1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "opt_bhyve_snapshot.h"
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sx.h>
45 #include <sys/vnode.h>
46
47 #include <vm/vm.h>
48 #include <vm/vm_param.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_kern.h>
56 #include <vm/vnode_pager.h>
57 #include <vm/swap_pager.h>
58 #include <vm/uma.h>
59
60 #include <machine/cpu.h>
61 #include <machine/pcb.h>
62 #include <machine/smp.h>
63 #include <machine/md_var.h>
64 #include <x86/psl.h>
65 #include <x86/apicreg.h>
66 #include <x86/ifunc.h>
67
68 #include <machine/vmm.h>
69 #include <machine/vmm_instruction_emul.h>
70 #include <machine/vmm_snapshot.h>
71
72 #include <dev/vmm/vmm_dev.h>
73 #include <dev/vmm/vmm_ktr.h>
74 #include <dev/vmm/vmm_mem.h>
75
76 #include "vmm_ioport.h"
77 #include "vmm_host.h"
78 #include "vmm_mem.h"
79 #include "vmm_util.h"
80 #include "vatpic.h"
81 #include "vatpit.h"
82 #include "vhpet.h"
83 #include "vioapic.h"
84 #include "vlapic.h"
85 #include "vpmtmr.h"
86 #include "vrtc.h"
87 #include "vmm_stat.h"
88 #include "vmm_lapic.h"
89
90 #include "io/ppt.h"
91 #include "io/iommu.h"
92
93 struct vlapic;
94
95 /*
96 * Initialization:
97 * (a) allocated when vcpu is created
98 * (i) initialized when vcpu is created and when it is reinitialized
99 * (o) initialized the first time the vcpu is created
100 * (x) initialized before use
101 */
102 struct vcpu {
103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
104 enum vcpu_state state; /* (o) vcpu state */
105 int vcpuid; /* (o) */
106 int hostcpu; /* (o) vcpu's host cpu */
107 int reqidle; /* (i) request vcpu to idle */
108 struct vm *vm; /* (o) */
109 void *cookie; /* (i) cpu-specific data */
110 struct vlapic *vlapic; /* (i) APIC device model */
111 enum x2apic_state x2apic_state; /* (i) APIC mode */
112 uint64_t exitintinfo; /* (i) events pending at VM exit */
113 int nmi_pending; /* (i) NMI pending */
114 int extint_pending; /* (i) INTR pending */
115 int exception_pending; /* (i) exception pending */
116 int exc_vector; /* (x) exception collateral */
117 int exc_errcode_valid;
118 uint32_t exc_errcode;
119 struct savefpu *guestfpu; /* (a,i) guest fpu state */
120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */
121 void *stats; /* (a,i) statistics */
122 struct vm_exit exitinfo; /* (x) exit reason and collateral */
123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
124 uint64_t nextrip; /* (x) next instruction to execute */
125 uint64_t tsc_offset; /* (o) TSC offsetting */
126 };
127
128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
133
134 /*
135 * Initialization:
136 * (o) initialized the first time the VM is created
137 * (i) initialized when VM is created and when it is reinitialized
138 * (x) initialized before use
139 *
140 * Locking:
141 * [m] mem_segs_lock
142 * [r] rendezvous_mtx
143 * [v] reads require one frozen vcpu, writes require freezing all vcpus
144 */
145 struct vm {
146 void *cookie; /* (i) cpu-specific data */
147 void *iommu; /* (x) iommu-specific data */
148 struct vhpet *vhpet; /* (i) virtual HPET */
149 struct vioapic *vioapic; /* (i) virtual ioapic */
150 struct vatpic *vatpic; /* (i) virtual atpic */
151 struct vatpit *vatpit; /* (i) virtual atpit */
152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
153 struct vrtc *vrtc; /* (o) virtual RTC */
154 volatile cpuset_t active_cpus; /* (i) active vcpus */
155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
156 cpuset_t startup_cpus; /* (i) [r] waiting for startup */
157 int suspend; /* (i) stop VM execution */
158 bool dying; /* (o) is dying */
159 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
160 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
161 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
162 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
163 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
164 vm_rendezvous_func_t rendezvous_func;
165 struct mtx rendezvous_mtx; /* (o) rendezvous lock */
166 struct vm_mem mem; /* (i) [m+v] guest memory */
167 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
168 struct vcpu **vcpu; /* (o) guest vcpus */
169 /* The following describe the vm cpu topology */
170 uint16_t sockets; /* (o) num of sockets */
171 uint16_t cores; /* (o) num of cores/socket */
172 uint16_t threads; /* (o) num of threads/core */
173 uint16_t maxcpus; /* (o) max pluggable cpus */
174 struct sx vcpus_init_lock; /* (o) */
175 };
176
177 #define VMM_CTR0(vcpu, format) \
178 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
179
180 #define VMM_CTR1(vcpu, format, p1) \
181 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
182
183 #define VMM_CTR2(vcpu, format, p1, p2) \
184 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
185
186 #define VMM_CTR3(vcpu, format, p1, p2, p3) \
187 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
188
189 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
190 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
191
192 static int vmm_initialized;
193
194 static void vmmops_panic(void);
195
196 static void
vmmops_panic(void)197 vmmops_panic(void)
198 {
199 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
200 }
201
202 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
203 DEFINE_IFUNC(, ret_type, vmmops_##opname, args) \
204 { \
205 if (vmm_is_intel()) \
206 return (vmm_ops_intel.opname); \
207 else if (vmm_is_svm()) \
208 return (vmm_ops_amd.opname); \
209 else \
210 return ((ret_type (*)args)vmmops_panic); \
211 }
212
213 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
214 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
215 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void))
216 DEFINE_VMMOPS_IFUNC(void, modresume, (void))
217 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
218 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
219 struct vm_eventinfo *info))
220 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
221 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
222 int vcpu_id))
223 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
224 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
225 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
226 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
227 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
228 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
229 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
230 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
231 vm_offset_t max))
232 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
233 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
234 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
235 #ifdef BHYVE_SNAPSHOT
236 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
237 struct vm_snapshot_meta *meta))
238 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
239 #endif
240
241 SDT_PROVIDER_DEFINE(vmm);
242
243 static MALLOC_DEFINE(M_VM, "vm", "vm");
244
245 /* statistics */
246 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
247
248 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
249 NULL);
250
251 /*
252 * Halt the guest if all vcpus are executing a HLT instruction with
253 * interrupts disabled.
254 */
255 static int halt_detection_enabled = 1;
256 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
257 &halt_detection_enabled, 0,
258 "Halt VM if all vcpus execute HLT with interrupts disabled");
259
260 static int vmm_ipinum;
261 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
262 "IPI vector used for vcpu notifications");
263
264 static int trace_guest_exceptions;
265 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
266 &trace_guest_exceptions, 0,
267 "Trap into hypervisor on all guest exceptions and reflect them back");
268
269 static int trap_wbinvd;
270 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
271 "WBINVD triggers a VM-exit");
272
273 u_int vm_maxcpu;
274 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
275 &vm_maxcpu, 0, "Maximum number of vCPUs");
276
277 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
278
279 /* global statistics */
280 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus");
281 VMM_STAT(VMEXIT_COUNT, "total number of vm exits");
282 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt");
283 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted");
284 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted");
285 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted");
286 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted");
287 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits");
288 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted");
289 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening");
290 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening");
291 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted");
292 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted");
293 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault");
294 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation");
295 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason");
296 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit");
297 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit");
298 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace");
299 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit");
300 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions");
301
302 /*
303 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
304 * counts as well as range of vpid values for VT-x and by the capacity
305 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
306 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
307 */
308 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
309
310 #ifdef KTR
311 static const char *
vcpu_state2str(enum vcpu_state state)312 vcpu_state2str(enum vcpu_state state)
313 {
314
315 switch (state) {
316 case VCPU_IDLE:
317 return ("idle");
318 case VCPU_FROZEN:
319 return ("frozen");
320 case VCPU_RUNNING:
321 return ("running");
322 case VCPU_SLEEPING:
323 return ("sleeping");
324 default:
325 return ("unknown");
326 }
327 }
328 #endif
329
330 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)331 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
332 {
333 vmmops_vlapic_cleanup(vcpu->vlapic);
334 vmmops_vcpu_cleanup(vcpu->cookie);
335 vcpu->cookie = NULL;
336 if (destroy) {
337 vmm_stat_free(vcpu->stats);
338 fpu_save_area_free(vcpu->guestfpu);
339 vcpu_lock_destroy(vcpu);
340 free(vcpu, M_VM);
341 }
342 }
343
344 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)345 vcpu_alloc(struct vm *vm, int vcpu_id)
346 {
347 struct vcpu *vcpu;
348
349 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
350 ("vcpu_init: invalid vcpu %d", vcpu_id));
351
352 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
353 vcpu_lock_init(vcpu);
354 vcpu->state = VCPU_IDLE;
355 vcpu->hostcpu = NOCPU;
356 vcpu->vcpuid = vcpu_id;
357 vcpu->vm = vm;
358 vcpu->guestfpu = fpu_save_area_alloc();
359 vcpu->stats = vmm_stat_alloc();
360 vcpu->tsc_offset = 0;
361 return (vcpu);
362 }
363
364 static void
vcpu_init(struct vcpu * vcpu)365 vcpu_init(struct vcpu *vcpu)
366 {
367 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
368 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
369 vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
370 vcpu->reqidle = 0;
371 vcpu->exitintinfo = 0;
372 vcpu->nmi_pending = 0;
373 vcpu->extint_pending = 0;
374 vcpu->exception_pending = 0;
375 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
376 fpu_save_area_reset(vcpu->guestfpu);
377 vmm_stat_init(vcpu->stats);
378 }
379
380 int
vcpu_trace_exceptions(struct vcpu * vcpu)381 vcpu_trace_exceptions(struct vcpu *vcpu)
382 {
383
384 return (trace_guest_exceptions);
385 }
386
387 int
vcpu_trap_wbinvd(struct vcpu * vcpu)388 vcpu_trap_wbinvd(struct vcpu *vcpu)
389 {
390 return (trap_wbinvd);
391 }
392
393 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)394 vm_exitinfo(struct vcpu *vcpu)
395 {
396 return (&vcpu->exitinfo);
397 }
398
399 cpuset_t *
vm_exitinfo_cpuset(struct vcpu * vcpu)400 vm_exitinfo_cpuset(struct vcpu *vcpu)
401 {
402 return (&vcpu->exitinfo_cpuset);
403 }
404
405 static int
vmm_init(void)406 vmm_init(void)
407 {
408 if (!vmm_is_hw_supported())
409 return (ENXIO);
410
411 vm_maxcpu = mp_ncpus;
412 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
413
414 if (vm_maxcpu > VM_MAXCPU) {
415 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
416 vm_maxcpu = VM_MAXCPU;
417 }
418 if (vm_maxcpu == 0)
419 vm_maxcpu = 1;
420
421 vmm_host_state_init();
422
423 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
424 &IDTVEC(justreturn));
425 if (vmm_ipinum < 0)
426 vmm_ipinum = IPI_AST;
427
428 vmm_suspend_p = vmmops_modsuspend;
429 vmm_resume_p = vmmops_modresume;
430
431 return (vmmops_modinit(vmm_ipinum));
432 }
433
434 static int
vmm_handler(module_t mod,int what,void * arg)435 vmm_handler(module_t mod, int what, void *arg)
436 {
437 int error;
438
439 switch (what) {
440 case MOD_LOAD:
441 if (vmm_is_hw_supported()) {
442 error = vmmdev_init();
443 if (error != 0)
444 break;
445 error = vmm_init();
446 if (error == 0)
447 vmm_initialized = 1;
448 else
449 (void)vmmdev_cleanup();
450 } else {
451 error = ENXIO;
452 }
453 break;
454 case MOD_UNLOAD:
455 if (vmm_is_hw_supported()) {
456 error = vmmdev_cleanup();
457 if (error == 0) {
458 vmm_suspend_p = NULL;
459 vmm_resume_p = NULL;
460 iommu_cleanup();
461 if (vmm_ipinum != IPI_AST)
462 lapic_ipi_free(vmm_ipinum);
463 error = vmmops_modcleanup();
464 /*
465 * Something bad happened - prevent new
466 * VMs from being created
467 */
468 if (error)
469 vmm_initialized = 0;
470 }
471 } else {
472 error = 0;
473 }
474 break;
475 default:
476 error = 0;
477 break;
478 }
479 return (error);
480 }
481
482 static moduledata_t vmm_kmod = {
483 "vmm",
484 vmm_handler,
485 NULL
486 };
487
488 /*
489 * vmm initialization has the following dependencies:
490 *
491 * - VT-x initialization requires smp_rendezvous() and therefore must happen
492 * after SMP is fully functional (after SI_SUB_SMP).
493 * - vmm device initialization requires an initialized devfs.
494 */
495 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY);
496 MODULE_VERSION(vmm, 1);
497
498 static void
vm_init(struct vm * vm,bool create)499 vm_init(struct vm *vm, bool create)
500 {
501 vm->cookie = vmmops_init(vm, vmspace_pmap(vm_vmspace(vm)));
502 vm->iommu = NULL;
503 vm->vioapic = vioapic_init(vm);
504 vm->vhpet = vhpet_init(vm);
505 vm->vatpic = vatpic_init(vm);
506 vm->vatpit = vatpit_init(vm);
507 vm->vpmtmr = vpmtmr_init(vm);
508 if (create)
509 vm->vrtc = vrtc_init(vm);
510
511 CPU_ZERO(&vm->active_cpus);
512 CPU_ZERO(&vm->debug_cpus);
513 CPU_ZERO(&vm->startup_cpus);
514
515 vm->suspend = 0;
516 CPU_ZERO(&vm->suspended_cpus);
517
518 if (!create) {
519 for (int i = 0; i < vm->maxcpus; i++) {
520 if (vm->vcpu[i] != NULL)
521 vcpu_init(vm->vcpu[i]);
522 }
523 }
524 }
525
526 void
vm_disable_vcpu_creation(struct vm * vm)527 vm_disable_vcpu_creation(struct vm *vm)
528 {
529 sx_xlock(&vm->vcpus_init_lock);
530 vm->dying = true;
531 sx_xunlock(&vm->vcpus_init_lock);
532 }
533
534 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)535 vm_alloc_vcpu(struct vm *vm, int vcpuid)
536 {
537 struct vcpu *vcpu;
538
539 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
540 return (NULL);
541
542 vcpu = (struct vcpu *)
543 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]);
544 if (__predict_true(vcpu != NULL))
545 return (vcpu);
546
547 sx_xlock(&vm->vcpus_init_lock);
548 vcpu = vm->vcpu[vcpuid];
549 if (vcpu == NULL && !vm->dying) {
550 vcpu = vcpu_alloc(vm, vcpuid);
551 vcpu_init(vcpu);
552
553 /*
554 * Ensure vCPU is fully created before updating pointer
555 * to permit unlocked reads above.
556 */
557 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
558 (uintptr_t)vcpu);
559 }
560 sx_xunlock(&vm->vcpus_init_lock);
561 return (vcpu);
562 }
563
564 void
vm_lock_vcpus(struct vm * vm)565 vm_lock_vcpus(struct vm *vm)
566 {
567 sx_xlock(&vm->vcpus_init_lock);
568 }
569
570 void
vm_unlock_vcpus(struct vm * vm)571 vm_unlock_vcpus(struct vm *vm)
572 {
573 sx_unlock(&vm->vcpus_init_lock);
574 }
575
576 /*
577 * The default CPU topology is a single thread per package.
578 */
579 u_int cores_per_package = 1;
580 u_int threads_per_core = 1;
581
582 int
vm_create(const char * name,struct vm ** retvm)583 vm_create(const char *name, struct vm **retvm)
584 {
585 struct vm *vm;
586 int error;
587
588 /*
589 * If vmm.ko could not be successfully initialized then don't attempt
590 * to create the virtual machine.
591 */
592 if (!vmm_initialized)
593 return (ENXIO);
594
595 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
596 VM_MAX_NAMELEN + 1)
597 return (EINVAL);
598
599 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
600 error = vm_mem_init(&vm->mem, 0, VM_MAXUSER_ADDRESS_LA48);
601 if (error != 0) {
602 free(vm, M_VM);
603 return (error);
604 }
605 strcpy(vm->name, name);
606 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
607 sx_init(&vm->vcpus_init_lock, "vm vcpus");
608 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
609 M_ZERO);
610
611 vm->sockets = 1;
612 vm->cores = cores_per_package; /* XXX backwards compatibility */
613 vm->threads = threads_per_core; /* XXX backwards compatibility */
614 vm->maxcpus = vm_maxcpu;
615
616 vm_init(vm, true);
617
618 *retvm = vm;
619 return (0);
620 }
621
622 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)623 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
624 uint16_t *threads, uint16_t *maxcpus)
625 {
626 *sockets = vm->sockets;
627 *cores = vm->cores;
628 *threads = vm->threads;
629 *maxcpus = vm->maxcpus;
630 }
631
632 uint16_t
vm_get_maxcpus(struct vm * vm)633 vm_get_maxcpus(struct vm *vm)
634 {
635 return (vm->maxcpus);
636 }
637
638 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus __unused)639 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
640 uint16_t threads, uint16_t maxcpus __unused)
641 {
642 /* Ignore maxcpus. */
643 if ((sockets * cores * threads) > vm->maxcpus)
644 return (EINVAL);
645 vm->sockets = sockets;
646 vm->cores = cores;
647 vm->threads = threads;
648 return(0);
649 }
650
651 static void
vm_cleanup(struct vm * vm,bool destroy)652 vm_cleanup(struct vm *vm, bool destroy)
653 {
654 if (destroy)
655 vm_xlock_memsegs(vm);
656 else
657 vm_assert_memseg_xlocked(vm);
658
659 ppt_unassign_all(vm);
660
661 if (vm->iommu != NULL)
662 iommu_destroy_domain(vm->iommu);
663
664 if (destroy)
665 vrtc_cleanup(vm->vrtc);
666 else
667 vrtc_reset(vm->vrtc);
668 vpmtmr_cleanup(vm->vpmtmr);
669 vatpit_cleanup(vm->vatpit);
670 vhpet_cleanup(vm->vhpet);
671 vatpic_cleanup(vm->vatpic);
672 vioapic_cleanup(vm->vioapic);
673
674 for (int i = 0; i < vm->maxcpus; i++) {
675 if (vm->vcpu[i] != NULL)
676 vcpu_cleanup(vm->vcpu[i], destroy);
677 }
678
679 vmmops_cleanup(vm->cookie);
680
681 vm_mem_cleanup(vm);
682
683 if (destroy) {
684 vm_mem_destroy(vm);
685
686 free(vm->vcpu, M_VM);
687 sx_destroy(&vm->vcpus_init_lock);
688 mtx_destroy(&vm->rendezvous_mtx);
689 }
690 }
691
692 void
vm_destroy(struct vm * vm)693 vm_destroy(struct vm *vm)
694 {
695 vm_cleanup(vm, true);
696 free(vm, M_VM);
697 }
698
699 int
vm_reinit(struct vm * vm)700 vm_reinit(struct vm *vm)
701 {
702 int error;
703
704 /*
705 * A virtual machine can be reset only if all vcpus are suspended.
706 */
707 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
708 vm_cleanup(vm, false);
709 vm_init(vm, false);
710 error = 0;
711 } else {
712 error = EBUSY;
713 }
714
715 return (error);
716 }
717
718 const char *
vm_name(struct vm * vm)719 vm_name(struct vm *vm)
720 {
721 return (vm->name);
722 }
723
724 int
vm_map_mmio(struct vm * vm,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)725 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
726 {
727 vm_object_t obj;
728
729 if ((obj = vmm_mmio_alloc(vm_vmspace(vm), gpa, len, hpa)) == NULL)
730 return (ENOMEM);
731 else
732 return (0);
733 }
734
735 int
vm_unmap_mmio(struct vm * vm,vm_paddr_t gpa,size_t len)736 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
737 {
738
739 vmm_mmio_free(vm_vmspace(vm), gpa, len);
740 return (0);
741 }
742
743 static int
vm_iommu_map(struct vm * vm)744 vm_iommu_map(struct vm *vm)
745 {
746 pmap_t pmap;
747 vm_paddr_t gpa, hpa;
748 struct vm_mem_map *mm;
749 int error, i;
750
751 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
752
753 pmap = vmspace_pmap(vm_vmspace(vm));
754 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
755 if (!vm_memseg_sysmem(vm, i))
756 continue;
757
758 mm = &vm->mem.mem_maps[i];
759 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
760 ("iommu map found invalid memmap %#lx/%#lx/%#x",
761 mm->gpa, mm->len, mm->flags));
762 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
763 continue;
764 mm->flags |= VM_MEMMAP_F_IOMMU;
765
766 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
767 hpa = pmap_extract(pmap, gpa);
768
769 /*
770 * All mappings in the vmm vmspace must be
771 * present since they are managed by vmm in this way.
772 * Because we are in pass-through mode, the
773 * mappings must also be wired. This implies
774 * that all pages must be mapped and wired,
775 * allowing to use pmap_extract() and avoiding the
776 * need to use vm_gpa_hold_global().
777 *
778 * This could change if/when we start
779 * supporting page faults on IOMMU maps.
780 */
781 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)),
782 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired",
783 vm, (uintmax_t)gpa, (uintmax_t)hpa));
784
785 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE);
786 }
787 }
788
789 error = iommu_invalidate_tlb(iommu_host_domain());
790 return (error);
791 }
792
793 static int
vm_iommu_unmap(struct vm * vm)794 vm_iommu_unmap(struct vm *vm)
795 {
796 vm_paddr_t gpa;
797 struct vm_mem_map *mm;
798 int error, i;
799
800 sx_assert(&vm->mem.mem_segs_lock, SX_LOCKED);
801
802 for (i = 0; i < VM_MAX_MEMMAPS; i++) {
803 if (!vm_memseg_sysmem(vm, i))
804 continue;
805
806 mm = &vm->mem.mem_maps[i];
807 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
808 continue;
809 mm->flags &= ~VM_MEMMAP_F_IOMMU;
810 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
811 ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
812 mm->gpa, mm->len, mm->flags));
813
814 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) {
815 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract(
816 vmspace_pmap(vm_vmspace(vm)), gpa))),
817 ("vm_iommu_unmap: vm %p gpa %jx not wired",
818 vm, (uintmax_t)gpa));
819 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE);
820 }
821 }
822
823 /*
824 * Invalidate the cached translations associated with the domain
825 * from which pages were removed.
826 */
827 error = iommu_invalidate_tlb(vm->iommu);
828 return (error);
829 }
830
831 int
vm_unassign_pptdev(struct vm * vm,int bus,int slot,int func)832 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
833 {
834 int error;
835
836 error = ppt_unassign_device(vm, bus, slot, func);
837 if (error)
838 return (error);
839
840 if (ppt_assigned_devices(vm) == 0)
841 error = vm_iommu_unmap(vm);
842
843 return (error);
844 }
845
846 int
vm_assign_pptdev(struct vm * vm,int bus,int slot,int func)847 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
848 {
849 int error;
850 vm_paddr_t maxaddr;
851 bool map = false;
852
853 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
854 if (ppt_assigned_devices(vm) == 0) {
855 KASSERT(vm->iommu == NULL,
856 ("vm_assign_pptdev: iommu must be NULL"));
857 maxaddr = vmm_sysmem_maxaddr(vm);
858 vm->iommu = iommu_create_domain(maxaddr);
859 if (vm->iommu == NULL)
860 return (ENXIO);
861 map = true;
862 }
863
864 error = ppt_assign_device(vm, bus, slot, func);
865 if (error == 0 && map)
866 error = vm_iommu_map(vm);
867 return (error);
868 }
869
870 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)871 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
872 {
873 /* Negative values represent VM control structure fields. */
874 if (reg >= VM_REG_LAST)
875 return (EINVAL);
876
877 return (vmmops_getreg(vcpu->cookie, reg, retval));
878 }
879
880 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)881 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
882 {
883 int error;
884
885 /* Negative values represent VM control structure fields. */
886 if (reg >= VM_REG_LAST)
887 return (EINVAL);
888
889 error = vmmops_setreg(vcpu->cookie, reg, val);
890 if (error || reg != VM_REG_GUEST_RIP)
891 return (error);
892
893 /* Set 'nextrip' to match the value of %rip */
894 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
895 vcpu->nextrip = val;
896 return (0);
897 }
898
899 static bool
is_descriptor_table(int reg)900 is_descriptor_table(int reg)
901 {
902
903 switch (reg) {
904 case VM_REG_GUEST_IDTR:
905 case VM_REG_GUEST_GDTR:
906 return (true);
907 default:
908 return (false);
909 }
910 }
911
912 static bool
is_segment_register(int reg)913 is_segment_register(int reg)
914 {
915
916 switch (reg) {
917 case VM_REG_GUEST_ES:
918 case VM_REG_GUEST_CS:
919 case VM_REG_GUEST_SS:
920 case VM_REG_GUEST_DS:
921 case VM_REG_GUEST_FS:
922 case VM_REG_GUEST_GS:
923 case VM_REG_GUEST_TR:
924 case VM_REG_GUEST_LDTR:
925 return (true);
926 default:
927 return (false);
928 }
929 }
930
931 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)932 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
933 {
934
935 if (!is_segment_register(reg) && !is_descriptor_table(reg))
936 return (EINVAL);
937
938 return (vmmops_getdesc(vcpu->cookie, reg, desc));
939 }
940
941 int
vm_set_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * desc)942 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
943 {
944
945 if (!is_segment_register(reg) && !is_descriptor_table(reg))
946 return (EINVAL);
947
948 return (vmmops_setdesc(vcpu->cookie, reg, desc));
949 }
950
951 static void
restore_guest_fpustate(struct vcpu * vcpu)952 restore_guest_fpustate(struct vcpu *vcpu)
953 {
954
955 /* flush host state to the pcb */
956 fpuexit(curthread);
957
958 /* restore guest FPU state */
959 fpu_enable();
960 fpurestore(vcpu->guestfpu);
961
962 /* restore guest XCR0 if XSAVE is enabled in the host */
963 if (rcr4() & CR4_XSAVE)
964 load_xcr(0, vcpu->guest_xcr0);
965
966 /*
967 * The FPU is now "dirty" with the guest's state so disable
968 * the FPU to trap any access by the host.
969 */
970 fpu_disable();
971 }
972
973 static void
save_guest_fpustate(struct vcpu * vcpu)974 save_guest_fpustate(struct vcpu *vcpu)
975 {
976
977 if ((rcr0() & CR0_TS) == 0)
978 panic("fpu emulation not enabled in host!");
979
980 /* save guest XCR0 and restore host XCR0 */
981 if (rcr4() & CR4_XSAVE) {
982 vcpu->guest_xcr0 = rxcr(0);
983 load_xcr(0, vmm_get_host_xcr0());
984 }
985
986 /* save guest FPU state */
987 fpu_enable();
988 fpusave(vcpu->guestfpu);
989 fpu_disable();
990 }
991
992 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
993
994 /*
995 * Invoke the rendezvous function on the specified vcpu if applicable. Return
996 * true if the rendezvous is finished, false otherwise.
997 */
998 static bool
vm_rendezvous(struct vcpu * vcpu)999 vm_rendezvous(struct vcpu *vcpu)
1000 {
1001 struct vm *vm = vcpu->vm;
1002 int vcpuid;
1003
1004 mtx_assert(&vcpu->vm->rendezvous_mtx, MA_OWNED);
1005 KASSERT(vcpu->vm->rendezvous_func != NULL,
1006 ("vm_rendezvous: no rendezvous pending"));
1007
1008 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1009 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus,
1010 &vm->active_cpus);
1011
1012 vcpuid = vcpu->vcpuid;
1013 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1014 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1015 VMM_CTR0(vcpu, "Calling rendezvous func");
1016 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
1017 CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1018 }
1019 if (CPU_CMP(&vm->rendezvous_req_cpus,
1020 &vm->rendezvous_done_cpus) == 0) {
1021 VMM_CTR0(vcpu, "Rendezvous completed");
1022 CPU_ZERO(&vm->rendezvous_req_cpus);
1023 vm->rendezvous_func = NULL;
1024 wakeup(&vm->rendezvous_func);
1025 return (true);
1026 }
1027 return (false);
1028 }
1029
1030 static void
vcpu_wait_idle(struct vcpu * vcpu)1031 vcpu_wait_idle(struct vcpu *vcpu)
1032 {
1033 KASSERT(vcpu->state != VCPU_IDLE, ("vcpu already idle"));
1034
1035 vcpu->reqidle = 1;
1036 vcpu_notify_event_locked(vcpu, false);
1037 VMM_CTR1(vcpu, "vcpu state change from %s to "
1038 "idle requested", vcpu_state2str(vcpu->state));
1039 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1040 }
1041
1042 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1043 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1044 bool from_idle)
1045 {
1046 int error;
1047
1048 vcpu_assert_locked(vcpu);
1049
1050 /*
1051 * State transitions from the vmmdev_ioctl() must always begin from
1052 * the VCPU_IDLE state. This guarantees that there is only a single
1053 * ioctl() operating on a vcpu at any point.
1054 */
1055 if (from_idle) {
1056 while (vcpu->state != VCPU_IDLE)
1057 vcpu_wait_idle(vcpu);
1058 } else {
1059 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1060 "vcpu idle state"));
1061 }
1062
1063 if (vcpu->state == VCPU_RUNNING) {
1064 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1065 "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1066 } else {
1067 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1068 "vcpu that is not running", vcpu->hostcpu));
1069 }
1070
1071 /*
1072 * The following state transitions are allowed:
1073 * IDLE -> FROZEN -> IDLE
1074 * FROZEN -> RUNNING -> FROZEN
1075 * FROZEN -> SLEEPING -> FROZEN
1076 */
1077 switch (vcpu->state) {
1078 case VCPU_IDLE:
1079 case VCPU_RUNNING:
1080 case VCPU_SLEEPING:
1081 error = (newstate != VCPU_FROZEN);
1082 break;
1083 case VCPU_FROZEN:
1084 error = (newstate == VCPU_FROZEN);
1085 break;
1086 default:
1087 error = 1;
1088 break;
1089 }
1090
1091 if (error)
1092 return (EBUSY);
1093
1094 VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
1095 vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1096
1097 vcpu->state = newstate;
1098 if (newstate == VCPU_RUNNING)
1099 vcpu->hostcpu = curcpu;
1100 else
1101 vcpu->hostcpu = NOCPU;
1102
1103 if (newstate == VCPU_IDLE)
1104 wakeup(&vcpu->state);
1105
1106 return (0);
1107 }
1108
1109 /*
1110 * Try to lock all of the vCPUs in the VM while taking care to avoid deadlocks
1111 * with vm_smp_rendezvous().
1112 *
1113 * The complexity here suggests that the rendezvous mechanism needs a rethink.
1114 */
1115 int
vcpu_set_state_all(struct vm * vm,enum vcpu_state newstate)1116 vcpu_set_state_all(struct vm *vm, enum vcpu_state newstate)
1117 {
1118 cpuset_t locked;
1119 struct vcpu *vcpu;
1120 int error, i;
1121 uint16_t maxcpus;
1122
1123 KASSERT(newstate != VCPU_IDLE,
1124 ("vcpu_set_state_all: invalid target state %d", newstate));
1125
1126 error = 0;
1127 CPU_ZERO(&locked);
1128 maxcpus = vm->maxcpus;
1129
1130 mtx_lock(&vm->rendezvous_mtx);
1131 restart:
1132 if (vm->rendezvous_func != NULL) {
1133 /*
1134 * If we have a pending rendezvous, then the initiator may be
1135 * blocked waiting for other vCPUs to execute the callback. The
1136 * current thread may be a vCPU thread so we must not block
1137 * waiting for the initiator, otherwise we get a deadlock.
1138 * Thus, execute the callback on behalf of any idle vCPUs.
1139 */
1140 for (i = 0; i < maxcpus; i++) {
1141 vcpu = vm_vcpu(vm, i);
1142 if (vcpu == NULL)
1143 continue;
1144 vcpu_lock(vcpu);
1145 if (vcpu->state == VCPU_IDLE) {
1146 (void)vcpu_set_state_locked(vcpu, VCPU_FROZEN,
1147 true);
1148 CPU_SET(i, &locked);
1149 }
1150 if (CPU_ISSET(i, &locked)) {
1151 /*
1152 * We can safely execute the callback on this
1153 * vCPU's behalf.
1154 */
1155 vcpu_unlock(vcpu);
1156 (void)vm_rendezvous(vcpu);
1157 vcpu_lock(vcpu);
1158 }
1159 vcpu_unlock(vcpu);
1160 }
1161 }
1162
1163 /*
1164 * Now wait for remaining vCPUs to become idle. This may include the
1165 * initiator of a rendezvous that is currently blocked on the rendezvous
1166 * mutex.
1167 */
1168 CPU_FOREACH_ISCLR(i, &locked) {
1169 if (i >= maxcpus)
1170 break;
1171 vcpu = vm_vcpu(vm, i);
1172 if (vcpu == NULL)
1173 continue;
1174 vcpu_lock(vcpu);
1175 while (vcpu->state != VCPU_IDLE) {
1176 mtx_unlock(&vm->rendezvous_mtx);
1177 vcpu_wait_idle(vcpu);
1178 vcpu_unlock(vcpu);
1179 mtx_lock(&vm->rendezvous_mtx);
1180 if (vm->rendezvous_func != NULL)
1181 goto restart;
1182 vcpu_lock(vcpu);
1183 }
1184 error = vcpu_set_state_locked(vcpu, newstate, true);
1185 vcpu_unlock(vcpu);
1186 if (error != 0) {
1187 /* Roll back state changes. */
1188 CPU_FOREACH_ISSET(i, &locked)
1189 (void)vcpu_set_state(vcpu, VCPU_IDLE, false);
1190 break;
1191 }
1192 CPU_SET(i, &locked);
1193 }
1194 mtx_unlock(&vm->rendezvous_mtx);
1195 return (error);
1196 }
1197
1198 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1199 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1200 {
1201 int error;
1202
1203 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1204 panic("Error %d setting state to %d\n", error, newstate);
1205 }
1206
1207 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1208 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1209 {
1210 int error;
1211
1212 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1213 panic("Error %d setting state to %d", error, newstate);
1214 }
1215
1216 static int
vm_handle_rendezvous(struct vcpu * vcpu)1217 vm_handle_rendezvous(struct vcpu *vcpu)
1218 {
1219 struct vm *vm;
1220 struct thread *td;
1221
1222 td = curthread;
1223 vm = vcpu->vm;
1224
1225 mtx_lock(&vm->rendezvous_mtx);
1226 while (vm->rendezvous_func != NULL) {
1227 if (vm_rendezvous(vcpu))
1228 break;
1229
1230 VMM_CTR0(vcpu, "Wait for rendezvous completion");
1231 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1232 "vmrndv", hz);
1233 if (td_ast_pending(td, TDA_SUSPEND)) {
1234 int error;
1235
1236 mtx_unlock(&vm->rendezvous_mtx);
1237 error = thread_check_susp(td, true);
1238 if (error != 0)
1239 return (error);
1240 mtx_lock(&vm->rendezvous_mtx);
1241 }
1242 }
1243 mtx_unlock(&vm->rendezvous_mtx);
1244 return (0);
1245 }
1246
1247 /*
1248 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1249 */
1250 static int
vm_handle_hlt(struct vcpu * vcpu,bool intr_disabled,bool * retu)1251 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
1252 {
1253 struct vm *vm = vcpu->vm;
1254 const char *wmesg;
1255 struct thread *td;
1256 int error, t, vcpuid, vcpu_halted, vm_halted;
1257
1258 vcpuid = vcpu->vcpuid;
1259 vcpu_halted = 0;
1260 vm_halted = 0;
1261 error = 0;
1262 td = curthread;
1263
1264 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1265
1266 vcpu_lock(vcpu);
1267 while (1) {
1268 /*
1269 * Do a final check for pending NMI or interrupts before
1270 * really putting this thread to sleep. Also check for
1271 * software events that would cause this vcpu to wakeup.
1272 *
1273 * These interrupts/events could have happened after the
1274 * vcpu returned from vmmops_run() and before it acquired the
1275 * vcpu lock above.
1276 */
1277 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1278 break;
1279 if (vm_nmi_pending(vcpu))
1280 break;
1281 if (!intr_disabled) {
1282 if (vm_extint_pending(vcpu) ||
1283 vlapic_pending_intr(vcpu->vlapic, NULL)) {
1284 break;
1285 }
1286 }
1287
1288 /* Don't go to sleep if the vcpu thread needs to yield */
1289 if (vcpu_should_yield(vcpu))
1290 break;
1291
1292 if (vcpu_debugged(vcpu))
1293 break;
1294
1295 /*
1296 * Some Linux guests implement "halt" by having all vcpus
1297 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1298 * track of the vcpus that have entered this state. When all
1299 * vcpus enter the halted state the virtual machine is halted.
1300 */
1301 if (intr_disabled) {
1302 wmesg = "vmhalt";
1303 VMM_CTR0(vcpu, "Halted");
1304 if (!vcpu_halted && halt_detection_enabled) {
1305 vcpu_halted = 1;
1306 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1307 }
1308 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1309 vm_halted = 1;
1310 break;
1311 }
1312 } else {
1313 wmesg = "vmidle";
1314 }
1315
1316 t = ticks;
1317 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1318 /*
1319 * XXX msleep_spin() cannot be interrupted by signals so
1320 * wake up periodically to check pending signals.
1321 */
1322 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1323 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1324 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
1325 if (td_ast_pending(td, TDA_SUSPEND)) {
1326 vcpu_unlock(vcpu);
1327 error = thread_check_susp(td, false);
1328 if (error != 0) {
1329 if (vcpu_halted) {
1330 CPU_CLR_ATOMIC(vcpuid,
1331 &vm->halted_cpus);
1332 }
1333 return (error);
1334 }
1335 vcpu_lock(vcpu);
1336 }
1337 }
1338
1339 if (vcpu_halted)
1340 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1341
1342 vcpu_unlock(vcpu);
1343
1344 if (vm_halted)
1345 vm_suspend(vm, VM_SUSPEND_HALT);
1346
1347 return (0);
1348 }
1349
1350 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1351 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1352 {
1353 struct vm *vm = vcpu->vm;
1354 int rv, ftype;
1355 struct vm_map *map;
1356 struct vm_exit *vme;
1357
1358 vme = &vcpu->exitinfo;
1359
1360 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1361 __func__, vme->inst_length));
1362
1363 ftype = vme->u.paging.fault_type;
1364 KASSERT(ftype == VM_PROT_READ ||
1365 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1366 ("vm_handle_paging: invalid fault_type %d", ftype));
1367
1368 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1369 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm_vmspace(vm)),
1370 vme->u.paging.gpa, ftype);
1371 if (rv == 0) {
1372 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
1373 ftype == VM_PROT_READ ? "accessed" : "dirty",
1374 vme->u.paging.gpa);
1375 goto done;
1376 }
1377 }
1378
1379 map = &vm_vmspace(vm)->vm_map;
1380 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1381
1382 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
1383 "ftype = %d", rv, vme->u.paging.gpa, ftype);
1384
1385 if (rv != KERN_SUCCESS)
1386 return (EFAULT);
1387 done:
1388 return (0);
1389 }
1390
1391 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1392 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1393 {
1394 struct vie *vie;
1395 struct vm_exit *vme;
1396 uint64_t gla, gpa, cs_base;
1397 struct vm_guest_paging *paging;
1398 mem_region_read_t mread;
1399 mem_region_write_t mwrite;
1400 enum vm_cpu_mode cpu_mode;
1401 int cs_d, error, fault;
1402
1403 vme = &vcpu->exitinfo;
1404
1405 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1406 __func__, vme->inst_length));
1407
1408 gla = vme->u.inst_emul.gla;
1409 gpa = vme->u.inst_emul.gpa;
1410 cs_base = vme->u.inst_emul.cs_base;
1411 cs_d = vme->u.inst_emul.cs_d;
1412 vie = &vme->u.inst_emul.vie;
1413 paging = &vme->u.inst_emul.paging;
1414 cpu_mode = paging->cpu_mode;
1415
1416 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
1417
1418 /* Fetch, decode and emulate the faulting instruction */
1419 if (vie->num_valid == 0) {
1420 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
1421 VIE_INST_SIZE, vie, &fault);
1422 } else {
1423 /*
1424 * The instruction bytes have already been copied into 'vie'
1425 */
1426 error = fault = 0;
1427 }
1428 if (error || fault)
1429 return (error);
1430
1431 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
1432 VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
1433 vme->rip + cs_base);
1434 *retu = true; /* dump instruction bytes in userspace */
1435 return (0);
1436 }
1437
1438 /*
1439 * Update 'nextrip' based on the length of the emulated instruction.
1440 */
1441 vme->inst_length = vie->num_processed;
1442 vcpu->nextrip += vie->num_processed;
1443 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
1444 vcpu->nextrip);
1445
1446 /* return to userland unless this is an in-kernel emulated device */
1447 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1448 mread = lapic_mmio_read;
1449 mwrite = lapic_mmio_write;
1450 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1451 mread = vioapic_mmio_read;
1452 mwrite = vioapic_mmio_write;
1453 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1454 mread = vhpet_mmio_read;
1455 mwrite = vhpet_mmio_write;
1456 } else {
1457 *retu = true;
1458 return (0);
1459 }
1460
1461 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
1462 retu);
1463
1464 return (error);
1465 }
1466
1467 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1468 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1469 {
1470 struct vm *vm = vcpu->vm;
1471 int error, i;
1472 struct thread *td;
1473
1474 error = 0;
1475 td = curthread;
1476
1477 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1478
1479 /*
1480 * Wait until all 'active_cpus' have suspended themselves.
1481 *
1482 * Since a VM may be suspended at any time including when one or
1483 * more vcpus are doing a rendezvous we need to call the rendezvous
1484 * handler while we are waiting to prevent a deadlock.
1485 */
1486 vcpu_lock(vcpu);
1487 while (error == 0) {
1488 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1489 VMM_CTR0(vcpu, "All vcpus suspended");
1490 break;
1491 }
1492
1493 if (vm->rendezvous_func == NULL) {
1494 VMM_CTR0(vcpu, "Sleeping during suspend");
1495 vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1496 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1497 vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1498 if (td_ast_pending(td, TDA_SUSPEND)) {
1499 vcpu_unlock(vcpu);
1500 error = thread_check_susp(td, false);
1501 vcpu_lock(vcpu);
1502 }
1503 } else {
1504 VMM_CTR0(vcpu, "Rendezvous during suspend");
1505 vcpu_unlock(vcpu);
1506 error = vm_handle_rendezvous(vcpu);
1507 vcpu_lock(vcpu);
1508 }
1509 }
1510 vcpu_unlock(vcpu);
1511
1512 /*
1513 * Wakeup the other sleeping vcpus and return to userspace.
1514 */
1515 for (i = 0; i < vm->maxcpus; i++) {
1516 if (CPU_ISSET(i, &vm->suspended_cpus)) {
1517 vcpu_notify_event(vm_vcpu(vm, i), false);
1518 }
1519 }
1520
1521 *retu = true;
1522 return (error);
1523 }
1524
1525 static int
vm_handle_reqidle(struct vcpu * vcpu,bool * retu)1526 vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
1527 {
1528 vcpu_lock(vcpu);
1529 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1530 vcpu->reqidle = 0;
1531 vcpu_unlock(vcpu);
1532 *retu = true;
1533 return (0);
1534 }
1535
1536 static int
vm_handle_db(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1537 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1538 {
1539 int error, fault;
1540 uint64_t rsp;
1541 uint64_t rflags;
1542 struct vm_copyinfo copyinfo[2];
1543
1544 *retu = true;
1545 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) {
1546 return (0);
1547 }
1548
1549 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp);
1550 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t),
1551 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault);
1552 if (error != 0 || fault != 0) {
1553 *retu = false;
1554 return (EINVAL);
1555 }
1556
1557 /* Read pushed rflags value from top of stack. */
1558 vm_copyin(copyinfo, &rflags, sizeof(uint64_t));
1559
1560 /* Clear TF bit. */
1561 rflags &= ~(PSL_T);
1562
1563 /* Write updated value back to memory. */
1564 vm_copyout(&rflags, copyinfo, sizeof(uint64_t));
1565 vm_copy_teardown(copyinfo, nitems(copyinfo));
1566
1567 return (0);
1568 }
1569
1570 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1571 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1572 {
1573 int i;
1574
1575 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1576 return (EINVAL);
1577
1578 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1579 VM_CTR2(vm, "virtual machine already suspended %d/%d",
1580 vm->suspend, how);
1581 return (EALREADY);
1582 }
1583
1584 VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1585
1586 /*
1587 * Notify all active vcpus that they are now suspended.
1588 */
1589 for (i = 0; i < vm->maxcpus; i++) {
1590 if (CPU_ISSET(i, &vm->active_cpus))
1591 vcpu_notify_event(vm_vcpu(vm, i), false);
1592 }
1593
1594 return (0);
1595 }
1596
1597 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t rip)1598 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
1599 {
1600 struct vm *vm = vcpu->vm;
1601 struct vm_exit *vmexit;
1602
1603 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1604 ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1605
1606 vmexit = vm_exitinfo(vcpu);
1607 vmexit->rip = rip;
1608 vmexit->inst_length = 0;
1609 vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1610 vmexit->u.suspended.how = vm->suspend;
1611 }
1612
1613 void
vm_exit_debug(struct vcpu * vcpu,uint64_t rip)1614 vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
1615 {
1616 struct vm_exit *vmexit;
1617
1618 vmexit = vm_exitinfo(vcpu);
1619 vmexit->rip = rip;
1620 vmexit->inst_length = 0;
1621 vmexit->exitcode = VM_EXITCODE_DEBUG;
1622 }
1623
1624 void
vm_exit_rendezvous(struct vcpu * vcpu,uint64_t rip)1625 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
1626 {
1627 struct vm_exit *vmexit;
1628
1629 vmexit = vm_exitinfo(vcpu);
1630 vmexit->rip = rip;
1631 vmexit->inst_length = 0;
1632 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1633 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
1634 }
1635
1636 void
vm_exit_reqidle(struct vcpu * vcpu,uint64_t rip)1637 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
1638 {
1639 struct vm_exit *vmexit;
1640
1641 vmexit = vm_exitinfo(vcpu);
1642 vmexit->rip = rip;
1643 vmexit->inst_length = 0;
1644 vmexit->exitcode = VM_EXITCODE_REQIDLE;
1645 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
1646 }
1647
1648 void
vm_exit_astpending(struct vcpu * vcpu,uint64_t rip)1649 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
1650 {
1651 struct vm_exit *vmexit;
1652
1653 vmexit = vm_exitinfo(vcpu);
1654 vmexit->rip = rip;
1655 vmexit->inst_length = 0;
1656 vmexit->exitcode = VM_EXITCODE_BOGUS;
1657 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
1658 }
1659
1660 int
vm_run(struct vcpu * vcpu)1661 vm_run(struct vcpu *vcpu)
1662 {
1663 struct vm *vm = vcpu->vm;
1664 struct vm_eventinfo evinfo;
1665 int error, vcpuid;
1666 struct pcb *pcb;
1667 uint64_t tscval;
1668 struct vm_exit *vme;
1669 bool retu, intr_disabled;
1670 pmap_t pmap;
1671
1672 vcpuid = vcpu->vcpuid;
1673
1674 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1675 return (EINVAL);
1676
1677 if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1678 return (EINVAL);
1679
1680 pmap = vmspace_pmap(vm_vmspace(vm));
1681 vme = &vcpu->exitinfo;
1682 evinfo.rptr = &vm->rendezvous_req_cpus;
1683 evinfo.sptr = &vm->suspend;
1684 evinfo.iptr = &vcpu->reqidle;
1685 restart:
1686 critical_enter();
1687
1688 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1689 ("vm_run: absurd pm_active"));
1690
1691 tscval = rdtsc();
1692
1693 pcb = PCPU_GET(curpcb);
1694 set_pcb_flags(pcb, PCB_FULL_IRET);
1695
1696 restore_guest_fpustate(vcpu);
1697
1698 vcpu_require_state(vcpu, VCPU_RUNNING);
1699 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
1700 vcpu_require_state(vcpu, VCPU_FROZEN);
1701
1702 save_guest_fpustate(vcpu);
1703
1704 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1705
1706 critical_exit();
1707
1708 if (error == 0) {
1709 retu = false;
1710 vcpu->nextrip = vme->rip + vme->inst_length;
1711 switch (vme->exitcode) {
1712 case VM_EXITCODE_REQIDLE:
1713 error = vm_handle_reqidle(vcpu, &retu);
1714 break;
1715 case VM_EXITCODE_SUSPENDED:
1716 error = vm_handle_suspend(vcpu, &retu);
1717 break;
1718 case VM_EXITCODE_IOAPIC_EOI:
1719 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
1720 break;
1721 case VM_EXITCODE_RENDEZVOUS:
1722 error = vm_handle_rendezvous(vcpu);
1723 break;
1724 case VM_EXITCODE_HLT:
1725 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1726 error = vm_handle_hlt(vcpu, intr_disabled, &retu);
1727 break;
1728 case VM_EXITCODE_PAGING:
1729 error = vm_handle_paging(vcpu, &retu);
1730 break;
1731 case VM_EXITCODE_INST_EMUL:
1732 error = vm_handle_inst_emul(vcpu, &retu);
1733 break;
1734 case VM_EXITCODE_INOUT:
1735 case VM_EXITCODE_INOUT_STR:
1736 error = vm_handle_inout(vcpu, vme, &retu);
1737 break;
1738 case VM_EXITCODE_DB:
1739 error = vm_handle_db(vcpu, vme, &retu);
1740 break;
1741 case VM_EXITCODE_MONITOR:
1742 case VM_EXITCODE_MWAIT:
1743 case VM_EXITCODE_VMINSN:
1744 vm_inject_ud(vcpu);
1745 break;
1746 default:
1747 retu = true; /* handled in userland */
1748 break;
1749 }
1750 }
1751
1752 /*
1753 * VM_EXITCODE_INST_EMUL could access the apic which could transform the
1754 * exit code into VM_EXITCODE_IPI.
1755 */
1756 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
1757 error = vm_handle_ipi(vcpu, vme, &retu);
1758
1759 if (error == 0 && retu == false)
1760 goto restart;
1761
1762 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
1763 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
1764
1765 return (error);
1766 }
1767
1768 int
vm_restart_instruction(struct vcpu * vcpu)1769 vm_restart_instruction(struct vcpu *vcpu)
1770 {
1771 enum vcpu_state state;
1772 uint64_t rip;
1773 int error __diagused;
1774
1775 state = vcpu_get_state(vcpu, NULL);
1776 if (state == VCPU_RUNNING) {
1777 /*
1778 * When a vcpu is "running" the next instruction is determined
1779 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1780 * Thus setting 'inst_length' to zero will cause the current
1781 * instruction to be restarted.
1782 */
1783 vcpu->exitinfo.inst_length = 0;
1784 VMM_CTR1(vcpu, "restarting instruction at %#lx by "
1785 "setting inst_length to zero", vcpu->exitinfo.rip);
1786 } else if (state == VCPU_FROZEN) {
1787 /*
1788 * When a vcpu is "frozen" it is outside the critical section
1789 * around vmmops_run() and 'nextrip' points to the next
1790 * instruction. Thus instruction restart is achieved by setting
1791 * 'nextrip' to the vcpu's %rip.
1792 */
1793 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
1794 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1795 VMM_CTR2(vcpu, "restarting instruction by updating "
1796 "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1797 vcpu->nextrip = rip;
1798 } else {
1799 panic("%s: invalid state %d", __func__, state);
1800 }
1801 return (0);
1802 }
1803
1804 int
vm_exit_intinfo(struct vcpu * vcpu,uint64_t info)1805 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
1806 {
1807 int type, vector;
1808
1809 if (info & VM_INTINFO_VALID) {
1810 type = info & VM_INTINFO_TYPE;
1811 vector = info & 0xff;
1812 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1813 return (EINVAL);
1814 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1815 return (EINVAL);
1816 if (info & VM_INTINFO_RSVD)
1817 return (EINVAL);
1818 } else {
1819 info = 0;
1820 }
1821 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
1822 vcpu->exitintinfo = info;
1823 return (0);
1824 }
1825
1826 enum exc_class {
1827 EXC_BENIGN,
1828 EXC_CONTRIBUTORY,
1829 EXC_PAGEFAULT
1830 };
1831
1832 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */
1833
1834 static enum exc_class
exception_class(uint64_t info)1835 exception_class(uint64_t info)
1836 {
1837 int type, vector;
1838
1839 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1840 type = info & VM_INTINFO_TYPE;
1841 vector = info & 0xff;
1842
1843 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1844 switch (type) {
1845 case VM_INTINFO_HWINTR:
1846 case VM_INTINFO_SWINTR:
1847 case VM_INTINFO_NMI:
1848 return (EXC_BENIGN);
1849 default:
1850 /*
1851 * Hardware exception.
1852 *
1853 * SVM and VT-x use identical type values to represent NMI,
1854 * hardware interrupt and software interrupt.
1855 *
1856 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1857 * for exceptions except #BP and #OF. #BP and #OF use a type
1858 * value of '5' or '6'. Therefore we don't check for explicit
1859 * values of 'type' to classify 'intinfo' into a hardware
1860 * exception.
1861 */
1862 break;
1863 }
1864
1865 switch (vector) {
1866 case IDT_PF:
1867 case IDT_VE:
1868 return (EXC_PAGEFAULT);
1869 case IDT_DE:
1870 case IDT_TS:
1871 case IDT_NP:
1872 case IDT_SS:
1873 case IDT_GP:
1874 return (EXC_CONTRIBUTORY);
1875 default:
1876 return (EXC_BENIGN);
1877 }
1878 }
1879
1880 static int
nested_fault(struct vcpu * vcpu,uint64_t info1,uint64_t info2,uint64_t * retinfo)1881 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
1882 uint64_t *retinfo)
1883 {
1884 enum exc_class exc1, exc2;
1885 int type1, vector1;
1886
1887 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1888 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1889
1890 /*
1891 * If an exception occurs while attempting to call the double-fault
1892 * handler the processor enters shutdown mode (aka triple fault).
1893 */
1894 type1 = info1 & VM_INTINFO_TYPE;
1895 vector1 = info1 & 0xff;
1896 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1897 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
1898 info1, info2);
1899 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
1900 *retinfo = 0;
1901 return (0);
1902 }
1903
1904 /*
1905 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1906 */
1907 exc1 = exception_class(info1);
1908 exc2 = exception_class(info2);
1909 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1910 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1911 /* Convert nested fault into a double fault. */
1912 *retinfo = IDT_DF;
1913 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1914 *retinfo |= VM_INTINFO_DEL_ERRCODE;
1915 } else {
1916 /* Handle exceptions serially */
1917 *retinfo = info2;
1918 }
1919 return (1);
1920 }
1921
1922 static uint64_t
vcpu_exception_intinfo(struct vcpu * vcpu)1923 vcpu_exception_intinfo(struct vcpu *vcpu)
1924 {
1925 uint64_t info = 0;
1926
1927 if (vcpu->exception_pending) {
1928 info = vcpu->exc_vector & 0xff;
1929 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1930 if (vcpu->exc_errcode_valid) {
1931 info |= VM_INTINFO_DEL_ERRCODE;
1932 info |= (uint64_t)vcpu->exc_errcode << 32;
1933 }
1934 }
1935 return (info);
1936 }
1937
1938 int
vm_entry_intinfo(struct vcpu * vcpu,uint64_t * retinfo)1939 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
1940 {
1941 uint64_t info1, info2;
1942 int valid;
1943
1944 info1 = vcpu->exitintinfo;
1945 vcpu->exitintinfo = 0;
1946
1947 info2 = 0;
1948 if (vcpu->exception_pending) {
1949 info2 = vcpu_exception_intinfo(vcpu);
1950 vcpu->exception_pending = 0;
1951 VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
1952 vcpu->exc_vector, info2);
1953 }
1954
1955 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1956 valid = nested_fault(vcpu, info1, info2, retinfo);
1957 } else if (info1 & VM_INTINFO_VALID) {
1958 *retinfo = info1;
1959 valid = 1;
1960 } else if (info2 & VM_INTINFO_VALID) {
1961 *retinfo = info2;
1962 valid = 1;
1963 } else {
1964 valid = 0;
1965 }
1966
1967 if (valid) {
1968 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
1969 "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1970 }
1971
1972 return (valid);
1973 }
1974
1975 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1976 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1977 {
1978 *info1 = vcpu->exitintinfo;
1979 *info2 = vcpu_exception_intinfo(vcpu);
1980 return (0);
1981 }
1982
1983 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)1984 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
1985 uint32_t errcode, int restart_instruction)
1986 {
1987 uint64_t regval;
1988 int error __diagused;
1989
1990 if (vector < 0 || vector >= 32)
1991 return (EINVAL);
1992
1993 /*
1994 * A double fault exception should never be injected directly into
1995 * the guest. It is a derived exception that results from specific
1996 * combinations of nested faults.
1997 */
1998 if (vector == IDT_DF)
1999 return (EINVAL);
2000
2001 if (vcpu->exception_pending) {
2002 VMM_CTR2(vcpu, "Unable to inject exception %d due to "
2003 "pending exception %d", vector, vcpu->exc_vector);
2004 return (EBUSY);
2005 }
2006
2007 if (errcode_valid) {
2008 /*
2009 * Exceptions don't deliver an error code in real mode.
2010 */
2011 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
2012 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2013 if (!(regval & CR0_PE))
2014 errcode_valid = 0;
2015 }
2016
2017 /*
2018 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2019 *
2020 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2021 * one instruction or incurs an exception.
2022 */
2023 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
2024 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2025 __func__, error));
2026
2027 if (restart_instruction)
2028 vm_restart_instruction(vcpu);
2029
2030 vcpu->exception_pending = 1;
2031 vcpu->exc_vector = vector;
2032 vcpu->exc_errcode = errcode;
2033 vcpu->exc_errcode_valid = errcode_valid;
2034 VMM_CTR1(vcpu, "Exception %d pending", vector);
2035 return (0);
2036 }
2037
2038 void
vm_inject_fault(struct vcpu * vcpu,int vector,int errcode_valid,int errcode)2039 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
2040 {
2041 int error __diagused, restart_instruction;
2042
2043 restart_instruction = 1;
2044
2045 error = vm_inject_exception(vcpu, vector, errcode_valid,
2046 errcode, restart_instruction);
2047 KASSERT(error == 0, ("vm_inject_exception error %d", error));
2048 }
2049
2050 void
vm_inject_pf(struct vcpu * vcpu,int error_code,uint64_t cr2)2051 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
2052 {
2053 int error __diagused;
2054
2055 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
2056 error_code, cr2);
2057
2058 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
2059 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2060
2061 vm_inject_fault(vcpu, IDT_PF, 1, error_code);
2062 }
2063
2064 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2065
2066 int
vm_inject_nmi(struct vcpu * vcpu)2067 vm_inject_nmi(struct vcpu *vcpu)
2068 {
2069
2070 vcpu->nmi_pending = 1;
2071 vcpu_notify_event(vcpu, false);
2072 return (0);
2073 }
2074
2075 int
vm_nmi_pending(struct vcpu * vcpu)2076 vm_nmi_pending(struct vcpu *vcpu)
2077 {
2078 return (vcpu->nmi_pending);
2079 }
2080
2081 void
vm_nmi_clear(struct vcpu * vcpu)2082 vm_nmi_clear(struct vcpu *vcpu)
2083 {
2084 if (vcpu->nmi_pending == 0)
2085 panic("vm_nmi_clear: inconsistent nmi_pending state");
2086
2087 vcpu->nmi_pending = 0;
2088 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
2089 }
2090
2091 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2092
2093 int
vm_inject_extint(struct vcpu * vcpu)2094 vm_inject_extint(struct vcpu *vcpu)
2095 {
2096
2097 vcpu->extint_pending = 1;
2098 vcpu_notify_event(vcpu, false);
2099 return (0);
2100 }
2101
2102 int
vm_extint_pending(struct vcpu * vcpu)2103 vm_extint_pending(struct vcpu *vcpu)
2104 {
2105 return (vcpu->extint_pending);
2106 }
2107
2108 void
vm_extint_clear(struct vcpu * vcpu)2109 vm_extint_clear(struct vcpu *vcpu)
2110 {
2111 if (vcpu->extint_pending == 0)
2112 panic("vm_extint_clear: inconsistent extint_pending state");
2113
2114 vcpu->extint_pending = 0;
2115 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
2116 }
2117
2118 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)2119 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
2120 {
2121 if (type < 0 || type >= VM_CAP_MAX)
2122 return (EINVAL);
2123
2124 return (vmmops_getcap(vcpu->cookie, type, retval));
2125 }
2126
2127 int
vm_set_capability(struct vcpu * vcpu,int type,int val)2128 vm_set_capability(struct vcpu *vcpu, int type, int val)
2129 {
2130 if (type < 0 || type >= VM_CAP_MAX)
2131 return (EINVAL);
2132
2133 return (vmmops_setcap(vcpu->cookie, type, val));
2134 }
2135
2136 struct vm *
vcpu_vm(struct vcpu * vcpu)2137 vcpu_vm(struct vcpu *vcpu)
2138 {
2139 return (vcpu->vm);
2140 }
2141
2142 int
vcpu_vcpuid(struct vcpu * vcpu)2143 vcpu_vcpuid(struct vcpu *vcpu)
2144 {
2145 return (vcpu->vcpuid);
2146 }
2147
2148 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)2149 vm_vcpu(struct vm *vm, int vcpuid)
2150 {
2151 return (vm->vcpu[vcpuid]);
2152 }
2153
2154 struct vlapic *
vm_lapic(struct vcpu * vcpu)2155 vm_lapic(struct vcpu *vcpu)
2156 {
2157 return (vcpu->vlapic);
2158 }
2159
2160 struct vioapic *
vm_ioapic(struct vm * vm)2161 vm_ioapic(struct vm *vm)
2162 {
2163
2164 return (vm->vioapic);
2165 }
2166
2167 struct vhpet *
vm_hpet(struct vm * vm)2168 vm_hpet(struct vm *vm)
2169 {
2170
2171 return (vm->vhpet);
2172 }
2173
2174 bool
vmm_is_pptdev(int bus,int slot,int func)2175 vmm_is_pptdev(int bus, int slot, int func)
2176 {
2177 int b, f, i, n, s;
2178 char *val, *cp, *cp2;
2179 bool found;
2180
2181 /*
2182 * XXX
2183 * The length of an environment variable is limited to 128 bytes which
2184 * puts an upper limit on the number of passthru devices that may be
2185 * specified using a single environment variable.
2186 *
2187 * Work around this by scanning multiple environment variable
2188 * names instead of a single one - yuck!
2189 */
2190 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2191
2192 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2193 found = false;
2194 for (i = 0; names[i] != NULL && !found; i++) {
2195 cp = val = kern_getenv(names[i]);
2196 while (cp != NULL && *cp != '\0') {
2197 if ((cp2 = strchr(cp, ' ')) != NULL)
2198 *cp2 = '\0';
2199
2200 n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2201 if (n == 3 && bus == b && slot == s && func == f) {
2202 found = true;
2203 break;
2204 }
2205
2206 if (cp2 != NULL)
2207 *cp2++ = ' ';
2208
2209 cp = cp2;
2210 }
2211 freeenv(val);
2212 }
2213 return (found);
2214 }
2215
2216 void *
vm_iommu_domain(struct vm * vm)2217 vm_iommu_domain(struct vm *vm)
2218 {
2219
2220 return (vm->iommu);
2221 }
2222
2223 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)2224 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
2225 {
2226 int error;
2227
2228 vcpu_lock(vcpu);
2229 error = vcpu_set_state_locked(vcpu, newstate, from_idle);
2230 vcpu_unlock(vcpu);
2231
2232 return (error);
2233 }
2234
2235 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)2236 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
2237 {
2238 enum vcpu_state state;
2239
2240 vcpu_lock(vcpu);
2241 state = vcpu->state;
2242 if (hostcpu != NULL)
2243 *hostcpu = vcpu->hostcpu;
2244 vcpu_unlock(vcpu);
2245
2246 return (state);
2247 }
2248
2249 int
vm_activate_cpu(struct vcpu * vcpu)2250 vm_activate_cpu(struct vcpu *vcpu)
2251 {
2252 struct vm *vm = vcpu->vm;
2253
2254 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2255 return (EBUSY);
2256
2257 VMM_CTR0(vcpu, "activated");
2258 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
2259 return (0);
2260 }
2261
2262 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)2263 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
2264 {
2265 if (vcpu == NULL) {
2266 vm->debug_cpus = vm->active_cpus;
2267 for (int i = 0; i < vm->maxcpus; i++) {
2268 if (CPU_ISSET(i, &vm->active_cpus))
2269 vcpu_notify_event(vm_vcpu(vm, i), false);
2270 }
2271 } else {
2272 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
2273 return (EINVAL);
2274
2275 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2276 vcpu_notify_event(vcpu, false);
2277 }
2278 return (0);
2279 }
2280
2281 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)2282 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
2283 {
2284
2285 if (vcpu == NULL) {
2286 CPU_ZERO(&vm->debug_cpus);
2287 } else {
2288 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
2289 return (EINVAL);
2290
2291 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
2292 }
2293 return (0);
2294 }
2295
2296 int
vcpu_debugged(struct vcpu * vcpu)2297 vcpu_debugged(struct vcpu *vcpu)
2298 {
2299
2300 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
2301 }
2302
2303 cpuset_t
vm_active_cpus(struct vm * vm)2304 vm_active_cpus(struct vm *vm)
2305 {
2306
2307 return (vm->active_cpus);
2308 }
2309
2310 cpuset_t
vm_debug_cpus(struct vm * vm)2311 vm_debug_cpus(struct vm *vm)
2312 {
2313
2314 return (vm->debug_cpus);
2315 }
2316
2317 cpuset_t
vm_suspended_cpus(struct vm * vm)2318 vm_suspended_cpus(struct vm *vm)
2319 {
2320
2321 return (vm->suspended_cpus);
2322 }
2323
2324 /*
2325 * Returns the subset of vCPUs in tostart that are awaiting startup.
2326 * These vCPUs are also marked as no longer awaiting startup.
2327 */
2328 cpuset_t
vm_start_cpus(struct vm * vm,const cpuset_t * tostart)2329 vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
2330 {
2331 cpuset_t set;
2332
2333 mtx_lock(&vm->rendezvous_mtx);
2334 CPU_AND(&set, &vm->startup_cpus, tostart);
2335 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
2336 mtx_unlock(&vm->rendezvous_mtx);
2337 return (set);
2338 }
2339
2340 void
vm_await_start(struct vm * vm,const cpuset_t * waiting)2341 vm_await_start(struct vm *vm, const cpuset_t *waiting)
2342 {
2343 mtx_lock(&vm->rendezvous_mtx);
2344 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
2345 mtx_unlock(&vm->rendezvous_mtx);
2346 }
2347
2348 void *
vcpu_stats(struct vcpu * vcpu)2349 vcpu_stats(struct vcpu *vcpu)
2350 {
2351
2352 return (vcpu->stats);
2353 }
2354
2355 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)2356 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
2357 {
2358 *state = vcpu->x2apic_state;
2359
2360 return (0);
2361 }
2362
2363 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)2364 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
2365 {
2366 if (state >= X2APIC_STATE_LAST)
2367 return (EINVAL);
2368
2369 vcpu->x2apic_state = state;
2370
2371 vlapic_set_x2apic_state(vcpu, state);
2372
2373 return (0);
2374 }
2375
2376 /*
2377 * This function is called to ensure that a vcpu "sees" a pending event
2378 * as soon as possible:
2379 * - If the vcpu thread is sleeping then it is woken up.
2380 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2381 * to the host_cpu to cause the vcpu to trap into the hypervisor.
2382 */
2383 static void
vcpu_notify_event_locked(struct vcpu * vcpu,bool lapic_intr)2384 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2385 {
2386 int hostcpu;
2387
2388 hostcpu = vcpu->hostcpu;
2389 if (vcpu->state == VCPU_RUNNING) {
2390 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2391 if (hostcpu != curcpu) {
2392 if (lapic_intr) {
2393 vlapic_post_intr(vcpu->vlapic, hostcpu,
2394 vmm_ipinum);
2395 } else {
2396 ipi_cpu(hostcpu, vmm_ipinum);
2397 }
2398 } else {
2399 /*
2400 * If the 'vcpu' is running on 'curcpu' then it must
2401 * be sending a notification to itself (e.g. SELF_IPI).
2402 * The pending event will be picked up when the vcpu
2403 * transitions back to guest context.
2404 */
2405 }
2406 } else {
2407 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2408 "with hostcpu %d", vcpu->state, hostcpu));
2409 if (vcpu->state == VCPU_SLEEPING)
2410 wakeup_one(vcpu);
2411 }
2412 }
2413
2414 void
vcpu_notify_event(struct vcpu * vcpu,bool lapic_intr)2415 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
2416 {
2417 vcpu_lock(vcpu);
2418 vcpu_notify_event_locked(vcpu, lapic_intr);
2419 vcpu_unlock(vcpu);
2420 }
2421
2422 struct vm_mem *
vm_mem(struct vm * vm)2423 vm_mem(struct vm *vm)
2424 {
2425 return (&vm->mem);
2426 }
2427
2428 int
vm_apicid2vcpuid(struct vm * vm,int apicid)2429 vm_apicid2vcpuid(struct vm *vm, int apicid)
2430 {
2431 /*
2432 * XXX apic id is assumed to be numerically identical to vcpu id
2433 */
2434 return (apicid);
2435 }
2436
2437 int
vm_smp_rendezvous(struct vcpu * vcpu,cpuset_t dest,vm_rendezvous_func_t func,void * arg)2438 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
2439 vm_rendezvous_func_t func, void *arg)
2440 {
2441 struct vm *vm = vcpu->vm;
2442 int error, i;
2443
2444 /*
2445 * Enforce that this function is called without any locks
2446 */
2447 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2448
2449 restart:
2450 mtx_lock(&vm->rendezvous_mtx);
2451 if (vm->rendezvous_func != NULL) {
2452 /*
2453 * If a rendezvous is already in progress then we need to
2454 * call the rendezvous handler in case this 'vcpu' is one
2455 * of the targets of the rendezvous.
2456 */
2457 VMM_CTR0(vcpu, "Rendezvous already in progress");
2458 mtx_unlock(&vm->rendezvous_mtx);
2459 error = vm_handle_rendezvous(vcpu);
2460 if (error != 0)
2461 return (error);
2462 goto restart;
2463 }
2464 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2465 "rendezvous is still in progress"));
2466
2467 VMM_CTR0(vcpu, "Initiating rendezvous");
2468 vm->rendezvous_req_cpus = dest;
2469 CPU_ZERO(&vm->rendezvous_done_cpus);
2470 vm->rendezvous_arg = arg;
2471 vm->rendezvous_func = func;
2472 mtx_unlock(&vm->rendezvous_mtx);
2473
2474 /*
2475 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2476 * vcpus so they handle the rendezvous as soon as possible.
2477 */
2478 for (i = 0; i < vm->maxcpus; i++) {
2479 if (CPU_ISSET(i, &dest))
2480 vcpu_notify_event(vm_vcpu(vm, i), false);
2481 }
2482
2483 return (vm_handle_rendezvous(vcpu));
2484 }
2485
2486 struct vatpic *
vm_atpic(struct vm * vm)2487 vm_atpic(struct vm *vm)
2488 {
2489 return (vm->vatpic);
2490 }
2491
2492 struct vatpit *
vm_atpit(struct vm * vm)2493 vm_atpit(struct vm *vm)
2494 {
2495 return (vm->vatpit);
2496 }
2497
2498 struct vpmtmr *
vm_pmtmr(struct vm * vm)2499 vm_pmtmr(struct vm *vm)
2500 {
2501
2502 return (vm->vpmtmr);
2503 }
2504
2505 struct vrtc *
vm_rtc(struct vm * vm)2506 vm_rtc(struct vm *vm)
2507 {
2508
2509 return (vm->vrtc);
2510 }
2511
2512 enum vm_reg_name
vm_segment_name(int seg)2513 vm_segment_name(int seg)
2514 {
2515 static enum vm_reg_name seg_names[] = {
2516 VM_REG_GUEST_ES,
2517 VM_REG_GUEST_CS,
2518 VM_REG_GUEST_SS,
2519 VM_REG_GUEST_DS,
2520 VM_REG_GUEST_FS,
2521 VM_REG_GUEST_GS
2522 };
2523
2524 KASSERT(seg >= 0 && seg < nitems(seg_names),
2525 ("%s: invalid segment encoding %d", __func__, seg));
2526 return (seg_names[seg]);
2527 }
2528
2529 void
vm_copy_teardown(struct vm_copyinfo * copyinfo,int num_copyinfo)2530 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
2531 {
2532 int idx;
2533
2534 for (idx = 0; idx < num_copyinfo; idx++) {
2535 if (copyinfo[idx].cookie != NULL)
2536 vm_gpa_release(copyinfo[idx].cookie);
2537 }
2538 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2539 }
2540
2541 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct vm_copyinfo * copyinfo,int num_copyinfo,int * fault)2542 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
2543 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2544 int num_copyinfo, int *fault)
2545 {
2546 int error, idx, nused;
2547 size_t n, off, remaining;
2548 void *hva, *cookie;
2549 uint64_t gpa;
2550
2551 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2552
2553 nused = 0;
2554 remaining = len;
2555 while (remaining > 0) {
2556 if (nused >= num_copyinfo)
2557 return (EFAULT);
2558 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
2559 if (error || *fault)
2560 return (error);
2561 off = gpa & PAGE_MASK;
2562 n = min(remaining, PAGE_SIZE - off);
2563 copyinfo[nused].gpa = gpa;
2564 copyinfo[nused].len = n;
2565 remaining -= n;
2566 gla += n;
2567 nused++;
2568 }
2569
2570 for (idx = 0; idx < nused; idx++) {
2571 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
2572 copyinfo[idx].len, prot, &cookie);
2573 if (hva == NULL)
2574 break;
2575 copyinfo[idx].hva = hva;
2576 copyinfo[idx].cookie = cookie;
2577 }
2578
2579 if (idx != nused) {
2580 vm_copy_teardown(copyinfo, num_copyinfo);
2581 return (EFAULT);
2582 } else {
2583 *fault = 0;
2584 return (0);
2585 }
2586 }
2587
2588 void
vm_copyin(struct vm_copyinfo * copyinfo,void * kaddr,size_t len)2589 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
2590 {
2591 char *dst;
2592 int idx;
2593
2594 dst = kaddr;
2595 idx = 0;
2596 while (len > 0) {
2597 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2598 len -= copyinfo[idx].len;
2599 dst += copyinfo[idx].len;
2600 idx++;
2601 }
2602 }
2603
2604 void
vm_copyout(const void * kaddr,struct vm_copyinfo * copyinfo,size_t len)2605 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
2606 {
2607 const char *src;
2608 int idx;
2609
2610 src = kaddr;
2611 idx = 0;
2612 while (len > 0) {
2613 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2614 len -= copyinfo[idx].len;
2615 src += copyinfo[idx].len;
2616 idx++;
2617 }
2618 }
2619
2620 /*
2621 * Return the amount of in-use and wired memory for the VM. Since
2622 * these are global stats, only return the values with for vCPU 0
2623 */
2624 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2625 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2626
2627 static void
vm_get_rescnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2628 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2629 {
2630
2631 if (vcpu->vcpuid == 0) {
2632 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
2633 vmspace_resident_count(vm_vmspace(vcpu->vm)));
2634 }
2635 }
2636
2637 static void
vm_get_wiredcnt(struct vcpu * vcpu,struct vmm_stat_type * stat)2638 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
2639 {
2640
2641 if (vcpu->vcpuid == 0) {
2642 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
2643 pmap_wired_count(vmspace_pmap(vm_vmspace(vcpu->vm))));
2644 }
2645 }
2646
2647 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2648 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2649
2650 #ifdef BHYVE_SNAPSHOT
2651 static int
vm_snapshot_vcpus(struct vm * vm,struct vm_snapshot_meta * meta)2652 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
2653 {
2654 uint64_t tsc, now;
2655 int ret;
2656 struct vcpu *vcpu;
2657 uint16_t i, maxcpus;
2658
2659 now = rdtsc();
2660 maxcpus = vm_get_maxcpus(vm);
2661 for (i = 0; i < maxcpus; i++) {
2662 vcpu = vm->vcpu[i];
2663 if (vcpu == NULL)
2664 continue;
2665
2666 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
2667 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
2668 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
2669 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
2670 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
2671 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
2672 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
2673 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2674
2675 /*
2676 * Save the absolute TSC value by adding now to tsc_offset.
2677 *
2678 * It will be turned turned back into an actual offset when the
2679 * TSC restore function is called
2680 */
2681 tsc = now + vcpu->tsc_offset;
2682 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
2683 if (meta->op == VM_SNAPSHOT_RESTORE)
2684 vcpu->tsc_offset = tsc;
2685 }
2686
2687 done:
2688 return (ret);
2689 }
2690
2691 static int
vm_snapshot_vm(struct vm * vm,struct vm_snapshot_meta * meta)2692 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
2693 {
2694 int ret;
2695
2696 ret = vm_snapshot_vcpus(vm, meta);
2697 if (ret != 0)
2698 goto done;
2699
2700 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
2701 done:
2702 return (ret);
2703 }
2704
2705 static int
vm_snapshot_vcpu(struct vm * vm,struct vm_snapshot_meta * meta)2706 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
2707 {
2708 int error;
2709 struct vcpu *vcpu;
2710 uint16_t i, maxcpus;
2711
2712 error = 0;
2713
2714 maxcpus = vm_get_maxcpus(vm);
2715 for (i = 0; i < maxcpus; i++) {
2716 vcpu = vm->vcpu[i];
2717 if (vcpu == NULL)
2718 continue;
2719
2720 error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
2721 if (error != 0) {
2722 printf("%s: failed to snapshot vmcs/vmcb data for "
2723 "vCPU: %d; error: %d\n", __func__, i, error);
2724 goto done;
2725 }
2726 }
2727
2728 done:
2729 return (error);
2730 }
2731
2732 /*
2733 * Save kernel-side structures to user-space for snapshotting.
2734 */
2735 int
vm_snapshot_req(struct vm * vm,struct vm_snapshot_meta * meta)2736 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
2737 {
2738 int ret = 0;
2739
2740 switch (meta->dev_req) {
2741 case STRUCT_VMCX:
2742 ret = vm_snapshot_vcpu(vm, meta);
2743 break;
2744 case STRUCT_VM:
2745 ret = vm_snapshot_vm(vm, meta);
2746 break;
2747 case STRUCT_VIOAPIC:
2748 ret = vioapic_snapshot(vm_ioapic(vm), meta);
2749 break;
2750 case STRUCT_VLAPIC:
2751 ret = vlapic_snapshot(vm, meta);
2752 break;
2753 case STRUCT_VHPET:
2754 ret = vhpet_snapshot(vm_hpet(vm), meta);
2755 break;
2756 case STRUCT_VATPIC:
2757 ret = vatpic_snapshot(vm_atpic(vm), meta);
2758 break;
2759 case STRUCT_VATPIT:
2760 ret = vatpit_snapshot(vm_atpit(vm), meta);
2761 break;
2762 case STRUCT_VPMTMR:
2763 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
2764 break;
2765 case STRUCT_VRTC:
2766 ret = vrtc_snapshot(vm_rtc(vm), meta);
2767 break;
2768 default:
2769 printf("%s: failed to find the requested type %#x\n",
2770 __func__, meta->dev_req);
2771 ret = (EINVAL);
2772 }
2773 return (ret);
2774 }
2775
2776 void
vm_set_tsc_offset(struct vcpu * vcpu,uint64_t offset)2777 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
2778 {
2779 vcpu->tsc_offset = offset;
2780 }
2781
2782 int
vm_restore_time(struct vm * vm)2783 vm_restore_time(struct vm *vm)
2784 {
2785 int error;
2786 uint64_t now;
2787 struct vcpu *vcpu;
2788 uint16_t i, maxcpus;
2789
2790 now = rdtsc();
2791
2792 error = vhpet_restore_time(vm_hpet(vm));
2793 if (error)
2794 return (error);
2795
2796 maxcpus = vm_get_maxcpus(vm);
2797 for (i = 0; i < maxcpus; i++) {
2798 vcpu = vm->vcpu[i];
2799 if (vcpu == NULL)
2800 continue;
2801
2802 error = vmmops_restore_tsc(vcpu->cookie,
2803 vcpu->tsc_offset - now);
2804 if (error)
2805 return (error);
2806 }
2807
2808 return (0);
2809 }
2810 #endif
2811