = 0x007fffe6,
5361 		.flags = IHF_FATAL_IFF_ENABLED,
5362 		.details = cim_host_intr_details,
5363 		.actions = NULL,
5364 	};
5365 	static const struct intr_details cim_host_upacc_intr_details[] = {
5366 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
5367 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
5368 		{ F_TIMEOUTINT, "CIM PIF timeout" },
5369 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
5370 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
5371 		{ F_BLKWRPLINT, "CIM block write to PL space" },
5372 		{ F_BLKRDPLINT, "CIM block read from PL space" },
5373 		{ F_SGLWRPLINT,
5374 			"CIM single write to PL space with illegal BEs" },
5375 		{ F_SGLRDPLINT,
5376 			"CIM single read from PL space with illegal BEs" },
5377 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
5378 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
5379 		{ F_SGLWRCTLINT,
5380 			"CIM single write to CTL space with illegal BEs" },
5381 		{ F_SGLRDCTLINT,
5382 			"CIM single read from CTL space with illegal BEs" },
5383 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
5384 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
5385 		{ F_SGLWREEPROMINT,
5386 			"CIM single write to EEPROM space with illegal BEs" },
5387 		{ F_SGLRDEEPROMINT,
5388 			"CIM single read from EEPROM space with illegal BEs" },
5389 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
5390 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
5391 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
5392 		{ F_SGLRDFLASHINT,
5393 			"CIM single read from flash space with illegal BEs" },
5394 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
5395 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
5396 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
5397 		{ F_SGLRDBOOTINT,
5398 			"CIM single read from boot space with illegal BEs" },
5399 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
5400 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
5401 		{ F_ILLRDINT, "CIM illegal read" },
5402 		{ F_ILLWRINT, "CIM illegal write" },
5403 		{ F_ILLTRANSINT, "CIM illegal transaction" },
5404 		{ F_RSVDSPACEINT, "CIM reserved space access" },
5405 		{0}
5406 	};
5407 	static const struct intr_info cim_host_upacc_intr_info = {
5408 		.name = "CIM_HOST_UPACC_INT_CAUSE",
5409 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
5410 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
5411 		.fatal = 0x3fffeeff,
5412 		.flags = IHF_FATAL_IFF_ENABLED,
5413 		.details = cim_host_upacc_intr_details,
5414 		.actions = NULL,
5415 	};
5416 	static const struct intr_info cim_pf_host_intr_info = {
5417 		.name = "CIM_PF_HOST_INT_CAUSE",
5418 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5419 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
5420 		.fatal = 0,
5421 		.flags = 0,
5422 		.details = NULL,
5423 		.actions = NULL,
5424 	};
5425 	static const struct intr_info cim_perr_cause = {
5426 		.name = "CIM_PERR_CAUSE",
5427 		.cause_reg = A_CIM_PERR_CAUSE,
5428 		.enable_reg = A_CIM_PERR_ENABLE,
5429 		.fatal = 0xffffffff,
5430 		.flags = IHF_FATAL_IFF_ENABLED,
5431 		.details = NULL,
5432 		.actions = NULL,
5433 	};
5434 	u32 val, fw_err;
5435 	bool fatal;
5436 
5437 	/*
5438 	 * When the Firmware detects an internal error which normally wouldn't
5439 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
5440 	 * to make sure the Host sees the Firmware Crash.  So if we have a
5441 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
5442 	 * interrupt.
5443 	 */
5444 	fw_err = t4_read_reg(adap, A_PCIE_FW);
5445 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
5446 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
5447 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
5448 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
5449 	}
5450 
5451 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
5452 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, flags);
5453 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, flags);
5454 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, flags);
5455 	if (chip_id(adap) > CHELSIO_T6)
5456 		fatal |= t4_handle_intr(adap, &cim_perr_cause, 0, flags);
5457 	if (fatal)
5458 		t4_os_cim_err(adap);
5459 
5460 	return (fatal);
5461 }
5462 
5463 /*
5464  * ULP RX interrupt handler.
5465  */
ulprx_intr_handler(struct adapter * adap,int arg,int flags)5466 static bool ulprx_intr_handler(struct adapter *adap, int arg, int flags)
5467 {
5468 	static const struct intr_details ulprx_intr_details[] = {
5469 		/* T5+ */
5470 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
5471 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
5472 
5473 		/* T4+ */
5474 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
5475 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
5476 		{ 0x007fffff, "ULPRX parity error" },
5477 		{ 0 }
5478 	};
5479 	static const struct intr_info ulprx_intr_info = {
5480 		.name = "ULP_RX_INT_CAUSE",
5481 		.cause_reg = A_ULP_RX_INT_CAUSE,
5482 		.enable_reg = A_ULP_RX_INT_ENABLE,
5483 		.fatal = 0x07ffffff,
5484 		.flags = IHF_FATAL_IFF_ENABLED,
5485 		.details = ulprx_intr_details,
5486 		.actions = NULL,
5487 	};
5488 	static const struct intr_info ulprx_intr2_info = {
5489 		.name = "ULP_RX_INT_CAUSE_2",
5490 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
5491 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
5492 		.fatal = 0,
5493 		.flags = 0,
5494 		.details = NULL,
5495 		.actions = NULL,
5496 	};
5497 	static const struct intr_info ulprx_int_cause_pcmd = {
5498 		.name = "ULP_RX_INT_CAUSE_PCMD",
5499 		.cause_reg = A_ULP_RX_INT_CAUSE_PCMD,
5500 		.enable_reg = A_ULP_RX_INT_ENABLE_PCMD,
5501 		.fatal = 0,
5502 		.flags = 0,
5503 		.details = NULL,
5504 		.actions = NULL,
5505 	};
5506 	static const struct intr_info ulprx_int_cause_data = {
5507 		.name = "ULP_RX_INT_CAUSE_DATA",
5508 		.cause_reg = A_ULP_RX_INT_CAUSE_DATA,
5509 		.enable_reg = A_ULP_RX_INT_ENABLE_DATA,
5510 		.fatal = 0,
5511 		.flags = 0,
5512 		.details = NULL,
5513 		.actions = NULL,
5514 	};
5515 	static const struct intr_info ulprx_int_cause_arb = {
5516 		.name = "ULP_RX_INT_CAUSE_ARB",
5517 		.cause_reg = A_ULP_RX_INT_CAUSE_ARB,
5518 		.enable_reg = A_ULP_RX_INT_ENABLE_ARB,
5519 		.fatal = 0,
5520 		.flags = 0,
5521 		.details = NULL,
5522 		.actions = NULL,
5523 	};
5524 	static const struct intr_info ulprx_int_cause_intf = {
5525 		.name = "ULP_RX_INT_CAUSE_INTERFACE",
5526 		.cause_reg = A_ULP_RX_INT_CAUSE_INTERFACE,
5527 		.enable_reg = A_ULP_RX_INT_ENABLE_INTERFACE,
5528 		.fatal = 0,
5529 		.flags = 0,
5530 		.details = NULL,
5531 		.actions = NULL,
5532 	};
5533 	bool fatal = false;
5534 
5535 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, flags);
5536 	if (chip_id(adap) < CHELSIO_T7)
5537 		fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, flags);
5538 	else {
5539 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_pcmd, 0, flags);
5540 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_data, 0, flags);
5541 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_arb, 0, flags);
5542 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_intf, 0, flags);
5543 	}
5544 
5545 	return (fatal);
5546 }
5547 
5548 /*
5549  * ULP TX interrupt handler.
5550  */
ulptx_intr_handler(struct adapter * adap,int arg,int flags)5551 static bool ulptx_intr_handler(struct adapter *adap, int arg, int flags)
5552 {
5553 	static const struct intr_details ulptx_intr_details[] = {
5554 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
5555 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
5556 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
5557 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
5558 		{ 0x0fffffff, "ULPTX parity error" },
5559 		{ 0 }
5560 	};
5561 	static const struct intr_info ulptx_intr_info = {
5562 		.name = "ULP_TX_INT_CAUSE",
5563 		.cause_reg = A_ULP_TX_INT_CAUSE,
5564 		.enable_reg = A_ULP_TX_INT_ENABLE,
5565 		.fatal = 0x0fffffff,
5566 		.flags = IHF_FATAL_IFF_ENABLED,
5567 		.details = ulptx_intr_details,
5568 		.actions = NULL,
5569 	};
5570 	static const struct intr_info ulptx_intr_info2 = {
5571 		.name = "ULP_TX_INT_CAUSE_2",
5572 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
5573 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
5574 		.fatal = 0xffffffff,
5575 		.flags = IHF_FATAL_IFF_ENABLED,
5576 		.details = NULL,
5577 		.actions = NULL,
5578 	};
5579 	static const struct intr_info ulptx_intr_info3 = {
5580 		.name = "ULP_TX_INT_CAUSE_3",
5581 		.cause_reg = A_ULP_TX_INT_CAUSE_3,
5582 		.enable_reg = A_ULP_TX_INT_ENABLE_3,
5583 		.fatal = 0xffffffff,
5584 		.flags = IHF_FATAL_IFF_ENABLED,
5585 		.details = NULL,
5586 		.actions = NULL,
5587 	};
5588 	static const struct intr_info ulptx_intr_info4 = {
5589 		.name = "ULP_TX_INT_CAUSE_4",
5590 		.cause_reg = A_ULP_TX_INT_CAUSE_4,
5591 		.enable_reg = A_ULP_TX_INT_ENABLE_4,
5592 		.fatal = 0xffffffff,
5593 		.flags = IHF_FATAL_IFF_ENABLED,
5594 		.details = NULL,
5595 		.actions = NULL,
5596 	};
5597 	static const struct intr_info ulptx_intr_info5 = {
5598 		.name = "ULP_TX_INT_CAUSE_5",
5599 		.cause_reg = A_ULP_TX_INT_CAUSE_5,
5600 		.enable_reg = A_ULP_TX_INT_ENABLE_5,
5601 		.fatal = 0xffffffff,
5602 		.flags = IHF_FATAL_IFF_ENABLED,
5603 		.details = NULL,
5604 		.actions = NULL,
5605 	};
5606 	static const struct intr_info ulptx_intr_info6 = {
5607 		.name = "ULP_TX_INT_CAUSE_6",
5608 		.cause_reg = A_ULP_TX_INT_CAUSE_6,
5609 		.enable_reg = A_ULP_TX_INT_ENABLE_6,
5610 		.fatal = 0xffffffff,
5611 		.flags = IHF_FATAL_IFF_ENABLED,
5612 		.details = NULL,
5613 		.actions = NULL,
5614 	};
5615 	static const struct intr_info ulptx_intr_info7 = {
5616 		.name = "ULP_TX_INT_CAUSE_7",
5617 		.cause_reg = A_ULP_TX_INT_CAUSE_7,
5618 		.enable_reg = A_ULP_TX_INT_ENABLE_7,
5619 		.fatal = 0,
5620 		.flags = 0,
5621 		.details = NULL,
5622 		.actions = NULL,
5623 	};
5624 	static const struct intr_info ulptx_intr_info8 = {
5625 		.name = "ULP_TX_INT_CAUSE_8",
5626 		.cause_reg = A_ULP_TX_INT_CAUSE_8,
5627 		.enable_reg = A_ULP_TX_INT_ENABLE_8,
5628 		.fatal = 0,
5629 		.flags = 0,
5630 		.details = NULL,
5631 		.actions = NULL,
5632 	};
5633 	bool fatal = false;
5634 
5635 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, flags);
5636 	if (chip_id(adap) > CHELSIO_T4)
5637 		fatal |= t4_handle_intr(adap, &ulptx_intr_info2, 0, flags);
5638 	if (chip_id(adap) > CHELSIO_T6) {
5639 		fatal |= t4_handle_intr(adap, &ulptx_intr_info3, 0, flags);
5640 		fatal |= t4_handle_intr(adap, &ulptx_intr_info4, 0, flags);
5641 		fatal |= t4_handle_intr(adap, &ulptx_intr_info5, 0, flags);
5642 		fatal |= t4_handle_intr(adap, &ulptx_intr_info6, 0, flags);
5643 		fatal |= t4_handle_intr(adap, &ulptx_intr_info7, 0, flags);
5644 		fatal |= t4_handle_intr(adap, &ulptx_intr_info8, 0, flags);
5645 	}
5646 
5647 	return (fatal);
5648 }
5649 
pmtx_dump_dbg_stats(struct adapter * adap,int arg,int flags)5650 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, int flags)
5651 {
5652 	int i;
5653 	u32 data[17];
5654 
5655 	if (flags & IHF_NO_SHOW)
5656 		return (false);
5657 
5658 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
5659 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
5660 	for (i = 0; i < ARRAY_SIZE(data); i++) {
5661 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
5662 		    A_PM_TX_DBG_STAT0 + i, data[i]);
5663 	}
5664 
5665 	return (false);
5666 }
5667 
5668 /*
5669  * PM TX interrupt handler.
5670  */
pmtx_intr_handler(struct adapter * adap,int arg,int flags)5671 static bool pmtx_intr_handler(struct adapter *adap, int arg, int flags)
5672 {
5673 	static const struct intr_details pmtx_int_cause_fields[] = {
5674 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
5675 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
5676 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
5677 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
5678 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
5679 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
5680 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
5681 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
5682 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
5683 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
5684 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
5685 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
5686 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
5687 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
5688 		{ 0 }
5689 	};
5690 	static const struct intr_action pmtx_int_cause_actions[] = {
5691 		{ 0xffffffff, -1, pmtx_dump_dbg_stats },
5692 		{ 0 },
5693 	};
5694 	static const struct intr_info pmtx_int_cause = {
5695 		.name = "PM_TX_INT_CAUSE",
5696 		.cause_reg = A_PM_TX_INT_CAUSE,
5697 		.enable_reg = A_PM_TX_INT_ENABLE,
5698 		.fatal = 0xffffffff,
5699 		.flags = 0,
5700 		.details = pmtx_int_cause_fields,
5701 		.actions = pmtx_int_cause_actions,
5702 	};
5703 
5704 	return (t4_handle_intr(adap, &pmtx_int_cause, 0, flags));
5705 }
5706 
5707 /*
5708  * PM RX interrupt handler.
5709  */
pmrx_intr_handler(struct adapter * adap,int arg,int flags)5710 static bool pmrx_intr_handler(struct adapter *adap, int arg, int flags)
5711 {
5712 	static const struct intr_details pmrx_int_cause_fields[] = {
5713 		/* T6+ */
5714 		{ 0x18000000, "PMRX ospi overflow" },
5715 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
5716 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
5717 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
5718 		{ F_SDC_ERR, "PMRX SDC error" },
5719 
5720 		/* T4+ */
5721 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
5722 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
5723 		{ 0x0003c000, "PMRX iespi Rx framing error" },
5724 		{ 0x00003c00, "PMRX iespi Tx framing error" },
5725 		{ 0x00000300, "PMRX ocspi Rx framing error" },
5726 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
5727 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
5728 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
5729 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
5730 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
5731 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
5732 		{ 0 }
5733 	};
5734 	static const struct intr_info pmrx_int_cause = {
5735 		.name = "PM_RX_INT_CAUSE",
5736 		.cause_reg = A_PM_RX_INT_CAUSE,
5737 		.enable_reg = A_PM_RX_INT_ENABLE,
5738 		.fatal = 0x1fffffff,
5739 		.flags = IHF_FATAL_IFF_ENABLED,
5740 		.details = pmrx_int_cause_fields,
5741 		.actions = NULL,
5742 	};
5743 
5744 	return (t4_handle_intr(adap, &pmrx_int_cause, 0, flags));
5745 }
5746 
5747 /*
5748  * CPL switch interrupt handler.
5749  */
cplsw_intr_handler(struct adapter * adap,int arg,int flags)5750 static bool cplsw_intr_handler(struct adapter *adap, int arg, int flags)
5751 {
5752 	static const struct intr_details cplsw_int_cause_fields[] = {
5753 		/* T5+ */
5754 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
5755 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
5756 
5757 		/* T4+ */
5758 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
5759 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
5760 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
5761 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
5762 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
5763 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
5764 		{ 0 }
5765 	};
5766 	static const struct intr_info cplsw_int_cause = {
5767 		.name = "CPL_INTR_CAUSE",
5768 		.cause_reg = A_CPL_INTR_CAUSE,
5769 		.enable_reg = A_CPL_INTR_ENABLE,
5770 		.fatal = 0xffffffff,
5771 		.flags = IHF_FATAL_IFF_ENABLED,
5772 		.details = cplsw_int_cause_fields,
5773 		.actions = NULL,
5774 	};
5775 
5776 	return (t4_handle_intr(adap, &cplsw_int_cause, 0, flags));
5777 }
5778 
5779 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
5780 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
5781 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
5782     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
5783     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
5784     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
5785 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
5786     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
5787     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
5788 #define T7_LE_FATAL_MASK (T6_LE_FATAL_MASK | F_CACHESRAMPERR | F_CACHEINTPERR)
5789 
5790 /*
5791  * LE interrupt handler.
5792  */
le_intr_handler(struct adapter * adap,int arg,int flags)5793 static bool le_intr_handler(struct adapter *adap, int arg, int flags)
5794 {
5795 	static const struct intr_details le_intr_details[] = {
5796 		{ F_REQQPARERR, "LE request queue parity error" },
5797 		{ F_UNKNOWNCMD, "LE unknown command" },
5798 		{ F_ACTRGNFULL, "LE active region full" },
5799 		{ F_PARITYERR, "LE parity error" },
5800 		{ F_LIPMISS, "LE LIP miss" },
5801 		{ F_LIP0, "LE 0 LIP error" },
5802 		{ 0 }
5803 	};
5804 	static const struct intr_details t6_le_intr_details[] = {
5805 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
5806 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
5807 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
5808 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
5809 		{ F_TOTCNTERR, "LE total active < TCAM count" },
5810 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
5811 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
5812 		{ F_T6_ACTRGNFULL, "LE active region full" },
5813 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
5814 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
5815 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
5816 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
5817 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
5818 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
5819 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
5820 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
5821 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
5822 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
5823 		{ 0 }
5824 	};
5825 	struct intr_info le_intr_info = {
5826 		.name = "LE_DB_INT_CAUSE",
5827 		.cause_reg = A_LE_DB_INT_CAUSE,
5828 		.enable_reg = A_LE_DB_INT_ENABLE,
5829 		.fatal = 0,
5830 		.flags = IHF_FATAL_IFF_ENABLED,
5831 		.details = NULL,
5832 		.actions = NULL,
5833 	};
5834 
5835 	if (chip_id(adap) <= CHELSIO_T5) {
5836 		le_intr_info.details = le_intr_details;
5837 		le_intr_info.fatal = T5_LE_FATAL_MASK;
5838 	} else {
5839 		le_intr_info.details = t6_le_intr_details;
5840 		if (chip_id(adap) < CHELSIO_T7)
5841 			le_intr_info.fatal = T6_LE_FATAL_MASK;
5842 		else
5843 			le_intr_info.fatal = T7_LE_FATAL_MASK;
5844 	}
5845 
5846 	return (t4_handle_intr(adap, &le_intr_info, 0, flags));
5847 }
5848 
5849 /*
5850  * MPS interrupt handler.
5851  */
mps_intr_handler(struct adapter * adap,int arg,int flags)5852 static bool mps_intr_handler(struct adapter *adap, int arg, int flags)
5853 {
5854 	static const struct intr_details mps_rx_perr_intr_details[] = {
5855 		{ 0xffffffff, "MPS Rx parity error" },
5856 		{ 0 }
5857 	};
5858 	static const struct intr_info mps_rx_perr_intr_info = {
5859 		.name = "MPS_RX_PERR_INT_CAUSE",
5860 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
5861 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
5862 		.fatal = 0xffffffff,
5863 		.flags = IHF_FATAL_IFF_ENABLED,
5864 		.details = mps_rx_perr_intr_details,
5865 		.actions = NULL,
5866 	};
5867 	static const struct intr_info mps_rx_perr_intr_info2 = {
5868 		.name = "MPS_RX_PERR_INT_CAUSE2",
5869 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE2,
5870 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE2,
5871 		.fatal = 0xffffffff,
5872 		.flags = IHF_FATAL_IFF_ENABLED,
5873 		.details = NULL,
5874 		.actions = NULL,
5875 	};
5876 	static const struct intr_info mps_rx_perr_intr_info3 = {
5877 		.name = "MPS_RX_PERR_INT_CAUSE3",
5878 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE3,
5879 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE3,
5880 		.fatal = 0xffffffff,
5881 		.flags = IHF_FATAL_IFF_ENABLED,
5882 		.details = NULL,
5883 		.actions = NULL,
5884 	};
5885 	static const struct intr_info mps_rx_perr_intr_info4 = {
5886 		.name = "MPS_RX_PERR_INT_CAUSE4",
5887 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE4,
5888 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE4,
5889 		.fatal = 0xffffffff,
5890 		.flags = IHF_FATAL_IFF_ENABLED,
5891 		.details = NULL,
5892 		.actions = NULL,
5893 	};
5894 	static const struct intr_info mps_rx_perr_intr_info5 = {
5895 		.name = "MPS_RX_PERR_INT_CAUSE5",
5896 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE5,
5897 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE5,
5898 		.fatal = 0xffffffff,
5899 		.flags = IHF_FATAL_IFF_ENABLED,
5900 		.details = NULL,
5901 		.actions = NULL,
5902 	};
5903 	static const struct intr_info mps_rx_perr_intr_info6 = {
5904 		.name = "MPS_RX_PERR_INT_CAUSE6",
5905 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE6,
5906 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE6,
5907 		.fatal = 0xffffffff,
5908 		.flags = IHF_FATAL_IFF_ENABLED,
5909 		.details = NULL,
5910 		.actions = NULL,
5911 	};
5912 	static const struct intr_details mps_tx_intr_details[] = {
5913 		{ F_PORTERR, "MPS Tx destination port is disabled" },
5914 		{ F_FRMERR, "MPS Tx framing error" },
5915 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
5916 		{ F_BUBBLE, "MPS Tx underflow" },
5917 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
5918 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
5919 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
5920 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
5921 		{ 0 }
5922 	};
5923 	static const struct intr_info mps_tx_intr_info = {
5924 		.name = "MPS_TX_INT_CAUSE",
5925 		.cause_reg = A_MPS_TX_INT_CAUSE,
5926 		.enable_reg = A_MPS_TX_INT_ENABLE,
5927 		.fatal = 0x1ffff,
5928 		.flags = IHF_FATAL_IFF_ENABLED,
5929 		.details = mps_tx_intr_details,
5930 		.actions = NULL,
5931 	};
5932 	static const struct intr_info mps_tx_intr_info2 = {
5933 		.name = "MPS_TX_INT2_CAUSE",
5934 		.cause_reg = A_MPS_TX_INT2_CAUSE,
5935 		.enable_reg = A_MPS_TX_INT2_ENABLE,
5936 		.fatal = 0xffffffff,
5937 		.flags = IHF_FATAL_IFF_ENABLED,
5938 		.details = NULL,
5939 		.actions = NULL,
5940 	};
5941 	static const struct intr_info mps_tx_intr_info3 = {
5942 		.name = "MPS_TX_INT3_CAUSE",
5943 		.cause_reg = A_MPS_TX_INT3_CAUSE,
5944 		.enable_reg = A_MPS_TX_INT3_ENABLE,
5945 		.fatal = 0xffffffff,
5946 		.flags = IHF_FATAL_IFF_ENABLED,
5947 		.details = NULL,
5948 		.actions = NULL,
5949 	};
5950 	static const struct intr_info mps_tx_intr_info4 = {
5951 		.name = "MPS_TX_INT4_CAUSE",
5952 		.cause_reg = A_MPS_TX_INT4_CAUSE,
5953 		.enable_reg = A_MPS_TX_INT4_ENABLE,
5954 		.fatal = 0xffffffff,
5955 		.flags = IHF_FATAL_IFF_ENABLED,
5956 		.details = NULL,
5957 		.actions = NULL,
5958 	};
5959 	static const struct intr_details mps_trc_intr_details[] = {
5960 		{ F_MISCPERR, "MPS TRC misc parity error" },
5961 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
5962 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
5963 		{ 0 }
5964 	};
5965 	static const struct intr_info mps_trc_intr_info = {
5966 		.name = "MPS_TRC_INT_CAUSE",
5967 		.cause_reg = A_MPS_TRC_INT_CAUSE,
5968 		.enable_reg = A_MPS_TRC_INT_ENABLE,
5969 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
5970 		.flags = 0,
5971 		.details = mps_trc_intr_details,
5972 		.actions = NULL,
5973 	};
5974 	static const struct intr_info t7_mps_trc_intr_info = {
5975 		.name = "MPS_TRC_INT_CAUSE",
5976 		.cause_reg = A_T7_MPS_TRC_INT_CAUSE,
5977 		.enable_reg = A_T7_MPS_TRC_INT_ENABLE,
5978 		.fatal = 0xffffffff,
5979 		.flags = IHF_FATAL_IFF_ENABLED,
5980 		.details = mps_trc_intr_details,
5981 		.actions = NULL,
5982 	};
5983 	static const struct intr_info t7_mps_trc_intr_info2 = {
5984 		.name = "MPS_TRC_INT_CAUSE2",
5985 		.cause_reg = A_MPS_TRC_INT_CAUSE2,
5986 		.enable_reg = A_MPS_TRC_INT_ENABLE2,
5987 		.fatal = 0xffffffff,
5988 		.flags = IHF_FATAL_IFF_ENABLED,
5989 		.details = NULL,
5990 		.actions = NULL,
5991 	};
5992 	static const struct intr_details mps_stat_sram_intr_details[] = {
5993 		{ 0xffffffff, "MPS statistics SRAM parity error" },
5994 		{ 0 }
5995 	};
5996 	static const struct intr_info mps_stat_sram_intr_info = {
5997 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
5998 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5999 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
6000 		.fatal = 0x1fffffff,
6001 		.flags = IHF_FATAL_IFF_ENABLED,
6002 		.details = mps_stat_sram_intr_details,
6003 		.actions = NULL,
6004 	};
6005 	static const struct intr_details mps_stat_tx_intr_details[] = {
6006 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
6007 		{ 0 }
6008 	};
6009 	static const struct intr_info mps_stat_tx_intr_info = {
6010 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
6011 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
6012 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
6013 		.fatal =  0xffffff,
6014 		.flags = IHF_FATAL_IFF_ENABLED,
6015 		.details = mps_stat_tx_intr_details,
6016 		.actions = NULL,
6017 	};
6018 	static const struct intr_details mps_stat_rx_intr_details[] = {
6019 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
6020 		{ 0 }
6021 	};
6022 	static const struct intr_info mps_stat_rx_intr_info = {
6023 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
6024 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
6025 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
6026 		.fatal =  0xffffff,
6027 		.flags = 0,
6028 		.details = mps_stat_rx_intr_details,
6029 		.actions = NULL,
6030 	};
6031 	static const struct intr_details mps_cls_intr_details[] = {
6032 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
6033 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
6034 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
6035 		{ 0 }
6036 	};
6037 	static const struct intr_info mps_cls_intr_info = {
6038 		.name = "MPS_CLS_INT_CAUSE",
6039 		.cause_reg = A_MPS_CLS_INT_CAUSE,
6040 		.enable_reg = A_MPS_CLS_INT_ENABLE,
6041 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
6042 		.flags = 0,
6043 		.details = mps_cls_intr_details,
6044 		.actions = NULL,
6045 	};
6046 	static const struct intr_details mps_stat_sram1_intr_details[] = {
6047 		{ 0xff, "MPS statistics SRAM1 parity error" },
6048 		{ 0 }
6049 	};
6050 	static const struct intr_info mps_stat_sram1_intr_info = {
6051 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
6052 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
6053 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
6054 		.fatal = 0xff,
6055 		.flags = 0,
6056 		.details = mps_stat_sram1_intr_details,
6057 		.actions = NULL,
6058 	};
6059 	bool fatal = false;
6060 
6061 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, flags);
6062 	if (chip_id(adap) > CHELSIO_T6) {
6063 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info2, 0, flags);
6064 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info3, 0, flags);
6065 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info4, 0, flags);
6066 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info5, 0, flags);
6067 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info6, 0, flags);
6068 	}
6069 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, flags);
6070 	if (chip_id(adap) > CHELSIO_T6) {
6071 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info2, 0, flags);
6072 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info3, 0, flags);
6073 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info4, 0, flags);
6074 		fatal |= t4_handle_intr(adap, &t7_mps_trc_intr_info, 0, flags);
6075 		fatal |= t4_handle_intr(adap, &t7_mps_trc_intr_info2, 0, flags);
6076 	} else
6077 		fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, flags);
6078 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, flags);
6079 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, flags);
6080 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, flags);
6081 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, flags);
6082 	if (chip_id(adap) > CHELSIO_T4)
6083 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, flags);
6084 
6085 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
6086 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
6087 
6088 	return (fatal);
6089 
6090 }
6091 
6092 /*
6093  * EDC/MC interrupt handler.
6094  */
mem_intr_handler(struct adapter * adap,int idx,int flags)6095 static bool mem_intr_handler(struct adapter *adap, int idx, int flags)
6096 {
6097 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
6098 	unsigned int count_reg, v;
6099 	static const struct intr_details mem_intr_details[] = {
6100 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
6101 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
6102 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
6103 		{ 0 }
6104 	};
6105 	char rname[32];
6106 	struct intr_info ii = {
6107 		.name = &rname[0],
6108 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
6109 		.details = mem_intr_details,
6110 		.flags = 0,
6111 		.actions = NULL,
6112 	};
6113 	bool fatal = false;
6114 	int i = 0;
6115 
6116 	switch (idx) {
6117 	case MEM_EDC1: i = 1;
6118 		       /* fall through */
6119 	case MEM_EDC0:
6120 		snprintf(rname, sizeof(rname), "EDC%u_INT_CAUSE", i);
6121 		if (is_t4(adap)) {
6122 			ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, i);
6123 			ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, i);
6124 			count_reg = EDC_REG(A_EDC_ECC_STATUS, i);
6125 		} else {
6126 			ii.cause_reg = EDC_T5_REG(A_EDC_H_INT_CAUSE, i);
6127 			ii.enable_reg = EDC_T5_REG(A_EDC_H_INT_ENABLE, i);
6128 			count_reg = EDC_T5_REG(A_EDC_H_ECC_STATUS, i);
6129 		}
6130 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6131 		if (chip_id(adap) > CHELSIO_T6) {
6132 			snprintf(rname, sizeof(rname), "EDC%u_PAR_CAUSE", i);
6133 			ii.cause_reg = EDC_T5_REG(A_EDC_H_PAR_CAUSE, i);
6134 			ii.enable_reg = EDC_T5_REG(A_EDC_H_PAR_ENABLE, i);
6135 			ii.fatal = 0xffffffff;
6136 			ii.details = NULL;
6137 			ii.flags = IHF_FATAL_IFF_ENABLED;
6138 			fatal |= t4_handle_intr(adap, &ii, 0, flags);
6139 		}
6140 		break;
6141 	case MEM_MC1:
6142 		if (is_t4(adap) || is_t6(adap))
6143 			return (false);
6144 		i = 1;
6145 	       /* fall through */
6146 	case MEM_MC0:
6147 		snprintf(rname, sizeof(rname), "MC%u_INT_CAUSE", i);
6148 		if (is_t4(adap)) {
6149 			ii.cause_reg = A_MC_INT_CAUSE;
6150 			ii.enable_reg = A_MC_INT_ENABLE;
6151 			count_reg = A_MC_ECC_STATUS;
6152 		} else if (chip_id(adap) < CHELSIO_T7) {
6153 			ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, i);
6154 			ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, i);
6155 			count_reg = MC_REG(A_MC_P_ECC_STATUS, i);
6156 		} else {
6157 			ii.cause_reg = MC_T7_REG(A_T7_MC_P_INT_CAUSE, i);
6158 			ii.enable_reg = MC_T7_REG(A_T7_MC_P_INT_ENABLE, i);
6159 			count_reg = MC_T7_REG(A_T7_MC_P_ECC_STATUS, i);
6160 		}
6161 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6162 
6163 		snprintf(rname, sizeof(rname), "MC%u_PAR_CAUSE", i);
6164 		if (is_t4(adap)) {
6165 			ii.cause_reg = A_MC_PAR_CAUSE;
6166 			ii.enable_reg = A_MC_PAR_ENABLE;
6167 		} else if (chip_id(adap) < CHELSIO_T7) {
6168 			ii.cause_reg = MC_REG(A_MC_P_PAR_CAUSE, i);
6169 			ii.enable_reg = MC_REG(A_MC_P_PAR_ENABLE, i);
6170 		} else {
6171 			ii.cause_reg = MC_T7_REG(A_T7_MC_P_PAR_CAUSE, i);
6172 			ii.enable_reg = MC_T7_REG(A_T7_MC_P_PAR_ENABLE, i);
6173 		}
6174 		ii.fatal = 0xffffffff;
6175 		ii.details = NULL;
6176 		ii.flags = IHF_FATAL_IFF_ENABLED;
6177 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6178 
6179 		if (chip_id(adap) > CHELSIO_T6) {
6180 			snprintf(rname, sizeof(rname), "MC%u_DDRCTL_INT_CAUSE", i);
6181 			ii.cause_reg = MC_T7_REG(A_MC_P_DDRCTL_INT_CAUSE, i);
6182 			ii.enable_reg = MC_T7_REG(A_MC_P_DDRCTL_INT_ENABLE, i);
6183 			fatal |= t4_handle_intr(adap, &ii, 0, flags);
6184 		}
6185 		break;
6186 	}
6187 
6188 	v = t4_read_reg(adap, count_reg);
6189 	if (v != 0) {
6190 		if (G_ECC_UECNT(v) != 0 && !(flags & IHF_NO_SHOW)) {
6191 			CH_ALERT(adap,
6192 			    "  %s: %u uncorrectable ECC data error(s)\n",
6193 			    name[idx], G_ECC_UECNT(v));
6194 		}
6195 		if (G_ECC_CECNT(v) != 0 && !(flags & IHF_NO_SHOW)) {
6196 			if (idx <= MEM_EDC1)
6197 				t4_edc_err_read(adap, idx);
6198 			CH_WARN_RATELIMIT(adap,
6199 			    "  %s: %u correctable ECC data error(s)\n",
6200 			    name[idx], G_ECC_CECNT(v));
6201 		}
6202 		t4_write_reg(adap, count_reg, 0xffffffff);
6203 	}
6204 
6205 	return (fatal);
6206 }
6207 
ma_wrap_status(struct adapter * adap,int arg,int flags)6208 static bool ma_wrap_status(struct adapter *adap, int arg, int flags)
6209 {
6210 	u32 v;
6211 
6212 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
6213 	if (!(flags & IHF_NO_SHOW)) {
6214 		CH_ALERT(adap,
6215 		    "  MA address wrap-around by client %u to address %#x\n",
6216 		    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
6217 	}
6218 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
6219 
6220 	return (false);
6221 }
6222 
6223 
6224 /*
6225  * MA interrupt handler.
6226  */
ma_intr_handler(struct adapter * adap,int arg,int flags)6227 static bool ma_intr_handler(struct adapter *adap, int arg, int flags)
6228 {
6229 	static const struct intr_action ma_intr_actions[] = {
6230 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
6231 		{ 0 },
6232 	};
6233 	static const struct intr_info ma_intr_info = {
6234 		.name = "MA_INT_CAUSE",
6235 		.cause_reg = A_MA_INT_CAUSE,
6236 		.enable_reg = A_MA_INT_ENABLE,
6237 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
6238 		.flags = IHF_FATAL_IFF_ENABLED,
6239 		.details = NULL,
6240 		.actions = ma_intr_actions,
6241 	};
6242 	static const struct intr_info ma_perr_status1 = {
6243 		.name = "MA_PARITY_ERROR_STATUS1",
6244 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
6245 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
6246 		.fatal = 0xffffffff,
6247 		.flags = 0,
6248 		.details = NULL,
6249 		.actions = NULL,
6250 	};
6251 	static const struct intr_info ma_perr_status2 = {
6252 		.name = "MA_PARITY_ERROR_STATUS2",
6253 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
6254 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
6255 		.fatal = 0xffffffff,
6256 		.flags = 0,
6257 		.details = NULL,
6258 		.actions = NULL,
6259 	};
6260 	bool fatal;
6261 
6262 	fatal = false;
6263 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, flags);
6264 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, flags);
6265 	if (chip_id(adap) > CHELSIO_T4)
6266 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, flags);
6267 
6268 	return (fatal);
6269 }
6270 
6271 /*
6272  * SMB interrupt handler.
6273  */
smb_intr_handler(struct adapter * adap,int arg,int flags)6274 static bool smb_intr_handler(struct adapter *adap, int arg, int flags)
6275 {
6276 	static const struct intr_details smb_int_cause_fields[] = {
6277 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
6278 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
6279 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
6280 		{ 0 }
6281 	};
6282 	static const struct intr_info smb_int_cause = {
6283 		.name = "SMB_INT_CAUSE",
6284 		.cause_reg = A_SMB_INT_CAUSE,
6285 		.enable_reg = A_SMB_INT_ENABLE,
6286 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
6287 		.flags = 0,
6288 		.details = smb_int_cause_fields,
6289 		.actions = NULL,
6290 	};
6291 	return (t4_handle_intr(adap, &smb_int_cause, 0, flags));
6292 }
6293 
6294 /*
6295  * NC-SI interrupt handler.
6296  */
ncsi_intr_handler(struct adapter * adap,int arg,int flags)6297 static bool ncsi_intr_handler(struct adapter *adap, int arg, int flags)
6298 {
6299 	static const struct intr_details ncsi_int_cause_fields[] = {
6300 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
6301 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
6302 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
6303 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
6304 		{ 0 }
6305 	};
6306 	static const struct intr_info ncsi_int_cause = {
6307 		.name = "NCSI_INT_CAUSE",
6308 		.cause_reg = A_NCSI_INT_CAUSE,
6309 		.enable_reg = A_NCSI_INT_ENABLE,
6310 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
6311 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
6312 		.flags = 0,
6313 		.details = ncsi_int_cause_fields,
6314 		.actions = NULL,
6315 	};
6316 	static const struct intr_info ncsi_xgmac0_int_cause = {
6317 		.name = "NCSI_XGMAC0_INT_CAUSE",
6318 		.cause_reg = A_NCSI_XGMAC0_INT_CAUSE,
6319 		.enable_reg = A_NCSI_XGMAC0_INT_ENABLE,
6320 		.fatal = 0,
6321 		.flags = 0,
6322 		.details = NULL,
6323 		.actions = NULL,
6324 	};
6325 	bool fatal = false;
6326 
6327 	fatal |= t4_handle_intr(adap, &ncsi_int_cause, 0, flags);
6328 	if (chip_id(adap) > CHELSIO_T6)
6329 		fatal |= t4_handle_intr(adap, &ncsi_xgmac0_int_cause, 0, flags);
6330 	return (fatal);
6331 }
6332 
6333 /*
6334  * MAC interrupt handler.
6335  */
mac_intr_handler(struct adapter * adap,int port,int flags)6336 static bool mac_intr_handler(struct adapter *adap, int port, int flags)
6337 {
6338 	static const struct intr_info mac_int_cause_cmn = {
6339 		.name = "MAC_INT_CAUSE_CMN",
6340 		.cause_reg = A_MAC_INT_CAUSE_CMN,
6341 		.enable_reg = A_MAC_INT_EN_CMN,
6342 		.fatal = 0,
6343 		.flags = 0,
6344 		.details = NULL,
6345 		.actions = NULL,
6346 	};
6347 	static const struct intr_info mac_perr_cause_mtip = {
6348 		.name = "MAC_PERR_INT_CAUSE_MTIP",
6349 		.cause_reg = A_MAC_PERR_INT_CAUSE_MTIP,
6350 		.enable_reg = A_MAC_PERR_INT_EN_MTIP,
6351 		.fatal = 0xffffffff,
6352 		.flags = IHF_FATAL_IFF_ENABLED | IHF_IGNORE_IF_DISABLED,
6353 		.details = NULL,
6354 		.actions = NULL,
6355 	};
6356 	static const struct intr_info mac_cerr_cause_mtip = {
6357 		.name = "MAC_CERR_INT_CAUSE_MTIP",
6358 		.cause_reg = A_MAC_CERR_INT_CAUSE_MTIP,
6359 		.enable_reg = A_MAC_CERR_INT_EN_MTIP,
6360 		.fatal = 0,
6361 		.flags = 0,
6362 		.details = NULL,
6363 		.actions = NULL,
6364 	};
6365 	static const struct intr_info mac_ios_int_cause_quad0 = {
6366 		.name = "MAC_IOS_INTR_CAUSE_QUAD0",
6367 		.cause_reg = A_MAC_IOS_INTR_CAUSE_QUAD0,
6368 		.enable_reg = A_MAC_IOS_INTR_EN_QUAD0,
6369 		.fatal = 0,
6370 		.flags = 0,
6371 		.details = NULL,
6372 		.actions = NULL,
6373 	};
6374 	static const struct intr_info mac_ios_int_cause_quad1 = {
6375 		.name = "MAC_IOS_INTR_CAUSE_QUAD1",
6376 		.cause_reg = A_MAC_IOS_INTR_CAUSE_QUAD1,
6377 		.enable_reg = A_MAC_IOS_INTR_EN_QUAD1,
6378 		.fatal = 0,
6379 		.flags = 0,
6380 		.details = NULL,
6381 		.actions = NULL,
6382 	};
6383 	static const struct intr_details mac_intr_details[] = {
6384 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
6385 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
6386 		{ 0 }
6387 	};
6388 	char name[32];
6389 	struct intr_info ii;
6390 	bool fatal = false;
6391 
6392 	if (port > 1 && is_t6(adap))
6393 		return (false);
6394 
6395 	if (is_t4(adap)) {
6396 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
6397 		ii.name = &name[0];
6398 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
6399 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
6400 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
6401 		ii.flags = 0;
6402 		ii.details = mac_intr_details;
6403 		ii.actions = NULL;
6404 	} else if (chip_id(adap) < CHELSIO_T7) {
6405 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
6406 		ii.name = &name[0];
6407 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
6408 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
6409 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
6410 		ii.flags = 0;
6411 		ii.details = mac_intr_details;
6412 		ii.actions = NULL;
6413 	} else {
6414 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
6415 		ii.name = &name[0];
6416 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_INT_CAUSE);
6417 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_INT_EN);
6418 		ii.fatal = 0xffffffff;
6419 		ii.flags = IHF_FATAL_IFF_ENABLED;
6420 		ii.details = NULL;
6421 		ii.actions = NULL;
6422 	}
6423 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6424 	if (is_t4(adap))
6425 		return (fatal);
6426 
6427 	MPASS(chip_id(adap) >= CHELSIO_T5);
6428 	snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
6429 	if (chip_id(adap) > CHELSIO_T6) {
6430 		ii.name = &name[0];
6431 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_CAUSE);
6432 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_EN);
6433 		ii.fatal = 0xffffffff;
6434 		ii.flags = IHF_FATAL_IFF_ENABLED;
6435 		ii.details = NULL;
6436 		ii.actions = NULL;
6437 	} else {
6438 		ii.name = &name[0];
6439 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
6440 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
6441 		ii.fatal = 0xffffffff;
6442 		ii.flags = IHF_FATAL_IFF_ENABLED;
6443 		ii.details = NULL;
6444 		ii.actions = NULL;
6445 	}
6446 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6447 	if (is_t5(adap))
6448 		return (fatal);
6449 
6450 	MPASS(chip_id(adap) >= CHELSIO_T6);
6451 	snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
6452 	if (chip_id(adap) > CHELSIO_T6) {
6453 		ii.name = &name[0];
6454 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_CAUSE_100G);
6455 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_EN_100G);
6456 		ii.fatal = 0xffffffff;
6457 		ii.flags = IHF_FATAL_IFF_ENABLED;
6458 		ii.details = NULL;
6459 		ii.actions = NULL;
6460 	} else {
6461 		ii.name = &name[0];
6462 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
6463 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
6464 		ii.fatal = 0xffffffff;
6465 		ii.flags = IHF_FATAL_IFF_ENABLED;
6466 		ii.details = NULL;
6467 		ii.actions = NULL;
6468 	}
6469 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6470 	if (is_t6(adap))
6471 		return (fatal);
6472 
6473 	MPASS(chip_id(adap) >= CHELSIO_T7);
6474 	fatal |= t4_handle_intr(adap, &mac_int_cause_cmn, 0, flags);
6475 	fatal |= t4_handle_intr(adap, &mac_perr_cause_mtip, 0, flags);
6476 	fatal |= t4_handle_intr(adap, &mac_cerr_cause_mtip, 0, flags);
6477 	fatal |= t4_handle_intr(adap, &mac_ios_int_cause_quad0, 0, flags);
6478 	fatal |= t4_handle_intr(adap, &mac_ios_int_cause_quad1, 0, flags);
6479 
6480 	return (fatal);
6481 }
6482 
pl_timeout_status(struct adapter * adap,int arg,int flags)6483 static bool pl_timeout_status(struct adapter *adap, int arg, int flags)
6484 {
6485 	if (flags & IHF_NO_SHOW)
6486 		return (false);
6487 
6488 	CH_ALERT(adap, "    PL_TIMEOUT_STATUS 0x%08x 0x%08x\n",
6489 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS0),
6490 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS1));
6491 
6492 	return (false);
6493 }
6494 
plpl_intr_handler(struct adapter * adap,int arg,int flags)6495 static bool plpl_intr_handler(struct adapter *adap, int arg, int flags)
6496 {
6497 	static const struct intr_details plpl_int_cause_fields[] = {
6498 		{ F_PL_BUSPERR, "Bus parity error" },
6499 		{ F_FATALPERR, "Fatal parity error" },
6500 		{ F_INVALIDACCESS, "Global reserved memory access" },
6501 		{ F_TIMEOUT,  "Bus timeout" },
6502 		{ F_PLERR, "Module reserved access" },
6503 		{ F_PERRVFID, "VFID_MAP parity error" },
6504 		{ 0 }
6505 	};
6506 	static const struct intr_action plpl_int_cause_actions[] = {
6507 		{ F_TIMEOUT, -1, pl_timeout_status },
6508 		{ 0 },
6509 	};
6510 	static const struct intr_info plpl_int_cause = {
6511 		.name = "PL_PL_INT_CAUSE",
6512 		.cause_reg = A_PL_PL_INT_CAUSE,
6513 		.enable_reg = A_PL_PL_INT_ENABLE,
6514 		.fatal = F_FATALPERR | F_PERRVFID,
6515 		.flags = IHF_FATAL_IFF_ENABLED | IHF_IGNORE_IF_DISABLED,
6516 		.details = plpl_int_cause_fields,
6517 		.actions = plpl_int_cause_actions,
6518 	};
6519 
6520 	return (t4_handle_intr(adap, &plpl_int_cause, 0, flags));
6521 }
6522 
6523 /* similar to t4_port_reg */
6524 static inline u32
t7_tlstx_reg(u8 instance,u8 channel,u32 reg)6525 t7_tlstx_reg(u8 instance, u8 channel, u32 reg)
6526 {
6527 	MPASS(instance <= 1);
6528 	MPASS(channel < NUM_TLS_TX_CH_INSTANCES);
6529 	return (instance * (CRYPTO_1_BASE_ADDR - CRYPTO_0_BASE_ADDR) +
6530 	    TLS_TX_CH_REG(reg, channel));
6531 }
6532 
6533 /*
6534  * CRYPTO (aka TLS_TX) interrupt handler.
6535  */
tlstx_intr_handler(struct adapter * adap,int idx,int flags)6536 static bool tlstx_intr_handler(struct adapter *adap, int idx, int flags)
6537 {
6538 	static const struct intr_details tlstx_int_cause_fields[] = {
6539 		{ F_KEX_CERR, "KEX SRAM Correctable error" },
6540 		{ F_KEYLENERR, "IPsec Key length error" },
6541 		{ F_INTF1_PERR, "Input Interface1 parity error" },
6542 		{ F_INTF0_PERR, "Input Interface0 parity error" },
6543 		{ F_KEX_PERR, "KEX SRAM Parity error" },
6544 		{ 0 }
6545 	};
6546 	struct intr_info ii = {
6547 		.fatal = F_KEX_PERR | F_INTF0_PERR | F_INTF1_PERR,
6548 		.flags = IHF_FATAL_IFF_ENABLED,
6549 		.details = tlstx_int_cause_fields,
6550 		.actions = NULL,
6551 	};
6552 	char name[32];
6553 	int ch;
6554 	bool fatal = false;
6555 
6556 	for (ch = 0; ch < NUM_TLS_TX_CH_INSTANCES; ch++) {
6557 		snprintf(name, sizeof(name), "TLSTX%u_CH%u_INT_CAUSE", idx, ch);
6558 		ii.name = &name[0];
6559 		ii.cause_reg = t7_tlstx_reg(idx, ch, A_TLS_TX_CH_INT_CAUSE);
6560 		ii.enable_reg = t7_tlstx_reg(idx, ch, A_TLS_TX_CH_INT_ENABLE);
6561 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6562 	}
6563 
6564 	return (fatal);
6565 }
6566 
6567 /*
6568  * HMA interrupt handler.
6569  */
hma_intr_handler(struct adapter * adap,int idx,int flags)6570 static bool hma_intr_handler(struct adapter *adap, int idx, int flags)
6571 {
6572 	static const struct intr_details hma_int_cause_fields[] = {
6573 		{ F_GK_UF_INT_CAUSE, "Gatekeeper underflow" },
6574 		{ F_IDTF_INT_CAUSE, "Invalid descriptor fault" },
6575 		{ F_OTF_INT_CAUSE, "Offset translation fault" },
6576 		{ F_RTF_INT_CAUSE, "Region translation fault" },
6577 		{ F_PCIEMST_INT_CAUSE, "PCIe master access error" },
6578 		{ F_MAMST_INT_CAUSE, "MA master access error" },
6579 		{ 1, "FIFO parity error" },
6580 		{ 0 }
6581 	};
6582 	static const struct intr_info hma_int_cause = {
6583 		.name = "HMA_INT_CAUSE",
6584 		.cause_reg = A_HMA_INT_CAUSE,
6585 		.enable_reg = A_HMA_INT_ENABLE,
6586 		.fatal = 7,
6587 		.flags = 0,
6588 		.details = hma_int_cause_fields,
6589 		.actions = NULL,
6590 	};
6591 
6592 	return (t4_handle_intr(adap, &hma_int_cause, 0, flags));
6593 }
6594 
6595 /*
6596  * CRYPTO_KEY interrupt handler.
6597  */
cryptokey_intr_handler(struct adapter * adap,int idx,int flags)6598 static bool cryptokey_intr_handler(struct adapter *adap, int idx, int flags)
6599 {
6600 	static const struct intr_details cryptokey_int_cause_fields[] = {
6601 		{ F_MA_FIFO_PERR, "MA arbiter FIFO parity error" },
6602 		{ F_MA_RSP_PERR, "MA response IF parity error" },
6603 		{ F_ING_CACHE_DATA_PERR, "Ingress key cache data parity error" },
6604 		{ F_ING_CACHE_TAG_PERR, "Ingress key cache tag parity error" },
6605 		{ F_LKP_KEY_REQ_PERR, "Ingress key req parity error" },
6606 		{ F_LKP_CLIP_TCAM_PERR, "Ingress LKP CLIP TCAM parity error" },
6607 		{ F_LKP_MAIN_TCAM_PERR, "Ingress LKP main TCAM parity error" },
6608 		{ F_EGR_KEY_REQ_PERR, "Egress key req or FIFO3 parity error" },
6609 		{ F_EGR_CACHE_DATA_PERR, "Egress key cache data parity error" },
6610 		{ F_EGR_CACHE_TAG_PERR, "Egress key cache tag parity error" },
6611 		{ F_CIM_PERR, "CIM interface parity error" },
6612 		{ F_MA_INV_RSP_TAG, "MA invalid response tag" },
6613 		{ F_ING_KEY_RANGE_ERR, "Ingress key range error" },
6614 		{ F_ING_MFIFO_OVFL, "Ingress MFIFO overflow" },
6615 		{ F_LKP_REQ_OVFL, "Ingress lookup FIFO overflow" },
6616 		{ F_EOK_WAIT_ERR, "EOK wait error" },
6617 		{ F_EGR_KEY_RANGE_ERR, "Egress key range error" },
6618 		{ F_EGR_MFIFO_OVFL, "Egress MFIFO overflow" },
6619 		{ F_SEQ_WRAP_HP_OVFL, "Sequence wrap (hi-pri)" },
6620 		{ F_SEQ_WRAP_LP_OVFL, "Sequence wrap (lo-pri)" },
6621 		{ F_EGR_SEQ_WRAP_HP, "Egress sequence wrap (hi-pri)" },
6622 		{ F_EGR_SEQ_WRAP_LP, "Egress sequence wrap (lo-pri)" },
6623 		{ 0 }
6624 	};
6625 	static const struct intr_info cryptokey_int_cause = {
6626 		.name = "CRYPTO_KEY_INT_CAUSE",
6627 		.cause_reg = A_CRYPTO_KEY_INT_CAUSE,
6628 		.enable_reg = A_CRYPTO_KEY_INT_ENABLE,
6629 		.fatal = 0xffffffff,
6630 		.flags = IHF_FATAL_IFF_ENABLED,
6631 		.details = cryptokey_int_cause_fields,
6632 		.actions = NULL,
6633 	};
6634 
6635 	return (t4_handle_intr(adap, &cryptokey_int_cause, 0, flags));
6636 }
6637 
6638 /*
6639  * GCACHE interrupt handler.
6640  */
gcache_intr_handler(struct adapter * adap,int idx,int flags)6641 static bool gcache_intr_handler(struct adapter *adap, int idx, int flags)
6642 {
6643 	static const struct intr_details gcache_int_cause_fields[] = {
6644 		{ F_GC1_SRAM_RSP_DATAQ_PERR_INT_CAUSE, "GC1 SRAM rsp dataq perr" },
6645 		{ F_GC0_SRAM_RSP_DATAQ_PERR_INT_CAUSE, "GC0 SRAM rsp dataq perr" },
6646 		{ F_GC1_WQDATA_FIFO_PERR_INT_CAUSE, "GC1 wqdata FIFO perr" },
6647 		{ F_GC0_WQDATA_FIFO_PERR_INT_CAUSE, "GC0 wqdata FIFO perr" },
6648 		{ F_GC1_RDTAG_QUEUE_PERR_INT_CAUSE, "GC1 rdtag queue perr" },
6649 		{ F_GC0_RDTAG_QUEUE_PERR_INT_CAUSE, "GC0 rdtag queue perr" },
6650 		{ F_GC1_SRAM_RDTAG_QUEUE_PERR_INT_CAUSE, "GC1 SRAM rdtag queue perr" },
6651 		{ F_GC0_SRAM_RDTAG_QUEUE_PERR_INT_CAUSE, "GC0 SRAM rdtag queue perr" },
6652 		{ F_GC1_RSP_PERR_INT_CAUSE, "GC1 rsp perr" },
6653 		{ F_GC0_RSP_PERR_INT_CAUSE, "GC0 rsp perr" },
6654 		{ F_GC1_LRU_UERR_INT_CAUSE, "GC1 lru uerr" },
6655 		{ F_GC0_LRU_UERR_INT_CAUSE, "GC0 lru uerr" },
6656 		{ F_GC1_TAG_UERR_INT_CAUSE, "GC1 tag uerr" },
6657 		{ F_GC0_TAG_UERR_INT_CAUSE, "GC0 tag uerr" },
6658 		{ F_GC1_LRU_CERR_INT_CAUSE, "GC1 lru cerr" },
6659 		{ F_GC0_LRU_CERR_INT_CAUSE, "GC0 lru cerr" },
6660 		{ F_GC1_TAG_CERR_INT_CAUSE, "GC1 tag cerr" },
6661 		{ F_GC0_TAG_CERR_INT_CAUSE, "GC0 tag cerr" },
6662 		{ F_GC1_CE_INT_CAUSE, "GC1 correctable error" },
6663 		{ F_GC0_CE_INT_CAUSE, "GC0 correctable error" },
6664 		{ F_GC1_UE_INT_CAUSE, "GC1 uncorrectable error" },
6665 		{ F_GC0_UE_INT_CAUSE, "GC0 uncorrectable error" },
6666 		{ F_GC1_CMD_PAR_INT_CAUSE, "GC1 cmd perr" },
6667 		{ F_GC1_DATA_PAR_INT_CAUSE, "GC1 data perr" },
6668 		{ F_GC0_CMD_PAR_INT_CAUSE, "GC0 cmd perr" },
6669 		{ F_GC0_DATA_PAR_INT_CAUSE, "GC0 data perr" },
6670 		{ F_ILLADDRACCESS1_INT_CAUSE, "GC1 illegal address access" },
6671 		{ F_ILLADDRACCESS0_INT_CAUSE, "GC0 illegal address access" },
6672 		{ 0 }
6673 	};
6674 	static const struct intr_info gcache_perr_cause = {
6675 		.name = "GCACHE_PAR_CAUSE",
6676 		.cause_reg = A_GCACHE_PAR_CAUSE,
6677 		.enable_reg = A_GCACHE_PAR_ENABLE,
6678 		.fatal = 0xffffffff,
6679 		.flags = IHF_FATAL_IFF_ENABLED,
6680 		.details = NULL,
6681 		.actions = NULL,
6682 	};
6683 	static const struct intr_info gcache_int_cause = {
6684 		.name = "GCACHE_INT_CAUSE",
6685 		.cause_reg = A_GCACHE_INT_CAUSE,
6686 		.enable_reg = A_GCACHE_INT_ENABLE,
6687 		.fatal = 0,
6688 		.flags = 0,
6689 		.details = gcache_int_cause_fields,
6690 		.actions = NULL,
6691 	};
6692 	bool fatal = false;
6693 
6694 	fatal |= t4_handle_intr(adap, &gcache_int_cause, 0, flags);
6695 	fatal |= t4_handle_intr(adap, &gcache_perr_cause, 0, flags);
6696 
6697 	return (fatal);
6698 }
6699 
6700 /*
6701  * ARM interrupt handler.
6702  */
arm_intr_handler(struct adapter * adap,int idx,int flags)6703 static bool arm_intr_handler(struct adapter *adap, int idx, int flags)
6704 {
6705 	static const struct intr_info arm_perr_cause0 = {
6706 		.name = "ARM_PERR_INT_CAUSE0",
6707 		.cause_reg = A_ARM_PERR_INT_CAUSE0,
6708 		.enable_reg = A_ARM_PERR_INT_ENB0,
6709 		.fatal = 0xffffffff,
6710 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6711 		.details = NULL,
6712 		.actions = NULL,
6713 	};
6714 	static const struct intr_info arm_perr_cause1 = {
6715 		.name = "ARM_PERR_INT_CAUSE1",
6716 		.cause_reg = A_ARM_PERR_INT_CAUSE1,
6717 		.enable_reg = A_ARM_PERR_INT_ENB1,
6718 		.fatal = 0xffffffff,
6719 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6720 		.details = NULL,
6721 		.actions = NULL,
6722 	};
6723 	static const struct intr_info arm_perr_cause2 = {
6724 		.name = "ARM_PERR_INT_CAUSE2",
6725 		.cause_reg = A_ARM_PERR_INT_CAUSE2,
6726 		.enable_reg = A_ARM_PERR_INT_ENB2,
6727 		.fatal = 0xffffffff,
6728 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6729 		.details = NULL,
6730 		.actions = NULL,
6731 	};
6732 	static const struct intr_info arm_cerr_cause0 = {
6733 		.name = "ARM_CERR_INT_CAUSE",
6734 		.cause_reg = A_ARM_CERR_INT_CAUSE0,
6735 		.enable_reg = A_ARM_CERR_INT_ENB0,
6736 		.fatal = 0,
6737 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6738 		.details = NULL,
6739 		.actions = NULL,
6740 	};
6741 	static const struct intr_info arm_err_cause0 = {
6742 		.name = "ARM_ERR_INT_CAUSE",
6743 		.cause_reg = A_ARM_ERR_INT_CAUSE0,
6744 		.enable_reg = A_ARM_ERR_INT_ENB0,
6745 		.fatal = 0,
6746 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6747 		.details = NULL,
6748 		.actions = NULL,
6749 	};
6750 	static const struct intr_info arm_periph_cause = {
6751 		.name = "ARM_PERIPHERAL_INT_CAUSE",
6752 		.cause_reg = A_ARM_PERIPHERAL_INT_CAUSE,
6753 		.enable_reg = A_ARM_PERIPHERAL_INT_ENB,
6754 		.fatal = 0,
6755 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6756 		.details = NULL,
6757 		.actions = NULL,
6758 	};
6759 	static const struct intr_info arm_nvme_db_emu_cause = {
6760 		.name = "ARM_NVME_DB_EMU_INT_CAUSE",
6761 		.cause_reg = A_ARM_NVME_DB_EMU_INT_CAUSE,
6762 		.enable_reg = A_ARM_NVME_DB_EMU_INT_ENABLE,
6763 		.fatal = 0,
6764 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6765 		.details = NULL,
6766 		.actions = NULL,
6767 	};
6768 	bool fatal = false;
6769 
6770 	fatal |= t4_handle_intr(adap, &arm_perr_cause0, 0, flags);
6771 	fatal |= t4_handle_intr(adap, &arm_perr_cause1, 0, flags);
6772 	fatal |= t4_handle_intr(adap, &arm_perr_cause2, 0, flags);
6773 	fatal |= t4_handle_intr(adap, &arm_cerr_cause0, 0, flags);
6774 	fatal |= t4_handle_intr(adap, &arm_err_cause0, 0, flags);
6775 	fatal |= t4_handle_intr(adap, &arm_periph_cause, 0, flags);
6776 	fatal |= t4_handle_intr(adap, &arm_nvme_db_emu_cause, 0, flags);
6777 
6778 	return (fatal);
6779 }
6780 
6781 static inline uint32_t
get_perr_ucause(struct adapter * sc,const struct intr_info * ii)6782 get_perr_ucause(struct adapter *sc, const struct intr_info *ii)
6783 {
6784 	uint32_t cause;
6785 
6786 	cause = t4_read_reg(sc, ii->cause_reg);
6787 	if (ii->flags & IHF_IGNORE_IF_DISABLED)
6788 		cause &= t4_read_reg(sc, ii->enable_reg);
6789 	return (cause);
6790 }
6791 
6792 static uint32_t
t4_perr_to_ic(struct adapter * adap,uint32_t perr)6793 t4_perr_to_ic(struct adapter *adap, uint32_t perr)
6794 {
6795 	uint32_t mask;
6796 
6797 	if (adap->chip_params->nchan > 2)
6798 		mask = F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3;
6799 	else
6800 		mask = F_MAC0 | F_MAC1;
6801 	return (perr & mask ? perr | mask : perr);
6802 }
6803 
6804 static uint32_t
t7_perr_to_ic1(uint32_t perr)6805 t7_perr_to_ic1(uint32_t perr)
6806 {
6807 	uint32_t cause = 0;
6808 
6809 	if (perr & F_T7_PL_PERR_ULP_TX)
6810 		cause |= F_T7_ULP_TX;
6811 	if (perr & F_T7_PL_PERR_SGE)
6812 		cause |= F_T7_SGE;
6813 	if (perr & F_T7_PL_PERR_HMA)
6814 		cause |= F_T7_HMA;
6815 	if (perr & F_T7_PL_PERR_CPL_SWITCH)
6816 		cause |= F_T7_CPL_SWITCH;
6817 	if (perr & F_T7_PL_PERR_ULP_RX)
6818 		cause |= F_T7_ULP_RX;
6819 	if (perr & F_T7_PL_PERR_PM_RX)
6820 		cause |= F_T7_PM_RX;
6821 	if (perr & F_T7_PL_PERR_PM_TX)
6822 		cause |= F_T7_PM_TX;
6823 	if (perr & F_T7_PL_PERR_MA)
6824 		cause |= F_T7_MA;
6825 	if (perr & F_T7_PL_PERR_TP)
6826 		cause |= F_T7_TP;
6827 	if (perr & F_T7_PL_PERR_LE)
6828 		cause |= F_T7_LE;
6829 	if (perr & F_T7_PL_PERR_EDC1)
6830 		cause |= F_T7_EDC1;
6831 	if (perr & F_T7_PL_PERR_EDC0)
6832 		cause |= F_T7_EDC0;
6833 	if (perr & F_T7_PL_PERR_MC1)
6834 		cause |= F_T7_MC1;
6835 	if (perr & F_T7_PL_PERR_MC0)
6836 		cause |= F_T7_MC0;
6837 	if (perr & F_T7_PL_PERR_PCIE)
6838 		cause |= F_T7_PCIE;
6839 	if (perr & F_T7_PL_PERR_UART)
6840 		cause |= F_T7_UART;
6841 	if (perr & F_T7_PL_PERR_PMU)
6842 		cause |= F_PMU;
6843 	if (perr & F_T7_PL_PERR_MAC)
6844 		cause |= F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3;
6845 	if (perr & F_T7_PL_PERR_SMB)
6846 		cause |= F_SMB;
6847 	if (perr & F_T7_PL_PERR_SF)
6848 		cause |= F_SF;
6849 	if (perr & F_T7_PL_PERR_PL)
6850 		cause |= F_PL;
6851 	if (perr & F_T7_PL_PERR_NCSI)
6852 		cause |= F_NCSI;
6853 	if (perr & F_T7_PL_PERR_MPS)
6854 		cause |= F_MPS;
6855 	if (perr & F_T7_PL_PERR_MI)
6856 		cause |= F_MI;
6857 	if (perr & F_T7_PL_PERR_DBG)
6858 		cause |= F_DBG;
6859 	if (perr & F_T7_PL_PERR_I2CM)
6860 		cause |= F_I2CM;
6861 	if (perr & F_T7_PL_PERR_CIM)
6862 		cause |= F_CIM;
6863 
6864 	return (cause);
6865 }
6866 
6867 static uint32_t
t7_perr_to_ic2(uint32_t perr)6868 t7_perr_to_ic2(uint32_t perr)
6869 {
6870 	uint32_t cause = 0;
6871 
6872 	if (perr & F_T7_PL_PERR_CRYPTO_KEY)
6873 		cause |= F_CRYPTO_KEY;
6874 	if (perr & F_T7_PL_PERR_CRYPTO1)
6875 		cause |= F_CRYPTO1;
6876 	if (perr & F_T7_PL_PERR_CRYPTO0)
6877 		cause |= F_CRYPTO0;
6878 	if (perr & F_T7_PL_PERR_GCACHE)
6879 		cause |= F_GCACHE;
6880 	if (perr & F_T7_PL_PERR_ARM)
6881 		cause |= F_ARM;
6882 
6883 	return (cause);
6884 }
6885 
6886 /**
6887  *	t4_slow_intr_handler - control path interrupt handler
6888  *	@adap: the adapter
6889  *
6890  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
6891  *	The designation 'slow' is because it involves register reads, while
6892  *	data interrupts typically don't involve any MMIOs.
6893  */
t4_slow_intr_handler(struct adapter * adap,int flags)6894 bool t4_slow_intr_handler(struct adapter *adap, int flags)
6895 {
6896 	static const struct intr_details pl_int_cause_fields[] = {
6897 		{ F_MC1, "MC1" },
6898 		{ F_UART, "UART" },
6899 		{ F_ULP_TX, "ULP TX" },
6900 		{ F_SGE, "SGE" },
6901 		{ F_HMA, "HMA" },
6902 		{ F_CPL_SWITCH, "CPL Switch" },
6903 		{ F_ULP_RX, "ULP RX" },
6904 		{ F_PM_RX, "PM RX" },
6905 		{ F_PM_TX, "PM TX" },
6906 		{ F_MA, "MA" },
6907 		{ F_TP, "TP" },
6908 		{ F_LE, "LE" },
6909 		{ F_EDC1, "EDC1" },
6910 		{ F_EDC0, "EDC0" },
6911 		{ F_MC, "MC0" },
6912 		{ F_PCIE, "PCIE" },
6913 		{ F_PMU, "PMU" },
6914 		{ F_MAC3, "MAC3" },
6915 		{ F_MAC2, "MAC2" },
6916 		{ F_MAC1, "MAC1" },
6917 		{ F_MAC0, "MAC0" },
6918 		{ F_SMB, "SMB" },
6919 		{ F_SF, "SF" },
6920 		{ F_PL, "PL" },
6921 		{ F_NCSI, "NC-SI" },
6922 		{ F_MPS, "MPS" },
6923 		{ F_MI, "MI" },
6924 		{ F_DBG, "DBG" },
6925 		{ F_I2CM, "I2CM" },
6926 		{ F_CIM, "CIM" },
6927 		{ 0 }
6928 	};
6929 	static const struct intr_action pl_int_cause_actions[] = {
6930 		{ F_ULP_TX, -1, ulptx_intr_handler },
6931 		{ F_SGE, -1, sge_intr_handler },
6932 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
6933 		{ F_ULP_RX, -1, ulprx_intr_handler },
6934 		{ F_PM_RX, -1, pmtx_intr_handler },
6935 		{ F_PM_TX, -1, pmtx_intr_handler },
6936 		{ F_MA, -1, ma_intr_handler },
6937 		{ F_TP, -1, tp_intr_handler },
6938 		{ F_LE, -1, le_intr_handler },
6939 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
6940 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
6941 		{ F_MC0, MEM_MC0, mem_intr_handler },
6942 		{ F_MC1, MEM_MC1, mem_intr_handler },
6943 		{ F_PCIE, -1, pcie_intr_handler },
6944 		{ F_MAC0, 0, mac_intr_handler },
6945 		{ F_MAC1, 1, mac_intr_handler },
6946 		{ F_MAC2, 2, mac_intr_handler },
6947 		{ F_MAC3, 3, mac_intr_handler },
6948 		{ F_SMB, -1, smb_intr_handler },
6949 		{ F_PL, -1, plpl_intr_handler },
6950 		{ F_NCSI, -1, ncsi_intr_handler },
6951 		{ F_MPS, -1, mps_intr_handler },
6952 		{ F_CIM, -1, cim_intr_handler },
6953 		{ 0 }
6954 	};
6955 	static const struct intr_info pl_int_cause = {
6956 		.name = "PL_INT_CAUSE",
6957 		.cause_reg = A_PL_INT_CAUSE,
6958 		.enable_reg = A_PL_INT_ENABLE,
6959 		.fatal = 0,
6960 		.flags = IHF_IGNORE_IF_DISABLED,
6961 		.details = pl_int_cause_fields,
6962 		.actions = pl_int_cause_actions,
6963 	};
6964 	static const struct intr_info pl_perr_cause = {
6965 		.name = "PL_PERR_CAUSE",
6966 		.cause_reg = A_PL_PERR_CAUSE,
6967 		.enable_reg = A_PL_PERR_ENABLE,
6968 		.fatal = 0xffffffff,
6969 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6970 		.details = pl_int_cause_fields,
6971 		.actions = NULL,
6972 	};
6973 	static const struct intr_details t7_pl_int_cause_fields[] = {
6974 		{ F_T7_FLR, "FLR" },
6975 		{ F_T7_SW_CIM, "SW CIM" },
6976 		{ F_T7_ULP_TX, "ULP TX" },
6977 		{ F_T7_SGE, "SGE" },
6978 		{ F_T7_HMA, "HMA" },
6979 		{ F_T7_CPL_SWITCH, "CPL Switch" },
6980 		{ F_T7_ULP_RX, "ULP RX" },
6981 		{ F_T7_PM_RX, "PM RX" },
6982 		{ F_T7_PM_TX, "PM TX" },
6983 		{ F_T7_MA, "MA" },
6984 		{ F_T7_TP, "TP" },
6985 		{ F_T7_LE, "LE" },
6986 		{ F_T7_EDC1, "EDC1" },
6987 		{ F_T7_EDC0, "EDC0" },
6988 		{ F_T7_MC1, "MC1" },
6989 		{ F_T7_MC0, "MC0" },
6990 		{ F_T7_PCIE, "PCIE" },
6991 		{ F_T7_UART, "UART" },
6992 		{ F_PMU, "PMU" },
6993 		{ F_MAC3, "MAC3" },
6994 		{ F_MAC2, "MAC2" },
6995 		{ F_MAC1, "MAC1" },
6996 		{ F_MAC0, "MAC0" },
6997 		{ F_SMB, "SMB" },
6998 		{ F_SF, "SF" },
6999 		{ F_PL, "PL" },
7000 		{ F_NCSI, "NC-SI" },
7001 		{ F_MPS, "MPS" },
7002 		{ F_MI, "MI" },
7003 		{ F_DBG, "DBG" },
7004 		{ F_I2CM, "I2CM" },
7005 		{ F_CIM, "CIM" },
7006 		{ 0 }
7007 	};
7008 	static const struct intr_action t7_pl_int_cause_actions[] = {
7009 		{ F_T7_ULP_TX, -1, ulptx_intr_handler },
7010 		{ F_T7_SGE, -1, sge_intr_handler },
7011 		{ F_T7_HMA, -1, hma_intr_handler },
7012 		{ F_T7_CPL_SWITCH, -1, cplsw_intr_handler },
7013 		{ F_T7_ULP_RX, -1, ulprx_intr_handler },
7014 		{ F_T7_PM_RX, -1, pmrx_intr_handler },
7015 		{ F_T7_PM_TX, -1, pmtx_intr_handler },
7016 		{ F_T7_MA, -1, ma_intr_handler },
7017 		{ F_T7_TP, -1, tp_intr_handler },
7018 		{ F_T7_LE, -1, le_intr_handler },
7019 		{ F_T7_EDC0, MEM_EDC0, mem_intr_handler },
7020 		{ F_T7_EDC1, MEM_EDC1, mem_intr_handler },
7021 		{ F_T7_MC0, MEM_MC0, mem_intr_handler },
7022 		{ F_T7_MC1, MEM_MC1, mem_intr_handler },
7023 		{ F_T7_PCIE, -1, pcie_intr_handler },
7024 		{ F_MAC0, 0, mac_intr_handler },
7025 		{ F_MAC1, 1, mac_intr_handler },
7026 		{ F_MAC2, 2, mac_intr_handler },
7027 		{ F_MAC3, 3, mac_intr_handler },
7028 		{ F_SMB, -1, smb_intr_handler },
7029 		{ F_PL, -1, plpl_intr_handler },
7030 		{ F_NCSI, -1, ncsi_intr_handler },
7031 		{ F_MPS, -1, mps_intr_handler },
7032 		{ F_CIM, -1, cim_intr_handler },
7033 		{ 0 }
7034 	};
7035 	static const struct intr_info t7_pl_int_cause = {
7036 		.name = "PL_INT_CAUSE",
7037 		.cause_reg = A_PL_INT_CAUSE,
7038 		.enable_reg = A_PL_INT_ENABLE,
7039 		.fatal = 0,
7040 		.flags = IHF_IGNORE_IF_DISABLED,
7041 		.details = t7_pl_int_cause_fields,
7042 		.actions = t7_pl_int_cause_actions,
7043 	};
7044 	static const struct intr_details t7_pl_int_cause2_fields[] = {
7045 		{ F_CRYPTO_KEY, "CRYPTO KEY" },
7046 		{ F_CRYPTO1, "CRYPTO1" },
7047 		{ F_CRYPTO0, "CRYPTO0" },
7048 		{ F_GCACHE, "GCACHE" },
7049 		{ F_ARM, "ARM" },
7050 		{ 0 }
7051 	};
7052 	static const struct intr_action t7_pl_int_cause2_actions[] = {
7053 		{ F_CRYPTO_KEY, -1, cryptokey_intr_handler },
7054 		{ F_CRYPTO1, 1, tlstx_intr_handler },
7055 		{ F_CRYPTO0, 0, tlstx_intr_handler },
7056 		{ F_GCACHE, -1, gcache_intr_handler },
7057 		{ F_ARM, -1, arm_intr_handler },
7058 		{ 0 }
7059 	};
7060 	static const struct intr_info t7_pl_int_cause2 = {
7061 		.name = "PL_INT_CAUSE2",
7062 		.cause_reg = A_PL_INT_CAUSE2,
7063 		.enable_reg = A_PL_INT_ENABLE2,
7064 		.fatal = 0,
7065 		.flags = IHF_IGNORE_IF_DISABLED,
7066 		.details = t7_pl_int_cause2_fields,
7067 		.actions = t7_pl_int_cause2_actions,
7068 	};
7069 	static const struct intr_details t7_pl_perr_cause_fields[] = {
7070 		{ F_T7_PL_PERR_CRYPTO_KEY, "CRYPTO KEY" },
7071 		{ F_T7_PL_PERR_CRYPTO1, "CRYPTO1" },
7072 		{ F_T7_PL_PERR_CRYPTO0, "CRYPTO0" },
7073 		{ F_T7_PL_PERR_GCACHE, "GCACHE" },
7074 		{ F_T7_PL_PERR_ARM, "ARM" },
7075 		{ F_T7_PL_PERR_ULP_TX, "ULP TX" },
7076 		{ F_T7_PL_PERR_SGE, "SGE" },
7077 		{ F_T7_PL_PERR_HMA, "HMA" },
7078 		{ F_T7_PL_PERR_CPL_SWITCH, "CPL Switch" },
7079 		{ F_T7_PL_PERR_ULP_RX, "ULP RX" },
7080 		{ F_T7_PL_PERR_PM_RX, "PM RX" },
7081 		{ F_T7_PL_PERR_PM_TX, "PM TX" },
7082 		{ F_T7_PL_PERR_MA, "MA" },
7083 		{ F_T7_PL_PERR_TP, "TP" },
7084 		{ F_T7_PL_PERR_LE, "LE" },
7085 		{ F_T7_PL_PERR_EDC1, "EDC1" },
7086 		{ F_T7_PL_PERR_EDC0, "EDC0" },
7087 		{ F_T7_PL_PERR_MC1, "MC1" },
7088 		{ F_T7_PL_PERR_MC0, "MC0" },
7089 		{ F_T7_PL_PERR_PCIE, "PCIE" },
7090 		{ F_T7_PL_PERR_UART, "UART" },
7091 		{ F_T7_PL_PERR_PMU, "PMU" },
7092 		{ F_T7_PL_PERR_MAC, "MAC" },
7093 		{ F_T7_PL_PERR_SMB, "SMB" },
7094 		{ F_T7_PL_PERR_SF, "SF" },
7095 		{ F_T7_PL_PERR_PL, "PL" },
7096 		{ F_T7_PL_PERR_NCSI, "NC-SI" },
7097 		{ F_T7_PL_PERR_MPS, "MPS" },
7098 		{ F_T7_PL_PERR_MI, "MI" },
7099 		{ F_T7_PL_PERR_DBG, "DBG" },
7100 		{ F_T7_PL_PERR_I2CM, "I2CM" },
7101 		{ F_T7_PL_PERR_CIM, "CIM" },
7102 		{ 0 }
7103 	};
7104 	static const struct intr_info t7_pl_perr_cause = {
7105 		.name = "PL_PERR_CAUSE",
7106 		.cause_reg = A_PL_PERR_CAUSE,
7107 		.enable_reg = A_PL_PERR_ENABLE,
7108 		.fatal = 0xffffffff,
7109 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
7110 		.details = t7_pl_perr_cause_fields,
7111 		.actions = NULL,
7112 	};
7113 	bool fatal = false;
7114 	uint32_t perr;
7115 
7116 	if (chip_id(adap) < CHELSIO_T7) {
7117 		perr = get_perr_ucause(adap, &pl_perr_cause);
7118 		fatal |= t4_handle_intr(adap, &pl_perr_cause, 0,
7119 		    flags & ~(IHF_CLR_ALL_SET | IHF_CLR_ALL_UNIGNORED));
7120 		fatal |= t4_handle_intr(adap, &pl_int_cause,
7121 		    t4_perr_to_ic(adap, perr), flags);
7122 		t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
7123 		(void)t4_read_reg(adap, pl_perr_cause.cause_reg);
7124 	} else {
7125 		perr = get_perr_ucause(adap, &t7_pl_perr_cause);
7126 		fatal |= t4_handle_intr(adap, &t7_pl_perr_cause, 0,
7127 		    flags & ~(IHF_CLR_ALL_SET | IHF_CLR_ALL_UNIGNORED));
7128 		fatal |= t4_handle_intr(adap, &t7_pl_int_cause,
7129 		    t7_perr_to_ic1(perr), flags);
7130 		fatal |= t4_handle_intr(adap, &t7_pl_int_cause2,
7131 		    t7_perr_to_ic2(perr), flags);
7132 		t4_write_reg(adap, t7_pl_perr_cause.cause_reg, perr);
7133 		(void)t4_read_reg(adap, t7_pl_perr_cause.cause_reg);
7134 	}
7135 	return (fatal);
7136 }
7137 
t4_intr_clear(struct adapter * adap)7138 void t4_intr_clear(struct adapter *adap)
7139 {
7140 #if 1
7141 	if (chip_id(adap) >= CHELSIO_T7)
7142 		t4_write_reg(adap, A_SGE_INT_CAUSE8, 0xffffffff);
7143 #endif
7144 	(void)t4_slow_intr_handler(adap,
7145 	    IHF_NO_SHOW | IHF_RUN_ALL_ACTIONS | IHF_CLR_ALL_SET);
7146 }
7147 
7148 /**
7149  *	t4_intr_enable - enable interrupts
7150  *	@adapter: the adapter whose interrupts should be enabled
7151  *
7152  *	Enable PF-specific interrupts for the calling function and the top-level
7153  *	interrupt concentrator for global interrupts.  Interrupts are already
7154  *	enabled at each module,	here we just enable the roots of the interrupt
7155  *	hierarchies.
7156  *
7157  *	Note: this function should be called only when the driver manages
7158  *	non PF-specific interrupts from the various HW modules.  Only one PCI
7159  *	function at a time should be doing this.
7160  */
t4_intr_enable(struct adapter * adap)7161 void t4_intr_enable(struct adapter *adap)
7162 {
7163 	u32 mask, val;
7164 
7165 	if (adap->intr_flags & IHF_INTR_CLEAR_ON_INIT)
7166 		t4_intr_clear(adap);
7167 	if (chip_id(adap) <= CHELSIO_T5)
7168 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT |
7169 		    F_DBFIFO_LP_INT;
7170 	else
7171 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
7172 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
7173 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
7174 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
7175 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
7176 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_EGRESS_SIZE_ERR;
7177 	mask = val;
7178 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, mask, val);
7179 	if (chip_id(adap) >= CHELSIO_T7)
7180 		t4_write_reg(adap, A_SGE_INT_ENABLE4, 0xffffffff);
7181 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), F_PFSW | F_PFCIM);
7182 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
7183 #if 1
7184 	if (chip_id(adap) >= CHELSIO_T7)
7185 		t4_set_reg_field(adap, A_PL_INT_ENABLE, F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3, 0);
7186 #endif
7187 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
7188 }
7189 
7190 /**
7191  *	t4_intr_disable - disable interrupts
7192  *	@adap: the adapter whose interrupts should be disabled
7193  *
7194  *	Disable interrupts.  We only disable the top-level interrupt
7195  *	concentrators.  The caller must be a PCI function managing global
7196  *	interrupts.
7197  */
t4_intr_disable(struct adapter * adap)7198 void t4_intr_disable(struct adapter *adap)
7199 {
7200 
7201 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
7202 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
7203 }
7204 
7205 /**
7206  *	hash_mac_addr - return the hash value of a MAC address
7207  *	@addr: the 48-bit Ethernet MAC address
7208  *
7209  *	Hashes a MAC address according to the hash function used by HW inexact
7210  *	(hash) address matching.
7211  */
hash_mac_addr(const u8 * addr)7212 static int hash_mac_addr(const u8 *addr)
7213 {
7214 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
7215 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
7216 	a ^= b;
7217 	a ^= (a >> 12);
7218 	a ^= (a >> 6);
7219 	return a & 0x3f;
7220 }
7221 
7222 /**
7223  *	t4_config_rss_range - configure a portion of the RSS mapping table
7224  *	@adapter: the adapter
7225  *	@mbox: mbox to use for the FW command
7226  *	@viid: virtual interface whose RSS subtable is to be written
7227  *	@start: start entry in the table to write
7228  *	@n: how many table entries to write
7229  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
7230  *	@nrspq: number of values in @rspq
7231  *
7232  *	Programs the selected part of the VI's RSS mapping table with the
7233  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
7234  *	until the full table range is populated.
7235  *
7236  *	The caller must ensure the values in @rspq are in the range allowed for
7237  *	@viid.
7238  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)7239 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
7240 			int start, int n, const u16 *rspq, unsigned int nrspq)
7241 {
7242 	int ret;
7243 	const u16 *rsp = rspq;
7244 	const u16 *rsp_end = rspq + nrspq;
7245 	struct fw_rss_ind_tbl_cmd cmd;
7246 
7247 	memset(&cmd, 0, sizeof(cmd));
7248 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
7249 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7250 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
7251 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
7252 
7253 	/*
7254 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
7255 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
7256 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
7257 	 * reserved.
7258 	 */
7259 	while (n > 0) {
7260 		int nq = min(n, 32);
7261 		int nq_packed = 0;
7262 		__be32 *qp = &cmd.iq0_to_iq2;
7263 
7264 		/*
7265 		 * Set up the firmware RSS command header to send the next
7266 		 * "nq" Ingress Queue IDs to the firmware.
7267 		 */
7268 		cmd.niqid = cpu_to_be16(nq);
7269 		cmd.startidx = cpu_to_be16(start);
7270 
7271 		/*
7272 		 * "nq" more done for the start of the next loop.
7273 		 */
7274 		start += nq;
7275 		n -= nq;
7276 
7277 		/*
7278 		 * While there are still Ingress Queue IDs to stuff into the
7279 		 * current firmware RSS command, retrieve them from the
7280 		 * Ingress Queue ID array and insert them into the command.
7281 		 */
7282 		while (nq > 0) {
7283 			/*
7284 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
7285 			 * around the Ingress Queue ID array if necessary) and
7286 			 * insert them into the firmware RSS command at the
7287 			 * current 3-tuple position within the commad.
7288 			 */
7289 			u16 qbuf[3];
7290 			u16 *qbp = qbuf;
7291 			int nqbuf = min(3, nq);
7292 
7293 			nq -= nqbuf;
7294 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
7295 			while (nqbuf && nq_packed < 32) {
7296 				nqbuf--;
7297 				nq_packed++;
7298 				*qbp++ = *rsp++;
7299 				if (rsp >= rsp_end)
7300 					rsp = rspq;
7301 			}
7302 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
7303 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
7304 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
7305 		}
7306 
7307 		/*
7308 		 * Send this portion of the RRS table update to the firmware;
7309 		 * bail out on any errors.
7310 		 */
7311 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
7312 		if (ret)
7313 			return ret;
7314 	}
7315 	return 0;
7316 }
7317 
7318 /**
7319  *	t4_config_glbl_rss - configure the global RSS mode
7320  *	@adapter: the adapter
7321  *	@mbox: mbox to use for the FW command
7322  *	@mode: global RSS mode
7323  *	@flags: mode-specific flags
7324  *
7325  *	Sets the global RSS mode.
7326  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)7327 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
7328 		       unsigned int flags)
7329 {
7330 	struct fw_rss_glb_config_cmd c;
7331 
7332 	memset(&c, 0, sizeof(c));
7333 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
7334 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
7335 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7336 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
7337 		c.u.manual.mode_pkd =
7338 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
7339 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
7340 		c.u.basicvirtual.mode_keymode =
7341 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
7342 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
7343 	} else
7344 		return -EINVAL;
7345 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
7346 }
7347 
7348 /**
7349  *	t4_config_vi_rss - configure per VI RSS settings
7350  *	@adapter: the adapter
7351  *	@mbox: mbox to use for the FW command
7352  *	@viid: the VI id
7353  *	@flags: RSS flags
7354  *	@defq: id of the default RSS queue for the VI.
7355  *	@skeyidx: RSS secret key table index for non-global mode
7356  *	@skey: RSS vf_scramble key for VI.
7357  *
7358  *	Configures VI-specific RSS properties.
7359  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq,unsigned int skeyidx,unsigned int skey)7360 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
7361 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
7362 		     unsigned int skey)
7363 {
7364 	struct fw_rss_vi_config_cmd c;
7365 
7366 	memset(&c, 0, sizeof(c));
7367 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
7368 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7369 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
7370 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7371 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
7372 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
7373 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
7374 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
7375 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
7376 
7377 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
7378 }
7379 
7380 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)7381 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
7382 {
7383 	if (chip_id(adap) < CHELSIO_T7) {
7384 		t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
7385 		return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE,
7386 					   F_LKPTBLROWVLD, 1, 5, 0, val);
7387 	} else {
7388 		t4_write_reg(adap, A_TP_RSS_CONFIG_SRAM, 0xB0000 | row);
7389 		return t7_wait_sram_done(adap, A_TP_RSS_CONFIG_SRAM,
7390 					 A_TP_RSS_LKP_TABLE, 5, 0, val);
7391 	}
7392 }
7393 
7394 /**
7395  *	t4_read_rss - read the contents of the RSS mapping table
7396  *	@adapter: the adapter
7397  *	@map: holds the contents of the RSS mapping table
7398  *
7399  *	Reads the contents of the RSS hash->queue mapping table.
7400  */
t4_read_rss(struct adapter * adapter,u16 * map)7401 int t4_read_rss(struct adapter *adapter, u16 *map)
7402 {
7403 	u32 val;
7404 	int i, ret;
7405 	int rss_nentries = adapter->chip_params->rss_nentries;
7406 
7407 	for (i = 0; i < rss_nentries / 2; ++i) {
7408 		ret = rd_rss_row(adapter, i, &val);
7409 		if (ret)
7410 			return ret;
7411 		*map++ = G_LKPTBLQUEUE0(val);
7412 		*map++ = G_LKPTBLQUEUE1(val);
7413 	}
7414 	return 0;
7415 }
7416 
7417 /**
7418  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
7419  * @adap: the adapter
7420  * @cmd: TP fw ldst address space type
7421  * @vals: where the indirect register values are stored/written
7422  * @nregs: how many indirect registers to read/write
7423  * @start_idx: index of first indirect register to read/write
7424  * @rw: Read (1) or Write (0)
7425  * @sleep_ok: if true we may sleep while awaiting command completion
7426  *
7427  * Access TP indirect registers through LDST
7428  **/
t4_tp_fw_ldst_rw(struct adapter * adap,int cmd,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw,bool sleep_ok)7429 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
7430 			    unsigned int nregs, unsigned int start_index,
7431 			    unsigned int rw, bool sleep_ok)
7432 {
7433 	int ret = 0;
7434 	unsigned int i;
7435 	struct fw_ldst_cmd c;
7436 
7437 	for (i = 0; i < nregs; i++) {
7438 		memset(&c, 0, sizeof(c));
7439 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7440 						F_FW_CMD_REQUEST |
7441 						(rw ? F_FW_CMD_READ :
7442 						      F_FW_CMD_WRITE) |
7443 						V_FW_LDST_CMD_ADDRSPACE(cmd));
7444 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7445 
7446 		c.u.addrval.addr = cpu_to_be32(start_index + i);
7447 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
7448 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
7449 				      sleep_ok);
7450 		if (ret)
7451 			return ret;
7452 
7453 		if (rw)
7454 			vals[i] = be32_to_cpu(c.u.addrval.val);
7455 	}
7456 	return 0;
7457 }
7458 
7459 /**
7460  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
7461  * @adap: the adapter
7462  * @reg_addr: Address Register
7463  * @reg_data: Data register
7464  * @buff: where the indirect register values are stored/written
7465  * @nregs: how many indirect registers to read/write
7466  * @start_index: index of first indirect register to read/write
7467  * @rw: READ(1) or WRITE(0)
7468  * @sleep_ok: if true we may sleep while awaiting command completion
7469  *
7470  * Read/Write TP indirect registers through LDST if possible.
7471  * Else, use backdoor access
7472  **/
t4_tp_indirect_rw(struct adapter * adap,u32 reg_addr,u32 reg_data,u32 * buff,u32 nregs,u32 start_index,int rw,bool sleep_ok)7473 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
7474 			      u32 *buff, u32 nregs, u32 start_index, int rw,
7475 			      bool sleep_ok)
7476 {
7477 	int rc = -EINVAL;
7478 	int cmd;
7479 
7480 	switch (reg_addr) {
7481 	case A_TP_PIO_ADDR:
7482 		cmd = FW_LDST_ADDRSPC_TP_PIO;
7483 		break;
7484 	case A_TP_TM_PIO_ADDR:
7485 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
7486 		break;
7487 	case A_TP_MIB_INDEX:
7488 		cmd = FW_LDST_ADDRSPC_TP_MIB;
7489 		break;
7490 	default:
7491 		goto indirect_access;
7492 	}
7493 
7494 	if (t4_use_ldst(adap))
7495 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
7496 				      sleep_ok);
7497 
7498 indirect_access:
7499 
7500 	if (rc) {
7501 		if (rw)
7502 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
7503 					 start_index);
7504 		else
7505 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
7506 					  start_index);
7507 	}
7508 }
7509 
7510 /**
7511  * t4_tp_pio_read - Read TP PIO registers
7512  * @adap: the adapter
7513  * @buff: where the indirect register values are written
7514  * @nregs: how many indirect registers to read
7515  * @start_index: index of first indirect register to read
7516  * @sleep_ok: if true we may sleep while awaiting command completion
7517  *
7518  * Read TP PIO Registers
7519  **/
t4_tp_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7520 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
7521 		    u32 start_index, bool sleep_ok)
7522 {
7523 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
7524 			  start_index, 1, sleep_ok);
7525 }
7526 
7527 /**
7528  * t4_tp_pio_write - Write TP PIO registers
7529  * @adap: the adapter
7530  * @buff: where the indirect register values are stored
7531  * @nregs: how many indirect registers to write
7532  * @start_index: index of first indirect register to write
7533  * @sleep_ok: if true we may sleep while awaiting command completion
7534  *
7535  * Write TP PIO Registers
7536  **/
t4_tp_pio_write(struct adapter * adap,const u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7537 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
7538 		     u32 start_index, bool sleep_ok)
7539 {
7540 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7541 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
7542 }
7543 
7544 /**
7545  * t4_tp_tm_pio_read - Read TP TM PIO registers
7546  * @adap: the adapter
7547  * @buff: where the indirect register values are written
7548  * @nregs: how many indirect registers to read
7549  * @start_index: index of first indirect register to read
7550  * @sleep_ok: if true we may sleep while awaiting command completion
7551  *
7552  * Read TP TM PIO Registers
7553  **/
t4_tp_tm_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7554 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
7555 		       u32 start_index, bool sleep_ok)
7556 {
7557 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
7558 			  nregs, start_index, 1, sleep_ok);
7559 }
7560 
7561 /**
7562  * t4_tp_mib_read - Read TP MIB registers
7563  * @adap: the adapter
7564  * @buff: where the indirect register values are written
7565  * @nregs: how many indirect registers to read
7566  * @start_index: index of first indirect register to read
7567  * @sleep_ok: if true we may sleep while awaiting command completion
7568  *
7569  * Read TP MIB Registers
7570  **/
t4_tp_mib_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7571 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
7572 		    bool sleep_ok)
7573 {
7574 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
7575 			  start_index, 1, sleep_ok);
7576 }
7577 
7578 /**
7579  *	t4_read_rss_key - read the global RSS key
7580  *	@adap: the adapter
7581  *	@key: 10-entry array holding the 320-bit RSS key
7582  * 	@sleep_ok: if true we may sleep while awaiting command completion
7583  *
7584  *	Reads the global 320-bit RSS key.
7585  */
t4_read_rss_key(struct adapter * adap,u32 * key,bool sleep_ok)7586 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
7587 {
7588 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
7589 }
7590 
7591 /**
7592  *	t4_write_rss_key - program one of the RSS keys
7593  *	@adap: the adapter
7594  *	@key: 10-entry array holding the 320-bit RSS key
7595  *	@idx: which RSS key to write
7596  * 	@sleep_ok: if true we may sleep while awaiting command completion
7597  *
7598  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
7599  *	0..15 the corresponding entry in the RSS key table is written,
7600  *	otherwise the global RSS key is written.
7601  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx,bool sleep_ok)7602 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
7603 		      bool sleep_ok)
7604 {
7605 	u8 rss_key_addr_cnt = 16;
7606 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
7607 
7608 	/*
7609 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
7610 	 * allows access to key addresses 16-63 by using KeyWrAddrX
7611 	 * as index[5:4](upper 2) into key table
7612 	 */
7613 	if ((chip_id(adap) > CHELSIO_T5) &&
7614 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
7615 		rss_key_addr_cnt = 32;
7616 
7617 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
7618 
7619 	if (idx >= 0 && idx < rss_key_addr_cnt) {
7620 		if (rss_key_addr_cnt > 16)
7621 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
7622 				     vrt | V_KEYWRADDRX(idx >> 4) |
7623 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
7624 		else
7625 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
7626 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
7627 	}
7628 }
7629 
7630 /**
7631  *	t4_read_rss_pf_config - read PF RSS Configuration Table
7632  *	@adapter: the adapter
7633  *	@index: the entry in the PF RSS table to read
7634  *	@valp: where to store the returned value
7635  * 	@sleep_ok: if true we may sleep while awaiting command completion
7636  *
7637  *	Reads the PF RSS Configuration Table at the specified index and returns
7638  *	the value found there.
7639  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp,bool sleep_ok)7640 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
7641 			   u32 *valp, bool sleep_ok)
7642 {
7643 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
7644 }
7645 
7646 /**
7647  *	t4_write_rss_pf_config - write PF RSS Configuration Table
7648  *	@adapter: the adapter
7649  *	@index: the entry in the VF RSS table to read
7650  *	@val: the value to store
7651  * 	@sleep_ok: if true we may sleep while awaiting command completion
7652  *
7653  *	Writes the PF RSS Configuration Table at the specified index with the
7654  *	specified value.
7655  */
t4_write_rss_pf_config(struct adapter * adapter,unsigned int index,u32 val,bool sleep_ok)7656 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
7657 			    u32 val, bool sleep_ok)
7658 {
7659 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
7660 			sleep_ok);
7661 }
7662 
7663 /**
7664  *	t4_read_rss_vf_config - read VF RSS Configuration Table
7665  *	@adapter: the adapter
7666  *	@index: the entry in the VF RSS table to read
7667  *	@vfl: where to store the returned VFL
7668  *	@vfh: where to store the returned VFH
7669  * 	@sleep_ok: if true we may sleep while awaiting command completion
7670  *
7671  *	Reads the VF RSS Configuration Table at the specified index and returns
7672  *	the (VFL, VFH) values found there.
7673  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh,bool sleep_ok)7674 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
7675 			   u32 *vfl, u32 *vfh, bool sleep_ok)
7676 {
7677 	u32 vrt, mask, data;
7678 
7679 	if (chip_id(adapter) <= CHELSIO_T5) {
7680 		mask = V_VFWRADDR(M_VFWRADDR);
7681 		data = V_VFWRADDR(index);
7682 	} else {
7683 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
7684 		 data = V_T6_VFWRADDR(index);
7685 	}
7686 	/*
7687 	 * Request that the index'th VF Table values be read into VFL/VFH.
7688 	 */
7689 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
7690 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
7691 	vrt |= data | F_VFRDEN;
7692 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
7693 
7694 	/*
7695 	 * Grab the VFL/VFH values ...
7696 	 */
7697 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
7698 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
7699 }
7700 
7701 /**
7702  *	t4_write_rss_vf_config - write VF RSS Configuration Table
7703  *
7704  *	@adapter: the adapter
7705  *	@index: the entry in the VF RSS table to write
7706  *	@vfl: the VFL to store
7707  *	@vfh: the VFH to store
7708  *
7709  *	Writes the VF RSS Configuration Table at the specified index with the
7710  *	specified (VFL, VFH) values.
7711  */
t4_write_rss_vf_config(struct adapter * adapter,unsigned int index,u32 vfl,u32 vfh,bool sleep_ok)7712 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
7713 			    u32 vfl, u32 vfh, bool sleep_ok)
7714 {
7715 	u32 vrt, mask, data;
7716 
7717 	if (chip_id(adapter) <= CHELSIO_T5) {
7718 		mask = V_VFWRADDR(M_VFWRADDR);
7719 		data = V_VFWRADDR(index);
7720 	} else {
7721 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
7722 		data = V_T6_VFWRADDR(index);
7723 	}
7724 
7725 	/*
7726 	 * Load up VFL/VFH with the values to be written ...
7727 	 */
7728 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
7729 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
7730 
7731 	/*
7732 	 * Write the VFL/VFH into the VF Table at index'th location.
7733 	 */
7734 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
7735 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
7736 	vrt |= data | F_VFRDEN;
7737 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
7738 }
7739 
7740 /**
7741  *	t4_read_rss_pf_map - read PF RSS Map
7742  *	@adapter: the adapter
7743  * 	@sleep_ok: if true we may sleep while awaiting command completion
7744  *
7745  *	Reads the PF RSS Map register and returns its value.
7746  */
t4_read_rss_pf_map(struct adapter * adapter,bool sleep_ok)7747 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
7748 {
7749 	u32 pfmap;
7750 
7751 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
7752 
7753 	return pfmap;
7754 }
7755 
7756 /**
7757  *	t4_write_rss_pf_map - write PF RSS Map
7758  *	@adapter: the adapter
7759  *	@pfmap: PF RSS Map value
7760  *
7761  *	Writes the specified value to the PF RSS Map register.
7762  */
t4_write_rss_pf_map(struct adapter * adapter,u32 pfmap,bool sleep_ok)7763 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
7764 {
7765 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
7766 }
7767 
7768 /**
7769  *	t4_read_rss_pf_mask - read PF RSS Mask
7770  *	@adapter: the adapter
7771  * 	@sleep_ok: if true we may sleep while awaiting command completion
7772  *
7773  *	Reads the PF RSS Mask register and returns its value.
7774  */
t4_read_rss_pf_mask(struct adapter * adapter,bool sleep_ok)7775 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
7776 {
7777 	u32 pfmask;
7778 
7779 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
7780 
7781 	return pfmask;
7782 }
7783 
7784 /**
7785  *	t4_write_rss_pf_mask - write PF RSS Mask
7786  *	@adapter: the adapter
7787  *	@pfmask: PF RSS Mask value
7788  *
7789  *	Writes the specified value to the PF RSS Mask register.
7790  */
t4_write_rss_pf_mask(struct adapter * adapter,u32 pfmask,bool sleep_ok)7791 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
7792 {
7793 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
7794 }
7795 
7796 /**
7797  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
7798  *	@adap: the adapter
7799  *	@v4: holds the TCP/IP counter values
7800  *	@v6: holds the TCP/IPv6 counter values
7801  * 	@sleep_ok: if true we may sleep while awaiting command completion
7802  *
7803  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
7804  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
7805  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6,bool sleep_ok)7806 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
7807 			 struct tp_tcp_stats *v6, bool sleep_ok)
7808 {
7809 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
7810 
7811 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
7812 #define STAT(x)     val[STAT_IDX(x)]
7813 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
7814 
7815 	if (v4) {
7816 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
7817 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
7818 		v4->tcp_out_rsts = STAT(OUT_RST);
7819 		v4->tcp_in_segs  = STAT64(IN_SEG);
7820 		v4->tcp_out_segs = STAT64(OUT_SEG);
7821 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
7822 	}
7823 	if (v6) {
7824 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
7825 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
7826 		v6->tcp_out_rsts = STAT(OUT_RST);
7827 		v6->tcp_in_segs  = STAT64(IN_SEG);
7828 		v6->tcp_out_segs = STAT64(OUT_SEG);
7829 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
7830 	}
7831 #undef STAT64
7832 #undef STAT
7833 #undef STAT_IDX
7834 }
7835 
7836 /**
7837  *	t4_tp_get_err_stats - read TP's error MIB counters
7838  *	@adap: the adapter
7839  *	@st: holds the counter values
7840  * 	@sleep_ok: if true we may sleep while awaiting command completion
7841  *
7842  *	Returns the values of TP's error counters.
7843  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st,bool sleep_ok)7844 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
7845 			 bool sleep_ok)
7846 {
7847 	int nchan = adap->chip_params->nchan;
7848 
7849 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
7850 		       sleep_ok);
7851 
7852 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
7853 		       sleep_ok);
7854 
7855 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
7856 		       sleep_ok);
7857 
7858 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
7859 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
7860 
7861 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
7862 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
7863 
7864 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
7865 		       sleep_ok);
7866 
7867 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
7868 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
7869 
7870 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
7871 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
7872 
7873 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
7874 		       sleep_ok);
7875 }
7876 
7877 /**
7878  *	t4_tp_get_err_stats - read TP's error MIB counters
7879  *	@adap: the adapter
7880  *	@st: holds the counter values
7881  * 	@sleep_ok: if true we may sleep while awaiting command completion
7882  *
7883  *	Returns the values of TP's error counters.
7884  */
t4_tp_get_tnl_stats(struct adapter * adap,struct tp_tnl_stats * st,bool sleep_ok)7885 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
7886 			 bool sleep_ok)
7887 {
7888 	int nchan = adap->chip_params->nchan;
7889 
7890 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
7891 		       sleep_ok);
7892 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
7893 		       sleep_ok);
7894 }
7895 
7896 /**
7897  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
7898  *	@adap: the adapter
7899  *	@st: holds the counter values
7900  *
7901  *	Returns the values of TP's proxy counters.
7902  */
t4_tp_get_proxy_stats(struct adapter * adap,struct tp_proxy_stats * st,bool sleep_ok)7903 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
7904     bool sleep_ok)
7905 {
7906 	int nchan = adap->chip_params->nchan;
7907 
7908 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
7909 }
7910 
7911 /**
7912  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
7913  *	@adap: the adapter
7914  *	@st: holds the counter values
7915  * 	@sleep_ok: if true we may sleep while awaiting command completion
7916  *
7917  *	Returns the values of TP's CPL counters.
7918  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st,bool sleep_ok)7919 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
7920 			 bool sleep_ok)
7921 {
7922 	int nchan = adap->chip_params->nchan;
7923 
7924 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
7925 
7926 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
7927 }
7928 
7929 /**
7930  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
7931  *	@adap: the adapter
7932  *	@st: holds the counter values
7933  *
7934  *	Returns the values of TP's RDMA counters.
7935  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st,bool sleep_ok)7936 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
7937 			  bool sleep_ok)
7938 {
7939 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
7940 		       sleep_ok);
7941 
7942 	if (chip_id(adap) >= CHELSIO_T7)
7943 		/* read RDMA stats IN and OUT for all ports at once */
7944 		t4_tp_mib_read(adap, &st->pkts_in[0], 28, A_TP_MIB_RDMA_IN_PKT_0,
7945 			       sleep_ok);
7946 }
7947 
7948 /**
7949  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
7950  *	@adap: the adapter
7951  *	@idx: the port index
7952  *	@st: holds the counter values
7953  * 	@sleep_ok: if true we may sleep while awaiting command completion
7954  *
7955  *	Returns the values of TP's FCoE counters for the selected port.
7956  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st,bool sleep_ok)7957 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
7958 		       struct tp_fcoe_stats *st, bool sleep_ok)
7959 {
7960 	u32 val[2];
7961 
7962 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
7963 		       sleep_ok);
7964 
7965 	t4_tp_mib_read(adap, &st->frames_drop, 1,
7966 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
7967 
7968 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
7969 		       sleep_ok);
7970 
7971 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
7972 }
7973 
7974 /**
7975  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
7976  *	@adap: the adapter
7977  *	@st: holds the counter values
7978  * 	@sleep_ok: if true we may sleep while awaiting command completion
7979  *
7980  *	Returns the values of TP's counters for non-TCP directly-placed packets.
7981  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st,bool sleep_ok)7982 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
7983 		      bool sleep_ok)
7984 {
7985 	u32 val[4];
7986 
7987 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
7988 
7989 	st->frames = val[0];
7990 	st->drops = val[1];
7991 	st->octets = ((u64)val[2] << 32) | val[3];
7992 }
7993 
7994 /**
7995  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
7996  *	@adap: the adapter
7997  *	@st: holds the counter values
7998  * 	@sleep_ok: if true we may sleep while awaiting command completion
7999  *
8000  *	Returns the values of TP's counters for tids.
8001  */
t4_tp_get_tid_stats(struct adapter * adap,struct tp_tid_stats * st,bool sleep_ok)8002 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
8003 		      bool sleep_ok)
8004 {
8005 
8006 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
8007 }
8008 
8009 /**
8010  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
8011  *	@adap: the adapter
8012  *	@mtus: where to store the MTU values
8013  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
8014  *
8015  *	Reads the HW path MTU table.
8016  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)8017 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
8018 {
8019 	u32 v;
8020 	int i;
8021 
8022 	for (i = 0; i < NMTUS; ++i) {
8023 		t4_write_reg(adap, A_TP_MTU_TABLE,
8024 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
8025 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
8026 		mtus[i] = G_MTUVALUE(v);
8027 		if (mtu_log)
8028 			mtu_log[i] = G_MTUWIDTH(v);
8029 	}
8030 }
8031 
8032 /**
8033  *	t4_read_cong_tbl - reads the congestion control table
8034  *	@adap: the adapter
8035  *	@incr: where to store the alpha values
8036  *
8037  *	Reads the additive increments programmed into the HW congestion
8038  *	control table.
8039  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])8040 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
8041 {
8042 	unsigned int mtu, w;
8043 
8044 	for (mtu = 0; mtu < NMTUS; ++mtu)
8045 		for (w = 0; w < NCCTRL_WIN; ++w) {
8046 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
8047 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
8048 			incr[mtu][w] = (u16)t4_read_reg(adap,
8049 						A_TP_CCTRL_TABLE) & 0x1fff;
8050 		}
8051 }
8052 
8053 /**
8054  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
8055  *	@adap: the adapter
8056  *	@addr: the indirect TP register address
8057  *	@mask: specifies the field within the register to modify
8058  *	@val: new value for the field
8059  *
8060  *	Sets a field of an indirect TP register to the given value.
8061  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)8062 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
8063 			    unsigned int mask, unsigned int val)
8064 {
8065 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
8066 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
8067 	t4_write_reg(adap, A_TP_PIO_DATA, val);
8068 }
8069 
8070 /**
8071  *	init_cong_ctrl - initialize congestion control parameters
8072  *	@a: the alpha values for congestion control
8073  *	@b: the beta values for congestion control
8074  *
8075  *	Initialize the congestion control parameters.
8076  */
init_cong_ctrl(unsigned short * a,unsigned short * b)8077 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
8078 {
8079 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
8080 	a[9] = 2;
8081 	a[10] = 3;
8082 	a[11] = 4;
8083 	a[12] = 5;
8084 	a[13] = 6;
8085 	a[14] = 7;
8086 	a[15] = 8;
8087 	a[16] = 9;
8088 	a[17] = 10;
8089 	a[18] = 14;
8090 	a[19] = 17;
8091 	a[20] = 21;
8092 	a[21] = 25;
8093 	a[22] = 30;
8094 	a[23] = 35;
8095 	a[24] = 45;
8096 	a[25] = 60;
8097 	a[26] = 80;
8098 	a[27] = 100;
8099 	a[28] = 200;
8100 	a[29] = 300;
8101 	a[30] = 400;
8102 	a[31] = 500;
8103 
8104 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
8105 	b[9] = b[10] = 1;
8106 	b[11] = b[12] = 2;
8107 	b[13] = b[14] = b[15] = b[16] = 3;
8108 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
8109 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
8110 	b[28] = b[29] = 6;
8111 	b[30] = b[31] = 7;
8112 }
8113 
8114 /* The minimum additive increment value for the congestion control table */
8115 #define CC_MIN_INCR 2U
8116 
8117 /**
8118  *	t4_load_mtus - write the MTU and congestion control HW tables
8119  *	@adap: the adapter
8120  *	@mtus: the values for the MTU table
8121  *	@alpha: the values for the congestion control alpha parameter
8122  *	@beta: the values for the congestion control beta parameter
8123  *
8124  *	Write the HW MTU table with the supplied MTUs and the high-speed
8125  *	congestion control table with the supplied alpha, beta, and MTUs.
8126  *	We write the two tables together because the additive increments
8127  *	depend on the MTUs.
8128  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)8129 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
8130 		  const unsigned short *alpha, const unsigned short *beta)
8131 {
8132 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
8133 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
8134 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
8135 		28672, 40960, 57344, 81920, 114688, 163840, 229376
8136 	};
8137 
8138 	unsigned int i, w;
8139 
8140 	for (i = 0; i < NMTUS; ++i) {
8141 		unsigned int mtu = mtus[i];
8142 		unsigned int log2 = fls(mtu);
8143 
8144 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
8145 			log2--;
8146 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
8147 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
8148 
8149 		for (w = 0; w < NCCTRL_WIN; ++w) {
8150 			unsigned int inc;
8151 
8152 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
8153 				  CC_MIN_INCR);
8154 
8155 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
8156 				     (w << 16) | (beta[w] << 13) | inc);
8157 		}
8158 	}
8159 }
8160 
8161 /**
8162  *	t4_set_pace_tbl - set the pace table
8163  *	@adap: the adapter
8164  *	@pace_vals: the pace values in microseconds
8165  *	@start: index of the first entry in the HW pace table to set
8166  *	@n: how many entries to set
8167  *
8168  *	Sets (a subset of the) HW pace table.
8169  */
t4_set_pace_tbl(struct adapter * adap,const unsigned int * pace_vals,unsigned int start,unsigned int n)8170 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
8171 		     unsigned int start, unsigned int n)
8172 {
8173 	unsigned int vals[NTX_SCHED], i;
8174 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
8175 
8176 	if (n > NTX_SCHED)
8177 	    return -ERANGE;
8178 
8179 	/* convert values from us to dack ticks, rounding to closest value */
8180 	for (i = 0; i < n; i++, pace_vals++) {
8181 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
8182 		if (vals[i] > 0x7ff)
8183 			return -ERANGE;
8184 		if (*pace_vals && vals[i] == 0)
8185 			return -ERANGE;
8186 	}
8187 	for (i = 0; i < n; i++, start++)
8188 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
8189 	return 0;
8190 }
8191 
8192 /**
8193  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
8194  *	@adap: the adapter
8195  *	@kbps: target rate in Kbps
8196  *	@sched: the scheduler index
8197  *
8198  *	Configure a Tx HW scheduler for the target rate.
8199  */
t4_set_sched_bps(struct adapter * adap,int sched,unsigned int kbps)8200 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
8201 {
8202 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
8203 	unsigned int clk = adap->params.vpd.cclk * 1000;
8204 	unsigned int selected_cpt = 0, selected_bpt = 0;
8205 
8206 	if (kbps > 0) {
8207 		kbps *= 125;     /* -> bytes */
8208 		for (cpt = 1; cpt <= 255; cpt++) {
8209 			tps = clk / cpt;
8210 			bpt = (kbps + tps / 2) / tps;
8211 			if (bpt > 0 && bpt <= 255) {
8212 				v = bpt * tps;
8213 				delta = v >= kbps ? v - kbps : kbps - v;
8214 				if (delta < mindelta) {
8215 					mindelta = delta;
8216 					selected_cpt = cpt;
8217 					selected_bpt = bpt;
8218 				}
8219 			} else if (selected_cpt)
8220 				break;
8221 		}
8222 		if (!selected_cpt)
8223 			return -EINVAL;
8224 	}
8225 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
8226 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
8227 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8228 	if (sched & 1)
8229 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
8230 	else
8231 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
8232 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
8233 	return 0;
8234 }
8235 
8236 /**
8237  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
8238  *	@adap: the adapter
8239  *	@sched: the scheduler index
8240  *	@ipg: the interpacket delay in tenths of nanoseconds
8241  *
8242  *	Set the interpacket delay for a HW packet rate scheduler.
8243  */
t4_set_sched_ipg(struct adapter * adap,int sched,unsigned int ipg)8244 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
8245 {
8246 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8247 
8248 	/* convert ipg to nearest number of core clocks */
8249 	ipg *= core_ticks_per_usec(adap);
8250 	ipg = (ipg + 5000) / 10000;
8251 	if (ipg > M_TXTIMERSEPQ0)
8252 		return -EINVAL;
8253 
8254 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8255 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8256 	if (sched & 1)
8257 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
8258 	else
8259 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
8260 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
8261 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
8262 	return 0;
8263 }
8264 
8265 /*
8266  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
8267  * clocks.  The formula is
8268  *
8269  * bytes/s = bytes256 * 256 * ClkFreq / 4096
8270  *
8271  * which is equivalent to
8272  *
8273  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
8274  */
chan_rate(struct adapter * adap,unsigned int bytes256)8275 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
8276 {
8277 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
8278 
8279 	return v * 62 + v / 2;
8280 }
8281 
8282 /**
8283  *	t4_get_chan_txrate - get the current per channel Tx rates
8284  *	@adap: the adapter
8285  *	@nic_rate: rates for NIC traffic
8286  *	@ofld_rate: rates for offloaded traffic
8287  *
8288  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
8289  *	for each channel.
8290  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)8291 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
8292 {
8293 	u32 v;
8294 
8295 	v = t4_read_reg(adap, A_TP_TX_TRATE);
8296 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
8297 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
8298 	if (adap->chip_params->nchan > 2) {
8299 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
8300 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
8301 	}
8302 
8303 	v = t4_read_reg(adap, A_TP_TX_ORATE);
8304 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
8305 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
8306 	if (adap->chip_params->nchan > 2) {
8307 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
8308 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
8309 	}
8310 }
8311 
8312 /**
8313  *	t4_set_trace_filter - configure one of the tracing filters
8314  *	@adap: the adapter
8315  *	@tp: the desired trace filter parameters
8316  *	@idx: which filter to configure
8317  *	@enable: whether to enable or disable the filter
8318  *
8319  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
8320  *	it indicates that the filter is already written in the register and it
8321  *	just needs to be enabled or disabled.
8322  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)8323 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
8324     int idx, int enable)
8325 {
8326 	int i, ofst;
8327 	u32 match_ctl_a, match_ctl_b;
8328 	u32 data_reg, mask_reg, cfg;
8329 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
8330 
8331 	if (idx < 0 || idx >= NTRACE)
8332 		return -EINVAL;
8333 
8334 	if (chip_id(adap) >= CHELSIO_T7) {
8335 		match_ctl_a = T7_MPS_TRC_FILTER_MATCH_CTL_A(idx);
8336 		match_ctl_b = T7_MPS_TRC_FILTER_MATCH_CTL_B(idx);
8337 	} else {
8338 		match_ctl_a = MPS_TRC_FILTER_MATCH_CTL_A(idx);
8339 		match_ctl_b = MPS_TRC_FILTER_MATCH_CTL_B(idx);
8340 	}
8341 
8342 	if (tp == NULL || !enable) {
8343 		t4_set_reg_field(adap, match_ctl_a, en, enable ? en : 0);
8344 		return 0;
8345 	}
8346 
8347 	/*
8348 	 * TODO - After T4 data book is updated, specify the exact
8349 	 * section below.
8350 	 *
8351 	 * See T4 data book - MPS section for a complete description
8352 	 * of the below if..else handling of A_MPS_TRC_CFG register
8353 	 * value.
8354 	 */
8355 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
8356 	if (cfg & F_TRCMULTIFILTER) {
8357 		/*
8358 		 * If multiple tracers are enabled, then maximum
8359 		 * capture size is 2.5KB (FIFO size of a single channel)
8360 		 * minus 2 flits for CPL_TRACE_PKT header.
8361 		 */
8362 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
8363 			return -EINVAL;
8364 	} else {
8365 		/*
8366 		 * If multiple tracers are disabled, to avoid deadlocks
8367 		 * maximum packet capture size of 9600 bytes is recommended.
8368 		 * Also in this mode, only trace0 can be enabled and running.
8369 		 */
8370 		if (tp->snap_len > 9600 || idx)
8371 			return -EINVAL;
8372 	}
8373 
8374 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
8375 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
8376 	    tp->min_len > M_TFMINPKTSIZE)
8377 		return -EINVAL;
8378 
8379 	/* stop the tracer we'll be changing */
8380 	t4_set_reg_field(adap, match_ctl_a, en, 0);
8381 
8382 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
8383 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
8384 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
8385 
8386 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
8387 		t4_write_reg(adap, data_reg, tp->data[i]);
8388 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
8389 	}
8390 	t4_write_reg(adap, match_ctl_b, V_TFCAPTUREMAX(tp->snap_len) |
8391 		     V_TFMINPKTSIZE(tp->min_len));
8392 	t4_write_reg(adap, match_ctl_a, V_TFOFFSET(tp->skip_ofst) |
8393 		     V_TFLENGTH(tp->skip_len) | en | (is_t4(adap) ?
8394 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
8395 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
8396 
8397 	return 0;
8398 }
8399 
8400 /**
8401  *	t4_get_trace_filter - query one of the tracing filters
8402  *	@adap: the adapter
8403  *	@tp: the current trace filter parameters
8404  *	@idx: which trace filter to query
8405  *	@enabled: non-zero if the filter is enabled
8406  *
8407  *	Returns the current settings of one of the HW tracing filters.
8408  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)8409 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
8410 			 int *enabled)
8411 {
8412 	u32 ctla, ctlb;
8413 	int i, ofst;
8414 	u32 data_reg, mask_reg;
8415 
8416 	if (chip_id(adap) >= CHELSIO_T7) {
8417 		ctla = t4_read_reg(adap, T7_MPS_TRC_FILTER_MATCH_CTL_A(idx));
8418 		ctlb = t4_read_reg(adap, T7_MPS_TRC_FILTER_MATCH_CTL_B(idx));
8419 	} else {
8420 		ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A(idx));
8421 		ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B(idx));
8422 	}
8423 
8424 	if (is_t4(adap)) {
8425 		*enabled = !!(ctla & F_TFEN);
8426 		tp->port =  G_TFPORT(ctla);
8427 		tp->invert = !!(ctla & F_TFINVERTMATCH);
8428 	} else {
8429 		*enabled = !!(ctla & F_T5_TFEN);
8430 		tp->port = G_T5_TFPORT(ctla);
8431 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
8432 	}
8433 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
8434 	tp->min_len = G_TFMINPKTSIZE(ctlb);
8435 	tp->skip_ofst = G_TFOFFSET(ctla);
8436 	tp->skip_len = G_TFLENGTH(ctla);
8437 
8438 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
8439 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
8440 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
8441 
8442 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
8443 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
8444 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
8445 	}
8446 }
8447 
8448 /**
8449  *	t4_set_trace_rss_control - configure the trace rss control register
8450  *	@adap: the adapter
8451  *	@chan: the channel number for RSS control
8452  *	@qid: queue number
8453  *
8454  *	Configures the MPS tracing RSS control parameter for specified
8455  *	@chan channel and @qid queue number.
8456  */
t4_set_trace_rss_control(struct adapter * adap,u8 chan,u16 qid)8457 void t4_set_trace_rss_control(struct adapter *adap, u8 chan, u16 qid)
8458 {
8459 	u32 mps_trc_rss_control;
8460 
8461 	switch (chip_id(adap)) {
8462 	case CHELSIO_T4:
8463 		mps_trc_rss_control = A_MPS_TRC_RSS_CONTROL;
8464 		break;
8465 	case CHELSIO_T5:
8466 	case CHELSIO_T6:
8467 		mps_trc_rss_control = A_MPS_T5_TRC_RSS_CONTROL;
8468 		break;
8469 	case CHELSIO_T7:
8470 	default:
8471 		mps_trc_rss_control = A_T7_MPS_T5_TRC_RSS_CONTROL;
8472 		break;
8473 	}
8474 
8475 	t4_write_reg(adap, mps_trc_rss_control,
8476 		     V_RSSCONTROL(chan) | V_QUEUENUMBER(qid));
8477 }
8478 
8479 /**
8480  *	t4_pmtx_get_stats - returns the HW stats from PMTX
8481  *	@adap: the adapter
8482  *	@cnt: where to store the count statistics
8483  *	@cycles: where to store the cycle statistics
8484  *
8485  *	Returns performance statistics from PMTX.
8486  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])8487 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
8488 {
8489 	int i;
8490 	u32 data[2];
8491 
8492 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
8493 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
8494 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
8495 		if (is_t4(adap))
8496 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
8497 		else {
8498 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
8499 					 A_PM_TX_DBG_DATA, data, 2,
8500 					 chip_id(adap) >= CHELSIO_T7 ?
8501 					 A_T7_PM_TX_DBG_STAT_MSB :
8502 					 A_PM_TX_DBG_STAT_MSB);
8503 			cycles[i] = (((u64)data[0] << 32) | data[1]);
8504 		}
8505 	}
8506 }
8507 
8508 /**
8509  *	t4_pmrx_get_stats - returns the HW stats from PMRX
8510  *	@adap: the adapter
8511  *	@cnt: where to store the count statistics
8512  *	@cycles: where to store the cycle statistics
8513  *
8514  *	Returns performance statistics from PMRX.
8515  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])8516 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
8517 {
8518 	int i;
8519 	u32 data[2];
8520 
8521 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
8522 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
8523 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
8524 		if (is_t4(adap)) {
8525 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
8526 		} else {
8527 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
8528 					 A_PM_RX_DBG_DATA, data, 2,
8529 					 A_PM_RX_DBG_STAT_MSB);
8530 			cycles[i] = (((u64)data[0] << 32) | data[1]);
8531 		}
8532 	}
8533 }
8534 
8535 /**
8536  * t4_pmrx_cache_get_stats - returns the HW PMRX cache stats
8537  * @adap: the adapter
8538  * @stats: where to store the statistics
8539  *
8540  * Returns performance statistics of PMRX cache.
8541  */
t4_pmrx_cache_get_stats(struct adapter * adap,u32 stats[])8542 void t4_pmrx_cache_get_stats(struct adapter *adap, u32 stats[])
8543 {
8544 	u8 i, j;
8545 
8546 	for (i = 0, j = 0; i < T7_PM_RX_CACHE_NSTATS / 3; i++, j += 3) {
8547 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, 0x100 + i);
8548 		stats[j] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
8549 		t4_read_indirect(adap, A_PM_RX_DBG_CTRL, A_PM_RX_DBG_DATA,
8550 				 &stats[j + 1], 2, A_PM_RX_DBG_STAT_MSB);
8551 	}
8552 }
8553 
8554 /**
8555  *	t4_get_mps_bg_map - return the buffer groups associated with a port
8556  *	@adap: the adapter
8557  *	@idx: the port index
8558  *
8559  *	Returns a bitmap indicating which MPS buffer groups are associated
8560  *	with the given port.  Bit i is set if buffer group i is used by the
8561  *	port.
8562  */
t4_get_mps_bg_map(struct adapter * adap,int idx)8563 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
8564 {
8565 	u32 n;
8566 
8567 	if (adap->params.mps_bg_map != UINT32_MAX)
8568 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
8569 
8570 	n = adap->params.nports;
8571 	MPASS(n > 0 && n <= MAX_NPORTS);
8572 	if (n == 1)
8573 		return idx == 0 ? 0xf : 0;
8574 	if (n == 2 && chip_id(adap) <= CHELSIO_T5)
8575 		return idx < 2 ? (3 << (2 * idx)) : 0;
8576 	return 1 << idx;
8577 }
8578 
8579 /*
8580  * TP RX e-channels associated with the port.
8581  */
t4_get_rx_e_chan_map(struct adapter * adap,int idx)8582 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
8583 {
8584 	const u32 n = adap->params.nports;
8585 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
8586 
8587 	switch (adap->params.tp.lb_mode) {
8588 	case 0:
8589 		if (n == 1)
8590 			return (all_chan);
8591 		if (n == 2 && chip_id(adap) <= CHELSIO_T5)
8592 			return (3 << (2 * idx));
8593 		return (1 << idx);
8594 	case 1:
8595 		MPASS(n == 1);
8596 		return (all_chan);
8597 	case 2:
8598 		MPASS(n <= 2);
8599 		return (3 << (2 * idx));
8600 	default:
8601 		CH_ERR(adap, "Unsupported LB mode %d\n",
8602 		    adap->params.tp.lb_mode);
8603 		return (0);
8604 	}
8605 }
8606 
8607 /*
8608  * TP RX c-channel associated with the port.
8609  */
t4_get_rx_c_chan(struct adapter * adap,int idx)8610 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
8611 {
8612 	if (adap->params.tp_ch_map != UINT32_MAX)
8613 		return (adap->params.tp_ch_map >> (8 * idx)) & 0xff;
8614         return 0;
8615 }
8616 
8617 /*
8618  * TP TX c-channel associated with the port.
8619  */
t4_get_tx_c_chan(struct adapter * adap,int idx)8620 static unsigned int t4_get_tx_c_chan(struct adapter *adap, int idx)
8621 {
8622 	if (adap->params.tx_tp_ch_map != UINT32_MAX)
8623 		return (adap->params.tx_tp_ch_map >> (8 * idx)) & 0xff;
8624 	return idx;
8625 }
8626 
8627 /**
8628  *      t4_get_port_type_description - return Port Type string description
8629  *      @port_type: firmware Port Type enumeration
8630  */
t4_get_port_type_description(enum fw_port_type port_type)8631 const char *t4_get_port_type_description(enum fw_port_type port_type)
8632 {
8633 	static const char *const port_type_description[] = {
8634 		"Fiber_XFI",
8635 		"Fiber_XAUI",
8636 		"BT_SGMII",
8637 		"BT_XFI",
8638 		"BT_XAUI",
8639 		"KX4",
8640 		"CX4",
8641 		"KX",
8642 		"KR",
8643 		"SFP",
8644 		"BP_AP",
8645 		"BP4_AP",
8646 		"QSFP_10G",
8647 		"QSA",
8648 		"QSFP",
8649 		"BP40_BA",
8650 		"KR4_100G",
8651 		"CR4_QSFP",
8652 		"CR_QSFP",
8653 		"CR2_QSFP",
8654 		"SFP28",
8655 		"KR_SFP28",
8656 		"KR_XLAUI",
8657 	};
8658 
8659 	if (port_type < ARRAY_SIZE(port_type_description))
8660 		return port_type_description[port_type];
8661 	return "UNKNOWN";
8662 }
8663 
8664 /**
8665  *      t4_get_port_stats_offset - collect port stats relative to a previous
8666  *				   snapshot
8667  *      @adap: The adapter
8668  *      @idx: The port
8669  *      @stats: Current stats to fill
8670  *      @offset: Previous stats snapshot
8671  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)8672 void t4_get_port_stats_offset(struct adapter *adap, int idx,
8673 		struct port_stats *stats,
8674 		struct port_stats *offset)
8675 {
8676 	u64 *s, *o;
8677 	int i;
8678 
8679 	t4_get_port_stats(adap, idx, stats);
8680 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
8681 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
8682 			i++, s++, o++)
8683 		*s -= *o;
8684 }
8685 
8686 /**
8687  *	t4_get_port_stats - collect port statistics
8688  *	@adap: the adapter
8689  *	@idx: the port index
8690  *	@p: the stats structure to fill
8691  *
8692  *	Collect statistics related to the given port from HW.
8693  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)8694 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
8695 {
8696 	struct port_info *pi;
8697 	int port_id, tx_chan;
8698 	u32 bgmap, stat_ctl;
8699 
8700 	port_id  = adap->port_map[idx];
8701 	MPASS(port_id >= 0 && port_id <= adap->params.nports);
8702 	pi = adap->port[port_id];
8703 
8704 #define GET_STAT(name) \
8705 	t4_read_reg64(adap, \
8706 	    t4_port_reg(adap, tx_chan, A_MPS_PORT_STAT_##name##_L));
8707 	memset(p, 0, sizeof(*p));
8708 	for (tx_chan = pi->tx_chan;
8709 	    tx_chan < pi->tx_chan + adap->params.tp.lb_nchan; tx_chan++) {
8710 		p->tx_pause		+= GET_STAT(TX_PORT_PAUSE);
8711 		p->tx_octets		+= GET_STAT(TX_PORT_BYTES);
8712 		p->tx_frames		+= GET_STAT(TX_PORT_FRAMES);
8713 		p->tx_bcast_frames	+= GET_STAT(TX_PORT_BCAST);
8714 		p->tx_mcast_frames	+= GET_STAT(TX_PORT_MCAST);
8715 		p->tx_ucast_frames	+= GET_STAT(TX_PORT_UCAST);
8716 		p->tx_error_frames	+= GET_STAT(TX_PORT_ERROR);
8717 		p->tx_frames_64		+= GET_STAT(TX_PORT_64B);
8718 		p->tx_frames_65_127	+= GET_STAT(TX_PORT_65B_127B);
8719 		p->tx_frames_128_255	+= GET_STAT(TX_PORT_128B_255B);
8720 		p->tx_frames_256_511	+= GET_STAT(TX_PORT_256B_511B);
8721 		p->tx_frames_512_1023	+= GET_STAT(TX_PORT_512B_1023B);
8722 		p->tx_frames_1024_1518	+= GET_STAT(TX_PORT_1024B_1518B);
8723 		p->tx_frames_1519_max	+= GET_STAT(TX_PORT_1519B_MAX);
8724 		p->tx_drop		+= GET_STAT(TX_PORT_DROP);
8725 		p->tx_ppp0		+= GET_STAT(TX_PORT_PPP0);
8726 		p->tx_ppp1		+= GET_STAT(TX_PORT_PPP1);
8727 		p->tx_ppp2		+= GET_STAT(TX_PORT_PPP2);
8728 		p->tx_ppp3		+= GET_STAT(TX_PORT_PPP3);
8729 		p->tx_ppp4		+= GET_STAT(TX_PORT_PPP4);
8730 		p->tx_ppp5		+= GET_STAT(TX_PORT_PPP5);
8731 		p->tx_ppp6		+= GET_STAT(TX_PORT_PPP6);
8732 		p->tx_ppp7		+= GET_STAT(TX_PORT_PPP7);
8733 
8734 		p->rx_pause		+= GET_STAT(RX_PORT_PAUSE);
8735 		p->rx_octets		+= GET_STAT(RX_PORT_BYTES);
8736 		p->rx_frames		+= GET_STAT(RX_PORT_FRAMES);
8737 		p->rx_bcast_frames	+= GET_STAT(RX_PORT_BCAST);
8738 		p->rx_mcast_frames	+= GET_STAT(RX_PORT_MCAST);
8739 		p->rx_ucast_frames	+= GET_STAT(RX_PORT_UCAST);
8740 		p->rx_too_long		+= GET_STAT(RX_PORT_MTU_ERROR);
8741 		p->rx_jabber		+= GET_STAT(RX_PORT_MTU_CRC_ERROR);
8742 		p->rx_len_err		+= GET_STAT(RX_PORT_LEN_ERROR);
8743 		p->rx_symbol_err	+= GET_STAT(RX_PORT_SYM_ERROR);
8744 		p->rx_runt		+= GET_STAT(RX_PORT_LESS_64B);
8745 		p->rx_frames_64		+= GET_STAT(RX_PORT_64B);
8746 		p->rx_frames_65_127	+= GET_STAT(RX_PORT_65B_127B);
8747 		p->rx_frames_128_255	+= GET_STAT(RX_PORT_128B_255B);
8748 		p->rx_frames_256_511	+= GET_STAT(RX_PORT_256B_511B);
8749 		p->rx_frames_512_1023	+= GET_STAT(RX_PORT_512B_1023B);
8750 		p->rx_frames_1024_1518	+= GET_STAT(RX_PORT_1024B_1518B);
8751 		p->rx_frames_1519_max	+= GET_STAT(RX_PORT_1519B_MAX);
8752 		p->rx_ppp0		+= GET_STAT(RX_PORT_PPP0);
8753 		p->rx_ppp1		+= GET_STAT(RX_PORT_PPP1);
8754 		p->rx_ppp2		+= GET_STAT(RX_PORT_PPP2);
8755 		p->rx_ppp3		+= GET_STAT(RX_PORT_PPP3);
8756 		p->rx_ppp4		+= GET_STAT(RX_PORT_PPP4);
8757 		p->rx_ppp5		+= GET_STAT(RX_PORT_PPP5);
8758 		p->rx_ppp6		+= GET_STAT(RX_PORT_PPP6);
8759 		p->rx_ppp7		+= GET_STAT(RX_PORT_PPP7);
8760 		if (!is_t6(adap)) {
8761 			MPASS(pi->fcs_reg == A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
8762 			p->rx_fcs_err	+= GET_STAT(RX_PORT_CRC_ERROR);
8763 		}
8764 	}
8765 #undef GET_STAT
8766 
8767 	if (is_t6(adap) && pi->fcs_reg != -1)
8768 		p->rx_fcs_err = t4_read_reg64(adap,
8769 		    t4_port_reg(adap, pi->tx_chan, pi->fcs_reg)) - pi->fcs_base;
8770 
8771 	if (chip_id(adap) >= CHELSIO_T5) {
8772 		stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
8773 		if (stat_ctl & F_COUNTPAUSESTATTX) {
8774 			p->tx_frames -= p->tx_pause;
8775 			p->tx_octets -= p->tx_pause * 64;
8776 		}
8777 		if (stat_ctl & F_COUNTPAUSEMCTX)
8778 			p->tx_mcast_frames -= p->tx_pause;
8779 		if (stat_ctl & F_COUNTPAUSESTATRX) {
8780 			p->rx_frames -= p->rx_pause;
8781 			p->rx_octets -= p->rx_pause * 64;
8782 		}
8783 		if (stat_ctl & F_COUNTPAUSEMCRX)
8784 			p->rx_mcast_frames -= p->rx_pause;
8785 	}
8786 
8787 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
8788 	bgmap = pi->mps_bg_map;
8789 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
8790 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
8791 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
8792 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
8793 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
8794 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
8795 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
8796 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
8797 #undef GET_STAT_COM
8798 }
8799 
8800 /**
8801  *	t4_get_lb_stats - collect loopback port statistics
8802  *	@adap: the adapter
8803  *	@idx: the loopback port index
8804  *	@p: the stats structure to fill
8805  *
8806  *	Return HW statistics for the given loopback port.
8807  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)8808 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
8809 {
8810 
8811 #define GET_STAT(name) \
8812 	t4_read_reg64(adap, \
8813 	    t4_port_reg(adap, idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))
8814 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
8815 
8816 	p->octets	= GET_STAT(BYTES);
8817 	p->frames	= GET_STAT(FRAMES);
8818 	p->bcast_frames	= GET_STAT(BCAST);
8819 	p->mcast_frames	= GET_STAT(MCAST);
8820 	p->ucast_frames	= GET_STAT(UCAST);
8821 	p->error_frames	= GET_STAT(ERROR);
8822 
8823 	p->frames_64		= GET_STAT(64B);
8824 	p->frames_65_127	= GET_STAT(65B_127B);
8825 	p->frames_128_255	= GET_STAT(128B_255B);
8826 	p->frames_256_511	= GET_STAT(256B_511B);
8827 	p->frames_512_1023	= GET_STAT(512B_1023B);
8828 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
8829 	p->frames_1519_max	= GET_STAT(1519B_MAX);
8830 	p->drop			= GET_STAT(DROP_FRAMES);
8831 
8832 	if (idx < adap->params.nports) {
8833 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
8834 
8835 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
8836 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
8837 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
8838 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
8839 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
8840 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
8841 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
8842 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
8843 	}
8844 
8845 #undef GET_STAT
8846 #undef GET_STAT_COM
8847 }
8848 
8849 /**
8850  *	t4_wol_magic_enable - enable/disable magic packet WoL
8851  *	@adap: the adapter
8852  *	@port: the physical port index
8853  *	@addr: MAC address expected in magic packets, %NULL to disable
8854  *
8855  *	Enables/disables magic packet wake-on-LAN for the selected port.
8856  */
t4_wol_magic_enable(struct adapter * adap,unsigned int port,const u8 * addr)8857 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
8858 			 const u8 *addr)
8859 {
8860 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
8861 
8862 	if (is_t4(adap)) {
8863 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
8864 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
8865 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
8866 	} else if (chip_id(adap) < CHELSIO_T7) {
8867 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
8868 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
8869 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
8870 	} else {
8871 		mag_id_reg_l = T7_PORT_REG(port, A_T7_MAC_PORT_MAGIC_MACID_LO);
8872 		mag_id_reg_h = T7_PORT_REG(port, A_T7_MAC_PORT_MAGIC_MACID_HI);
8873 		port_cfg_reg = T7_PORT_REG(port, A_MAC_PORT_CFG2);
8874 	}
8875 
8876 	if (addr) {
8877 		t4_write_reg(adap, mag_id_reg_l,
8878 			     (addr[2] << 24) | (addr[3] << 16) |
8879 			     (addr[4] << 8) | addr[5]);
8880 		t4_write_reg(adap, mag_id_reg_h,
8881 			     (addr[0] << 8) | addr[1]);
8882 	}
8883 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
8884 			 V_MAGICEN(addr != NULL));
8885 }
8886 
8887 /**
8888  *	t4_wol_pat_enable - enable/disable pattern-based WoL
8889  *	@adap: the adapter
8890  *	@port: the physical port index
8891  *	@map: bitmap of which HW pattern filters to set
8892  *	@mask0: byte mask for bytes 0-63 of a packet
8893  *	@mask1: byte mask for bytes 64-127 of a packet
8894  *	@crc: Ethernet CRC for selected bytes
8895  *	@enable: enable/disable switch
8896  *
8897  *	Sets the pattern filters indicated in @map to mask out the bytes
8898  *	specified in @mask0/@mask1 in received packets and compare the CRC of
8899  *	the resulting packet against @crc.  If @enable is %true pattern-based
8900  *	WoL is enabled, otherwise disabled.
8901  */
t4_wol_pat_enable(struct adapter * adap,unsigned int port,unsigned int map,u64 mask0,u64 mask1,unsigned int crc,bool enable)8902 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
8903 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
8904 {
8905 	int i;
8906 	u32 port_cfg_reg;
8907 
8908 	if (is_t4(adap))
8909 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
8910 	else if (chip_id(adap) < CHELSIO_T7)
8911 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
8912 	else
8913 		port_cfg_reg = T7_PORT_REG(port, A_MAC_PORT_CFG2);
8914 
8915 	if (!enable) {
8916 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
8917 		return 0;
8918 	}
8919 	if (map > 0xff)
8920 		return -EINVAL;
8921 
8922 #define EPIO_REG(name) \
8923 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
8924 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
8925 
8926 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
8927 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
8928 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
8929 
8930 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
8931 		if (!(map & 1))
8932 			continue;
8933 
8934 		/* write byte masks */
8935 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
8936 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
8937 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
8938 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
8939 			return -ETIMEDOUT;
8940 
8941 		/* write CRC */
8942 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
8943 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
8944 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
8945 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
8946 			return -ETIMEDOUT;
8947 	}
8948 #undef EPIO_REG
8949 
8950 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
8951 	return 0;
8952 }
8953 
8954 /*     t4_mk_filtdelwr - create a delete filter WR
8955  *     @ftid: the filter ID
8956  *     @wr: the filter work request to populate
8957  *     @qid: ingress queue to receive the delete notification
8958  *
8959  *     Creates a filter work request to delete the supplied filter.  If @qid is
8960  *     negative the delete notification is suppressed.
8961  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)8962 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
8963 {
8964 	memset(wr, 0, sizeof(*wr));
8965 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
8966 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
8967 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
8968 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
8969 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
8970 	if (qid >= 0)
8971 		wr->rx_chan_rx_rpl_iq =
8972 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
8973 }
8974 
8975 #define INIT_CMD(var, cmd, rd_wr) do { \
8976 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
8977 					F_FW_CMD_REQUEST | \
8978 					F_FW_CMD_##rd_wr); \
8979 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
8980 } while (0)
8981 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)8982 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
8983 			  u32 addr, u32 val)
8984 {
8985 	u32 ldst_addrspace;
8986 	struct fw_ldst_cmd c;
8987 
8988 	memset(&c, 0, sizeof(c));
8989 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
8990 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8991 					F_FW_CMD_REQUEST |
8992 					F_FW_CMD_WRITE |
8993 					ldst_addrspace);
8994 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
8995 	c.u.addrval.addr = cpu_to_be32(addr);
8996 	c.u.addrval.val = cpu_to_be32(val);
8997 
8998 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8999 }
9000 
9001 /**
9002  *	t4_mdio_rd - read a PHY register through MDIO
9003  *	@adap: the adapter
9004  *	@mbox: mailbox to use for the FW command
9005  *	@phy_addr: the PHY address
9006  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
9007  *	@reg: the register to read
9008  *	@valp: where to store the value
9009  *
9010  *	Issues a FW command through the given mailbox to read a PHY register.
9011  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,unsigned int * valp)9012 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
9013 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
9014 {
9015 	int ret;
9016 	u32 ldst_addrspace;
9017 	struct fw_ldst_cmd c;
9018 
9019 	memset(&c, 0, sizeof(c));
9020 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
9021 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9022 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9023 					ldst_addrspace);
9024 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9025 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
9026 					 V_FW_LDST_CMD_MMD(mmd));
9027 	c.u.mdio.raddr = cpu_to_be16(reg);
9028 
9029 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9030 	if (ret == 0)
9031 		*valp = be16_to_cpu(c.u.mdio.rval);
9032 	return ret;
9033 }
9034 
9035 /**
9036  *	t4_mdio_wr - write a PHY register through MDIO
9037  *	@adap: the adapter
9038  *	@mbox: mailbox to use for the FW command
9039  *	@phy_addr: the PHY address
9040  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
9041  *	@reg: the register to write
9042  *	@valp: value to write
9043  *
9044  *	Issues a FW command through the given mailbox to write a PHY register.
9045  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,unsigned int val)9046 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
9047 	       unsigned int mmd, unsigned int reg, unsigned int val)
9048 {
9049 	u32 ldst_addrspace;
9050 	struct fw_ldst_cmd c;
9051 
9052 	memset(&c, 0, sizeof(c));
9053 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
9054 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9055 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9056 					ldst_addrspace);
9057 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9058 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
9059 					 V_FW_LDST_CMD_MMD(mmd));
9060 	c.u.mdio.raddr = cpu_to_be16(reg);
9061 	c.u.mdio.rval = cpu_to_be16(val);
9062 
9063 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9064 }
9065 
9066 /**
9067  *
9068  *	t4_sge_decode_idma_state - decode the idma state
9069  *	@adap: the adapter
9070  *	@state: the state idma is stuck in
9071  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)9072 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
9073 {
9074 	static const char * const t4_decode[] = {
9075 		"IDMA_IDLE",
9076 		"IDMA_PUSH_MORE_CPL_FIFO",
9077 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9078 		"Not used",
9079 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9080 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9081 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9082 		"IDMA_SEND_FIFO_TO_IMSG",
9083 		"IDMA_FL_REQ_DATA_FL_PREP",
9084 		"IDMA_FL_REQ_DATA_FL",
9085 		"IDMA_FL_DROP",
9086 		"IDMA_FL_H_REQ_HEADER_FL",
9087 		"IDMA_FL_H_SEND_PCIEHDR",
9088 		"IDMA_FL_H_PUSH_CPL_FIFO",
9089 		"IDMA_FL_H_SEND_CPL",
9090 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9091 		"IDMA_FL_H_SEND_IP_HDR",
9092 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9093 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9094 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9095 		"IDMA_FL_D_SEND_PCIEHDR",
9096 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9097 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9098 		"IDMA_FL_SEND_PCIEHDR",
9099 		"IDMA_FL_PUSH_CPL_FIFO",
9100 		"IDMA_FL_SEND_CPL",
9101 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9102 		"IDMA_FL_SEND_PAYLOAD",
9103 		"IDMA_FL_REQ_NEXT_DATA_FL",
9104 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9105 		"IDMA_FL_SEND_PADDING",
9106 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9107 		"IDMA_FL_SEND_FIFO_TO_IMSG",
9108 		"IDMA_FL_REQ_DATAFL_DONE",
9109 		"IDMA_FL_REQ_HEADERFL_DONE",
9110 	};
9111 	static const char * const t5_decode[] = {
9112 		"IDMA_IDLE",
9113 		"IDMA_ALMOST_IDLE",
9114 		"IDMA_PUSH_MORE_CPL_FIFO",
9115 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9116 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
9117 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9118 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9119 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9120 		"IDMA_SEND_FIFO_TO_IMSG",
9121 		"IDMA_FL_REQ_DATA_FL",
9122 		"IDMA_FL_DROP",
9123 		"IDMA_FL_DROP_SEND_INC",
9124 		"IDMA_FL_H_REQ_HEADER_FL",
9125 		"IDMA_FL_H_SEND_PCIEHDR",
9126 		"IDMA_FL_H_PUSH_CPL_FIFO",
9127 		"IDMA_FL_H_SEND_CPL",
9128 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9129 		"IDMA_FL_H_SEND_IP_HDR",
9130 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9131 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9132 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9133 		"IDMA_FL_D_SEND_PCIEHDR",
9134 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9135 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9136 		"IDMA_FL_SEND_PCIEHDR",
9137 		"IDMA_FL_PUSH_CPL_FIFO",
9138 		"IDMA_FL_SEND_CPL",
9139 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9140 		"IDMA_FL_SEND_PAYLOAD",
9141 		"IDMA_FL_REQ_NEXT_DATA_FL",
9142 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9143 		"IDMA_FL_SEND_PADDING",
9144 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9145 	};
9146 	static const char * const t6_decode[] = {
9147 		"IDMA_IDLE",
9148 		"IDMA_PUSH_MORE_CPL_FIFO",
9149 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9150 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
9151 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9152 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9153 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9154 		"IDMA_FL_REQ_DATA_FL",
9155 		"IDMA_FL_DROP",
9156 		"IDMA_FL_DROP_SEND_INC",
9157 		"IDMA_FL_H_REQ_HEADER_FL",
9158 		"IDMA_FL_H_SEND_PCIEHDR",
9159 		"IDMA_FL_H_PUSH_CPL_FIFO",
9160 		"IDMA_FL_H_SEND_CPL",
9161 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9162 		"IDMA_FL_H_SEND_IP_HDR",
9163 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9164 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9165 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9166 		"IDMA_FL_D_SEND_PCIEHDR",
9167 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9168 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9169 		"IDMA_FL_SEND_PCIEHDR",
9170 		"IDMA_FL_PUSH_CPL_FIFO",
9171 		"IDMA_FL_SEND_CPL",
9172 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9173 		"IDMA_FL_SEND_PAYLOAD",
9174 		"IDMA_FL_REQ_NEXT_DATA_FL",
9175 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9176 		"IDMA_FL_SEND_PADDING",
9177 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9178 	};
9179 	static const u32 sge_regs[] = {
9180 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
9181 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
9182 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
9183 	};
9184 	const char * const *sge_idma_decode;
9185 	int sge_idma_decode_nstates;
9186 	int i;
9187 	unsigned int chip_version = chip_id(adapter);
9188 
9189 	/* Select the right set of decode strings to dump depending on the
9190 	 * adapter chip type.
9191 	 */
9192 	switch (chip_version) {
9193 	case CHELSIO_T4:
9194 		sge_idma_decode = (const char * const *)t4_decode;
9195 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
9196 		break;
9197 
9198 	case CHELSIO_T5:
9199 		sge_idma_decode = (const char * const *)t5_decode;
9200 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
9201 		break;
9202 
9203 	case CHELSIO_T6:
9204 	case CHELSIO_T7:
9205 		sge_idma_decode = (const char * const *)t6_decode;
9206 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
9207 		break;
9208 
9209 	default:
9210 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
9211 		return;
9212 	}
9213 
9214 	if (state < sge_idma_decode_nstates)
9215 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
9216 	else
9217 		CH_WARN(adapter, "idma state %d unknown\n", state);
9218 
9219 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
9220 		CH_WARN(adapter, "SGE register %#x value %#x\n",
9221 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
9222 }
9223 
9224 /**
9225  *      t4_sge_ctxt_flush - flush the SGE context cache
9226  *      @adap: the adapter
9227  *      @mbox: mailbox to use for the FW command
9228  *
9229  *      Issues a FW command through the given mailbox to flush the
9230  *      SGE context cache.
9231  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox,int ctxt_type)9232 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
9233 {
9234 	int ret;
9235 	u32 ldst_addrspace;
9236 	struct fw_ldst_cmd c;
9237 
9238 	memset(&c, 0, sizeof(c));
9239 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
9240 						 FW_LDST_ADDRSPC_SGE_EGRC :
9241 						 FW_LDST_ADDRSPC_SGE_INGC);
9242 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9243 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9244 					ldst_addrspace);
9245 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9246 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
9247 
9248 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9249 	return ret;
9250 }
9251 
9252 /**
9253  *      t4_fw_hello - establish communication with FW
9254  *      @adap: the adapter
9255  *      @mbox: mailbox to use for the FW command
9256  *      @evt_mbox: mailbox to receive async FW events
9257  *      @master: specifies the caller's willingness to be the device master
9258  *	@state: returns the current device state (if non-NULL)
9259  *
9260  *	Issues a command to establish communication with FW.  Returns either
9261  *	an error (negative integer) or the mailbox of the Master PF.
9262  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)9263 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
9264 		enum dev_master master, enum dev_state *state)
9265 {
9266 	int ret;
9267 	struct fw_hello_cmd c;
9268 	u32 v;
9269 	unsigned int master_mbox;
9270 	int retries = FW_CMD_HELLO_RETRIES;
9271 
9272 retry:
9273 	memset(&c, 0, sizeof(c));
9274 	INIT_CMD(c, HELLO, WRITE);
9275 	c.err_to_clearinit = cpu_to_be32(
9276 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
9277 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
9278 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
9279 					mbox : M_FW_HELLO_CMD_MBMASTER) |
9280 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
9281 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
9282 		F_FW_HELLO_CMD_CLEARINIT);
9283 
9284 	/*
9285 	 * Issue the HELLO command to the firmware.  If it's not successful
9286 	 * but indicates that we got a "busy" or "timeout" condition, retry
9287 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
9288 	 * retry limit, check to see if the firmware left us any error
9289 	 * information and report that if so ...
9290 	 */
9291 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9292 	if (ret != FW_SUCCESS) {
9293 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
9294 			goto retry;
9295 		return ret;
9296 	}
9297 
9298 	v = be32_to_cpu(c.err_to_clearinit);
9299 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
9300 	if (state) {
9301 		if (v & F_FW_HELLO_CMD_ERR)
9302 			*state = DEV_STATE_ERR;
9303 		else if (v & F_FW_HELLO_CMD_INIT)
9304 			*state = DEV_STATE_INIT;
9305 		else
9306 			*state = DEV_STATE_UNINIT;
9307 	}
9308 
9309 	/*
9310 	 * If we're not the Master PF then we need to wait around for the
9311 	 * Master PF Driver to finish setting up the adapter.
9312 	 *
9313 	 * Note that we also do this wait if we're a non-Master-capable PF and
9314 	 * there is no current Master PF; a Master PF may show up momentarily
9315 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
9316 	 * OS loads lots of different drivers rapidly at the same time).  In
9317 	 * this case, the Master PF returned by the firmware will be
9318 	 * M_PCIE_FW_MASTER so the test below will work ...
9319 	 */
9320 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
9321 	    master_mbox != mbox) {
9322 		int waiting = FW_CMD_HELLO_TIMEOUT;
9323 
9324 		/*
9325 		 * Wait for the firmware to either indicate an error or
9326 		 * initialized state.  If we see either of these we bail out
9327 		 * and report the issue to the caller.  If we exhaust the
9328 		 * "hello timeout" and we haven't exhausted our retries, try
9329 		 * again.  Otherwise bail with a timeout error.
9330 		 */
9331 		for (;;) {
9332 			u32 pcie_fw;
9333 
9334 			msleep(50);
9335 			waiting -= 50;
9336 
9337 			/*
9338 			 * If neither Error nor Initialialized are indicated
9339 			 * by the firmware keep waiting till we exhaust our
9340 			 * timeout ... and then retry if we haven't exhausted
9341 			 * our retries ...
9342 			 */
9343 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
9344 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
9345 				if (waiting <= 0) {
9346 					if (retries-- > 0)
9347 						goto retry;
9348 
9349 					return -ETIMEDOUT;
9350 				}
9351 				continue;
9352 			}
9353 
9354 			/*
9355 			 * We either have an Error or Initialized condition
9356 			 * report errors preferentially.
9357 			 */
9358 			if (state) {
9359 				if (pcie_fw & F_PCIE_FW_ERR)
9360 					*state = DEV_STATE_ERR;
9361 				else if (pcie_fw & F_PCIE_FW_INIT)
9362 					*state = DEV_STATE_INIT;
9363 			}
9364 
9365 			/*
9366 			 * If we arrived before a Master PF was selected and
9367 			 * there's not a valid Master PF, grab its identity
9368 			 * for our caller.
9369 			 */
9370 			if (master_mbox == M_PCIE_FW_MASTER &&
9371 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
9372 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
9373 			break;
9374 		}
9375 	}
9376 
9377 	return master_mbox;
9378 }
9379 
9380 /**
9381  *	t4_fw_bye - end communication with FW
9382  *	@adap: the adapter
9383  *	@mbox: mailbox to use for the FW command
9384  *
9385  *	Issues a command to terminate communication with FW.
9386  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)9387 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
9388 {
9389 	struct fw_bye_cmd c;
9390 
9391 	memset(&c, 0, sizeof(c));
9392 	INIT_CMD(c, BYE, WRITE);
9393 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9394 }
9395 
9396 /**
9397  *	t4_fw_reset - issue a reset to FW
9398  *	@adap: the adapter
9399  *	@mbox: mailbox to use for the FW command
9400  *	@reset: specifies the type of reset to perform
9401  *
9402  *	Issues a reset command of the specified type to FW.
9403  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)9404 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
9405 {
9406 	struct fw_reset_cmd c;
9407 
9408 	memset(&c, 0, sizeof(c));
9409 	INIT_CMD(c, RESET, WRITE);
9410 	c.val = cpu_to_be32(reset);
9411 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9412 }
9413 
9414 /**
9415  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
9416  *	@adap: the adapter
9417  *	@mbox: mailbox to use for the FW RESET command (if desired)
9418  *	@force: force uP into RESET even if FW RESET command fails
9419  *
9420  *	Issues a RESET command to firmware (if desired) with a HALT indication
9421  *	and then puts the microprocessor into RESET state.  The RESET command
9422  *	will only be issued if a legitimate mailbox is provided (mbox <=
9423  *	M_PCIE_FW_MASTER).
9424  *
9425  *	This is generally used in order for the host to safely manipulate the
9426  *	adapter without fear of conflicting with whatever the firmware might
9427  *	be doing.  The only way out of this state is to RESTART the firmware
9428  *	...
9429  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)9430 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
9431 {
9432 	int ret = 0;
9433 
9434 	/*
9435 	 * If a legitimate mailbox is provided, issue a RESET command
9436 	 * with a HALT indication.
9437 	 */
9438 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
9439 		struct fw_reset_cmd c;
9440 
9441 		memset(&c, 0, sizeof(c));
9442 		INIT_CMD(c, RESET, WRITE);
9443 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
9444 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
9445 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9446 	}
9447 
9448 	/*
9449 	 * Normally we won't complete the operation if the firmware RESET
9450 	 * command fails but if our caller insists we'll go ahead and put the
9451 	 * uP into RESET.  This can be useful if the firmware is hung or even
9452 	 * missing ...  We'll have to take the risk of putting the uP into
9453 	 * RESET without the cooperation of firmware in that case.
9454 	 *
9455 	 * We also force the firmware's HALT flag to be on in case we bypassed
9456 	 * the firmware RESET command above or we're dealing with old firmware
9457 	 * which doesn't have the HALT capability.  This will serve as a flag
9458 	 * for the incoming firmware to know that it's coming out of a HALT
9459 	 * rather than a RESET ... if it's new enough to understand that ...
9460 	 */
9461 	if (ret == 0 || force) {
9462 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
9463 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
9464 				 F_PCIE_FW_HALT);
9465 	}
9466 
9467 	/*
9468 	 * And we always return the result of the firmware RESET command
9469 	 * even when we force the uP into RESET ...
9470 	 */
9471 	return ret;
9472 }
9473 
9474 /**
9475  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
9476  *	@adap: the adapter
9477  *
9478  *	Restart firmware previously halted by t4_fw_halt().  On successful
9479  *	return the previous PF Master remains as the new PF Master and there
9480  *	is no need to issue a new HELLO command, etc.
9481  */
t4_fw_restart(struct adapter * adap,unsigned int mbox)9482 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
9483 {
9484 	int ms;
9485 
9486 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
9487 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
9488 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
9489 			return FW_SUCCESS;
9490 		msleep(100);
9491 		ms += 100;
9492 	}
9493 
9494 	return -ETIMEDOUT;
9495 }
9496 
9497 /**
9498  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
9499  *	@adap: the adapter
9500  *	@mbox: mailbox to use for the FW RESET command (if desired)
9501  *	@fw_data: the firmware image to write
9502  *	@size: image size
9503  *	@force: force upgrade even if firmware doesn't cooperate
9504  *
9505  *	Perform all of the steps necessary for upgrading an adapter's
9506  *	firmware image.  Normally this requires the cooperation of the
9507  *	existing firmware in order to halt all existing activities
9508  *	but if an invalid mailbox token is passed in we skip that step
9509  *	(though we'll still put the adapter microprocessor into RESET in
9510  *	that case).
9511  *
9512  *	On successful return the new firmware will have been loaded and
9513  *	the adapter will have been fully RESET losing all previous setup
9514  *	state.  On unsuccessful return the adapter may be completely hosed ...
9515  *	positive errno indicates that the adapter is ~probably~ intact, a
9516  *	negative errno indicates that things are looking bad ...
9517  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)9518 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
9519 		  const u8 *fw_data, unsigned int size, int force)
9520 {
9521 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
9522 	unsigned int bootstrap =
9523 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
9524 	int ret;
9525 
9526 	if (!t4_fw_matches_chip(adap, fw_hdr))
9527 		return -EINVAL;
9528 
9529 	if (!bootstrap) {
9530 		ret = t4_fw_halt(adap, mbox, force);
9531 		if (ret < 0 && !force)
9532 			return ret;
9533 	}
9534 
9535 	ret = t4_load_fw(adap, fw_data, size);
9536 	if (ret < 0 || bootstrap)
9537 		return ret;
9538 
9539 	return t4_fw_restart(adap, mbox);
9540 }
9541 
9542 /**
9543  *	t4_fw_initialize - ask FW to initialize the device
9544  *	@adap: the adapter
9545  *	@mbox: mailbox to use for the FW command
9546  *
9547  *	Issues a command to FW to partially initialize the device.  This
9548  *	performs initialization that generally doesn't depend on user input.
9549  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)9550 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
9551 {
9552 	struct fw_initialize_cmd c;
9553 
9554 	memset(&c, 0, sizeof(c));
9555 	INIT_CMD(c, INITIALIZE, WRITE);
9556 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9557 }
9558 
9559 /**
9560  *	t4_query_params_rw - query FW or device parameters
9561  *	@adap: the adapter
9562  *	@mbox: mailbox to use for the FW command
9563  *	@pf: the PF
9564  *	@vf: the VF
9565  *	@nparams: the number of parameters
9566  *	@params: the parameter names
9567  *	@val: the parameter values
9568  *	@rw: Write and read flag
9569  *
9570  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
9571  *	queried at once.
9572  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)9573 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
9574 		       unsigned int vf, unsigned int nparams, const u32 *params,
9575 		       u32 *val, int rw)
9576 {
9577 	int i, ret;
9578 	struct fw_params_cmd c;
9579 	__be32 *p = &c.param[0].mnem;
9580 
9581 	if (nparams > 7)
9582 		return -EINVAL;
9583 
9584 	memset(&c, 0, sizeof(c));
9585 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
9586 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
9587 				  V_FW_PARAMS_CMD_PFN(pf) |
9588 				  V_FW_PARAMS_CMD_VFN(vf));
9589 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9590 
9591 	for (i = 0; i < nparams; i++) {
9592 		*p++ = cpu_to_be32(*params++);
9593 		if (rw)
9594 			*p = cpu_to_be32(*(val + i));
9595 		p++;
9596 	}
9597 
9598 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9599 
9600 	/*
9601 	 * We always copy back the results, even if there's an error.  We'll
9602 	 * get an error if any of the parameters was unknown to the Firmware,
9603 	 * but there will be results for the others ...  (Older Firmware
9604 	 * stopped at the first unknown parameter; newer Firmware processes
9605 	 * them all and flags the unknown parameters with a return value of
9606 	 * ~0UL.)
9607 	 */
9608 	for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
9609 		*val++ = be32_to_cpu(*p);
9610 
9611 	return ret;
9612 }
9613 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)9614 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
9615 		    unsigned int vf, unsigned int nparams, const u32 *params,
9616 		    u32 *val)
9617 {
9618 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
9619 }
9620 
9621 /**
9622  *      t4_set_params_timeout - sets FW or device parameters
9623  *      @adap: the adapter
9624  *      @mbox: mailbox to use for the FW command
9625  *      @pf: the PF
9626  *      @vf: the VF
9627  *      @nparams: the number of parameters
9628  *      @params: the parameter names
9629  *      @val: the parameter values
9630  *      @timeout: the timeout time
9631  *
9632  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
9633  *      specified at once.
9634  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)9635 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
9636 			  unsigned int pf, unsigned int vf,
9637 			  unsigned int nparams, const u32 *params,
9638 			  const u32 *val, int timeout)
9639 {
9640 	struct fw_params_cmd c;
9641 	__be32 *p = &c.param[0].mnem;
9642 
9643 	if (nparams > 7)
9644 		return -EINVAL;
9645 
9646 	memset(&c, 0, sizeof(c));
9647 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
9648 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9649 				  V_FW_PARAMS_CMD_PFN(pf) |
9650 				  V_FW_PARAMS_CMD_VFN(vf));
9651 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9652 
9653 	while (nparams--) {
9654 		*p++ = cpu_to_be32(*params++);
9655 		*p++ = cpu_to_be32(*val++);
9656 	}
9657 
9658 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
9659 }
9660 
9661 /**
9662  *	t4_set_params - sets FW or device parameters
9663  *	@adap: the adapter
9664  *	@mbox: mailbox to use for the FW command
9665  *	@pf: the PF
9666  *	@vf: the VF
9667  *	@nparams: the number of parameters
9668  *	@params: the parameter names
9669  *	@val: the parameter values
9670  *
9671  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
9672  *	specified at once.
9673  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)9674 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
9675 		  unsigned int vf, unsigned int nparams, const u32 *params,
9676 		  const u32 *val)
9677 {
9678 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
9679 				     FW_CMD_MAX_TIMEOUT);
9680 }
9681 
9682 /**
9683  *	t4_cfg_pfvf - configure PF/VF resource limits
9684  *	@adap: the adapter
9685  *	@mbox: mailbox to use for the FW command
9686  *	@pf: the PF being configured
9687  *	@vf: the VF being configured
9688  *	@txq: the max number of egress queues
9689  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
9690  *	@rxqi: the max number of interrupt-capable ingress queues
9691  *	@rxq: the max number of interruptless ingress queues
9692  *	@tc: the PCI traffic class
9693  *	@vi: the max number of virtual interfaces
9694  *	@cmask: the channel access rights mask for the PF/VF
9695  *	@pmask: the port access rights mask for the PF/VF
9696  *	@nexact: the maximum number of exact MPS filters
9697  *	@rcaps: read capabilities
9698  *	@wxcaps: write/execute capabilities
9699  *
9700  *	Configures resource limits and capabilities for a physical or virtual
9701  *	function.
9702  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)9703 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
9704 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
9705 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
9706 		unsigned int vi, unsigned int cmask, unsigned int pmask,
9707 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
9708 {
9709 	struct fw_pfvf_cmd c;
9710 
9711 	memset(&c, 0, sizeof(c));
9712 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
9713 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
9714 				  V_FW_PFVF_CMD_VFN(vf));
9715 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9716 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
9717 				     V_FW_PFVF_CMD_NIQ(rxq));
9718 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
9719 				    V_FW_PFVF_CMD_PMASK(pmask) |
9720 				    V_FW_PFVF_CMD_NEQ(txq));
9721 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
9722 				      V_FW_PFVF_CMD_NVI(vi) |
9723 				      V_FW_PFVF_CMD_NEXACTF(nexact));
9724 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
9725 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
9726 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
9727 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9728 }
9729 
9730 /**
9731  *	t4_alloc_vi_func - allocate a virtual interface
9732  *	@adap: the adapter
9733  *	@mbox: mailbox to use for the FW command
9734  *	@port: physical port associated with the VI
9735  *	@pf: the PF owning the VI
9736  *	@vf: the VF owning the VI
9737  *	@nmac: number of MAC addresses needed (1 to 5)
9738  *	@mac: the MAC addresses of the VI
9739  *	@rss_size: size of RSS table slice associated with this VI
9740  *	@portfunc: which Port Application Function MAC Address is desired
9741  *	@idstype: Intrusion Detection Type
9742  *
9743  *	Allocates a virtual interface for the given physical port.  If @mac is
9744  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
9745  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
9746  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
9747  *	stored consecutively so the space needed is @nmac * 6 bytes.
9748  *	Returns a negative error number or the non-negative VI id.
9749  */
t4_alloc_vi_func(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,u16 * rss_size,uint8_t * vfvld,uint16_t * vin,unsigned int portfunc,unsigned int idstype)9750 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
9751 		     unsigned int port, unsigned int pf, unsigned int vf,
9752 		     unsigned int nmac, u8 *mac, u16 *rss_size,
9753 		     uint8_t *vfvld, uint16_t *vin,
9754 		     unsigned int portfunc, unsigned int idstype)
9755 {
9756 	int ret;
9757 	struct fw_vi_cmd c;
9758 
9759 	memset(&c, 0, sizeof(c));
9760 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
9761 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
9762 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
9763 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
9764 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
9765 				     V_FW_VI_CMD_FUNC(portfunc));
9766 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
9767 	c.nmac = nmac - 1;
9768 	if(!rss_size)
9769 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
9770 
9771 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9772 	if (ret)
9773 		return ret;
9774 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
9775 
9776 	if (mac) {
9777 		memcpy(mac, c.mac, sizeof(c.mac));
9778 		switch (nmac) {
9779 		case 5:
9780 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
9781 		case 4:
9782 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
9783 		case 3:
9784 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
9785 		case 2:
9786 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
9787 		}
9788 	}
9789 	if (rss_size)
9790 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
9791 	if (vfvld) {
9792 		*vfvld = adap->params.viid_smt_extn_support ?
9793 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
9794 		    G_FW_VIID_VIVLD(ret);
9795 	}
9796 	if (vin) {
9797 		*vin = adap->params.viid_smt_extn_support ?
9798 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
9799 		    G_FW_VIID_VIN(ret);
9800 	}
9801 
9802 	return ret;
9803 }
9804 
9805 /**
9806  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
9807  *      @adap: the adapter
9808  *      @mbox: mailbox to use for the FW command
9809  *      @port: physical port associated with the VI
9810  *      @pf: the PF owning the VI
9811  *      @vf: the VF owning the VI
9812  *      @nmac: number of MAC addresses needed (1 to 5)
9813  *      @mac: the MAC addresses of the VI
9814  *      @rss_size: size of RSS table slice associated with this VI
9815  *
9816  *	backwards compatible and convieniance routine to allocate a Virtual
9817  *	Interface with a Ethernet Port Application Function and Intrustion
9818  *	Detection System disabled.
9819  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,u16 * rss_size,uint8_t * vfvld,uint16_t * vin)9820 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
9821 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
9822 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
9823 {
9824 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
9825 				vfvld, vin, FW_VI_FUNC_ETH, 0);
9826 }
9827 
9828 /**
9829  * 	t4_free_vi - free a virtual interface
9830  * 	@adap: the adapter
9831  * 	@mbox: mailbox to use for the FW command
9832  * 	@pf: the PF owning the VI
9833  * 	@vf: the VF owning the VI
9834  * 	@viid: virtual interface identifiler
9835  *
9836  * 	Free a previously allocated virtual interface.
9837  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)9838 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
9839 	       unsigned int vf, unsigned int viid)
9840 {
9841 	struct fw_vi_cmd c;
9842 
9843 	memset(&c, 0, sizeof(c));
9844 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
9845 				  F_FW_CMD_REQUEST |
9846 				  F_FW_CMD_EXEC |
9847 				  V_FW_VI_CMD_PFN(pf) |
9848 				  V_FW_VI_CMD_VFN(vf));
9849 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
9850 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
9851 
9852 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9853 }
9854 
9855 /**
9856  *	t4_set_rxmode - set Rx properties of a virtual interface
9857  *	@adap: the adapter
9858  *	@mbox: mailbox to use for the FW command
9859  *	@viid: the VI id
9860  *	@mtu: the new MTU or -1
9861  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
9862  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
9863  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
9864  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
9865  *	@sleep_ok: if true we may sleep while awaiting command completion
9866  *
9867  *	Sets Rx properties of a virtual interface.
9868  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)9869 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
9870 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
9871 		  bool sleep_ok)
9872 {
9873 	struct fw_vi_rxmode_cmd c;
9874 
9875 	/* convert to FW values */
9876 	if (mtu < 0)
9877 		mtu = M_FW_VI_RXMODE_CMD_MTU;
9878 	if (promisc < 0)
9879 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
9880 	if (all_multi < 0)
9881 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
9882 	if (bcast < 0)
9883 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
9884 	if (vlanex < 0)
9885 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
9886 
9887 	memset(&c, 0, sizeof(c));
9888 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
9889 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9890 				   V_FW_VI_RXMODE_CMD_VIID(viid));
9891 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9892 	c.mtu_to_vlanexen =
9893 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
9894 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
9895 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
9896 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
9897 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
9898 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
9899 }
9900 
9901 /**
9902  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
9903  *	@adap: the adapter
9904  *	@viid: the VI id
9905  *	@mac: the MAC address
9906  *	@mask: the mask
9907  *	@vni: the VNI id for the tunnel protocol
9908  *	@vni_mask: mask for the VNI id
9909  *	@dip_hit: to enable DIP match for the MPS entry
9910  *	@lookup_type: MAC address for inner (1) or outer (0) header
9911  *	@sleep_ok: call is allowed to sleep
9912  *
9913  *	Allocates an MPS entry with specified MAC address and VNI value.
9914  *
9915  *	Returns a negative error number or the allocated index for this mac.
9916  */
t4_alloc_encap_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int vni,unsigned int vni_mask,u8 dip_hit,u8 lookup_type,bool sleep_ok)9917 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
9918 			    const u8 *addr, const u8 *mask, unsigned int vni,
9919 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
9920 			    bool sleep_ok)
9921 {
9922 	struct fw_vi_mac_cmd c;
9923 	struct fw_vi_mac_vni *p = c.u.exact_vni;
9924 	int ret = 0;
9925 	u32 val;
9926 
9927 	memset(&c, 0, sizeof(c));
9928 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
9929 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9930 				   V_FW_VI_MAC_CMD_VIID(viid));
9931 	val = V_FW_CMD_LEN16(1) |
9932 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
9933 	c.freemacs_to_len16 = cpu_to_be32(val);
9934 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
9935 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
9936 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
9937 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
9938 
9939 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
9940 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
9941 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
9942 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
9943 
9944 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
9945 	if (ret == 0)
9946 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
9947 	return ret;
9948 }
9949 
9950 /**
9951  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
9952  *	@adap: the adapter
9953  *	@viid: the VI id
9954  *	@mac: the MAC address
9955  *	@mask: the mask
9956  *	@idx: index at which to add this entry
9957  *	@port_id: the port index
9958  *	@lookup_type: MAC address for inner (1) or outer (0) header
9959  *	@sleep_ok: call is allowed to sleep
9960  *
9961  *	Adds the mac entry at the specified index using raw mac interface.
9962  *
9963  *	Returns a negative error number or the allocated index for this mac.
9964  */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)9965 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
9966 			  const u8 *addr, const u8 *mask, unsigned int idx,
9967 			  u8 lookup_type, u8 port_id, bool sleep_ok)
9968 {
9969 	int ret = 0;
9970 	struct fw_vi_mac_cmd c;
9971 	struct fw_vi_mac_raw *p = &c.u.raw;
9972 	u32 val;
9973 
9974 	memset(&c, 0, sizeof(c));
9975 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
9976 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9977 				   V_FW_VI_MAC_CMD_VIID(viid));
9978 	val = V_FW_CMD_LEN16(1) |
9979 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
9980 	c.freemacs_to_len16 = cpu_to_be32(val);
9981 
9982 	/* Specify that this is an inner mac address */
9983 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
9984 
9985 	/* Lookup Type. Outer header: 0, Inner header: 1 */
9986 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
9987 				   V_DATAPORTNUM(port_id));
9988 	/* Lookup mask and port mask */
9989 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
9990 				    V_DATAPORTNUM(M_DATAPORTNUM));
9991 
9992 	/* Copy the address and the mask */
9993 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
9994 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
9995 
9996 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
9997 	if (ret == 0) {
9998 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
9999 		if (ret != idx)
10000 			ret = -ENOMEM;
10001 	}
10002 
10003 	return ret;
10004 }
10005 
10006 /**
10007  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
10008  *	@adap: the adapter
10009  *	@mbox: mailbox to use for the FW command
10010  *	@viid: the VI id
10011  *	@free: if true any existing filters for this VI id are first removed
10012  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
10013  *	@addr: the MAC address(es)
10014  *	@idx: where to store the index of each allocated filter
10015  *	@hash: pointer to hash address filter bitmap
10016  *	@sleep_ok: call is allowed to sleep
10017  *
10018  *	Allocates an exact-match filter for each of the supplied addresses and
10019  *	sets it to the corresponding address.  If @idx is not %NULL it should
10020  *	have at least @naddr entries, each of which will be set to the index of
10021  *	the filter allocated for the corresponding MAC address.  If a filter
10022  *	could not be allocated for an address its index is set to 0xffff.
10023  *	If @hash is not %NULL addresses that fail to allocate an exact filter
10024  *	are hashed and update the hash filter bitmap pointed at by @hash.
10025  *
10026  *	Returns a negative error number or the number of filters allocated.
10027  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)10028 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
10029 		      unsigned int viid, bool free, unsigned int naddr,
10030 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
10031 {
10032 	int offset, ret = 0;
10033 	struct fw_vi_mac_cmd c;
10034 	unsigned int nfilters = 0;
10035 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
10036 	unsigned int rem = naddr;
10037 
10038 	if (naddr > max_naddr)
10039 		return -EINVAL;
10040 
10041 	for (offset = 0; offset < naddr ; /**/) {
10042 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
10043 					 ? rem
10044 					 : ARRAY_SIZE(c.u.exact));
10045 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
10046 						     u.exact[fw_naddr]), 16);
10047 		struct fw_vi_mac_exact *p;
10048 		int i;
10049 
10050 		memset(&c, 0, sizeof(c));
10051 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10052 					   F_FW_CMD_REQUEST |
10053 					   F_FW_CMD_WRITE |
10054 					   V_FW_CMD_EXEC(free) |
10055 					   V_FW_VI_MAC_CMD_VIID(viid));
10056 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
10057 						  V_FW_CMD_LEN16(len16));
10058 
10059 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10060 			p->valid_to_idx =
10061 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10062 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
10063 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
10064 		}
10065 
10066 		/*
10067 		 * It's okay if we run out of space in our MAC address arena.
10068 		 * Some of the addresses we submit may get stored so we need
10069 		 * to run through the reply to see what the results were ...
10070 		 */
10071 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
10072 		if (ret && ret != -FW_ENOMEM)
10073 			break;
10074 
10075 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10076 			u16 index = G_FW_VI_MAC_CMD_IDX(
10077 						be16_to_cpu(p->valid_to_idx));
10078 
10079 			if (idx)
10080 				idx[offset+i] = (index >=  max_naddr
10081 						 ? 0xffff
10082 						 : index);
10083 			if (index < max_naddr)
10084 				nfilters++;
10085 			else if (hash)
10086 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
10087 		}
10088 
10089 		free = false;
10090 		offset += fw_naddr;
10091 		rem -= fw_naddr;
10092 	}
10093 
10094 	if (ret == 0 || ret == -FW_ENOMEM)
10095 		ret = nfilters;
10096 	return ret;
10097 }
10098 
10099 /**
10100  *	t4_free_encap_mac_filt - frees MPS entry at given index
10101  *	@adap: the adapter
10102  *	@viid: the VI id
10103  *	@idx: index of MPS entry to be freed
10104  *	@sleep_ok: call is allowed to sleep
10105  *
10106  *	Frees the MPS entry at supplied index
10107  *
10108  *	Returns a negative error number or zero on success
10109  */
t4_free_encap_mac_filt(struct adapter * adap,unsigned int viid,int idx,bool sleep_ok)10110 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
10111 			   int idx, bool sleep_ok)
10112 {
10113 	struct fw_vi_mac_exact *p;
10114 	struct fw_vi_mac_cmd c;
10115 	u8 addr[] = {0,0,0,0,0,0};
10116 	int ret = 0;
10117 	u32 exact;
10118 
10119 	memset(&c, 0, sizeof(c));
10120 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10121 				   F_FW_CMD_REQUEST |
10122 				   F_FW_CMD_WRITE |
10123 				   V_FW_CMD_EXEC(0) |
10124 				   V_FW_VI_MAC_CMD_VIID(viid));
10125 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
10126 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10127 					  exact |
10128 					  V_FW_CMD_LEN16(1));
10129 	p = c.u.exact;
10130 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10131 				      V_FW_VI_MAC_CMD_IDX(idx));
10132 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
10133 
10134 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
10135 	return ret;
10136 }
10137 
10138 /**
10139  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
10140  *	@adap: the adapter
10141  *	@viid: the VI id
10142  *	@addr: the MAC address
10143  *	@mask: the mask
10144  *	@idx: index of the entry in mps tcam
10145  *	@lookup_type: MAC address for inner (1) or outer (0) header
10146  *	@port_id: the port index
10147  *	@sleep_ok: call is allowed to sleep
10148  *
10149  *	Removes the mac entry at the specified index using raw mac interface.
10150  *
10151  *	Returns a negative error number on failure.
10152  */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)10153 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
10154 			 const u8 *addr, const u8 *mask, unsigned int idx,
10155 			 u8 lookup_type, u8 port_id, bool sleep_ok)
10156 {
10157 	struct fw_vi_mac_cmd c;
10158 	struct fw_vi_mac_raw *p = &c.u.raw;
10159 	u32 raw;
10160 
10161 	memset(&c, 0, sizeof(c));
10162 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10163 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10164 				   V_FW_CMD_EXEC(0) |
10165 				   V_FW_VI_MAC_CMD_VIID(viid));
10166 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
10167 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10168 					  raw |
10169 					  V_FW_CMD_LEN16(1));
10170 
10171 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
10172 				     FW_VI_MAC_ID_BASED_FREE);
10173 
10174 	/* Lookup Type. Outer header: 0, Inner header: 1 */
10175 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
10176 				   V_DATAPORTNUM(port_id));
10177 	/* Lookup mask and port mask */
10178 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
10179 				    V_DATAPORTNUM(M_DATAPORTNUM));
10180 
10181 	/* Copy the address and the mask */
10182 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
10183 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
10184 
10185 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
10186 }
10187 
10188 /**
10189  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
10190  *	@adap: the adapter
10191  *	@mbox: mailbox to use for the FW command
10192  *	@viid: the VI id
10193  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
10194  *	@addr: the MAC address(es)
10195  *	@sleep_ok: call is allowed to sleep
10196  *
10197  *	Frees the exact-match filter for each of the supplied addresses
10198  *
10199  *	Returns a negative error number or the number of filters freed.
10200  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)10201 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
10202 		      unsigned int viid, unsigned int naddr,
10203 		      const u8 **addr, bool sleep_ok)
10204 {
10205 	int offset, ret = 0;
10206 	struct fw_vi_mac_cmd c;
10207 	unsigned int nfilters = 0;
10208 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
10209 	unsigned int rem = naddr;
10210 
10211 	if (naddr > max_naddr)
10212 		return -EINVAL;
10213 
10214 	for (offset = 0; offset < (int)naddr ; /**/) {
10215 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
10216 					 ? rem
10217 					 : ARRAY_SIZE(c.u.exact));
10218 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
10219 						     u.exact[fw_naddr]), 16);
10220 		struct fw_vi_mac_exact *p;
10221 		int i;
10222 
10223 		memset(&c, 0, sizeof(c));
10224 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10225 				     F_FW_CMD_REQUEST |
10226 				     F_FW_CMD_WRITE |
10227 				     V_FW_CMD_EXEC(0) |
10228 				     V_FW_VI_MAC_CMD_VIID(viid));
10229 		c.freemacs_to_len16 =
10230 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10231 					    V_FW_CMD_LEN16(len16));
10232 
10233 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
10234 			p->valid_to_idx = cpu_to_be16(
10235 				F_FW_VI_MAC_CMD_VALID |
10236 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
10237 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
10238 		}
10239 
10240 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
10241 		if (ret)
10242 			break;
10243 
10244 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10245 			u16 index = G_FW_VI_MAC_CMD_IDX(
10246 						be16_to_cpu(p->valid_to_idx));
10247 
10248 			if (index < max_naddr)
10249 				nfilters++;
10250 		}
10251 
10252 		offset += fw_naddr;
10253 		rem -= fw_naddr;
10254 	}
10255 
10256 	if (ret == 0)
10257 		ret = nfilters;
10258 	return ret;
10259 }
10260 
10261 /**
10262  *	t4_change_mac - modifies the exact-match filter for a MAC address
10263  *	@adap: the adapter
10264  *	@mbox: mailbox to use for the FW command
10265  *	@viid: the VI id
10266  *	@idx: index of existing filter for old value of MAC address, or -1
10267  *	@addr: the new MAC address value
10268  *	@persist: whether a new MAC allocation should be persistent
10269  *	@smt_idx: add MAC to SMT and return its index, or NULL
10270  *
10271  *	Modifies an exact-match filter and sets it to the new MAC address if
10272  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
10273  *	latter case the address is added persistently if @persist is %true.
10274  *
10275  *	Note that in general it is not possible to modify the value of a given
10276  *	filter so the generic way to modify an address filter is to free the one
10277  *	being used by the old address value and allocate a new filter for the
10278  *	new address value.
10279  *
10280  *	Returns a negative error number or the index of the filter with the new
10281  *	MAC value.  Note that this index may differ from @idx.
10282  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,uint16_t * smt_idx)10283 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
10284 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
10285 {
10286 	int ret, mode;
10287 	struct fw_vi_mac_cmd c;
10288 	struct fw_vi_mac_exact *p = c.u.exact;
10289 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
10290 
10291 	if (idx < 0)		/* new allocation */
10292 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
10293 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
10294 
10295 	memset(&c, 0, sizeof(c));
10296 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10297 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10298 				   V_FW_VI_MAC_CMD_VIID(viid));
10299 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
10300 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10301 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
10302 				      V_FW_VI_MAC_CMD_IDX(idx));
10303 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
10304 
10305 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10306 	if (ret == 0) {
10307 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
10308 		if (ret >= max_mac_addr)
10309 			ret = -ENOMEM;
10310 		if (smt_idx) {
10311 			if (adap->params.viid_smt_extn_support)
10312 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
10313 			else {
10314 				if (chip_id(adap) <= CHELSIO_T5)
10315 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
10316 				else
10317 					*smt_idx = viid & M_FW_VIID_VIN;
10318 			}
10319 		}
10320 	}
10321 	return ret;
10322 }
10323 
10324 /**
10325  *	t4_set_addr_hash - program the MAC inexact-match hash filter
10326  *	@adap: the adapter
10327  *	@mbox: mailbox to use for the FW command
10328  *	@viid: the VI id
10329  *	@ucast: whether the hash filter should also match unicast addresses
10330  *	@vec: the value to be written to the hash filter
10331  *	@sleep_ok: call is allowed to sleep
10332  *
10333  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
10334  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)10335 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
10336 		     bool ucast, u64 vec, bool sleep_ok)
10337 {
10338 	struct fw_vi_mac_cmd c;
10339 	u32 val;
10340 
10341 	memset(&c, 0, sizeof(c));
10342 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10343 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10344 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10345 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
10346 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
10347 	c.freemacs_to_len16 = cpu_to_be32(val);
10348 	c.u.hash.hashvec = cpu_to_be64(vec);
10349 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
10350 }
10351 
10352 /**
10353  *      t4_enable_vi_params - enable/disable a virtual interface
10354  *      @adap: the adapter
10355  *      @mbox: mailbox to use for the FW command
10356  *      @viid: the VI id
10357  *      @rx_en: 1=enable Rx, 0=disable Rx
10358  *      @tx_en: 1=enable Tx, 0=disable Tx
10359  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
10360  *
10361  *      Enables/disables a virtual interface.  Note that setting DCB Enable
10362  *      only makes sense when enabling a Virtual Interface ...
10363  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)10364 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
10365 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
10366 {
10367 	struct fw_vi_enable_cmd c;
10368 
10369 	memset(&c, 0, sizeof(c));
10370 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
10371 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10372 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10373 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
10374 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
10375 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
10376 				     FW_LEN16(c));
10377 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
10378 }
10379 
10380 /**
10381  *	t4_enable_vi - enable/disable a virtual interface
10382  *	@adap: the adapter
10383  *	@mbox: mailbox to use for the FW command
10384  *	@viid: the VI id
10385  *	@rx_en: 1=enable Rx, 0=disable Rx
10386  *	@tx_en: 1=enable Tx, 0=disable Tx
10387  *
10388  *	Enables/disables a virtual interface.  Note that setting DCB Enable
10389  *	only makes sense when enabling a Virtual Interface ...
10390  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)10391 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
10392 		 bool rx_en, bool tx_en)
10393 {
10394 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
10395 }
10396 
10397 /**
10398  *	t4_identify_port - identify a VI's port by blinking its LED
10399  *	@adap: the adapter
10400  *	@mbox: mailbox to use for the FW command
10401  *	@viid: the VI id
10402  *	@nblinks: how many times to blink LED at 2.5 Hz
10403  *
10404  *	Identifies a VI's port by blinking its LED.
10405  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)10406 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
10407 		     unsigned int nblinks)
10408 {
10409 	struct fw_vi_enable_cmd c;
10410 
10411 	memset(&c, 0, sizeof(c));
10412 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
10413 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10414 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10415 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
10416 	c.blinkdur = cpu_to_be16(nblinks);
10417 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10418 }
10419 
10420 /**
10421  *	t4_iq_stop - stop an ingress queue and its FLs
10422  *	@adap: the adapter
10423  *	@mbox: mailbox to use for the FW command
10424  *	@pf: the PF owning the queues
10425  *	@vf: the VF owning the queues
10426  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
10427  *	@iqid: ingress queue id
10428  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
10429  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
10430  *
10431  *	Stops an ingress queue and its associated FLs, if any.  This causes
10432  *	any current or future data/messages destined for these queues to be
10433  *	tossed.
10434  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)10435 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
10436 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
10437 	       unsigned int fl0id, unsigned int fl1id)
10438 {
10439 	struct fw_iq_cmd c;
10440 
10441 	memset(&c, 0, sizeof(c));
10442 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
10443 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
10444 				  V_FW_IQ_CMD_VFN(vf));
10445 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
10446 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
10447 	c.iqid = cpu_to_be16(iqid);
10448 	c.fl0id = cpu_to_be16(fl0id);
10449 	c.fl1id = cpu_to_be16(fl1id);
10450 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10451 }
10452 
10453 /**
10454  *	t4_iq_free - free an ingress queue and its FLs
10455  *	@adap: the adapter
10456  *	@mbox: mailbox to use for the FW command
10457  *	@pf: the PF owning the queues
10458  *	@vf: the VF owning the queues
10459  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
10460  *	@iqid: ingress queue id
10461  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
10462  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
10463  *
10464  *	Frees an ingress queue and its associated FLs, if any.
10465  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)10466 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10467 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
10468 	       unsigned int fl0id, unsigned int fl1id)
10469 {
10470 	struct fw_iq_cmd c;
10471 
10472 	memset(&c, 0, sizeof(c));
10473 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
10474 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
10475 				  V_FW_IQ_CMD_VFN(vf));
10476 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
10477 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
10478 	c.iqid = cpu_to_be16(iqid);
10479 	c.fl0id = cpu_to_be16(fl0id);
10480 	c.fl1id = cpu_to_be16(fl1id);
10481 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10482 }
10483 
10484 /**
10485  *	t4_eth_eq_stop - stop an Ethernet egress queue
10486  *	@adap: the adapter
10487  *	@mbox: mailbox to use for the FW command
10488  *	@pf: the PF owning the queues
10489  *	@vf: the VF owning the queues
10490  *	@eqid: egress queue id
10491  *
10492  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
10493  *	freed but is not otherwise functional after this call.
10494  */
t4_eth_eq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10495 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
10496                    unsigned int vf, unsigned int eqid)
10497 {
10498 	struct fw_eq_eth_cmd c;
10499 
10500 	memset(&c, 0, sizeof(c));
10501 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
10502 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10503 				  V_FW_EQ_ETH_CMD_PFN(pf) |
10504 				  V_FW_EQ_ETH_CMD_VFN(vf));
10505 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
10506 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
10507 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10508 }
10509 
10510 /**
10511  *	t4_eth_eq_free - free an Ethernet egress queue
10512  *	@adap: the adapter
10513  *	@mbox: mailbox to use for the FW command
10514  *	@pf: the PF owning the queue
10515  *	@vf: the VF owning the queue
10516  *	@eqid: egress queue id
10517  *
10518  *	Frees an Ethernet egress queue.
10519  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10520 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10521 		   unsigned int vf, unsigned int eqid)
10522 {
10523 	struct fw_eq_eth_cmd c;
10524 
10525 	memset(&c, 0, sizeof(c));
10526 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
10527 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10528 				  V_FW_EQ_ETH_CMD_PFN(pf) |
10529 				  V_FW_EQ_ETH_CMD_VFN(vf));
10530 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
10531 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
10532 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10533 }
10534 
10535 /**
10536  *	t4_ctrl_eq_free - free a control egress queue
10537  *	@adap: the adapter
10538  *	@mbox: mailbox to use for the FW command
10539  *	@pf: the PF owning the queue
10540  *	@vf: the VF owning the queue
10541  *	@eqid: egress queue id
10542  *
10543  *	Frees a control egress queue.
10544  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10545 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10546 		    unsigned int vf, unsigned int eqid)
10547 {
10548 	struct fw_eq_ctrl_cmd c;
10549 
10550 	memset(&c, 0, sizeof(c));
10551 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
10552 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10553 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
10554 				  V_FW_EQ_CTRL_CMD_VFN(vf));
10555 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
10556 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
10557 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10558 }
10559 
10560 /**
10561  *	t4_ofld_eq_free - free an offload egress queue
10562  *	@adap: the adapter
10563  *	@mbox: mailbox to use for the FW command
10564  *	@pf: the PF owning the queue
10565  *	@vf: the VF owning the queue
10566  *	@eqid: egress queue id
10567  *
10568  *	Frees a control egress queue.
10569  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10570 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10571 		    unsigned int vf, unsigned int eqid)
10572 {
10573 	struct fw_eq_ofld_cmd c;
10574 
10575 	memset(&c, 0, sizeof(c));
10576 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
10577 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10578 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
10579 				  V_FW_EQ_OFLD_CMD_VFN(vf));
10580 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
10581 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
10582 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10583 }
10584 
10585 /**
10586  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
10587  *	@link_down_rc: Link Down Reason Code
10588  *
10589  *	Returns a string representation of the Link Down Reason Code.
10590  */
t4_link_down_rc_str(unsigned char link_down_rc)10591 const char *t4_link_down_rc_str(unsigned char link_down_rc)
10592 {
10593 	static const char *reason[] = {
10594 		"Link Down",
10595 		"Remote Fault",
10596 		"Auto-negotiation Failure",
10597 		"Reserved3",
10598 		"Insufficient Airflow",
10599 		"Unable To Determine Reason",
10600 		"No RX Signal Detected",
10601 		"Reserved7",
10602 	};
10603 
10604 	if (link_down_rc >= ARRAY_SIZE(reason))
10605 		return "Bad Reason Code";
10606 
10607 	return reason[link_down_rc];
10608 }
10609 
10610 /*
10611  * Return the highest speed set in the port capabilities, in Mb/s.
10612  */
fwcap_to_speed(uint32_t caps)10613 unsigned int fwcap_to_speed(uint32_t caps)
10614 {
10615 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
10616 		do { \
10617 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
10618 				return __speed; \
10619 		} while (0)
10620 
10621 	TEST_SPEED_RETURN(400G, 400000);
10622 	TEST_SPEED_RETURN(200G, 200000);
10623 	TEST_SPEED_RETURN(100G, 100000);
10624 	TEST_SPEED_RETURN(50G,   50000);
10625 	TEST_SPEED_RETURN(40G,   40000);
10626 	TEST_SPEED_RETURN(25G,   25000);
10627 	TEST_SPEED_RETURN(10G,   10000);
10628 	TEST_SPEED_RETURN(1G,     1000);
10629 	TEST_SPEED_RETURN(100M,    100);
10630 
10631 	#undef TEST_SPEED_RETURN
10632 
10633 	return 0;
10634 }
10635 
10636 /*
10637  * Return the port capabilities bit for the given speed, which is in Mb/s.
10638  */
speed_to_fwcap(unsigned int speed)10639 uint32_t speed_to_fwcap(unsigned int speed)
10640 {
10641 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
10642 		do { \
10643 			if (speed == __speed) \
10644 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
10645 		} while (0)
10646 
10647 	TEST_SPEED_RETURN(400G, 400000);
10648 	TEST_SPEED_RETURN(200G, 200000);
10649 	TEST_SPEED_RETURN(100G, 100000);
10650 	TEST_SPEED_RETURN(50G,   50000);
10651 	TEST_SPEED_RETURN(40G,   40000);
10652 	TEST_SPEED_RETURN(25G,   25000);
10653 	TEST_SPEED_RETURN(10G,   10000);
10654 	TEST_SPEED_RETURN(1G,     1000);
10655 	TEST_SPEED_RETURN(100M,    100);
10656 
10657 	#undef TEST_SPEED_RETURN
10658 
10659 	return 0;
10660 }
10661 
10662 /*
10663  * Return the port capabilities bit for the highest speed in the capabilities.
10664  */
fwcap_top_speed(uint32_t caps)10665 uint32_t fwcap_top_speed(uint32_t caps)
10666 {
10667 	#define TEST_SPEED_RETURN(__caps_speed) \
10668 		do { \
10669 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
10670 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
10671 		} while (0)
10672 
10673 	TEST_SPEED_RETURN(400G);
10674 	TEST_SPEED_RETURN(200G);
10675 	TEST_SPEED_RETURN(100G);
10676 	TEST_SPEED_RETURN(50G);
10677 	TEST_SPEED_RETURN(40G);
10678 	TEST_SPEED_RETURN(25G);
10679 	TEST_SPEED_RETURN(10G);
10680 	TEST_SPEED_RETURN(1G);
10681 	TEST_SPEED_RETURN(100M);
10682 
10683 	#undef TEST_SPEED_RETURN
10684 
10685 	return 0;
10686 }
10687 
10688 /**
10689  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
10690  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
10691  *
10692  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
10693  *	32-bit Port Capabilities value.
10694  */
lstatus_to_fwcap(u32 lstatus)10695 static uint32_t lstatus_to_fwcap(u32 lstatus)
10696 {
10697 	uint32_t linkattr = 0;
10698 
10699 	/*
10700 	 * Unfortunately the format of the Link Status in the old
10701 	 * 16-bit Port Information message isn't the same as the
10702 	 * 16-bit Port Capabilities bitfield used everywhere else ...
10703 	 */
10704 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
10705 		linkattr |= FW_PORT_CAP32_FC_RX;
10706 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
10707 		linkattr |= FW_PORT_CAP32_FC_TX;
10708 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
10709 		linkattr |= FW_PORT_CAP32_SPEED_100M;
10710 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
10711 		linkattr |= FW_PORT_CAP32_SPEED_1G;
10712 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
10713 		linkattr |= FW_PORT_CAP32_SPEED_10G;
10714 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
10715 		linkattr |= FW_PORT_CAP32_SPEED_25G;
10716 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
10717 		linkattr |= FW_PORT_CAP32_SPEED_40G;
10718 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
10719 		linkattr |= FW_PORT_CAP32_SPEED_100G;
10720 
10721 	return linkattr;
10722 }
10723 
10724 /*
10725  * Updates all fields owned by the common code in port_info and link_config
10726  * based on information provided by the firmware.  Does not touch any
10727  * requested_* field.
10728  */
handle_port_info(struct port_info * pi,const struct fw_port_cmd * p,enum fw_port_action action,bool * mod_changed,bool * link_changed)10729 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
10730     enum fw_port_action action, bool *mod_changed, bool *link_changed)
10731 {
10732 	struct link_config old_lc, *lc = &pi->link_cfg;
10733 	unsigned char fc;
10734 	u32 stat, linkattr;
10735 	int old_ptype, old_mtype;
10736 
10737 	old_ptype = pi->port_type;
10738 	old_mtype = pi->mod_type;
10739 	old_lc = *lc;
10740 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
10741 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
10742 
10743 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
10744 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
10745 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
10746 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
10747 
10748 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
10749 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
10750 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
10751 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
10752 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
10753 
10754 		linkattr = lstatus_to_fwcap(stat);
10755 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
10756 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
10757 
10758 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
10759 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
10760 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
10761 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
10762 
10763 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
10764 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
10765 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
10766 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
10767 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
10768 
10769 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
10770 	} else {
10771 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
10772 		return;
10773 	}
10774 
10775 	lc->speed = fwcap_to_speed(linkattr);
10776 	lc->fec = fwcap_to_fec(linkattr, true);
10777 
10778 	fc = 0;
10779 	if (linkattr & FW_PORT_CAP32_FC_RX)
10780 		fc |= PAUSE_RX;
10781 	if (linkattr & FW_PORT_CAP32_FC_TX)
10782 		fc |= PAUSE_TX;
10783 	lc->fc = fc;
10784 
10785 	if (mod_changed != NULL)
10786 		*mod_changed = false;
10787 	if (link_changed != NULL)
10788 		*link_changed = false;
10789 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
10790 	    old_lc.pcaps != lc->pcaps) {
10791 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
10792 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
10793 		if (mod_changed != NULL)
10794 			*mod_changed = true;
10795 	}
10796 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
10797 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
10798 		if (link_changed != NULL)
10799 			*link_changed = true;
10800 	}
10801 }
10802 
10803 /**
10804  *	t4_update_port_info - retrieve and update port information if changed
10805  *	@pi: the port_info
10806  *
10807  *	We issue a Get Port Information Command to the Firmware and, if
10808  *	successful, we check to see if anything is different from what we
10809  *	last recorded and update things accordingly.
10810  */
t4_update_port_info(struct port_info * pi)10811  int t4_update_port_info(struct port_info *pi)
10812  {
10813 	struct adapter *sc = pi->adapter;
10814 	struct fw_port_cmd cmd;
10815 	enum fw_port_action action;
10816 	int ret;
10817 
10818 	memset(&cmd, 0, sizeof(cmd));
10819 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
10820 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
10821 	    V_FW_PORT_CMD_PORTID(pi->hw_port));
10822 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
10823 	    FW_PORT_ACTION_GET_PORT_INFO;
10824 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
10825 	    FW_LEN16(cmd));
10826 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
10827 	if (ret)
10828 		return ret;
10829 
10830 	handle_port_info(pi, &cmd, action, NULL, NULL);
10831 	return 0;
10832 }
10833 
10834 /**
10835  *	t4_handle_fw_rpl - process a FW reply message
10836  *	@adap: the adapter
10837  *	@rpl: start of the FW message
10838  *
10839  *	Processes a FW message, such as link state change messages.
10840  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)10841 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
10842 {
10843 	u8 opcode = *(const u8 *)rpl;
10844 	const struct fw_port_cmd *p = (const void *)rpl;
10845 	enum fw_port_action action =
10846 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
10847 	bool mod_changed, link_changed;
10848 
10849 	if (opcode == FW_PORT_CMD &&
10850 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
10851 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
10852 		/* link/module state change message */
10853 		int hw_port = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
10854 		int port_id = adap->port_map[hw_port];
10855 		struct port_info *pi;
10856 
10857 		MPASS(port_id >= 0 && port_id < adap->params.nports);
10858 		pi = adap->port[port_id];
10859 		PORT_LOCK(pi);
10860 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
10861 		PORT_UNLOCK(pi);
10862 		if (mod_changed)
10863 			t4_os_portmod_changed(pi);
10864 		if (link_changed) {
10865 			PORT_LOCK(pi);
10866 			t4_os_link_changed(pi);
10867 			PORT_UNLOCK(pi);
10868 		}
10869 	} else {
10870 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
10871 		return -EINVAL;
10872 	}
10873 	return 0;
10874 }
10875 
10876 /**
10877  *	get_pci_mode - determine a card's PCI mode
10878  *	@adapter: the adapter
10879  *	@p: where to store the PCI settings
10880  *
10881  *	Determines a card's PCI mode and associated parameters, such as speed
10882  *	and width.
10883  */
get_pci_mode(struct adapter * adapter,struct pci_params * p)10884 static void get_pci_mode(struct adapter *adapter,
10885 				   struct pci_params *p)
10886 {
10887 	u16 val;
10888 	u32 pcie_cap;
10889 
10890 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
10891 	if (pcie_cap) {
10892 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
10893 		p->speed = val & PCI_EXP_LNKSTA_CLS;
10894 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
10895 	}
10896 }
10897 
10898 struct flash_desc {
10899 	u32 vendor_and_model_id;
10900 	u32 size_mb;
10901 };
10902 
t4_get_flash_params(struct adapter * adapter)10903 int t4_get_flash_params(struct adapter *adapter)
10904 {
10905 	/*
10906 	 * Table for non-standard supported Flash parts.  Note, all Flash
10907 	 * parts must have 64KB sectors.
10908 	 */
10909 	static struct flash_desc supported_flash[] = {
10910 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
10911 	};
10912 
10913 	int ret;
10914 	u32 flashid = 0;
10915 	unsigned int part, manufacturer;
10916 	unsigned int density, size = 0;
10917 
10918 
10919 	/*
10920 	 * Issue a Read ID Command to the Flash part.  We decode supported
10921 	 * Flash parts and their sizes from this.  There's a newer Query
10922 	 * Command which can retrieve detailed geometry information but many
10923 	 * Flash parts don't support it.
10924 	 */
10925 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
10926 	if (!ret)
10927 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
10928 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
10929 	if (ret < 0)
10930 		return ret;
10931 
10932 	/*
10933 	 * Check to see if it's one of our non-standard supported Flash parts.
10934 	 */
10935 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
10936 		if (supported_flash[part].vendor_and_model_id == flashid) {
10937 			adapter->params.sf_size =
10938 				supported_flash[part].size_mb;
10939 			adapter->params.sf_nsec =
10940 				adapter->params.sf_size / SF_SEC_SIZE;
10941 			goto found;
10942 		}
10943 
10944 	/*
10945 	 * Decode Flash part size.  The code below looks repetative with
10946 	 * common encodings, but that's not guaranteed in the JEDEC
10947 	 * specification for the Read JADEC ID command.  The only thing that
10948 	 * we're guaranteed by the JADEC specification is where the
10949 	 * Manufacturer ID is in the returned result.  After that each
10950 	 * Manufacturer ~could~ encode things completely differently.
10951 	 * Note, all Flash parts must have 64KB sectors.
10952 	 */
10953 	manufacturer = flashid & 0xff;
10954 	switch (manufacturer) {
10955 	case 0x20: /* Micron/Numonix */
10956 		/*
10957 		 * This Density -> Size decoding table is taken from Micron
10958 		 * Data Sheets.
10959 		 */
10960 		density = (flashid >> 16) & 0xff;
10961 		switch (density) {
10962 		case 0x14: size = 1 << 20; break; /*   1MB */
10963 		case 0x15: size = 1 << 21; break; /*   2MB */
10964 		case 0x16: size = 1 << 22; break; /*   4MB */
10965 		case 0x17: size = 1 << 23; break; /*   8MB */
10966 		case 0x18: size = 1 << 24; break; /*  16MB */
10967 		case 0x19: size = 1 << 25; break; /*  32MB */
10968 		case 0x20: size = 1 << 26; break; /*  64MB */
10969 		case 0x21: size = 1 << 27; break; /* 128MB */
10970 		case 0x22: size = 1 << 28; break; /* 256MB */
10971 		}
10972 		break;
10973 
10974 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
10975 		/*
10976 		 * This Density -> Size decoding table is taken from ISSI
10977 		 * Data Sheets.
10978 		 */
10979 		density = (flashid >> 16) & 0xff;
10980 		switch (density) {
10981 		case 0x16: size = 1 << 25; break; /*  32MB */
10982 		case 0x17: size = 1 << 26; break; /*  64MB */
10983 		}
10984 		break;
10985 
10986 	case 0xc2: /* Macronix */
10987 		/*
10988 		 * This Density -> Size decoding table is taken from Macronix
10989 		 * Data Sheets.
10990 		 */
10991 		density = (flashid >> 16) & 0xff;
10992 		switch (density) {
10993 		case 0x17: size = 1 << 23; break; /*   8MB */
10994 		case 0x18: size = 1 << 24; break; /*  16MB */
10995 		}
10996 		break;
10997 
10998 	case 0xef: /* Winbond */
10999 		/*
11000 		 * This Density -> Size decoding table is taken from Winbond
11001 		 * Data Sheets.
11002 		 */
11003 		density = (flashid >> 16) & 0xff;
11004 		switch (density) {
11005 		case 0x17: size = 1 << 23; break; /*   8MB */
11006 		case 0x18: size = 1 << 24; break; /*  16MB */
11007 		}
11008 		break;
11009 	}
11010 
11011 	/* If we didn't recognize the FLASH part, that's no real issue: the
11012 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_ use a
11013 	 * FLASH part which has 64KB sectors and is at least 4MB or 16MB in
11014 	 * size, depending on the board.
11015 	 */
11016 	if (size == 0) {
11017 		size = chip_id(adapter) >= CHELSIO_T7 ? 16 : 4;
11018 		CH_WARN(adapter, "Unknown Flash Part %#x, assuming %uMB\n",
11019 		    flashid, size);
11020 		size <<= 20;
11021 	}
11022 
11023 	/*
11024 	 * Store decoded Flash size and fall through into vetting code.
11025 	 */
11026 	adapter->params.sf_size = size;
11027 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
11028 
11029  found:
11030 	/*
11031 	 * We should ~probably~ reject adapters with FLASHes which are too
11032 	 * small but we have some legacy FPGAs with small FLASHes that we'd
11033 	 * still like to use.  So instead we emit a scary message ...
11034 	 */
11035 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
11036 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
11037 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
11038 
11039 	return 0;
11040 }
11041 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)11042 static void set_pcie_completion_timeout(struct adapter *adapter,
11043 						  u8 range)
11044 {
11045 	u16 val;
11046 	u32 pcie_cap;
11047 
11048 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
11049 	if (pcie_cap) {
11050 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
11051 		val &= 0xfff0;
11052 		val |= range ;
11053 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
11054 	}
11055 }
11056 
t4_get_chip_params(int chipid)11057 const struct chip_params *t4_get_chip_params(int chipid)
11058 {
11059 	static const struct chip_params chip_params[] = {
11060 		{
11061 			/* T4 */
11062 			.nchan = NCHAN,
11063 			.pm_stats_cnt = PM_NSTATS,
11064 			.cng_ch_bits_log = 2,
11065 			.nsched_cls = 15,
11066 			.cim_num_ibq = CIM_NUM_IBQ,
11067 			.cim_num_obq = CIM_NUM_OBQ,
11068 			.filter_opt_len = FILTER_OPT_LEN,
11069 			.filter_num_opt = S_FT_LAST + 1,
11070 			.mps_rplc_size = 128,
11071 			.vfcount = 128,
11072 			.sge_fl_db = F_DBPRIO,
11073 			.sge_ctxt_size = SGE_CTXT_SIZE,
11074 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
11075 			.rss_nentries = RSS_NENTRIES,
11076 			.cim_la_size = CIMLA_SIZE,
11077 		},
11078 		{
11079 			/* T5 */
11080 			.nchan = NCHAN,
11081 			.pm_stats_cnt = PM_NSTATS,
11082 			.cng_ch_bits_log = 2,
11083 			.nsched_cls = 16,
11084 			.cim_num_ibq = CIM_NUM_IBQ,
11085 			.cim_num_obq = CIM_NUM_OBQ_T5,
11086 			.filter_opt_len = T5_FILTER_OPT_LEN,
11087 			.filter_num_opt = S_FT_LAST + 1,
11088 			.mps_rplc_size = 128,
11089 			.vfcount = 128,
11090 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
11091 			.sge_ctxt_size = SGE_CTXT_SIZE,
11092 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
11093 			.rss_nentries = RSS_NENTRIES,
11094 			.cim_la_size = CIMLA_SIZE,
11095 		},
11096 		{
11097 			/* T6 */
11098 			.nchan = T6_NCHAN,
11099 			.pm_stats_cnt = T6_PM_NSTATS,
11100 			.cng_ch_bits_log = 3,
11101 			.nsched_cls = 16,
11102 			.cim_num_ibq = CIM_NUM_IBQ,
11103 			.cim_num_obq = CIM_NUM_OBQ_T5,
11104 			.filter_opt_len = T5_FILTER_OPT_LEN,
11105 			.filter_num_opt = S_FT_LAST + 1,
11106 			.mps_rplc_size = 256,
11107 			.vfcount = 256,
11108 			.sge_fl_db = 0,
11109 			.sge_ctxt_size = SGE_CTXT_SIZE,
11110 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
11111 			.rss_nentries = T6_RSS_NENTRIES,
11112 			.cim_la_size = CIMLA_SIZE_T6,
11113 		},
11114 		{
11115 			/* T7 */
11116 			.nchan = NCHAN,
11117 			.pm_stats_cnt = T6_PM_NSTATS,
11118 			.cng_ch_bits_log = 2,
11119 			.nsched_cls = 16,
11120 			.cim_num_ibq = CIM_NUM_IBQ_T7,
11121 			.cim_num_obq = CIM_NUM_OBQ_T7,
11122 			.filter_opt_len = T7_FILTER_OPT_LEN,
11123 			.filter_num_opt = S_T7_FT_LAST + 1,
11124 			.mps_rplc_size = 256,
11125 			.vfcount = 256,
11126 			.sge_fl_db = 0,
11127 			.sge_ctxt_size = SGE_CTXT_SIZE_T7,
11128 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES * 3,
11129 			.rss_nentries = T7_RSS_NENTRIES,
11130 			.cim_la_size = CIMLA_SIZE_T6,
11131 		},
11132 	};
11133 
11134 	chipid -= CHELSIO_T4;
11135 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
11136 		return NULL;
11137 
11138 	return &chip_params[chipid];
11139 }
11140 
11141 /**
11142  *	t4_prep_adapter - prepare SW and HW for operation
11143  *	@adapter: the adapter
11144  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
11145  *
11146  *	Initialize adapter SW state for the various HW modules, set initial
11147  *	values for some adapter tunables, take PHYs out of reset, and
11148  *	initialize the MDIO interface.
11149  */
t4_prep_adapter(struct adapter * adapter,u32 * buf)11150 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
11151 {
11152 	int ret;
11153 	uint16_t device_id;
11154 	uint32_t pl_rev;
11155 
11156 	get_pci_mode(adapter, &adapter->params.pci);
11157 
11158 	pl_rev = t4_read_reg(adapter, A_PL_REV);
11159 	adapter->params.chipid = G_CHIPID(pl_rev);
11160 	adapter->params.rev = G_REV(pl_rev);
11161 	if (adapter->params.chipid == 0) {
11162 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
11163 		adapter->params.chipid = CHELSIO_T4;
11164 
11165 		/* T4A1 chip is not supported */
11166 		if (adapter->params.rev == 1) {
11167 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
11168 			return -EINVAL;
11169 		}
11170 	}
11171 
11172 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
11173 	if (adapter->chip_params == NULL)
11174 		return -EINVAL;
11175 
11176 	adapter->params.pci.vpd_cap_addr =
11177 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
11178 
11179 	ret = t4_get_flash_params(adapter);
11180 	if (ret < 0)
11181 		return ret;
11182 
11183 	/* Cards with real ASICs have the chipid in the PCIe device id */
11184 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
11185 	if (device_id >> 12 == chip_id(adapter))
11186 		adapter->params.cim_la_size = adapter->chip_params->cim_la_size;
11187 	else {
11188 		/* FPGA */
11189 		adapter->params.fpga = 1;
11190 		adapter->params.cim_la_size = 2 * adapter->chip_params->cim_la_size;
11191 	}
11192 
11193 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
11194 	if (ret < 0)
11195 		return ret;
11196 
11197 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
11198 
11199 	/*
11200 	 * Default port and clock for debugging in case we can't reach FW.
11201 	 */
11202 	adapter->params.nports = 1;
11203 	adapter->params.portvec = 1;
11204 	adapter->params.vpd.cclk = 50000;
11205 
11206 	/* Set pci completion timeout value to 4 seconds. */
11207 	set_pcie_completion_timeout(adapter, 0xd);
11208 	return 0;
11209 }
11210 
11211 /**
11212  *	t4_shutdown_adapter - shut down adapter, host & wire
11213  *	@adapter: the adapter
11214  *
11215  *	Perform an emergency shutdown of the adapter and stop it from
11216  *	continuing any further communication on the ports or DMA to the
11217  *	host.  This is typically used when the adapter and/or firmware
11218  *	have crashed and we want to prevent any further accidental
11219  *	communication with the rest of the world.  This will also force
11220  *	the port Link Status to go down -- if register writes work --
11221  *	which should help our peers figure out that we're down.
11222  */
t4_shutdown_adapter(struct adapter * adapter)11223 int t4_shutdown_adapter(struct adapter *adapter)
11224 {
11225 	int port;
11226 	const bool bt = adapter->bt_map != 0;
11227 
11228 	t4_intr_disable(adapter);
11229 	if (bt)
11230 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
11231 	for_each_port(adapter, port) {
11232 		u32 a_port_cfg = is_t4(adapter) ?
11233 		    t4_port_reg(adapter, port, A_XGMAC_PORT_CFG) :
11234 		    t4_port_reg(adapter, port, A_MAC_PORT_CFG);
11235 
11236 		t4_write_reg(adapter, a_port_cfg,
11237 			     t4_read_reg(adapter, a_port_cfg)
11238 			     & ~V_SIGNAL_DET(1));
11239 		if (!bt) {
11240 			u32 hss_cfg0 = is_t4(adapter) ?
11241 			    t4_port_reg(adapter, port, A_XGMAC_PORT_HSS_CFG0) :
11242 			    t4_port_reg(adapter, port, A_MAC_PORT_HSS_CFG0);
11243 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
11244 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
11245 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
11246 			    F_HSSPLLBYPA);
11247 		}
11248 	}
11249 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
11250 
11251 	return 0;
11252 }
11253 
11254 /**
11255  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
11256  *	@adapter: the adapter
11257  *	@qid: the Queue ID
11258  *	@qtype: the Ingress or Egress type for @qid
11259  *	@user: true if this request is for a user mode queue
11260  *	@pbar2_qoffset: BAR2 Queue Offset
11261  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
11262  *
11263  *	Returns the BAR2 SGE Queue Registers information associated with the
11264  *	indicated Absolute Queue ID.  These are passed back in return value
11265  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
11266  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
11267  *
11268  *	This may return an error which indicates that BAR2 SGE Queue
11269  *	registers aren't available.  If an error is not returned, then the
11270  *	following values are returned:
11271  *
11272  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
11273  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
11274  *
11275  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
11276  *	require the "Inferred Queue ID" ability may be used.  E.g. the
11277  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
11278  *	then these "Inferred Queue ID" register may not be used.
11279  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)11280 int t4_bar2_sge_qregs(struct adapter *adapter,
11281 		      unsigned int qid,
11282 		      enum t4_bar2_qtype qtype,
11283 		      int user,
11284 		      u64 *pbar2_qoffset,
11285 		      unsigned int *pbar2_qid)
11286 {
11287 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
11288 	u64 bar2_page_offset, bar2_qoffset;
11289 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
11290 
11291 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
11292 	 * mode queues.
11293 	 */
11294 	if (!user && is_t4(adapter))
11295 		return -EINVAL;
11296 
11297 	/* Get our SGE Page Size parameters.
11298 	 */
11299 	page_shift = adapter->params.sge.page_shift;
11300 	page_size = 1 << page_shift;
11301 
11302 	/* Get the right Queues per Page parameters for our Queue.
11303 	 */
11304 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
11305 		     ? adapter->params.sge.eq_s_qpp
11306 		     : adapter->params.sge.iq_s_qpp);
11307 	qpp_mask = (1 << qpp_shift) - 1;
11308 
11309 	/* Calculate the basics of the BAR2 SGE Queue register area:
11310 	 *  o The BAR2 page the Queue registers will be in.
11311 	 *  o The BAR2 Queue ID.
11312 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
11313 	 */
11314 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
11315 	bar2_qid = qid & qpp_mask;
11316 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
11317 
11318 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
11319 	 * hardware will infer the Absolute Queue ID simply from the writes to
11320 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
11321 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
11322 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
11323 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
11324 	 * from the BAR2 Page and BAR2 Queue ID.
11325 	 *
11326 	 * One important censequence of this is that some BAR2 SGE registers
11327 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
11328 	 * there.  But other registers synthesize the SGE Queue ID purely
11329 	 * from the writes to the registers -- the Write Combined Doorbell
11330 	 * Buffer is a good example.  These BAR2 SGE Registers are only
11331 	 * available for those BAR2 SGE Register areas where the SGE Absolute
11332 	 * Queue ID can be inferred from simple writes.
11333 	 */
11334 	bar2_qoffset = bar2_page_offset;
11335 	bar2_qinferred = (bar2_qid_offset < page_size);
11336 	if (bar2_qinferred) {
11337 		bar2_qoffset += bar2_qid_offset;
11338 		bar2_qid = 0;
11339 	}
11340 
11341 	*pbar2_qoffset = bar2_qoffset;
11342 	*pbar2_qid = bar2_qid;
11343 	return 0;
11344 }
11345 
11346 /**
11347  *	t4_init_devlog_ncores_params - initialize adap->params.devlog and ncores
11348  *	@adap: the adapter
11349  *	@fw_attach: whether we can talk to the firmware
11350  */
t4_init_devlog_ncores_params(struct adapter * adap,int fw_attach)11351 int t4_init_devlog_ncores_params(struct adapter *adap, int fw_attach)
11352 {
11353 	struct devlog_params *dparams = &adap->params.devlog;
11354 	u32 pf_dparams;
11355 	unsigned int devlog_meminfo;
11356 	struct fw_devlog_cmd devlog_cmd;
11357 	int ret;
11358 
11359 	/* If we're dealing with newer firmware, the Device Log Paramerters
11360 	 * are stored in a designated register which allows us to access the
11361 	 * Device Log even if we can't talk to the firmware.
11362 	 */
11363 	pf_dparams =
11364 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
11365 	if (pf_dparams && pf_dparams != UINT32_MAX) {
11366 		unsigned int nentries, nentries128, ncore_shift;
11367 
11368 		ncore_shift = (G_PCIE_FW_PF_DEVLOG_COUNT_MSB(pf_dparams) << 1) |
11369 		    G_PCIE_FW_PF_DEVLOG_COUNT_LSB(pf_dparams);
11370 		adap->params.ncores = 1 << ncore_shift;
11371 
11372 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
11373 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
11374 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
11375 		nentries = (nentries128 + 1) * 128;
11376 		dparams->size = nentries * sizeof(struct fw_devlog_e);
11377 
11378 		return 0;
11379 	}
11380 
11381 	/*
11382 	 * For any failing returns ...
11383 	 */
11384 	adap->params.ncores = 1;
11385 	memset(dparams, 0, sizeof *dparams);
11386 
11387 	/*
11388 	 * If we can't talk to the firmware, there's really nothing we can do
11389 	 * at this point.
11390 	 */
11391 	if (!fw_attach)
11392 		return -ENXIO;
11393 
11394 	/* Otherwise, ask the firmware for it's Device Log Parameters.
11395 	 */
11396 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
11397 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11398 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11399 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11400 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
11401 			 &devlog_cmd);
11402 	if (ret)
11403 		return ret;
11404 
11405 	devlog_meminfo =
11406 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
11407 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
11408 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
11409 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
11410 
11411 	return 0;
11412 }
11413 
11414 /**
11415  *	t4_init_sge_params - initialize adap->params.sge
11416  *	@adapter: the adapter
11417  *
11418  *	Initialize various fields of the adapter's SGE Parameters structure.
11419  */
t4_init_sge_params(struct adapter * adapter)11420 int t4_init_sge_params(struct adapter *adapter)
11421 {
11422 	u32 r;
11423 	struct sge_params *sp = &adapter->params.sge;
11424 	unsigned i, tscale = 1;
11425 
11426 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
11427 	sp->counter_val[0] = G_THRESHOLD_0(r);
11428 	sp->counter_val[1] = G_THRESHOLD_1(r);
11429 	sp->counter_val[2] = G_THRESHOLD_2(r);
11430 	sp->counter_val[3] = G_THRESHOLD_3(r);
11431 
11432 	if (chip_id(adapter) >= CHELSIO_T6) {
11433 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
11434 		tscale = G_TSCALE(r);
11435 		if (tscale == 0)
11436 			tscale = 1;
11437 		else
11438 			tscale += 2;
11439 	}
11440 
11441 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
11442 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
11443 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
11444 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
11445 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
11446 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
11447 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
11448 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
11449 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
11450 
11451 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
11452 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
11453 	if (is_t4(adapter))
11454 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
11455 	else if (is_t5(adapter))
11456 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
11457 	else
11458 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
11459 
11460 	/* egress queues: log2 of # of doorbells per BAR2 page */
11461 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
11462 	r >>= S_QUEUESPERPAGEPF0 +
11463 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
11464 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
11465 
11466 	/* ingress queues: log2 of # of doorbells per BAR2 page */
11467 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
11468 	r >>= S_QUEUESPERPAGEPF0 +
11469 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
11470 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
11471 
11472 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
11473 	r >>= S_HOSTPAGESIZEPF0 +
11474 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
11475 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
11476 
11477 	r = t4_read_reg(adapter, A_SGE_CONTROL);
11478 	sp->sge_control = r;
11479 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
11480 	sp->fl_pktshift = G_PKTSHIFT(r);
11481 	if (chip_id(adapter) <= CHELSIO_T5) {
11482 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
11483 		    X_INGPADBOUNDARY_SHIFT);
11484 	} else {
11485 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
11486 		    X_T6_INGPADBOUNDARY_SHIFT);
11487 	}
11488 	if (is_t4(adapter))
11489 		sp->pack_boundary = sp->pad_boundary;
11490 	else {
11491 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
11492 		if (G_INGPACKBOUNDARY(r) == 0)
11493 			sp->pack_boundary = 16;
11494 		else
11495 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
11496 	}
11497 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
11498 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
11499 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
11500 
11501 	return 0;
11502 }
11503 
11504 /* Convert the LE's hardware hash mask to a shorter filter mask. */
11505 static inline uint16_t
hashmask_to_filtermask(struct adapter * adap,uint64_t hashmask,uint16_t filter_mode)11506 hashmask_to_filtermask(struct adapter *adap, uint64_t hashmask, uint16_t filter_mode)
11507 {
11508 	int first, last, i;
11509 	uint16_t filter_mask;
11510 	uint64_t mask;          /* field mask */
11511 
11512 
11513 	if (chip_id(adap) >= CHELSIO_T7) {
11514 		first = S_T7_FT_FIRST;
11515 		last = S_T7_FT_LAST;
11516 	} else {
11517 		first = S_FT_FIRST;
11518 		last = S_FT_LAST;
11519 	}
11520 
11521 	for (filter_mask = 0, i = first; i <= last; i++) {
11522 		if ((filter_mode & (1 << i)) == 0)
11523 			continue;
11524 		mask = (1 << t4_filter_field_width(adap, i)) - 1;
11525 		if ((hashmask & mask) == mask)
11526 			filter_mask |= 1 << i;
11527 		hashmask >>= t4_filter_field_width(adap, i);
11528 	}
11529 
11530 	return (filter_mask);
11531 }
11532 
11533 /*
11534  * Read and cache the adapter's compressed filter mode and ingress config.
11535  */
11536 static void
read_filter_mode_and_ingress_config(struct adapter * adap)11537 read_filter_mode_and_ingress_config(struct adapter *adap)
11538 {
11539 	int rc;
11540 	uint32_t v, param[2], val[2];
11541 	struct tp_params *tpp = &adap->params.tp;
11542 	uint64_t hash_mask;
11543 
11544 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11545 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11546 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
11547 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11548 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11549 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
11550 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
11551 	if (rc == 0) {
11552 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
11553 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
11554 		tpp->vnic_mode = val[1];
11555 	} else {
11556 		/*
11557 		 * Old firmware.  Read filter mode/mask and ingress config
11558 		 * straight from the hardware.
11559 		 */
11560 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
11561 		tpp->filter_mode = v & 0xffff;
11562 
11563 		hash_mask = 0;
11564 		if (chip_id(adap) > CHELSIO_T4) {
11565 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
11566 			hash_mask = v;
11567 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
11568 			hash_mask |= (u64)v << 32;
11569 		}
11570 		if (chip_id(adap) >= CHELSIO_T7) {
11571 			/*
11572 			 * This param came before T7 so T7+ firmwares should
11573 			 * always support this query.
11574 			 */
11575 			CH_WARN(adap, "query for filter mode/mask failed: %d\n",
11576 			    rc);
11577 		}
11578 		tpp->filter_mask = hashmask_to_filtermask(adap, hash_mask,
11579 		    tpp->filter_mode);
11580 
11581 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
11582 		if (v & F_VNIC)
11583 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
11584 		else
11585 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
11586 	}
11587 
11588 	/*
11589 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
11590 	 * shift positions of several elements of the Compressed Filter Tuple
11591 	 * for this adapter which we need frequently ...
11592 	 */
11593 	if (chip_id(adap) >= CHELSIO_T7) {
11594 		tpp->ipsecidx_shift = t4_filter_field_shift(adap, F_IPSECIDX);
11595 		tpp->fcoe_shift = t4_filter_field_shift(adap, F_T7_FCOE);
11596 		tpp->port_shift = t4_filter_field_shift(adap, F_T7_PORT);
11597 		tpp->vnic_shift = t4_filter_field_shift(adap, F_T7_VNIC_ID);
11598 		tpp->vlan_shift = t4_filter_field_shift(adap, F_T7_VLAN);
11599 		tpp->tos_shift = t4_filter_field_shift(adap, F_T7_TOS);
11600 		tpp->protocol_shift = t4_filter_field_shift(adap, F_T7_PROTOCOL);
11601 		tpp->ethertype_shift = t4_filter_field_shift(adap, F_T7_ETHERTYPE);
11602 		tpp->macmatch_shift = t4_filter_field_shift(adap, F_T7_MACMATCH);
11603 		tpp->matchtype_shift = t4_filter_field_shift(adap, F_T7_MPSHITTYPE);
11604 		tpp->frag_shift = t4_filter_field_shift(adap, F_T7_FRAGMENTATION);
11605 		tpp->roce_shift = t4_filter_field_shift(adap, F_ROCE);
11606 		tpp->synonly_shift = t4_filter_field_shift(adap, F_SYNONLY);
11607 		tpp->tcpflags_shift = t4_filter_field_shift(adap, F_TCPFLAGS);
11608 	} else {
11609 		tpp->ipsecidx_shift = -1;
11610 		tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
11611 		tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
11612 		tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
11613 		tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
11614 		tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
11615 		tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
11616 		tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
11617 		tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
11618 		tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
11619 		tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
11620 		tpp->roce_shift = -1;
11621 		tpp->synonly_shift = -1;
11622 		tpp->tcpflags_shift = -1;
11623 	}
11624 }
11625 
11626 /**
11627  *      t4_init_tp_params - initialize adap->params.tp
11628  *      @adap: the adapter
11629  *
11630  *      Initialize various fields of the adapter's TP Parameters structure.
11631  */
t4_init_tp_params(struct adapter * adap)11632 int t4_init_tp_params(struct adapter *adap)
11633 {
11634 	u32 tx_len, rx_len, r, v;
11635 	struct tp_params *tpp = &adap->params.tp;
11636 
11637 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
11638 	tpp->tre = G_TIMERRESOLUTION(v);
11639 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
11640 
11641 	read_filter_mode_and_ingress_config(adap);
11642 
11643 	tpp->rx_pkt_encap = false;
11644 	tpp->lb_mode = 0;
11645 	tpp->lb_nchan = 1;
11646 	if (chip_id(adap) > CHELSIO_T5) {
11647 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
11648 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
11649 		if (chip_id(adap) >= CHELSIO_T7) {
11650 			t4_tp_pio_read(adap, &v, 1, A_TP_CHANNEL_MAP, true);
11651 			tpp->lb_mode = G_T7_LB_MODE(v);
11652 			if (tpp->lb_mode == 1)
11653 				tpp->lb_nchan = 4;
11654 			else if (tpp->lb_mode == 2)
11655 				tpp->lb_nchan = 2;
11656 		}
11657 	}
11658 
11659 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
11660 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
11661 
11662 	r = t4_read_reg(adap, A_TP_PARA_REG2);
11663 	rx_len = min(rx_len, G_MAXRXDATA(r));
11664 	tx_len = min(tx_len, G_MAXRXDATA(r));
11665 
11666 	r = t4_read_reg(adap, A_TP_PARA_REG7);
11667 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
11668 	rx_len = min(rx_len, v);
11669 	tx_len = min(tx_len, v);
11670 
11671 	tpp->max_tx_pdu = tx_len;
11672 	tpp->max_rx_pdu = rx_len;
11673 
11674 	return 0;
11675 }
11676 
11677 /**
11678  *      t4_filter_field_width - returns the width of a filter field
11679  *      @adap: the adapter
11680  *      @filter_field: the filter field whose width is being requested
11681  *
11682  *      Return the shift position of a filter field within the Compressed
11683  *      Filter Tuple.  The filter field is specified via its selection bit
11684  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
11685  */
t4_filter_field_width(const struct adapter * adap,int filter_field)11686 int t4_filter_field_width(const struct adapter *adap, int filter_field)
11687 {
11688 	const int nopt = adap->chip_params->filter_num_opt;
11689 	static const uint8_t width_t7[] = {
11690 		W_FT_IPSECIDX,
11691 		W_FT_FCOE,
11692 		W_FT_PORT,
11693 		W_FT_VNIC_ID,
11694 		W_FT_VLAN,
11695 		W_FT_TOS,
11696 		W_FT_PROTOCOL,
11697 		W_FT_ETHERTYPE,
11698 		W_FT_MACMATCH,
11699 		W_FT_MPSHITTYPE,
11700 		W_FT_FRAGMENTATION,
11701 		W_FT_ROCE,
11702 		W_FT_SYNONLY,
11703 		W_FT_TCPFLAGS
11704 	};
11705 	static const uint8_t width_t4[] = {
11706 		W_FT_FCOE,
11707 		W_FT_PORT,
11708 		W_FT_VNIC_ID,
11709 		W_FT_VLAN,
11710 		W_FT_TOS,
11711 		W_FT_PROTOCOL,
11712 		W_FT_ETHERTYPE,
11713 		W_FT_MACMATCH,
11714 		W_FT_MPSHITTYPE,
11715 		W_FT_FRAGMENTATION
11716 	};
11717 	const uint8_t *width = chip_id(adap) >= CHELSIO_T7 ? width_t7 : width_t4;
11718 
11719 	if (filter_field < 0 || filter_field >= nopt)
11720 		return (0);
11721 	return (width[filter_field]);
11722 }
11723 
11724 /**
11725  *      t4_filter_field_shift - calculate filter field shift
11726  *      @adap: the adapter
11727  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
11728  *
11729  *      Return the shift position of a filter field within the Compressed
11730  *      Filter Tuple.  The filter field is specified via its selection bit
11731  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
11732  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)11733 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
11734 {
11735 	const unsigned int filter_mode = adap->params.tp.filter_mode;
11736 	unsigned int sel;
11737 	int field_shift;
11738 
11739 	if ((filter_mode & filter_sel) == 0)
11740 		return -1;
11741 
11742 	if (chip_id(adap) >= CHELSIO_T7) {
11743 		for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
11744 			switch (filter_mode & sel) {
11745 			case F_IPSECIDX:
11746 				field_shift += W_FT_IPSECIDX;
11747 				break;
11748 			case F_T7_FCOE:
11749 				field_shift += W_FT_FCOE;
11750 				break;
11751 			case F_T7_PORT:
11752 				field_shift += W_FT_PORT;
11753 				break;
11754 			case F_T7_VNIC_ID:
11755 				field_shift += W_FT_VNIC_ID;
11756 				break;
11757 			case F_T7_VLAN:
11758 				field_shift += W_FT_VLAN;
11759 				break;
11760 			case F_T7_TOS:
11761 				field_shift += W_FT_TOS;
11762 				break;
11763 			case F_T7_PROTOCOL:
11764 				field_shift += W_FT_PROTOCOL;
11765 				break;
11766 			case F_T7_ETHERTYPE:
11767 				field_shift += W_FT_ETHERTYPE;
11768 				break;
11769 			case F_T7_MACMATCH:
11770 				field_shift += W_FT_MACMATCH;
11771 				break;
11772 			case F_T7_MPSHITTYPE:
11773 				field_shift += W_FT_MPSHITTYPE;
11774 				break;
11775 			case F_T7_FRAGMENTATION:
11776 				field_shift += W_FT_FRAGMENTATION;
11777 				break;
11778 			case F_ROCE:
11779 				field_shift += W_FT_ROCE;
11780 				break;
11781 			case F_SYNONLY:
11782 				field_shift += W_FT_SYNONLY;
11783 				break;
11784 			case F_TCPFLAGS:
11785 				field_shift += W_FT_TCPFLAGS;
11786 				break;
11787 			}
11788 		}
11789 		return field_shift;
11790 	}
11791 
11792 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
11793 		switch (filter_mode & sel) {
11794 		case F_FCOE:
11795 			field_shift += W_FT_FCOE;
11796 			break;
11797 		case F_PORT:
11798 			field_shift += W_FT_PORT;
11799 			break;
11800 		case F_VNIC_ID:
11801 			field_shift += W_FT_VNIC_ID;
11802 			break;
11803 		case F_VLAN:
11804 			field_shift += W_FT_VLAN;
11805 			break;
11806 		case F_TOS:
11807 			field_shift += W_FT_TOS;
11808 			break;
11809 		case F_PROTOCOL:
11810 			field_shift += W_FT_PROTOCOL;
11811 			break;
11812 		case F_ETHERTYPE:
11813 			field_shift += W_FT_ETHERTYPE;
11814 			break;
11815 		case F_MACMATCH:
11816 			field_shift += W_FT_MACMATCH;
11817 			break;
11818 		case F_MPSHITTYPE:
11819 			field_shift += W_FT_MPSHITTYPE;
11820 			break;
11821 		case F_FRAGMENTATION:
11822 			field_shift += W_FT_FRAGMENTATION;
11823 			break;
11824 		}
11825 	}
11826 	return field_shift;
11827 }
11828 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf,int port_id)11829 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
11830 {
11831 	u8 addr[6];
11832 	int ret, i, j;
11833 	struct port_info *p = adap2pinfo(adap, port_id);
11834 	u32 param, val;
11835 	struct vi_info *vi = &p->vi[0];
11836 
11837 	for (i = 0, j = -1; i <= p->port_id; i++) {
11838 		do {
11839 			j++;
11840 		} while ((adap->params.portvec & (1 << j)) == 0);
11841 	}
11842 
11843 	p->hw_port = j;
11844 	p->tx_chan = t4_get_tx_c_chan(adap, j);
11845 	p->rx_chan = t4_get_rx_c_chan(adap, j);
11846 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
11847 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
11848 
11849 	if (!(adap->flags & IS_VF) ||
11850 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
11851  		t4_update_port_info(p);
11852 	}
11853 
11854 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
11855 	    &vi->vfvld, &vi->vin);
11856 	if (ret < 0)
11857 		return ret;
11858 
11859 	vi->viid = ret;
11860 	t4_os_set_hw_addr(p, addr);
11861 
11862 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11863 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
11864 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
11865 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
11866 	if (ret)
11867 		vi->rss_base = 0xffff;
11868 	else {
11869 		/* MPASS((val >> 16) == rss_size); */
11870 		vi->rss_base = val & 0xffff;
11871 	}
11872 
11873 	return 0;
11874 }
11875 
t4_read_cimq_cfg_ibq_core(struct adapter * adap,u8 coreid,u32 qid,u16 * base,u16 * size,u16 * thres)11876 static void t4_read_cimq_cfg_ibq_core(struct adapter *adap, u8 coreid, u32 qid,
11877 				      u16 *base, u16 *size, u16 *thres)
11878 {
11879 	unsigned int v, m;
11880 
11881 	if (chip_id(adap) > CHELSIO_T6) {
11882 		v = F_T7_IBQSELECT | V_T7_QUENUMSELECT(qid) |
11883 		    V_CORESELECT(coreid);
11884 		/* value is in 512-byte units */
11885 		m = 512;
11886 	} else {
11887 		v = F_IBQSELECT | V_QUENUMSELECT(qid);
11888 		/* value is in 256-byte units */
11889 		m = 256;
11890 	}
11891 
11892 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, v);
11893 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
11894 	if (base)
11895 		*base = G_CIMQBASE(v) * m;
11896 	if (size)
11897 		*size = G_CIMQSIZE(v) * m;
11898 	if (thres)
11899 		*thres = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
11900 }
11901 
t4_read_cimq_cfg_obq_core(struct adapter * adap,u8 coreid,u32 qid,u16 * base,u16 * size)11902 static void t4_read_cimq_cfg_obq_core(struct adapter *adap, u8 coreid, u32 qid,
11903 				      u16 *base, u16 *size)
11904 {
11905 	unsigned int v, m;
11906 
11907 	if (chip_id(adap) > CHELSIO_T6) {
11908 		v = F_T7_OBQSELECT | V_T7_QUENUMSELECT(qid) |
11909 		    V_CORESELECT(coreid);
11910 		/* value is in 512-byte units */
11911 		m = 512;
11912 	} else {
11913 		v = F_OBQSELECT | V_QUENUMSELECT(qid);
11914 		/* value is in 256-byte units */
11915 		m = 256;
11916 	}
11917 
11918 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, v);
11919 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
11920 	if (base)
11921 		*base = G_CIMQBASE(v) * m;
11922 	if (size)
11923 		*size = G_CIMQSIZE(v) * m;
11924 }
11925 
11926 /**
11927  *	t4_read_cimq_cfg_core - read CIM queue configuration on specific core
11928  *	@adap: the adapter
11929  *	@coreid: the uP coreid
11930  *	@base: holds the queue base addresses in bytes
11931  *	@size: holds the queue sizes in bytes
11932  *	@thres: holds the queue full thresholds in bytes
11933  *
11934  *	Returns the current configuration of the CIM queues, starting with
11935  *	the IBQs, then the OBQs, on a specific @coreid.
11936  */
t4_read_cimq_cfg_core(struct adapter * adap,u8 coreid,u16 * base,u16 * size,u16 * thres)11937 void t4_read_cimq_cfg_core(struct adapter *adap, u8 coreid, u16 *base,
11938 			   u16 *size, u16 *thres)
11939 {
11940 	unsigned int cim_num_ibq = adap->chip_params->cim_num_ibq;
11941 	unsigned int cim_num_obq = adap->chip_params->cim_num_obq;
11942 	unsigned int i;
11943 
11944 	for (i = 0; i < cim_num_ibq; i++, base++, size++, thres++)
11945 		t4_read_cimq_cfg_ibq_core(adap, coreid, i, base, size, thres);
11946 
11947 	for (i = 0; i < cim_num_obq; i++, base++, size++)
11948 		t4_read_cimq_cfg_obq_core(adap, coreid, i, base, size);
11949 }
11950 
t4_read_cim_ibq_data_core(struct adapter * adap,u8 coreid,u32 addr,u32 * data)11951 static int t4_read_cim_ibq_data_core(struct adapter *adap, u8 coreid, u32 addr,
11952 				     u32 *data)
11953 {
11954 	int ret, attempts;
11955 	unsigned int v;
11956 
11957 	/* It might take 3-10ms before the IBQ debug read access is allowed.
11958 	 * Wait for 1 Sec with a delay of 1 usec.
11959 	 */
11960 	attempts = 1000000;
11961 
11962 	if (chip_id(adap) > CHELSIO_T6)
11963 		v = V_T7_IBQDBGADDR(addr) | V_IBQDBGCORE(coreid);
11964 	else
11965 		v = V_IBQDBGADDR(addr);
11966 
11967 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, v | F_IBQDBGEN);
11968 	ret = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
11969 			      attempts, 1);
11970 	if (ret)
11971 		return ret;
11972 
11973 	*data = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
11974 	return 0;
11975 }
11976 
11977 /**
11978  *	t4_read_cim_ibq_core - read the contents of a CIM inbound queue on
11979  *	specific core
11980  *	@adap: the adapter
11981  *	@coreid: the uP coreid
11982  *	@qid: the queue index
11983  *	@data: where to store the queue contents
11984  *	@n: capacity of @data in 32-bit words
11985  *
11986  *	Reads the contents of the selected CIM queue starting at address 0 up
11987  *	to the capacity of @data on a specific @coreid.  @n must be a multiple
11988  *	of 4.  Returns < 0 on error and the number of 32-bit words actually
11989  *	read on success.
11990  */
t4_read_cim_ibq_core(struct adapter * adap,u8 coreid,u32 qid,u32 * data,size_t n)11991 int t4_read_cim_ibq_core(struct adapter *adap, u8 coreid, u32 qid, u32 *data,
11992 			 size_t n)
11993 {
11994 	unsigned int cim_num_ibq = adap->chip_params->cim_num_ibq;
11995 	u16 i, addr, nwords;
11996 	int ret;
11997 
11998 	if (qid > (cim_num_ibq - 1) || (n & 3))
11999 		return -EINVAL;
12000 
12001 	t4_read_cimq_cfg_ibq_core(adap, coreid, qid, &addr, &nwords, NULL);
12002 	addr >>= sizeof(u16);
12003 	nwords >>= sizeof(u16);
12004 	if (n > nwords)
12005 		n = nwords;
12006 
12007 	for (i = 0; i < n; i++, addr++, data++) {
12008 		ret = t4_read_cim_ibq_data_core(adap, coreid, addr, data);
12009 		if (ret < 0)
12010 			return ret;
12011 	}
12012 
12013 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
12014 	return i;
12015 }
12016 
t4_read_cim_obq_data_core(struct adapter * adap,u8 coreid,u32 addr,u32 * data)12017 static int t4_read_cim_obq_data_core(struct adapter *adap, u8 coreid, u32 addr,
12018 				     u32 *data)
12019 {
12020 	unsigned int v;
12021 	int ret;
12022 
12023 	if (chip_id(adap) > CHELSIO_T6)
12024 		v = V_T7_OBQDBGADDR(addr) | V_OBQDBGCORE(coreid);
12025 	else
12026 		v = V_OBQDBGADDR(addr);
12027 
12028 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, v | F_OBQDBGEN);
12029 	ret = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 2, 1);
12030 	if (ret)
12031 		return ret;
12032 
12033 	*data = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
12034 	return 0;
12035 }
12036 
12037 /**
12038  *	t4_read_cim_obq_core - read the contents of a CIM outbound queue on
12039  *	specific core
12040  *	@adap: the adapter
12041  *	@coreid: the uP coreid
12042  *	@qid: the queue index
12043  *	@data: where to store the queue contents
12044  *	@n: capacity of @data in 32-bit words
12045  *
12046  *	Reads the contents of the selected CIM queue starting at address 0 up
12047  *	to the capacity of @data on specific @coreid.  @n must be a multiple
12048  *	of 4.  Returns < 0 on error and the number of 32-bit words actually
12049  *	read on success.
12050  */
t4_read_cim_obq_core(struct adapter * adap,u8 coreid,u32 qid,u32 * data,size_t n)12051 int t4_read_cim_obq_core(struct adapter *adap, u8 coreid, u32 qid, u32 *data,
12052 			 size_t n)
12053 {
12054 	unsigned int cim_num_obq = adap->chip_params->cim_num_obq;
12055 	u16 i, addr, nwords;
12056 	int ret;
12057 
12058 	if ((qid > (cim_num_obq - 1)) || (n & 3))
12059 		return -EINVAL;
12060 
12061 	t4_read_cimq_cfg_obq_core(adap, coreid, qid, &addr, &nwords);
12062 	addr >>= sizeof(u16);
12063 	nwords >>= sizeof(u16);
12064 	if (n > nwords)
12065 		n = nwords;
12066 
12067 	for (i = 0; i < n; i++, addr++, data++) {
12068 		ret = t4_read_cim_obq_data_core(adap, coreid, addr, data);
12069 		if (ret < 0)
12070 			return ret;
12071 	}
12072 
12073 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
12074  	return i;
12075 }
12076 
12077 /**
12078  *	t4_cim_read_core - read a block from CIM internal address space
12079  *	of a control register group on specific core.
12080  *	@adap: the adapter
12081  *	@group: the control register group to select for read
12082  *	@coreid: the uP coreid
12083  *	@addr: the start address within the CIM address space
12084  *	@n: number of words to read
12085  *	@valp: where to store the result
12086  *
12087  *	Reads a block of 4-byte words from the CIM intenal address space
12088  *	of a control register @group on a specific @coreid.
12089  */
t4_cim_read_core(struct adapter * adap,u8 group,u8 coreid,unsigned int addr,unsigned int n,unsigned int * valp)12090 int t4_cim_read_core(struct adapter *adap, u8 group, u8 coreid,
12091 		     unsigned int addr, unsigned int n,
12092 		     unsigned int *valp)
12093 {
12094 	unsigned int hostbusy, v = 0;
12095 	int ret = 0;
12096 
12097 	if (chip_id(adap) > CHELSIO_T6) {
12098 		hostbusy = F_T7_HOSTBUSY;
12099 		v = V_HOSTGRPSEL(group) | V_HOSTCORESEL(coreid);
12100 	} else {
12101 		hostbusy = F_HOSTBUSY;
12102 	}
12103 
12104 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & hostbusy)
12105 		return -EBUSY;
12106 
12107 	for ( ; !ret && n--; addr += 4) {
12108 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | v);
12109 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, hostbusy,
12110 				      0, 5, 2);
12111 		if (!ret)
12112 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
12113 	}
12114 
12115 	return ret;
12116 }
12117 
12118 /**
12119  *	t4_cim_write_core - write a block into CIM internal address space
12120  *	of a control register group on specific core.
12121  *	@adap: the adapter
12122  *	@group: the control register group to select for write
12123  *	@coreid: the uP coreid
12124  *	@addr: the start address within the CIM address space
12125  *	@n: number of words to write
12126  *	@valp: set of values to write
12127  *
12128  *	Writes a block of 4-byte words into the CIM intenal address space
12129  *	of a control register @group on a specific @coreid.
12130  */
t4_cim_write_core(struct adapter * adap,u8 group,u8 coreid,unsigned int addr,unsigned int n,const unsigned int * valp)12131 int t4_cim_write_core(struct adapter *adap, u8 group, u8 coreid,
12132 		      unsigned int addr, unsigned int n,
12133 		      const unsigned int *valp)
12134 {
12135 	unsigned int hostbusy, v;
12136 	int ret = 0;
12137 
12138 	if (chip_id(adap) > CHELSIO_T6) {
12139 		hostbusy = F_T7_HOSTBUSY;
12140 		v = F_T7_HOSTWRITE | V_HOSTGRPSEL(group) |
12141 		    V_HOSTCORESEL(coreid);
12142 	} else {
12143 		hostbusy = F_HOSTBUSY;
12144 		v = F_HOSTWRITE;
12145 	}
12146 
12147 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & hostbusy)
12148 		return -EBUSY;
12149 
12150 	for ( ; !ret && n--; addr += 4) {
12151 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
12152 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | v);
12153 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, hostbusy,
12154 				      0, 5, 2);
12155 	}
12156 
12157 	return ret;
12158 }
12159 
12160 /**
12161  *	t4_cim_read_la_core - read CIM LA capture buffer on specific core
12162  *	@adap: the adapter
12163  *	@coreid: uP coreid
12164  *	@la_buf: where to store the LA data
12165  *	@wrptr: the HW write pointer within the capture buffer
12166  *
12167  *	Reads the contents of the CIM LA buffer on a specific @coreid
12168  *	with the most recent entry at the end of the returned data
12169  *	and with the entry at @wrptr first. We try to leave the LA
12170  *	in the running state we find it in.
12171  */
t4_cim_read_la_core(struct adapter * adap,u8 coreid,u32 * la_buf,u32 * wrptr)12172 int t4_cim_read_la_core(struct adapter *adap, u8 coreid, u32 *la_buf,
12173 			u32 *wrptr)
12174 {
12175 	unsigned int cfg, val, idx;
12176 	int i, ret;
12177 
12178 	ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, &cfg);
12179 	if (ret)
12180 		return ret;
12181 
12182 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
12183 		val = 0;
12184 		ret = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12185 					&val);
12186 		if (ret)
12187 			return ret;
12188 	}
12189 
12190 	ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, &val);
12191 	if (ret)
12192 		goto restart;
12193 
12194 	idx = G_UPDBGLAWRPTR(val);
12195 	if (wrptr)
12196 		*wrptr = idx;
12197 
12198 	for (i = 0; i < adap->params.cim_la_size; i++) {
12199 		val = V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN;
12200 		ret = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12201 					&val);
12202 		if (ret)
12203 			break;
12204 		ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12205 				       &val);
12206 		if (ret)
12207 			break;
12208 		if (val & F_UPDBGLARDEN) {
12209 			ret = -ETIMEDOUT;
12210 			break;
12211 		}
12212 		ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_DATA, 1,
12213 				       &la_buf[i]);
12214 		if (ret)
12215 			break;
12216 
12217 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
12218 		 * identify the 32-bit portion of the full 312-bit data
12219 		 */
12220 		if ((chip_id(adap) > CHELSIO_T5) && (idx & 0xf) >= 9)
12221 			idx = (idx & 0xff0) + 0x10;
12222 		else
12223 			idx++;
12224 		/* address can't exceed 0xfff */
12225 		idx &= M_UPDBGLARDPTR;
12226 	}
12227 restart:
12228 	if (cfg & F_UPDBGLAEN) {
12229 		int r;
12230 
12231 		val = cfg & ~F_UPDBGLARDEN;
12232 		r = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12233 				      &val);
12234 		if (!ret)
12235 			ret = r;
12236 	}
12237 
12238 	return ret;
12239 }
12240 
12241 /**
12242  *	t4_tp_read_la - read TP LA capture buffer
12243  *	@adap: the adapter
12244  *	@la_buf: where to store the LA data
12245  *	@wrptr: the HW write pointer within the capture buffer
12246  *
12247  *	Reads the contents of the TP LA buffer with the most recent entry at
12248  *	the end	of the returned data and with the entry at @wrptr first.
12249  *	We leave the LA in the running state we find it in.
12250  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)12251 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
12252 {
12253 	bool last_incomplete;
12254 	unsigned int i, cfg, val, idx;
12255 
12256 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
12257 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
12258 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
12259 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
12260 
12261 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
12262 	idx = G_DBGLAWPTR(val);
12263 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
12264 	if (last_incomplete)
12265 		idx = (idx + 1) & M_DBGLARPTR;
12266 	if (wrptr)
12267 		*wrptr = idx;
12268 
12269 	val &= 0xffff;
12270 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
12271 	val |= adap->params.tp.la_mask;
12272 
12273 	for (i = 0; i < TPLA_SIZE; i++) {
12274 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
12275 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
12276 		idx = (idx + 1) & M_DBGLARPTR;
12277 	}
12278 
12279 	/* Wipe out last entry if it isn't valid */
12280 	if (last_incomplete)
12281 		la_buf[TPLA_SIZE - 1] = ~0ULL;
12282 
12283 	if (cfg & F_DBGLAENABLE)		/* restore running state */
12284 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
12285 			     cfg | adap->params.tp.la_mask);
12286 }
12287 
12288 /*
12289  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
12290  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
12291  * state for more than the Warning Threshold then we'll issue a warning about
12292  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
12293  * appears to be hung every Warning Repeat second till the situation clears.
12294  * If the situation clears, we'll note that as well.
12295  */
12296 #define SGE_IDMA_WARN_THRESH 1
12297 #define SGE_IDMA_WARN_REPEAT 300
12298 
12299 /**
12300  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
12301  *	@adapter: the adapter
12302  *	@idma: the adapter IDMA Monitor state
12303  *
12304  *	Initialize the state of an SGE Ingress DMA Monitor.
12305  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)12306 void t4_idma_monitor_init(struct adapter *adapter,
12307 			  struct sge_idma_monitor_state *idma)
12308 {
12309 	/* Initialize the state variables for detecting an SGE Ingress DMA
12310 	 * hang.  The SGE has internal counters which count up on each clock
12311 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
12312 	 * same state they were on the previous clock tick.  The clock used is
12313 	 * the Core Clock so we have a limit on the maximum "time" they can
12314 	 * record; typically a very small number of seconds.  For instance,
12315 	 * with a 600MHz Core Clock, we can only count up to a bit more than
12316 	 * 7s.  So we'll synthesize a larger counter in order to not run the
12317 	 * risk of having the "timers" overflow and give us the flexibility to
12318 	 * maintain a Hung SGE State Machine of our own which operates across
12319 	 * a longer time frame.
12320 	 */
12321 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
12322 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
12323 }
12324 
12325 /**
12326  *	t4_idma_monitor - monitor SGE Ingress DMA state
12327  *	@adapter: the adapter
12328  *	@idma: the adapter IDMA Monitor state
12329  *	@hz: number of ticks/second
12330  *	@ticks: number of ticks since the last IDMA Monitor call
12331  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)12332 void t4_idma_monitor(struct adapter *adapter,
12333 		     struct sge_idma_monitor_state *idma,
12334 		     int hz, int ticks)
12335 {
12336 	int i, idma_same_state_cnt[2];
12337 
12338 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
12339 	  * are counters inside the SGE which count up on each clock when the
12340 	  * SGE finds its Ingress DMA State Engines in the same states they
12341 	  * were in the previous clock.  The counters will peg out at
12342 	  * 0xffffffff without wrapping around so once they pass the 1s
12343 	  * threshold they'll stay above that till the IDMA state changes.
12344 	  */
12345 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
12346 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
12347 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12348 
12349 	for (i = 0; i < 2; i++) {
12350 		u32 debug0, debug11;
12351 
12352 		/* If the Ingress DMA Same State Counter ("timer") is less
12353 		 * than 1s, then we can reset our synthesized Stall Timer and
12354 		 * continue.  If we have previously emitted warnings about a
12355 		 * potential stalled Ingress Queue, issue a note indicating
12356 		 * that the Ingress Queue has resumed forward progress.
12357 		 */
12358 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
12359 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
12360 				CH_WARN(adapter, "SGE idma%d, queue %u, "
12361 					"resumed after %d seconds\n",
12362 					i, idma->idma_qid[i],
12363 					idma->idma_stalled[i]/hz);
12364 			idma->idma_stalled[i] = 0;
12365 			continue;
12366 		}
12367 
12368 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
12369 		 * domain.  The first time we get here it'll be because we
12370 		 * passed the 1s Threshold; each additional time it'll be
12371 		 * because the RX Timer Callback is being fired on its regular
12372 		 * schedule.
12373 		 *
12374 		 * If the stall is below our Potential Hung Ingress Queue
12375 		 * Warning Threshold, continue.
12376 		 */
12377 		if (idma->idma_stalled[i] == 0) {
12378 			idma->idma_stalled[i] = hz;
12379 			idma->idma_warn[i] = 0;
12380 		} else {
12381 			idma->idma_stalled[i] += ticks;
12382 			idma->idma_warn[i] -= ticks;
12383 		}
12384 
12385 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
12386 			continue;
12387 
12388 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
12389 		 */
12390 		if (idma->idma_warn[i] > 0)
12391 			continue;
12392 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
12393 
12394 		/* Read and save the SGE IDMA State and Queue ID information.
12395 		 * We do this every time in case it changes across time ...
12396 		 * can't be too careful ...
12397 		 */
12398 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
12399 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12400 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
12401 
12402 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
12403 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12404 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
12405 
12406 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
12407 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
12408 			i, idma->idma_qid[i], idma->idma_state[i],
12409 			idma->idma_stalled[i]/hz,
12410 			debug0, debug11);
12411 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
12412 	}
12413 }
12414 
12415 /**
12416  *     t4_set_vf_mac - Set MAC address for the specified VF
12417  *     @adapter: The adapter
12418  *     @pf: the PF used to instantiate the VFs
12419  *     @vf: one of the VFs instantiated by the specified PF
12420  *     @naddr: the number of MAC addresses
12421  *     @addr: the MAC address(es) to be set to the specified VF
12422  */
t4_set_vf_mac(struct adapter * adapter,unsigned int pf,unsigned int vf,unsigned int naddr,u8 * addr)12423 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
12424 		  unsigned int naddr, u8 *addr)
12425 {
12426 	struct fw_acl_mac_cmd cmd;
12427 
12428 	memset(&cmd, 0, sizeof(cmd));
12429 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
12430 				    F_FW_CMD_REQUEST |
12431 				    F_FW_CMD_WRITE |
12432 				    V_FW_ACL_MAC_CMD_PFN(pf) |
12433 				    V_FW_ACL_MAC_CMD_VFN(vf));
12434 
12435 	/* Note: Do not enable the ACL */
12436 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
12437 	cmd.nmac = naddr;
12438 
12439 	switch (pf) {
12440 	case 3:
12441 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
12442 		break;
12443 	case 2:
12444 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
12445 		break;
12446 	case 1:
12447 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
12448 		break;
12449 	case 0:
12450 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
12451 		break;
12452 	}
12453 
12454 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
12455 }
12456 
12457 /**
12458  *	t4_read_pace_tbl - read the pace table
12459  *	@adap: the adapter
12460  *	@pace_vals: holds the returned values
12461  *
12462  *	Returns the values of TP's pace table in microseconds.
12463  */
t4_read_pace_tbl(struct adapter * adap,unsigned int pace_vals[NTX_SCHED])12464 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
12465 {
12466 	unsigned int i, v;
12467 
12468 	for (i = 0; i < NTX_SCHED; i++) {
12469 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
12470 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
12471 		pace_vals[i] = dack_ticks_to_usec(adap, v);
12472 	}
12473 }
12474 
12475 /**
12476  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
12477  *	@adap: the adapter
12478  *	@sched: the scheduler index
12479  *	@kbps: the byte rate in Kbps
12480  *	@ipg: the interpacket delay in tenths of nanoseconds
12481  *
12482  *	Return the current configuration of a HW Tx scheduler.
12483  */
t4_get_tx_sched(struct adapter * adap,unsigned int sched,unsigned int * kbps,unsigned int * ipg,bool sleep_ok)12484 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
12485 		     unsigned int *ipg, bool sleep_ok)
12486 {
12487 	unsigned int v, addr, bpt, cpt;
12488 
12489 	if (kbps) {
12490 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
12491 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
12492 		if (sched & 1)
12493 			v >>= 16;
12494 		bpt = (v >> 8) & 0xff;
12495 		cpt = v & 0xff;
12496 		if (!cpt)
12497 			*kbps = 0;	/* scheduler disabled */
12498 		else {
12499 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
12500 			*kbps = (v * bpt) / 125;
12501 		}
12502 	}
12503 	if (ipg) {
12504 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
12505 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
12506 		if (sched & 1)
12507 			v >>= 16;
12508 		v &= 0xffff;
12509 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
12510 	}
12511 }
12512 
12513 /**
12514  *	t4_load_cfg - download config file
12515  *	@adap: the adapter
12516  *	@cfg_data: the cfg text file to write
12517  *	@size: text file size
12518  *
12519  *	Write the supplied config text file to the card's serial flash.
12520  */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)12521 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
12522 {
12523 	int ret, i, n, cfg_addr;
12524 	unsigned int addr, len;
12525 	unsigned int flash_cfg_start_sec;
12526 
12527 	cfg_addr = t4_flash_cfg_addr(adap, &len);
12528 	if (cfg_addr < 0)
12529 		return cfg_addr;
12530 
12531 	if (size > len) {
12532 		CH_ERR(adap, "cfg file too large, max is %u bytes\n", len);
12533 		return -EFBIG;
12534 	}
12535 
12536 	flash_cfg_start_sec = cfg_addr / SF_SEC_SIZE;
12537 	i = DIV_ROUND_UP(len, SF_SEC_SIZE);
12538 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
12539 				     flash_cfg_start_sec + i - 1);
12540 	/*
12541 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12542 	 * with the on-adapter Firmware Configuration File.
12543 	 */
12544 	if (ret || size == 0)
12545 		goto out;
12546 
12547 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
12548 	addr = cfg_addr;
12549 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
12550 		n = min(size - i, SF_PAGE_SIZE);
12551 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
12552 		if (ret)
12553 			goto out;
12554 		addr += SF_PAGE_SIZE;
12555 		cfg_data += SF_PAGE_SIZE;
12556 	}
12557 
12558 out:
12559 	if (ret)
12560 		CH_ERR(adap, "config file %s failed %d\n",
12561 		       (size == 0 ? "clear" : "download"), ret);
12562 	return ret;
12563 }
12564 
12565 /**
12566  *	t5_fw_init_extern_mem - initialize the external memory
12567  *	@adap: the adapter
12568  *
12569  *	Initializes the external memory on T5.
12570  */
t5_fw_init_extern_mem(struct adapter * adap)12571 int t5_fw_init_extern_mem(struct adapter *adap)
12572 {
12573 	u32 params[1], val[1];
12574 	int ret;
12575 
12576 	if (!is_t5(adap))
12577 		return 0;
12578 
12579 	val[0] = 0xff; /* Initialize all MCs */
12580 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
12581 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
12582 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
12583 			FW_CMD_MAX_TIMEOUT);
12584 
12585 	return ret;
12586 }
12587 
12588 /* BIOS boot headers */
12589 typedef struct pci_expansion_rom_header {
12590 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
12591 	u8	reserved[22]; /* Reserved per processor Architecture data */
12592 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
12593 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
12594 
12595 /* Legacy PCI Expansion ROM Header */
12596 typedef struct legacy_pci_expansion_rom_header {
12597 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
12598 	u8	size512; /* Current Image Size in units of 512 bytes */
12599 	u8	initentry_point[4];
12600 	u8	cksum; /* Checksum computed on the entire Image */
12601 	u8	reserved[16]; /* Reserved */
12602 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
12603 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
12604 
12605 /* EFI PCI Expansion ROM Header */
12606 typedef struct efi_pci_expansion_rom_header {
12607 	u8	signature[2]; // ROM signature. The value 0xaa55
12608 	u8	initialization_size[2]; /* Units 512. Includes this header */
12609 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
12610 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
12611 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
12612 	u8	compression_type[2]; /* Compression type. */
12613 		/*
12614 		 * Compression type definition
12615 		 * 0x0: uncompressed
12616 		 * 0x1: Compressed
12617 		 * 0x2-0xFFFF: Reserved
12618 		 */
12619 	u8	reserved[8]; /* Reserved */
12620 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
12621 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
12622 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
12623 
12624 /* PCI Data Structure Format */
12625 typedef struct pcir_data_structure { /* PCI Data Structure */
12626 	u8	signature[4]; /* Signature. The string "PCIR" */
12627 	u8	vendor_id[2]; /* Vendor Identification */
12628 	u8	device_id[2]; /* Device Identification */
12629 	u8	vital_product[2]; /* Pointer to Vital Product Data */
12630 	u8	length[2]; /* PCIR Data Structure Length */
12631 	u8	revision; /* PCIR Data Structure Revision */
12632 	u8	class_code[3]; /* Class Code */
12633 	u8	image_length[2]; /* Image Length. Multiple of 512B */
12634 	u8	code_revision[2]; /* Revision Level of Code/Data */
12635 	u8	code_type; /* Code Type. */
12636 		/*
12637 		 * PCI Expansion ROM Code Types
12638 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
12639 		 * 0x01: Open Firmware standard for PCI. FCODE
12640 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
12641 		 * 0x03: EFI Image. EFI
12642 		 * 0x04-0xFF: Reserved.
12643 		 */
12644 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
12645 	u8	reserved[2]; /* Reserved */
12646 } pcir_data_t; /* PCI__DATA_STRUCTURE */
12647 
12648 /* BOOT constants */
12649 enum {
12650 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
12651 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
12652 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
12653 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
12654 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
12655 	VENDOR_ID = 0x1425, /* Vendor ID */
12656 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
12657 };
12658 
12659 /*
12660  *	modify_device_id - Modifies the device ID of the Boot BIOS image
12661  *	@adatper: the device ID to write.
12662  *	@boot_data: the boot image to modify.
12663  *
12664  *	Write the supplied device ID to the boot BIOS image.
12665  */
modify_device_id(int device_id,u8 * boot_data)12666 static void modify_device_id(int device_id, u8 *boot_data)
12667 {
12668 	legacy_pci_exp_rom_header_t *header;
12669 	pcir_data_t *pcir_header;
12670 	u32 cur_header = 0;
12671 
12672 	/*
12673 	 * Loop through all chained images and change the device ID's
12674 	 */
12675 	while (1) {
12676 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
12677 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
12678 			      le16_to_cpu(*(u16*)header->pcir_offset)];
12679 
12680 		/*
12681 		 * Only modify the Device ID if code type is Legacy or HP.
12682 		 * 0x00: Okay to modify
12683 		 * 0x01: FCODE. Do not be modify
12684 		 * 0x03: Okay to modify
12685 		 * 0x04-0xFF: Do not modify
12686 		 */
12687 		if (pcir_header->code_type == 0x00) {
12688 			u8 csum = 0;
12689 			int i;
12690 
12691 			/*
12692 			 * Modify Device ID to match current adatper
12693 			 */
12694 			*(u16*) pcir_header->device_id = device_id;
12695 
12696 			/*
12697 			 * Set checksum temporarily to 0.
12698 			 * We will recalculate it later.
12699 			 */
12700 			header->cksum = 0x0;
12701 
12702 			/*
12703 			 * Calculate and update checksum
12704 			 */
12705 			for (i = 0; i < (header->size512 * 512); i++)
12706 				csum += (u8)boot_data[cur_header + i];
12707 
12708 			/*
12709 			 * Invert summed value to create the checksum
12710 			 * Writing new checksum value directly to the boot data
12711 			 */
12712 			boot_data[cur_header + 7] = -csum;
12713 
12714 		} else if (pcir_header->code_type == 0x03) {
12715 
12716 			/*
12717 			 * Modify Device ID to match current adatper
12718 			 */
12719 			*(u16*) pcir_header->device_id = device_id;
12720 
12721 		}
12722 
12723 
12724 		/*
12725 		 * Check indicator element to identify if this is the last
12726 		 * image in the ROM.
12727 		 */
12728 		if (pcir_header->indicator & 0x80)
12729 			break;
12730 
12731 		/*
12732 		 * Move header pointer up to the next image in the ROM.
12733 		 */
12734 		cur_header += header->size512 * 512;
12735 	}
12736 }
12737 
12738 /*
12739  *	t4_load_boot - download boot flash
12740  *	@adapter: the adapter
12741  *	@boot_data: the boot image to write
12742  *	@boot_addr: offset in flash to write boot_data
12743  *	@size: image size
12744  *
12745  *	Write the supplied boot image to the card's serial flash.
12746  *	The boot image has the following sections: a 28-byte header and the
12747  *	boot image.
12748  */
t4_load_boot(struct adapter * adap,u8 * boot_data,unsigned int boot_addr,unsigned int size)12749 int t4_load_boot(struct adapter *adap, u8 *boot_data,
12750 		 unsigned int boot_addr, unsigned int size)
12751 {
12752 	pci_exp_rom_header_t *header;
12753 	int pcir_offset ;
12754 	pcir_data_t *pcir_header;
12755 	int ret, addr;
12756 	uint16_t device_id;
12757 	unsigned int i, start, len;
12758 	unsigned int boot_sector = boot_addr * 1024;
12759 
12760 	/*
12761 	 * Make sure the boot image does not exceed its available space.
12762 	 */
12763 	len = 0;
12764 	start = t4_flash_loc_start(adap, FLASH_LOC_BOOT_AREA, &len);
12765 	if (boot_sector + size > start + len) {
12766 		CH_ERR(adap, "boot data is larger than available BOOT area\n");
12767 		return -EFBIG;
12768 	}
12769 
12770 	/*
12771 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
12772 	 * and Boot configuration data sections. These 3 boot sections span
12773 	 * the entire FLASH_LOC_BOOT_AREA.
12774 	 */
12775 	i = DIV_ROUND_UP(size ? size : len, SF_SEC_SIZE);
12776 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
12777 				     (boot_sector >> 16) + i - 1);
12778 
12779 	/*
12780 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12781 	 * with the on-adapter option ROM file
12782 	 */
12783 	if (ret || (size == 0))
12784 		goto out;
12785 
12786 	/* Get boot header */
12787 	header = (pci_exp_rom_header_t *)boot_data;
12788 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
12789 	/* PCIR Data Structure */
12790 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
12791 
12792 	/*
12793 	 * Perform some primitive sanity testing to avoid accidentally
12794 	 * writing garbage over the boot sectors.  We ought to check for
12795 	 * more but it's not worth it for now ...
12796 	 */
12797 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
12798 		CH_ERR(adap, "boot image too small/large\n");
12799 		return -EFBIG;
12800 	}
12801 
12802 #ifndef CHELSIO_T4_DIAGS
12803 	/*
12804 	 * Check BOOT ROM header signature
12805 	 */
12806 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
12807 		CH_ERR(adap, "Boot image missing signature\n");
12808 		return -EINVAL;
12809 	}
12810 
12811 	/*
12812 	 * Check PCI header signature
12813 	 */
12814 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
12815 		CH_ERR(adap, "PCI header missing signature\n");
12816 		return -EINVAL;
12817 	}
12818 
12819 	/*
12820 	 * Check Vendor ID matches Chelsio ID
12821 	 */
12822 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
12823 		CH_ERR(adap, "Vendor ID missing signature\n");
12824 		return -EINVAL;
12825 	}
12826 #endif
12827 
12828 	/*
12829 	 * Retrieve adapter's device ID
12830 	 */
12831 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
12832 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
12833 	device_id = device_id & 0xf0ff;
12834 
12835 	/*
12836 	 * Check PCIE Device ID
12837 	 */
12838 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
12839 		/*
12840 		 * Change the device ID in the Boot BIOS image to match
12841 		 * the Device ID of the current adapter.
12842 		 */
12843 		modify_device_id(device_id, boot_data);
12844 	}
12845 
12846 	/*
12847 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
12848 	 * we finish copying the rest of the boot image. This will ensure
12849 	 * that the BIOS boot header will only be written if the boot image
12850 	 * was written in full.
12851 	 */
12852 	addr = boot_sector;
12853 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
12854 		addr += SF_PAGE_SIZE;
12855 		boot_data += SF_PAGE_SIZE;
12856 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
12857 		if (ret)
12858 			goto out;
12859 	}
12860 
12861 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
12862 			     (const u8 *)header, 0);
12863 
12864 out:
12865 	if (ret)
12866 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
12867 	return ret;
12868 }
12869 
12870 /*
12871  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
12872  *	@adapter: the adapter
12873  *
12874  *	Return the address within the flash where the OptionROM Configuration
12875  *	is stored, or an error if the device FLASH is too small to contain
12876  *	a OptionROM Configuration.
12877  */
t4_flash_bootcfg_addr(struct adapter * adapter,unsigned int * lenp)12878 static int t4_flash_bootcfg_addr(struct adapter *adapter, unsigned int *lenp)
12879 {
12880 	unsigned int len = 0;
12881 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_BOOTCFG, &len);
12882 
12883 	/*
12884 	 * If the device FLASH isn't large enough to hold a Firmware
12885 	 * Configuration File, return an error.
12886 	 */
12887 	if (adapter->params.sf_size < start + len)
12888 		return -ENOSPC;
12889 	if (lenp != NULL)
12890 		*lenp = len;
12891 	return (start);
12892 }
12893 
t4_load_bootcfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)12894 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
12895 {
12896 	int ret, i, n, cfg_addr;
12897 	unsigned int addr, len;
12898 	unsigned int flash_cfg_start_sec;
12899 
12900 	cfg_addr = t4_flash_bootcfg_addr(adap, &len);
12901 	if (cfg_addr < 0)
12902 		return cfg_addr;
12903 
12904 	if (size > len) {
12905 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", len);
12906 		return -EFBIG;
12907 	}
12908 
12909 	flash_cfg_start_sec = cfg_addr / SF_SEC_SIZE;
12910 	i = DIV_ROUND_UP(len, SF_SEC_SIZE);
12911 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
12912 					flash_cfg_start_sec + i - 1);
12913 
12914 	/*
12915 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12916 	 * with the on-adapter OptionROM Configuration File.
12917 	 */
12918 	if (ret || size == 0)
12919 		goto out;
12920 
12921 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
12922 	addr = cfg_addr;
12923 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
12924 		n = min(size - i, SF_PAGE_SIZE);
12925 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
12926 		if (ret)
12927 			goto out;
12928 		addr += SF_PAGE_SIZE;
12929 		cfg_data += SF_PAGE_SIZE;
12930 	}
12931 
12932 out:
12933 	if (ret)
12934 		CH_ERR(adap, "boot config data %s failed %d\n",
12935 				(size == 0 ? "clear" : "download"), ret);
12936 	return ret;
12937 }
12938 
12939 /**
12940  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
12941  *	@adap: the adapter
12942  *	@mode: a bitmap selecting which optional filter components to enable
12943  *	@mask: a bitmap selecting which components to enable in filter mask
12944  *	@vnic_mode: the ingress config/vnic mode setting
12945  *
12946  *	Sets the filter mode and mask by selecting the optional components to
12947  *	enable in filter tuples.  Returns 0 on success and a negative error if
12948  *	the requested mode needs more bits than are available for optional
12949  *	components.  The filter mask must be a subset of the filter mode.
12950  */
t4_set_filter_cfg(struct adapter * adap,int mode,int mask,int vnic_mode)12951 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
12952 {
12953 	int i, nbits, rc;
12954 	uint32_t param, val;
12955 	uint16_t fmode, fmask;
12956 	const int maxbits = adap->chip_params->filter_opt_len;
12957 	const int nopt = adap->chip_params->filter_num_opt;
12958 	int width;
12959 
12960 	if (mode != -1 || mask != -1) {
12961 		if (mode != -1) {
12962 			fmode = mode;
12963 			nbits = 0;
12964 			for (i = 0; i < nopt; i++) {
12965 				if (fmode & (1 << i))
12966 					nbits += t4_filter_field_width(adap, i);
12967 			}
12968 			if (nbits > maxbits) {
12969 				CH_ERR(adap, "optional fields in the filter "
12970 				    "mode (0x%x) add up to %d bits "
12971 				    "(must be <= %db).  Remove some fields and "
12972 				    "try again.\n", fmode, nbits, maxbits);
12973 				return -E2BIG;
12974 			}
12975 
12976 			/*
12977 			 * Hardware < T7 wants the bits to be maxed out.  Keep
12978 			 * setting them until there's no room for more.
12979 			 */
12980 			if (chip_id(adap) < CHELSIO_T7) {
12981 				for (i = 0; i < nopt; i++) {
12982 					if (fmode & (1 << i))
12983 						continue;
12984 					width = t4_filter_field_width(adap, i);
12985 					if (nbits + width <= maxbits) {
12986 						fmode |= 1 << i;
12987 						nbits += width;
12988 						if (nbits == maxbits)
12989 							break;
12990 					}
12991 				}
12992 			}
12993 
12994 			fmask = fmode & adap->params.tp.filter_mask;
12995 			if (fmask != adap->params.tp.filter_mask) {
12996 				CH_WARN(adap,
12997 				    "filter mask will be changed from 0x%x to "
12998 				    "0x%x to comply with the filter mode (0x%x).\n",
12999 				    adap->params.tp.filter_mask, fmask, fmode);
13000 			}
13001 		} else {
13002 			fmode = adap->params.tp.filter_mode;
13003 			fmask = mask;
13004 			if ((fmode | fmask) != fmode) {
13005 				CH_ERR(adap,
13006 				    "filter mask (0x%x) must be a subset of "
13007 				    "the filter mode (0x%x).\n", fmask, fmode);
13008 				return -EINVAL;
13009 			}
13010 		}
13011 
13012 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13013 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
13014 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
13015 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
13016 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
13017 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
13018 		    &val);
13019 		if (rc < 0)
13020 			return rc;
13021 	}
13022 
13023 	if (vnic_mode != -1) {
13024 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13025 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
13026 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
13027 		val = vnic_mode;
13028 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
13029 		    &val);
13030 		if (rc < 0)
13031 			return rc;
13032 	}
13033 
13034 	/* Refresh. */
13035 	read_filter_mode_and_ingress_config(adap);
13036 
13037 	return 0;
13038 }
13039 
13040 /**
13041  *	t4_clr_port_stats - clear port statistics
13042  *	@adap: the adapter
13043  *	@idx: the port index
13044  *
13045  *	Clear HW statistics for the given port.
13046  */
t4_clr_port_stats(struct adapter * adap,int idx)13047 void t4_clr_port_stats(struct adapter *adap, int idx)
13048 {
13049 	struct port_info *pi;
13050 	int i, port_id, tx_chan;
13051 	u32 bgmap, port_base_addr;
13052 
13053 	port_id  = adap->port_map[idx];
13054 	MPASS(port_id >= 0 && port_id <= adap->params.nports);
13055 	pi = adap->port[port_id];
13056 
13057 	for (tx_chan = pi->tx_chan;
13058 	    tx_chan < pi->tx_chan + adap->params.tp.lb_nchan; tx_chan++) {
13059 		port_base_addr = t4_port_reg(adap, tx_chan, 0);
13060 
13061 		for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
13062 				i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
13063 			t4_write_reg(adap, port_base_addr + i, 0);
13064 		for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
13065 				i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
13066 			t4_write_reg(adap, port_base_addr + i, 0);
13067 	}
13068 	bgmap = pi->mps_bg_map;
13069 	for (i = 0; i < 4; i++)
13070 		if (bgmap & (1 << i)) {
13071 			t4_write_reg(adap,
13072 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
13073 			t4_write_reg(adap,
13074 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
13075 		}
13076 }
13077 
13078 /**
13079  *	t4_i2c_io - read/write I2C data from adapter
13080  *	@adap: the adapter
13081  *	@port: Port number if per-port device; <0 if not
13082  *	@devid: per-port device ID or absolute device ID
13083  *	@offset: byte offset into device I2C space
13084  *	@len: byte length of I2C space data
13085  *	@buf: buffer in which to return I2C data for read
13086  *	      buffer which holds the I2C data for write
13087  *	@write: if true, do a write; else do a read
13088  *	Reads/Writes the I2C data from/to the indicated device and location.
13089  */
t4_i2c_io(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf,bool write)13090 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
13091 	      int port, unsigned int devid,
13092 	      unsigned int offset, unsigned int len,
13093 	      u8 *buf, bool write)
13094 {
13095 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
13096 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
13097 	int ret = 0;
13098 
13099 	if (len > I2C_PAGE_SIZE)
13100 		return -EINVAL;
13101 
13102 	/* Dont allow reads that spans multiple pages */
13103 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
13104 		return -EINVAL;
13105 
13106 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
13107 	ldst_cmd.op_to_addrspace =
13108 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
13109 			    F_FW_CMD_REQUEST |
13110 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
13111 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
13112 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
13113 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
13114 	ldst_cmd.u.i2c.did = devid;
13115 
13116 	while (len > 0) {
13117 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
13118 
13119 		ldst_cmd.u.i2c.boffset = offset;
13120 		ldst_cmd.u.i2c.blen = i2c_len;
13121 
13122 		if (write)
13123 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
13124 
13125 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
13126 				 write ? NULL : &ldst_rpl);
13127 		if (ret)
13128 			break;
13129 
13130 		if (!write)
13131 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
13132 		offset += i2c_len;
13133 		buf += i2c_len;
13134 		len -= i2c_len;
13135 	}
13136 
13137 	return ret;
13138 }
13139 
t4_i2c_rd(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)13140 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
13141 	      int port, unsigned int devid,
13142 	      unsigned int offset, unsigned int len,
13143 	      u8 *buf)
13144 {
13145 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
13146 }
13147 
t4_i2c_wr(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)13148 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
13149 	      int port, unsigned int devid,
13150 	      unsigned int offset, unsigned int len,
13151 	      u8 *buf)
13152 {
13153 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
13154 }
13155 
13156 /**
13157  * 	t4_sge_ctxt_rd - read an SGE context through FW
13158  * 	@adap: the adapter
13159  * 	@mbox: mailbox to use for the FW command
13160  * 	@cid: the context id
13161  * 	@ctype: the context type
13162  * 	@data: where to store the context data
13163  *
13164  * 	Issues a FW command through the given mailbox to read an SGE context.
13165  */
t4_sge_ctxt_rd(struct adapter * adap,unsigned int mbox,unsigned int cid,enum ctxt_type ctype,u32 * data)13166 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
13167 		   enum ctxt_type ctype, u32 *data)
13168 {
13169 	int ret;
13170 	struct fw_ldst_cmd c;
13171 
13172 	if (ctype == CTXT_EGRESS)
13173 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
13174 	else if (ctype == CTXT_INGRESS)
13175 		ret = FW_LDST_ADDRSPC_SGE_INGC;
13176 	else if (ctype == CTXT_FLM)
13177 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
13178 	else
13179 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
13180 
13181 	memset(&c, 0, sizeof(c));
13182 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
13183 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
13184 					V_FW_LDST_CMD_ADDRSPACE(ret));
13185 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
13186 	c.u.idctxt.physid = cpu_to_be32(cid);
13187 
13188 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13189 	if (ret == 0) {
13190 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
13191 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
13192 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
13193 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
13194 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
13195 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
13196 		if (chip_id(adap) > CHELSIO_T6)
13197 			data[6] = be32_to_cpu(c.u.idctxt.ctxt_data6);
13198 	}
13199 	return ret;
13200 }
13201 
13202 /**
13203  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
13204  * 	@adap: the adapter
13205  * 	@cid: the context id
13206  * 	@ctype: the context type
13207  * 	@data: where to store the context data
13208  *
13209  * 	Reads an SGE context directly, bypassing FW.  This is only for
13210  * 	debugging when FW is unavailable.
13211  */
t4_sge_ctxt_rd_bd(struct adapter * adap,unsigned int cid,enum ctxt_type ctype,u32 * data)13212 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
13213 		      u32 *data)
13214 {
13215 	int i, ret;
13216 
13217 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
13218 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
13219 	if (!ret) {
13220 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
13221 			*data++ = t4_read_reg(adap, i);
13222 		if (chip_id(adap) > CHELSIO_T6)
13223 			*data++ = t4_read_reg(adap, i);
13224 	}
13225 	return ret;
13226 }
13227 
t4_sched_config(struct adapter * adapter,int type,int minmaxen,int sleep_ok)13228 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
13229     int sleep_ok)
13230 {
13231 	struct fw_sched_cmd cmd;
13232 
13233 	memset(&cmd, 0, sizeof(cmd));
13234 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13235 				      F_FW_CMD_REQUEST |
13236 				      F_FW_CMD_WRITE);
13237 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13238 
13239 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
13240 	cmd.u.config.type = type;
13241 	cmd.u.config.minmaxen = minmaxen;
13242 
13243 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13244 			       NULL, sleep_ok);
13245 }
13246 
t4_sched_params(struct adapter * adapter,int type,int level,int mode,int rateunit,int ratemode,int channel,int cl,int minrate,int maxrate,int weight,int pktsize,int burstsize,int sleep_ok)13247 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
13248 		    int rateunit, int ratemode, int channel, int cl,
13249 		    int minrate, int maxrate, int weight, int pktsize,
13250 		    int burstsize, int sleep_ok)
13251 {
13252 	struct fw_sched_cmd cmd;
13253 
13254 	memset(&cmd, 0, sizeof(cmd));
13255 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13256 				      F_FW_CMD_REQUEST |
13257 				      F_FW_CMD_WRITE);
13258 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13259 
13260 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13261 	cmd.u.params.type = type;
13262 	cmd.u.params.level = level;
13263 	cmd.u.params.mode = mode;
13264 	cmd.u.params.ch = channel;
13265 	cmd.u.params.cl = cl;
13266 	cmd.u.params.unit = rateunit;
13267 	cmd.u.params.rate = ratemode;
13268 	cmd.u.params.min = cpu_to_be32(minrate);
13269 	cmd.u.params.max = cpu_to_be32(maxrate);
13270 	cmd.u.params.weight = cpu_to_be16(weight);
13271 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
13272 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
13273 
13274 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13275 			       NULL, sleep_ok);
13276 }
13277 
t4_sched_params_ch_rl(struct adapter * adapter,int channel,int ratemode,unsigned int maxrate,int sleep_ok)13278 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
13279     unsigned int maxrate, int sleep_ok)
13280 {
13281 	struct fw_sched_cmd cmd;
13282 
13283 	memset(&cmd, 0, sizeof(cmd));
13284 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13285 				      F_FW_CMD_REQUEST |
13286 				      F_FW_CMD_WRITE);
13287 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13288 
13289 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13290 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13291 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
13292 	cmd.u.params.ch = channel;
13293 	cmd.u.params.rate = ratemode;		/* REL or ABS */
13294 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
13295 
13296 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13297 			       NULL, sleep_ok);
13298 }
13299 
t4_sched_params_cl_wrr(struct adapter * adapter,int channel,int cl,int weight,int sleep_ok)13300 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
13301     int weight, int sleep_ok)
13302 {
13303 	struct fw_sched_cmd cmd;
13304 
13305 	if (weight < 0 || weight > 100)
13306 		return -EINVAL;
13307 
13308 	memset(&cmd, 0, sizeof(cmd));
13309 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13310 				      F_FW_CMD_REQUEST |
13311 				      F_FW_CMD_WRITE);
13312 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13313 
13314 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13315 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13316 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
13317 	cmd.u.params.ch = channel;
13318 	cmd.u.params.cl = cl;
13319 	cmd.u.params.weight = cpu_to_be16(weight);
13320 
13321 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13322 			       NULL, sleep_ok);
13323 }
13324 
t4_sched_params_cl_rl_kbps(struct adapter * adapter,int channel,int cl,int mode,unsigned int maxrate,int pktsize,int sleep_ok)13325 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
13326     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
13327 {
13328 	struct fw_sched_cmd cmd;
13329 
13330 	memset(&cmd, 0, sizeof(cmd));
13331 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13332 				      F_FW_CMD_REQUEST |
13333 				      F_FW_CMD_WRITE);
13334 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13335 
13336 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13337 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13338 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
13339 	cmd.u.params.mode = mode;
13340 	cmd.u.params.ch = channel;
13341 	cmd.u.params.cl = cl;
13342 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
13343 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
13344 	cmd.u.params.max = cpu_to_be32(maxrate);
13345 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
13346 
13347 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13348 			       NULL, sleep_ok);
13349 }
13350 
13351 /*
13352  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
13353  *	@adapter: the adapter
13354  * 	@mbox: mailbox to use for the FW command
13355  * 	@pf: the PF owning the queue
13356  * 	@vf: the VF owning the queue
13357  *	@timeout: watchdog timeout in ms
13358  *	@action: watchdog timer / action
13359  *
13360  *	There are separate watchdog timers for each possible watchdog
13361  *	action.  Configure one of the watchdog timers by setting a non-zero
13362  *	timeout.  Disable a watchdog timer by using a timeout of zero.
13363  */
t4_config_watchdog(struct adapter * adapter,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int timeout,unsigned int action)13364 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
13365 		       unsigned int pf, unsigned int vf,
13366 		       unsigned int timeout, unsigned int action)
13367 {
13368 	struct fw_watchdog_cmd wdog;
13369 	unsigned int ticks;
13370 
13371 	/*
13372 	 * The watchdog command expects a timeout in units of 10ms so we need
13373 	 * to convert it here (via rounding) and force a minimum of one 10ms
13374 	 * "tick" if the timeout is non-zero but the conversion results in 0
13375 	 * ticks.
13376 	 */
13377 	ticks = (timeout + 5)/10;
13378 	if (timeout && !ticks)
13379 		ticks = 1;
13380 
13381 	memset(&wdog, 0, sizeof wdog);
13382 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
13383 				     F_FW_CMD_REQUEST |
13384 				     F_FW_CMD_WRITE |
13385 				     V_FW_PARAMS_CMD_PFN(pf) |
13386 				     V_FW_PARAMS_CMD_VFN(vf));
13387 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
13388 	wdog.timeout = cpu_to_be32(ticks);
13389 	wdog.action = cpu_to_be32(action);
13390 
13391 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
13392 }
13393 
t4_get_devlog_level(struct adapter * adapter,unsigned int * level)13394 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
13395 {
13396 	struct fw_devlog_cmd devlog_cmd;
13397 	int ret;
13398 
13399 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
13400 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
13401 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
13402 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
13403 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
13404 			 sizeof(devlog_cmd), &devlog_cmd);
13405 	if (ret)
13406 		return ret;
13407 
13408 	*level = devlog_cmd.level;
13409 	return 0;
13410 }
13411 
t4_set_devlog_level(struct adapter * adapter,unsigned int level)13412 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
13413 {
13414 	struct fw_devlog_cmd devlog_cmd;
13415 
13416 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
13417 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
13418 					     F_FW_CMD_REQUEST |
13419 					     F_FW_CMD_WRITE);
13420 	devlog_cmd.level = level;
13421 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
13422 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
13423 			  sizeof(devlog_cmd), &devlog_cmd);
13424 }
13425 
t4_configure_add_smac(struct adapter * adap)13426 int t4_configure_add_smac(struct adapter *adap)
13427 {
13428 	unsigned int param, val;
13429 	int ret = 0;
13430 
13431 	adap->params.smac_add_support = 0;
13432 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13433 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
13434 	/* Query FW to check if FW supports adding source mac address
13435 	 * to TCAM feature or not.
13436 	 * If FW returns 1, driver can use this feature and driver need to send
13437 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
13438 	 * enable adding smac to TCAM.
13439 	 */
13440 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13441 	if (ret)
13442 		return ret;
13443 
13444 	if (val == 1) {
13445 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
13446 				    &param, &val);
13447 		if (!ret)
13448 			/* Firmware allows adding explicit TCAM entries.
13449 			 * Save this internally.
13450 			 */
13451 			adap->params.smac_add_support = 1;
13452 	}
13453 
13454 	return ret;
13455 }
13456 
t4_configure_ringbb(struct adapter * adap)13457 int t4_configure_ringbb(struct adapter *adap)
13458 {
13459 	unsigned int param, val;
13460 	int ret = 0;
13461 
13462 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13463 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
13464 	/* Query FW to check if FW supports ring switch feature or not.
13465 	 * If FW returns 1, driver can use this feature and driver need to send
13466 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
13467 	 * enable the ring backbone configuration.
13468 	 */
13469 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13470 	if (ret < 0) {
13471 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
13472 			ret);
13473 		goto out;
13474 	}
13475 
13476 	if (val != 1) {
13477 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
13478 		goto out;
13479 	}
13480 
13481 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13482 	if (ret < 0) {
13483 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
13484 			ret);
13485 		goto out;
13486 	}
13487 
13488 out:
13489 	return ret;
13490 }
13491 
13492 /*
13493  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
13494  *	@adapter: the adapter
13495  *	@mbox: mailbox to use for the FW command
13496  *	@vf: one of the VFs instantiated by the specified PF
13497  *	@vlan: The vlanid to be set
13498  *
13499  */
t4_set_vlan_acl(struct adapter * adap,unsigned int pf,unsigned int vf,u16 vlan)13500 int t4_set_vlan_acl(struct adapter *adap, unsigned int pf, unsigned int vf,
13501 		    u16 vlan)
13502 {
13503 	struct fw_acl_vlan_cmd vlan_cmd;
13504 	unsigned int enable;
13505 
13506 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
13507 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
13508 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
13509 					 F_FW_CMD_REQUEST |
13510 					 F_FW_CMD_WRITE |
13511 					 F_FW_CMD_EXEC |
13512 					 V_FW_ACL_VLAN_CMD_PFN(pf) |
13513 					 V_FW_ACL_VLAN_CMD_VFN(vf));
13514 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd) |
13515 					   V_FW_ACL_VLAN_CMD_PMASK(1 << pf));
13516 	/* Drop all packets that donot match vlan id */
13517 	vlan_cmd.dropnovlan_fm = (enable
13518 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
13519 				     F_FW_ACL_VLAN_CMD_FM)
13520 				  : 0);
13521 	if (enable != 0) {
13522 		vlan_cmd.nvlan = 1;
13523 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
13524 	}
13525 
13526 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
13527 }
13528 
13529 /**
13530  *	t4_del_mac - Removes the exact-match filter for a MAC address
13531  *	@adap: the adapter
13532  *	@mbox: mailbox to use for the FW command
13533  *	@viid: the VI id
13534  *	@addr: the MAC address value
13535  *	@smac: if true, delete from only the smac region of MPS
13536  *
13537  *	Modifies an exact-match filter and sets it to the new MAC address if
13538  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
13539  *	latter case the address is added persistently if @persist is %true.
13540  *
13541  *	Returns a negative error number or the index of the filter with the new
13542  *	MAC value.  Note that this index may differ from @idx.
13543  */
t4_del_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,const u8 * addr,bool smac)13544 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
13545 	       const u8 *addr, bool smac)
13546 {
13547 	int ret;
13548 	struct fw_vi_mac_cmd c;
13549 	struct fw_vi_mac_exact *p = c.u.exact;
13550 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
13551 
13552 	memset(&c, 0, sizeof(c));
13553 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
13554 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
13555 				   V_FW_VI_MAC_CMD_VIID(viid));
13556 	c.freemacs_to_len16 = cpu_to_be32(
13557 					V_FW_CMD_LEN16(1) |
13558 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
13559 
13560 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
13561 	p->valid_to_idx = cpu_to_be16(
13562 				F_FW_VI_MAC_CMD_VALID |
13563 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
13564 
13565 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13566 	if (ret == 0) {
13567 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
13568 		if (ret < max_mac_addr)
13569 			return -ENOMEM;
13570 	}
13571 
13572 	return ret;
13573 }
13574 
13575 /**
13576  *	t4_add_mac - Adds an exact-match filter for a MAC address
13577  *	@adap: the adapter
13578  *	@mbox: mailbox to use for the FW command
13579  *	@viid: the VI id
13580  *	@idx: index of existing filter for old value of MAC address, or -1
13581  *	@addr: the new MAC address value
13582  *	@persist: whether a new MAC allocation should be persistent
13583  *	@add_smt: if true also add the address to the HW SMT
13584  *	@smac: if true, update only the smac region of MPS
13585  *
13586  *	Modifies an exact-match filter and sets it to the new MAC address if
13587  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
13588  *	latter case the address is added persistently if @persist is %true.
13589  *
13590  *	Returns a negative error number or the index of the filter with the new
13591  *	MAC value.  Note that this index may differ from @idx.
13592  */
t4_add_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,u8 * smt_idx,bool smac)13593 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
13594 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
13595 {
13596 	int ret, mode;
13597 	struct fw_vi_mac_cmd c;
13598 	struct fw_vi_mac_exact *p = c.u.exact;
13599 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
13600 
13601 	if (idx < 0)		/* new allocation */
13602 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
13603 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
13604 
13605 	memset(&c, 0, sizeof(c));
13606 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
13607 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
13608 				   V_FW_VI_MAC_CMD_VIID(viid));
13609 	c.freemacs_to_len16 = cpu_to_be32(
13610 				V_FW_CMD_LEN16(1) |
13611 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
13612 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
13613 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
13614 				      V_FW_VI_MAC_CMD_IDX(idx));
13615 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
13616 
13617 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13618 	if (ret == 0) {
13619 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
13620 		if (ret >= max_mac_addr)
13621 			return -ENOMEM;
13622 		if (smt_idx) {
13623 			/* Does fw supports returning smt_idx? */
13624 			if (adap->params.viid_smt_extn_support)
13625 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
13626 			else {
13627 				/* In T4/T5, SMT contains 256 SMAC entries
13628 				 * organized in 128 rows of 2 entries each.
13629 				 * In T6, SMT contains 256 SMAC entries in
13630 				 * 256 rows.
13631 				 */
13632 				if (chip_id(adap) <= CHELSIO_T5)
13633 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
13634 				else
13635 					*smt_idx = (viid & M_FW_VIID_VIN);
13636 			}
13637 		}
13638 	}
13639 
13640 	return ret;
13641 }
13642