xref: /linux/drivers/thunderbolt/usb4.c (revision 4f066b189f91622f3a3a231736659f25eb6e30b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/units.h>
13 
14 #include "sb_regs.h"
15 #include "tb.h"
16 
17 #define USB4_DATA_RETRIES		3
18 #define USB4_DATA_DWORDS		16
19 
20 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
21 #define USB4_NVM_READ_OFFSET_SHIFT	2
22 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
23 #define USB4_NVM_READ_LENGTH_SHIFT	24
24 
25 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
26 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
27 
28 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
29 #define USB4_DROM_ADDRESS_SHIFT		2
30 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
31 #define USB4_DROM_SIZE_SHIFT		15
32 
33 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
34 
35 #define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
36 #define USB4_BA_INDEX_MASK		GENMASK(15, 0)
37 
38 enum usb4_ba_index {
39 	USB4_BA_MAX_USB3 = 0x1,
40 	USB4_BA_MIN_DP_AUX = 0x2,
41 	USB4_BA_MIN_DP_MAIN = 0x3,
42 	USB4_BA_MAX_PCIE = 0x4,
43 	USB4_BA_MAX_HI = 0x5,
44 };
45 
46 #define USB4_BA_VALUE_MASK		GENMASK(31, 16)
47 #define USB4_BA_VALUE_SHIFT		16
48 
49 /* Delays in us used with usb4_port_wait_for_bit() */
50 #define USB4_PORT_DELAY			50
51 #define USB4_PORT_SB_DELAY		1000
52 
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)53 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 				 u32 *metadata, u8 *status,
55 				 const void *tx_data, size_t tx_dwords,
56 				 void *rx_data, size_t rx_dwords)
57 {
58 	u32 val;
59 	int ret;
60 
61 	if (metadata) {
62 		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 		if (ret)
64 			return ret;
65 	}
66 	if (tx_dwords) {
67 		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 				  tx_dwords);
69 		if (ret)
70 			return ret;
71 	}
72 
73 	val = opcode | ROUTER_CS_26_OV;
74 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 	if (ret)
76 		return ret;
77 
78 	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 	if (ret)
80 		return ret;
81 
82 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 	if (ret)
84 		return ret;
85 
86 	if (val & ROUTER_CS_26_ONS)
87 		return -EOPNOTSUPP;
88 
89 	if (status)
90 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 			ROUTER_CS_26_STATUS_SHIFT;
92 
93 	if (metadata) {
94 		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 		if (ret)
96 			return ret;
97 	}
98 	if (rx_dwords) {
99 		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 				 rx_dwords);
101 		if (ret)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)108 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 			    u8 *status, const void *tx_data, size_t tx_dwords,
110 			    void *rx_data, size_t rx_dwords)
111 {
112 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113 
114 	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
115 		return -EINVAL;
116 
117 	/*
118 	 * If the connection manager implementation provides USB4 router
119 	 * operation proxy callback, call it here instead of running the
120 	 * operation natively.
121 	 */
122 	if (cm_ops->usb4_switch_op) {
123 		int ret;
124 
125 		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 					     tx_data, tx_dwords, rx_data,
127 					     rx_dwords);
128 		if (ret != -EOPNOTSUPP)
129 			return ret;
130 
131 		/*
132 		 * If the proxy was not supported then run the native
133 		 * router operation instead.
134 		 */
135 	}
136 
137 	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 				     tx_dwords, rx_data, rx_dwords);
139 }
140 
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)141 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 				 u32 *metadata, u8 *status)
143 {
144 	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145 }
146 
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)147 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 				      u32 *metadata, u8 *status,
149 				      const void *tx_data, size_t tx_dwords,
150 				      void *rx_data, size_t rx_dwords)
151 {
152 	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 				tx_dwords, rx_data, rx_dwords);
154 }
155 
156 /**
157  * usb4_switch_check_wakes() - Check for wakes and notify PM core about them
158  * @sw: Router whose wakes to check
159  *
160  * Checks wakes occurred during suspend and notify the PM core about them.
161  */
usb4_switch_check_wakes(struct tb_switch * sw)162 void usb4_switch_check_wakes(struct tb_switch *sw)
163 {
164 	bool wakeup_usb4 = false;
165 	struct usb4_port *usb4;
166 	struct tb_port *port;
167 	bool wakeup = false;
168 	u32 val;
169 
170 	if (tb_route(sw)) {
171 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
172 			return;
173 
174 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
175 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
176 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
177 
178 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
179 	}
180 
181 	/*
182 	 * Check for any downstream ports for USB4 wake,
183 	 * connection wake and disconnection wake.
184 	 */
185 	tb_switch_for_each_port(sw, port) {
186 		if (!port->cap_usb4)
187 			continue;
188 
189 		if (tb_port_read(port, &val, TB_CFG_PORT,
190 				 port->cap_usb4 + PORT_CS_18, 1))
191 			break;
192 
193 		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
194 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
195 			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
196 			    (val & PORT_CS_18_WODS) ? "yes" : "no");
197 
198 		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
199 				     PORT_CS_18_WODS);
200 
201 		usb4 = port->usb4;
202 		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
203 			pm_wakeup_event(&usb4->dev, 0);
204 
205 		wakeup |= wakeup_usb4;
206 	}
207 
208 	if (wakeup)
209 		pm_wakeup_event(&sw->dev, 0);
210 }
211 
link_is_usb4(struct tb_port * port)212 static bool link_is_usb4(struct tb_port *port)
213 {
214 	u32 val;
215 
216 	if (!port->cap_usb4)
217 		return false;
218 
219 	if (tb_port_read(port, &val, TB_CFG_PORT,
220 			 port->cap_usb4 + PORT_CS_18, 1))
221 		return false;
222 
223 	return !(val & PORT_CS_18_TCM);
224 }
225 
226 /**
227  * usb4_switch_setup() - Additional setup for USB4 device
228  * @sw: USB4 router to setup
229  *
230  * USB4 routers need additional settings in order to enable all the
231  * tunneling. This function enables USB and PCIe tunneling if it can be
232  * enabled (e.g the parent switch also supports them). If USB tunneling
233  * is not available for some reason (like that there is Thunderbolt 3
234  * switch upstream) then the internal xHCI controller is enabled
235  * instead.
236  *
237  * This does not set the configuration valid bit of the router. To do
238  * that call usb4_switch_configuration_valid().
239  */
usb4_switch_setup(struct tb_switch * sw)240 int usb4_switch_setup(struct tb_switch *sw)
241 {
242 	struct tb_switch *parent = tb_switch_parent(sw);
243 	struct tb_port *down;
244 	bool tbt3, xhci;
245 	u32 val = 0;
246 	int ret;
247 
248 	if (!tb_route(sw))
249 		return 0;
250 
251 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
252 	if (ret)
253 		return ret;
254 
255 	down = tb_switch_downstream_port(sw);
256 	sw->link_usb4 = link_is_usb4(down);
257 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
258 
259 	xhci = val & ROUTER_CS_6_HCI;
260 	tbt3 = !(val & ROUTER_CS_6_TNS);
261 
262 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
263 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
264 
265 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
266 	if (ret)
267 		return ret;
268 
269 	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
270 	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
271 		val |= ROUTER_CS_5_UTO;
272 		xhci = false;
273 	}
274 
275 	/*
276 	 * Only enable PCIe tunneling if the parent router supports it
277 	 * and it is not disabled.
278 	 */
279 	if (tb_acpi_may_tunnel_pcie() &&
280 	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
281 		val |= ROUTER_CS_5_PTO;
282 		/*
283 		 * xHCI can be enabled if PCIe tunneling is supported
284 		 * and the parent does not have any USB3 dowstream
285 		 * adapters (so we cannot do USB 3.x tunneling).
286 		 */
287 		if (xhci)
288 			val |= ROUTER_CS_5_HCO;
289 	}
290 
291 	/* TBT3 supported by the CM */
292 	val &= ~ROUTER_CS_5_CNS;
293 
294 	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
295 }
296 
297 /**
298  * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
299  * @sw: USB4 router
300  *
301  * Sets configuration valid bit for the router. Must be called before
302  * any tunnels can be set through the router and after
303  * usb4_switch_setup() has been called. Can be called to host and device
304  * routers (does nothing for the latter).
305  *
306  * Returns %0 in success and negative errno otherwise.
307  */
usb4_switch_configuration_valid(struct tb_switch * sw)308 int usb4_switch_configuration_valid(struct tb_switch *sw)
309 {
310 	u32 val;
311 	int ret;
312 
313 	if (!tb_route(sw))
314 		return 0;
315 
316 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
317 	if (ret)
318 		return ret;
319 
320 	val |= ROUTER_CS_5_CV;
321 
322 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
323 	if (ret)
324 		return ret;
325 
326 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
327 				      ROUTER_CS_6_CR, 50);
328 }
329 
330 /**
331  * usb4_switch_read_uid() - Read UID from USB4 router
332  * @sw: USB4 router
333  * @uid: UID is stored here
334  *
335  * Reads 64-bit UID from USB4 router config space.
336  */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)337 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
338 {
339 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
340 }
341 
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)342 static int usb4_switch_drom_read_block(void *data,
343 				       unsigned int dwaddress, void *buf,
344 				       size_t dwords)
345 {
346 	struct tb_switch *sw = data;
347 	u8 status = 0;
348 	u32 metadata;
349 	int ret;
350 
351 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
352 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
353 		USB4_DROM_ADDRESS_MASK;
354 
355 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
356 				  &status, NULL, 0, buf, dwords);
357 	if (ret)
358 		return ret;
359 
360 	return status ? -EIO : 0;
361 }
362 
363 /**
364  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
365  * @sw: USB4 router
366  * @address: Byte address inside DROM to start reading
367  * @buf: Buffer where the DROM content is stored
368  * @size: Number of bytes to read from DROM
369  *
370  * Uses USB4 router operations to read router DROM. For devices this
371  * should always work but for hosts it may return %-EOPNOTSUPP in which
372  * case the host router does not have DROM.
373  */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)374 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
375 			  size_t size)
376 {
377 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
378 				usb4_switch_drom_read_block, sw);
379 }
380 
381 /**
382  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
383  * @sw: USB4 router
384  *
385  * Checks whether conditions are met so that lane bonding can be
386  * established with the upstream router. Call only for device routers.
387  */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)388 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
389 {
390 	struct tb_port *up;
391 	int ret;
392 	u32 val;
393 
394 	up = tb_upstream_port(sw);
395 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
396 	if (ret)
397 		return false;
398 
399 	return !!(val & PORT_CS_18_BE);
400 }
401 
402 /**
403  * usb4_switch_set_wake() - Enabled/disable wake
404  * @sw: USB4 router
405  * @flags: Wakeup flags (%0 to disable)
406  * @runtime: Wake is being programmed during system runtime
407  *
408  * Enables/disables router to wake up from sleep.
409  */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags,bool runtime)410 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags, bool runtime)
411 {
412 	struct tb_port *port;
413 	u64 route = tb_route(sw);
414 	u32 val;
415 	int ret;
416 
417 	/*
418 	 * Enable wakes coming from all USB4 downstream ports (from
419 	 * child routers). For device routers do this also for the
420 	 * upstream USB4 port.
421 	 */
422 	tb_switch_for_each_port(sw, port) {
423 		if (!tb_port_is_null(port))
424 			continue;
425 		if (!route && tb_is_upstream_port(port))
426 			continue;
427 		if (!port->cap_usb4)
428 			continue;
429 
430 		ret = tb_port_read(port, &val, TB_CFG_PORT,
431 				   port->cap_usb4 + PORT_CS_19, 1);
432 		if (ret)
433 			return ret;
434 
435 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
436 
437 		if (tb_is_upstream_port(port)) {
438 			val |= PORT_CS_19_WOU4;
439 		} else {
440 			bool configured = val & PORT_CS_19_PC;
441 			bool wakeup = runtime || device_may_wakeup(&port->usb4->dev);
442 
443 			if ((flags & TB_WAKE_ON_CONNECT) && wakeup && !configured)
444 				val |= PORT_CS_19_WOC;
445 			if ((flags & TB_WAKE_ON_DISCONNECT) && wakeup && configured)
446 				val |= PORT_CS_19_WOD;
447 			if ((flags & TB_WAKE_ON_USB4) && configured)
448 				val |= PORT_CS_19_WOU4;
449 		}
450 
451 		ret = tb_port_write(port, &val, TB_CFG_PORT,
452 				    port->cap_usb4 + PORT_CS_19, 1);
453 		if (ret)
454 			return ret;
455 	}
456 
457 	/*
458 	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
459 	 * needed for device routers.
460 	 */
461 	if (route) {
462 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
463 		if (ret)
464 			return ret;
465 
466 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
467 		if (flags & TB_WAKE_ON_USB3)
468 			val |= ROUTER_CS_5_WOU;
469 		if (flags & TB_WAKE_ON_PCIE)
470 			val |= ROUTER_CS_5_WOP;
471 		if (flags & TB_WAKE_ON_DP)
472 			val |= ROUTER_CS_5_WOD;
473 
474 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
475 		if (ret)
476 			return ret;
477 	}
478 
479 	return 0;
480 }
481 
482 /**
483  * usb4_switch_set_sleep() - Prepare the router to enter sleep
484  * @sw: USB4 router
485  *
486  * Sets sleep bit for the router. Returns when the router sleep ready
487  * bit has been asserted.
488  */
usb4_switch_set_sleep(struct tb_switch * sw)489 int usb4_switch_set_sleep(struct tb_switch *sw)
490 {
491 	int ret;
492 	u32 val;
493 
494 	/* Set sleep bit and wait for sleep ready to be asserted */
495 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
496 	if (ret)
497 		return ret;
498 
499 	val |= ROUTER_CS_5_SLP;
500 
501 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
502 	if (ret)
503 		return ret;
504 
505 	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
506 				      ROUTER_CS_6_SLPR, 500);
507 }
508 
509 /**
510  * usb4_switch_nvm_sector_size() - Return router NVM sector size
511  * @sw: USB4 router
512  *
513  * If the router supports NVM operations this function returns the NVM
514  * sector size in bytes. If NVM operations are not supported returns
515  * %-EOPNOTSUPP.
516  */
usb4_switch_nvm_sector_size(struct tb_switch * sw)517 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
518 {
519 	u32 metadata;
520 	u8 status;
521 	int ret;
522 
523 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
524 			     &status);
525 	if (ret)
526 		return ret;
527 
528 	if (status)
529 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
530 
531 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
532 }
533 
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)534 static int usb4_switch_nvm_read_block(void *data,
535 	unsigned int dwaddress, void *buf, size_t dwords)
536 {
537 	struct tb_switch *sw = data;
538 	u8 status = 0;
539 	u32 metadata;
540 	int ret;
541 
542 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
543 		   USB4_NVM_READ_LENGTH_MASK;
544 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
545 		   USB4_NVM_READ_OFFSET_MASK;
546 
547 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
548 				  &status, NULL, 0, buf, dwords);
549 	if (ret)
550 		return ret;
551 
552 	return status ? -EIO : 0;
553 }
554 
555 /**
556  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
557  * @sw: USB4 router
558  * @address: Starting address in bytes
559  * @buf: Read data is placed here
560  * @size: How many bytes to read
561  *
562  * Reads NVM contents of the router. If NVM is not supported returns
563  * %-EOPNOTSUPP.
564  */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)565 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
566 			 size_t size)
567 {
568 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
569 				usb4_switch_nvm_read_block, sw);
570 }
571 
572 /**
573  * usb4_switch_nvm_set_offset() - Set NVM write offset
574  * @sw: USB4 router
575  * @address: Start offset
576  *
577  * Explicitly sets NVM write offset. Normally when writing to NVM this
578  * is done automatically by usb4_switch_nvm_write().
579  *
580  * Returns %0 in success and negative errno if there was a failure.
581  */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)582 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
583 {
584 	u32 metadata, dwaddress;
585 	u8 status = 0;
586 	int ret;
587 
588 	dwaddress = address / 4;
589 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
590 		   USB4_NVM_SET_OFFSET_MASK;
591 
592 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
593 			     &status);
594 	if (ret)
595 		return ret;
596 
597 	return status ? -EIO : 0;
598 }
599 
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)600 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
601 					    const void *buf, size_t dwords)
602 {
603 	struct tb_switch *sw = data;
604 	u8 status;
605 	int ret;
606 
607 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
608 				  buf, dwords, NULL, 0);
609 	if (ret)
610 		return ret;
611 
612 	return status ? -EIO : 0;
613 }
614 
615 /**
616  * usb4_switch_nvm_write() - Write to the router NVM
617  * @sw: USB4 router
618  * @address: Start address where to write in bytes
619  * @buf: Pointer to the data to write
620  * @size: Size of @buf in bytes
621  *
622  * Writes @buf to the router NVM using USB4 router operations. If NVM
623  * write is not supported returns %-EOPNOTSUPP.
624  */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)625 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
626 			  const void *buf, size_t size)
627 {
628 	int ret;
629 
630 	ret = usb4_switch_nvm_set_offset(sw, address);
631 	if (ret)
632 		return ret;
633 
634 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
635 				 usb4_switch_nvm_write_next_block, sw);
636 }
637 
638 /**
639  * usb4_switch_nvm_authenticate() - Authenticate new NVM
640  * @sw: USB4 router
641  *
642  * After the new NVM has been written via usb4_switch_nvm_write(), this
643  * function triggers NVM authentication process. The router gets power
644  * cycled and if the authentication is successful the new NVM starts
645  * running. In case of failure returns negative errno.
646  *
647  * The caller should call usb4_switch_nvm_authenticate_status() to read
648  * the status of the authentication after power cycle. It should be the
649  * first router operation to avoid the status being lost.
650  */
usb4_switch_nvm_authenticate(struct tb_switch * sw)651 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
652 {
653 	int ret;
654 
655 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
656 	switch (ret) {
657 	/*
658 	 * The router is power cycled once NVM_AUTH is started so it is
659 	 * expected to get any of the following errors back.
660 	 */
661 	case -EACCES:
662 	case -ENOTCONN:
663 	case -ETIMEDOUT:
664 		return 0;
665 
666 	default:
667 		return ret;
668 	}
669 }
670 
671 /**
672  * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
673  * @sw: USB4 router
674  * @status: Status code of the operation
675  *
676  * The function checks if there is status available from the last NVM
677  * authenticate router operation. If there is status then %0 is returned
678  * and the status code is placed in @status. Returns negative errno in case
679  * of failure.
680  *
681  * Must be called before any other router operation.
682  */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)683 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
684 {
685 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
686 	u16 opcode;
687 	u32 val;
688 	int ret;
689 
690 	if (cm_ops->usb4_switch_nvm_authenticate_status) {
691 		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
692 		if (ret != -EOPNOTSUPP)
693 			return ret;
694 	}
695 
696 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
697 	if (ret)
698 		return ret;
699 
700 	/* Check that the opcode is correct */
701 	opcode = val & ROUTER_CS_26_OPCODE_MASK;
702 	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
703 		if (val & ROUTER_CS_26_OV)
704 			return -EBUSY;
705 		if (val & ROUTER_CS_26_ONS)
706 			return -EOPNOTSUPP;
707 
708 		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
709 			ROUTER_CS_26_STATUS_SHIFT;
710 	} else {
711 		*status = 0;
712 	}
713 
714 	return 0;
715 }
716 
717 /**
718  * usb4_switch_credits_init() - Read buffer allocation parameters
719  * @sw: USB4 router
720  *
721  * Reads @sw buffer allocation parameters and initializes @sw buffer
722  * allocation fields accordingly. Specifically @sw->credits_allocation
723  * is set to %true if these parameters can be used in tunneling.
724  *
725  * Returns %0 on success and negative errno otherwise.
726  */
usb4_switch_credits_init(struct tb_switch * sw)727 int usb4_switch_credits_init(struct tb_switch *sw)
728 {
729 	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
730 	int ret, length, i, nports;
731 	const struct tb_port *port;
732 	u32 data[USB4_DATA_DWORDS];
733 	u32 metadata = 0;
734 	u8 status = 0;
735 
736 	memset(data, 0, sizeof(data));
737 	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
738 				  &status, NULL, 0, data, ARRAY_SIZE(data));
739 	if (ret)
740 		return ret;
741 	if (status)
742 		return -EIO;
743 
744 	length = metadata & USB4_BA_LENGTH_MASK;
745 	if (WARN_ON(length > ARRAY_SIZE(data)))
746 		return -EMSGSIZE;
747 
748 	max_usb3 = -1;
749 	min_dp_aux = -1;
750 	min_dp_main = -1;
751 	max_pcie = -1;
752 	max_dma = -1;
753 
754 	tb_sw_dbg(sw, "credit allocation parameters:\n");
755 
756 	for (i = 0; i < length; i++) {
757 		u16 index, value;
758 
759 		index = data[i] & USB4_BA_INDEX_MASK;
760 		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
761 
762 		switch (index) {
763 		case USB4_BA_MAX_USB3:
764 			tb_sw_dbg(sw, " USB3: %u\n", value);
765 			max_usb3 = value;
766 			break;
767 		case USB4_BA_MIN_DP_AUX:
768 			tb_sw_dbg(sw, " DP AUX: %u\n", value);
769 			min_dp_aux = value;
770 			break;
771 		case USB4_BA_MIN_DP_MAIN:
772 			tb_sw_dbg(sw, " DP main: %u\n", value);
773 			min_dp_main = value;
774 			break;
775 		case USB4_BA_MAX_PCIE:
776 			tb_sw_dbg(sw, " PCIe: %u\n", value);
777 			max_pcie = value;
778 			break;
779 		case USB4_BA_MAX_HI:
780 			tb_sw_dbg(sw, " DMA: %u\n", value);
781 			max_dma = value;
782 			break;
783 		default:
784 			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
785 				  index);
786 			break;
787 		}
788 	}
789 
790 	/*
791 	 * Validate the buffer allocation preferences. If we find
792 	 * issues, log a warning and fall back using the hard-coded
793 	 * values.
794 	 */
795 
796 	/* Host router must report baMaxHI */
797 	if (!tb_route(sw) && max_dma < 0) {
798 		tb_sw_warn(sw, "host router is missing baMaxHI\n");
799 		goto err_invalid;
800 	}
801 
802 	nports = 0;
803 	tb_switch_for_each_port(sw, port) {
804 		if (tb_port_is_null(port))
805 			nports++;
806 	}
807 
808 	/* Must have DP buffer allocation (multiple USB4 ports) */
809 	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
810 		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
811 		goto err_invalid;
812 	}
813 
814 	tb_switch_for_each_port(sw, port) {
815 		if (tb_port_is_dpout(port) && min_dp_main < 0) {
816 			tb_sw_warn(sw, "missing baMinDPmain");
817 			goto err_invalid;
818 		}
819 		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
820 		    min_dp_aux < 0) {
821 			tb_sw_warn(sw, "missing baMinDPaux");
822 			goto err_invalid;
823 		}
824 		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
825 		    max_usb3 < 0) {
826 			tb_sw_warn(sw, "missing baMaxUSB3");
827 			goto err_invalid;
828 		}
829 		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
830 		    max_pcie < 0) {
831 			tb_sw_warn(sw, "missing baMaxPCIe");
832 			goto err_invalid;
833 		}
834 	}
835 
836 	/*
837 	 * Buffer allocation passed the validation so we can use it in
838 	 * path creation.
839 	 */
840 	sw->credit_allocation = true;
841 	if (max_usb3 > 0)
842 		sw->max_usb3_credits = max_usb3;
843 	if (min_dp_aux > 0)
844 		sw->min_dp_aux_credits = min_dp_aux;
845 	if (min_dp_main > 0)
846 		sw->min_dp_main_credits = min_dp_main;
847 	if (max_pcie > 0)
848 		sw->max_pcie_credits = max_pcie;
849 	if (max_dma > 0)
850 		sw->max_dma_credits = max_dma;
851 
852 	return 0;
853 
854 err_invalid:
855 	return -EINVAL;
856 }
857 
858 /**
859  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
860  * @sw: USB4 router
861  * @in: DP IN adapter
862  *
863  * For DP tunneling this function can be used to query availability of
864  * DP IN resource. Returns true if the resource is available for DP
865  * tunneling, false otherwise.
866  */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)867 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
868 {
869 	u32 metadata = in->port;
870 	u8 status;
871 	int ret;
872 
873 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
874 			     &status);
875 	/*
876 	 * If DP resource allocation is not supported assume it is
877 	 * always available.
878 	 */
879 	if (ret == -EOPNOTSUPP)
880 		return true;
881 	if (ret)
882 		return false;
883 
884 	return !status;
885 }
886 
887 /**
888  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
889  * @sw: USB4 router
890  * @in: DP IN adapter
891  *
892  * Allocates DP IN resource for DP tunneling using USB4 router
893  * operations. If the resource was allocated returns %0. Otherwise
894  * returns negative errno, in particular %-EBUSY if the resource is
895  * already allocated.
896  */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)897 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
898 {
899 	u32 metadata = in->port;
900 	u8 status;
901 	int ret;
902 
903 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
904 			     &status);
905 	if (ret == -EOPNOTSUPP)
906 		return 0;
907 	if (ret)
908 		return ret;
909 
910 	return status ? -EBUSY : 0;
911 }
912 
913 /**
914  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
915  * @sw: USB4 router
916  * @in: DP IN adapter
917  *
918  * Releases the previously allocated DP IN resource.
919  */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)920 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
921 {
922 	u32 metadata = in->port;
923 	u8 status;
924 	int ret;
925 
926 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
927 			     &status);
928 	if (ret == -EOPNOTSUPP)
929 		return 0;
930 	if (ret)
931 		return ret;
932 
933 	return status ? -EIO : 0;
934 }
935 
936 /**
937  * usb4_port_index() - Finds matching USB4 port index
938  * @sw: USB4 router
939  * @port: USB4 protocol or lane adapter
940  *
941  * Finds matching USB4 port index (starting from %0) that given @port goes
942  * through.
943  */
usb4_port_index(const struct tb_switch * sw,const struct tb_port * port)944 int usb4_port_index(const struct tb_switch *sw, const struct tb_port *port)
945 {
946 	struct tb_port *p;
947 	int usb4_idx = 0;
948 
949 	/* Assume port is primary */
950 	tb_switch_for_each_port(sw, p) {
951 		if (!tb_port_is_null(p))
952 			continue;
953 		if (tb_is_upstream_port(p))
954 			continue;
955 		if (!p->link_nr) {
956 			if (p == port)
957 				break;
958 			usb4_idx++;
959 		}
960 	}
961 
962 	return usb4_idx;
963 }
964 
965 /**
966  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
967  * @sw: USB4 router
968  * @port: USB4 port
969  *
970  * USB4 routers have direct mapping between USB4 ports and PCIe
971  * downstream adapters where the PCIe topology is extended. This
972  * function returns the corresponding downstream PCIe adapter or %NULL
973  * if no such mapping was possible.
974  */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)975 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
976 					  const struct tb_port *port)
977 {
978 	int usb4_idx = usb4_port_index(sw, port);
979 	struct tb_port *p;
980 	int pcie_idx = 0;
981 
982 	/* Find PCIe down port matching usb4_port */
983 	tb_switch_for_each_port(sw, p) {
984 		if (!tb_port_is_pcie_down(p))
985 			continue;
986 
987 		if (pcie_idx == usb4_idx)
988 			return p;
989 
990 		pcie_idx++;
991 	}
992 
993 	return NULL;
994 }
995 
996 /**
997  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
998  * @sw: USB4 router
999  * @port: USB4 port
1000  *
1001  * USB4 routers have direct mapping between USB4 ports and USB 3.x
1002  * downstream adapters where the USB 3.x topology is extended. This
1003  * function returns the corresponding downstream USB 3.x adapter or
1004  * %NULL if no such mapping was possible.
1005  */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)1006 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1007 					  const struct tb_port *port)
1008 {
1009 	int usb4_idx = usb4_port_index(sw, port);
1010 	struct tb_port *p;
1011 	int usb_idx = 0;
1012 
1013 	/* Find USB3 down port matching usb4_port */
1014 	tb_switch_for_each_port(sw, p) {
1015 		if (!tb_port_is_usb3_down(p))
1016 			continue;
1017 
1018 		if (usb_idx == usb4_idx)
1019 			return p;
1020 
1021 		usb_idx++;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 /**
1028  * usb4_switch_add_ports() - Add USB4 ports for this router
1029  * @sw: USB4 router
1030  *
1031  * For USB4 router finds all USB4 ports and registers devices for each.
1032  * Can be called to any router.
1033  *
1034  * Return %0 in case of success and negative errno in case of failure.
1035  */
usb4_switch_add_ports(struct tb_switch * sw)1036 int usb4_switch_add_ports(struct tb_switch *sw)
1037 {
1038 	struct tb_port *port;
1039 
1040 	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1041 		return 0;
1042 
1043 	tb_switch_for_each_port(sw, port) {
1044 		struct usb4_port *usb4;
1045 
1046 		if (!tb_port_is_null(port))
1047 			continue;
1048 		if (!port->cap_usb4)
1049 			continue;
1050 
1051 		usb4 = usb4_port_device_add(port);
1052 		if (IS_ERR(usb4)) {
1053 			usb4_switch_remove_ports(sw);
1054 			return PTR_ERR(usb4);
1055 		}
1056 
1057 		port->usb4 = usb4;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /**
1064  * usb4_switch_remove_ports() - Removes USB4 ports from this router
1065  * @sw: USB4 router
1066  *
1067  * Unregisters previously registered USB4 ports.
1068  */
usb4_switch_remove_ports(struct tb_switch * sw)1069 void usb4_switch_remove_ports(struct tb_switch *sw)
1070 {
1071 	struct tb_port *port;
1072 
1073 	tb_switch_for_each_port(sw, port) {
1074 		if (port->usb4) {
1075 			usb4_port_device_remove(port->usb4);
1076 			port->usb4 = NULL;
1077 		}
1078 	}
1079 }
1080 
1081 /**
1082  * usb4_port_unlock() - Unlock USB4 downstream port
1083  * @port: USB4 port to unlock
1084  *
1085  * Unlocks USB4 downstream port so that the connection manager can
1086  * access the router below this port.
1087  */
usb4_port_unlock(struct tb_port * port)1088 int usb4_port_unlock(struct tb_port *port)
1089 {
1090 	int ret;
1091 	u32 val;
1092 
1093 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094 	if (ret)
1095 		return ret;
1096 
1097 	val &= ~ADP_CS_4_LCK;
1098 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1099 }
1100 
1101 /**
1102  * usb4_port_hotplug_enable() - Enables hotplug for a port
1103  * @port: USB4 port to operate on
1104  *
1105  * Enables hot plug events on a given port. This is only intended
1106  * to be used on lane, DP-IN, and DP-OUT adapters.
1107  */
usb4_port_hotplug_enable(struct tb_port * port)1108 int usb4_port_hotplug_enable(struct tb_port *port)
1109 {
1110 	int ret;
1111 	u32 val;
1112 
1113 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114 	if (ret)
1115 		return ret;
1116 
1117 	val &= ~ADP_CS_5_DHP;
1118 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1119 }
1120 
1121 /**
1122  * usb4_port_reset() - Issue downstream port reset
1123  * @port: USB4 port to reset
1124  *
1125  * Issues downstream port reset to @port.
1126  */
usb4_port_reset(struct tb_port * port)1127 int usb4_port_reset(struct tb_port *port)
1128 {
1129 	int ret;
1130 	u32 val;
1131 
1132 	if (!port->cap_usb4)
1133 		return -EINVAL;
1134 
1135 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1136 			   port->cap_usb4 + PORT_CS_19, 1);
1137 	if (ret)
1138 		return ret;
1139 
1140 	val |= PORT_CS_19_DPR;
1141 
1142 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1143 			    port->cap_usb4 + PORT_CS_19, 1);
1144 	if (ret)
1145 		return ret;
1146 
1147 	fsleep(10000);
1148 
1149 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1150 			   port->cap_usb4 + PORT_CS_19, 1);
1151 	if (ret)
1152 		return ret;
1153 
1154 	val &= ~PORT_CS_19_DPR;
1155 
1156 	return tb_port_write(port, &val, TB_CFG_PORT,
1157 			     port->cap_usb4 + PORT_CS_19, 1);
1158 }
1159 
usb4_port_set_configured(struct tb_port * port,bool configured)1160 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1161 {
1162 	int ret;
1163 	u32 val;
1164 
1165 	if (!port->cap_usb4)
1166 		return -EINVAL;
1167 
1168 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 			   port->cap_usb4 + PORT_CS_19, 1);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (configured)
1174 		val |= PORT_CS_19_PC;
1175 	else
1176 		val &= ~PORT_CS_19_PC;
1177 
1178 	return tb_port_write(port, &val, TB_CFG_PORT,
1179 			     port->cap_usb4 + PORT_CS_19, 1);
1180 }
1181 
1182 /**
1183  * usb4_port_configure() - Set USB4 port configured
1184  * @port: USB4 router
1185  *
1186  * Sets the USB4 link to be configured for power management purposes.
1187  */
usb4_port_configure(struct tb_port * port)1188 int usb4_port_configure(struct tb_port *port)
1189 {
1190 	return usb4_port_set_configured(port, true);
1191 }
1192 
1193 /**
1194  * usb4_port_unconfigure() - Set USB4 port unconfigured
1195  * @port: USB4 router
1196  *
1197  * Sets the USB4 link to be unconfigured for power management purposes.
1198  */
usb4_port_unconfigure(struct tb_port * port)1199 void usb4_port_unconfigure(struct tb_port *port)
1200 {
1201 	usb4_port_set_configured(port, false);
1202 }
1203 
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1204 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1205 {
1206 	int ret;
1207 	u32 val;
1208 
1209 	if (!port->cap_usb4)
1210 		return -EINVAL;
1211 
1212 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1213 			   port->cap_usb4 + PORT_CS_19, 1);
1214 	if (ret)
1215 		return ret;
1216 
1217 	if (configured)
1218 		val |= PORT_CS_19_PID;
1219 	else
1220 		val &= ~PORT_CS_19_PID;
1221 
1222 	return tb_port_write(port, &val, TB_CFG_PORT,
1223 			     port->cap_usb4 + PORT_CS_19, 1);
1224 }
1225 
1226 /**
1227  * usb4_port_configure_xdomain() - Configure port for XDomain
1228  * @port: USB4 port connected to another host
1229  * @xd: XDomain that is connected to the port
1230  *
1231  * Marks the USB4 port as being connected to another host and updates
1232  * the link type. Returns %0 in success and negative errno in failure.
1233  */
usb4_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)1234 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1235 {
1236 	xd->link_usb4 = link_is_usb4(port);
1237 	return usb4_set_xdomain_configured(port, true);
1238 }
1239 
1240 /**
1241  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1242  * @port: USB4 port that was connected to another host
1243  *
1244  * Clears USB4 port from being marked as XDomain.
1245  */
usb4_port_unconfigure_xdomain(struct tb_port * port)1246 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1247 {
1248 	usb4_set_xdomain_configured(port, false);
1249 }
1250 
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec,unsigned long delay_usec)1251 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1252 			  u32 value, int timeout_msec, unsigned long delay_usec)
1253 {
1254 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1255 
1256 	do {
1257 		u32 val;
1258 		int ret;
1259 
1260 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1261 		if (ret)
1262 			return ret;
1263 
1264 		if ((val & bit) == value)
1265 			return 0;
1266 
1267 		fsleep(delay_usec);
1268 	} while (ktime_before(ktime_get(), timeout));
1269 
1270 	return -ETIMEDOUT;
1271 }
1272 
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1273 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1274 {
1275 	if (dwords > USB4_DATA_DWORDS)
1276 		return -EINVAL;
1277 
1278 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1279 			    dwords);
1280 }
1281 
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1282 static int usb4_port_write_data(struct tb_port *port, const void *data,
1283 				size_t dwords)
1284 {
1285 	if (dwords > USB4_DATA_DWORDS)
1286 		return -EINVAL;
1287 
1288 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1289 			     dwords);
1290 }
1291 
1292 /**
1293  * usb4_port_sb_read() - Read from sideband register
1294  * @port: USB4 port to read
1295  * @target: Sideband target
1296  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1297  * @reg: Sideband register index
1298  * @buf: Buffer where the sideband data is copied
1299  * @size: Size of @buf
1300  *
1301  * Reads data from sideband register @reg and copies it into @buf.
1302  * Returns %0 in case of success and negative errno in case of failure.
1303  */
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1304 int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, u8 index,
1305 		      u8 reg, void *buf, u8 size)
1306 {
1307 	size_t dwords = DIV_ROUND_UP(size, 4);
1308 	int ret;
1309 	u32 val;
1310 
1311 	if (!port->cap_usb4)
1312 		return -EINVAL;
1313 
1314 	val = reg;
1315 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1316 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1317 	if (target == USB4_SB_TARGET_RETIMER)
1318 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1319 	val |= PORT_CS_1_PND;
1320 
1321 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1322 			    port->cap_usb4 + PORT_CS_1, 1);
1323 	if (ret)
1324 		return ret;
1325 
1326 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1327 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1328 	if (ret)
1329 		return ret;
1330 
1331 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1332 			    port->cap_usb4 + PORT_CS_1, 1);
1333 	if (ret)
1334 		return ret;
1335 
1336 	if (val & PORT_CS_1_NR)
1337 		return -ENODEV;
1338 	if (val & PORT_CS_1_RC)
1339 		return -EIO;
1340 
1341 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1342 }
1343 
1344 /**
1345  * usb4_port_sb_write() - Write to sideband register
1346  * @port: USB4 port to write
1347  * @target: Sideband target
1348  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1349  * @reg: Sideband register index
1350  * @buf: Data to write
1351  * @size: Size of @buf
1352  *
1353  * Writes @buf to sideband register @reg. Returns %0 in case of success
1354  * and negative errno in case of failure.
1355  */
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1356 int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1357 		       u8 index, u8 reg, const void *buf, u8 size)
1358 {
1359 	size_t dwords = DIV_ROUND_UP(size, 4);
1360 	int ret;
1361 	u32 val;
1362 
1363 	if (!port->cap_usb4)
1364 		return -EINVAL;
1365 
1366 	if (buf) {
1367 		ret = usb4_port_write_data(port, buf, dwords);
1368 		if (ret)
1369 			return ret;
1370 	}
1371 
1372 	val = reg;
1373 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1374 	val |= PORT_CS_1_WNR_WRITE;
1375 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1376 	if (target == USB4_SB_TARGET_RETIMER)
1377 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1378 	val |= PORT_CS_1_PND;
1379 
1380 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1381 			    port->cap_usb4 + PORT_CS_1, 1);
1382 	if (ret)
1383 		return ret;
1384 
1385 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1386 				     PORT_CS_1_PND, 0, 500, USB4_PORT_SB_DELAY);
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1391 			    port->cap_usb4 + PORT_CS_1, 1);
1392 	if (ret)
1393 		return ret;
1394 
1395 	if (val & PORT_CS_1_NR)
1396 		return -ENODEV;
1397 	if (val & PORT_CS_1_RC)
1398 		return -EIO;
1399 
1400 	return 0;
1401 }
1402 
usb4_port_sb_opcode_err_to_errno(u32 val)1403 static int usb4_port_sb_opcode_err_to_errno(u32 val)
1404 {
1405 	switch (val) {
1406 	case 0:
1407 		return 0;
1408 	case USB4_SB_OPCODE_ERR:
1409 		return -EAGAIN;
1410 	case USB4_SB_OPCODE_ONS:
1411 		return -EOPNOTSUPP;
1412 	default:
1413 		return -EIO;
1414 	}
1415 }
1416 
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1417 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1418 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1419 {
1420 	ktime_t timeout;
1421 	u32 val;
1422 	int ret;
1423 
1424 	val = opcode;
1425 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1426 				 sizeof(val));
1427 	if (ret)
1428 		return ret;
1429 
1430 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1431 
1432 	do {
1433 		/* Check results */
1434 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1435 					&val, sizeof(val));
1436 		if (ret)
1437 			return ret;
1438 
1439 		if (val != opcode)
1440 			return usb4_port_sb_opcode_err_to_errno(val);
1441 
1442 		fsleep(USB4_PORT_SB_DELAY);
1443 	} while (ktime_before(ktime_get(), timeout));
1444 
1445 	return -ETIMEDOUT;
1446 }
1447 
usb4_port_set_router_offline(struct tb_port * port,bool offline)1448 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1449 {
1450 	u32 val = !offline;
1451 	int ret;
1452 
1453 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1454 				  USB4_SB_METADATA, &val, sizeof(val));
1455 	if (ret)
1456 		return ret;
1457 
1458 	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1459 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1460 				  USB4_SB_OPCODE, &val, sizeof(val));
1461 }
1462 
1463 /**
1464  * usb4_port_router_offline() - Put the USB4 port to offline mode
1465  * @port: USB4 port
1466  *
1467  * This function puts the USB4 port into offline mode. In this mode the
1468  * port does not react on hotplug events anymore. This needs to be
1469  * called before retimer access is done when the USB4 links is not up.
1470  *
1471  * Returns %0 in case of success and negative errno if there was an
1472  * error.
1473  */
usb4_port_router_offline(struct tb_port * port)1474 int usb4_port_router_offline(struct tb_port *port)
1475 {
1476 	return usb4_port_set_router_offline(port, true);
1477 }
1478 
1479 /**
1480  * usb4_port_router_online() - Put the USB4 port back to online
1481  * @port: USB4 port
1482  *
1483  * Makes the USB4 port functional again.
1484  */
usb4_port_router_online(struct tb_port * port)1485 int usb4_port_router_online(struct tb_port *port)
1486 {
1487 	return usb4_port_set_router_offline(port, false);
1488 }
1489 
1490 /**
1491  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1492  * @port: USB4 port
1493  *
1494  * This forces the USB4 port to send broadcast RT transaction which
1495  * makes the retimers on the link to assign index to themselves. Returns
1496  * %0 in case of success and negative errno if there was an error.
1497  */
usb4_port_enumerate_retimers(struct tb_port * port)1498 int usb4_port_enumerate_retimers(struct tb_port *port)
1499 {
1500 	u32 val;
1501 
1502 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1503 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1504 				  USB4_SB_OPCODE, &val, sizeof(val));
1505 }
1506 
1507 /**
1508  * usb4_port_clx_supported() - Check if CLx is supported by the link
1509  * @port: Port to check for CLx support for
1510  *
1511  * PORT_CS_18_CPS bit reflects if the link supports CLx including
1512  * active cables (if connected on the link).
1513  */
usb4_port_clx_supported(struct tb_port * port)1514 bool usb4_port_clx_supported(struct tb_port *port)
1515 {
1516 	int ret;
1517 	u32 val;
1518 
1519 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1520 			   port->cap_usb4 + PORT_CS_18, 1);
1521 	if (ret)
1522 		return false;
1523 
1524 	return !!(val & PORT_CS_18_CPS);
1525 }
1526 
1527 /**
1528  * usb4_port_asym_supported() - If the port supports asymmetric link
1529  * @port: USB4 port
1530  *
1531  * Checks if the port and the cable supports asymmetric link and returns
1532  * %true in that case.
1533  */
usb4_port_asym_supported(struct tb_port * port)1534 bool usb4_port_asym_supported(struct tb_port *port)
1535 {
1536 	u32 val;
1537 
1538 	if (!port->cap_usb4)
1539 		return false;
1540 
1541 	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1542 		return false;
1543 
1544 	return !!(val & PORT_CS_18_CSA);
1545 }
1546 
1547 /**
1548  * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1549  * @port: USB4 port
1550  * @width: Asymmetric width to configure
1551  *
1552  * Sets USB4 port link width to @width. Can be called for widths where
1553  * usb4_port_asym_width_supported() returned @true.
1554  */
usb4_port_asym_set_link_width(struct tb_port * port,enum tb_link_width width)1555 int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1556 {
1557 	u32 val;
1558 	int ret;
1559 
1560 	if (!port->cap_phy)
1561 		return -EINVAL;
1562 
1563 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1564 			   port->cap_phy + LANE_ADP_CS_1, 1);
1565 	if (ret)
1566 		return ret;
1567 
1568 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1569 	switch (width) {
1570 	case TB_LINK_WIDTH_DUAL:
1571 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1572 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1573 		break;
1574 	case TB_LINK_WIDTH_ASYM_TX:
1575 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1576 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1577 		break;
1578 	case TB_LINK_WIDTH_ASYM_RX:
1579 		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1580 				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1581 		break;
1582 	default:
1583 		return -EINVAL;
1584 	}
1585 
1586 	return tb_port_write(port, &val, TB_CFG_PORT,
1587 			     port->cap_phy + LANE_ADP_CS_1, 1);
1588 }
1589 
1590 /**
1591  * usb4_port_asym_start() - Start symmetry change and wait for completion
1592  * @port: USB4 port
1593  *
1594  * Start symmetry change of the link to asymmetric or symmetric
1595  * (according to what was previously set in tb_port_set_link_width().
1596  * Wait for completion of the change.
1597  *
1598  * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1599  * a negative errno in case of a failure.
1600  */
usb4_port_asym_start(struct tb_port * port)1601 int usb4_port_asym_start(struct tb_port *port)
1602 {
1603 	int ret;
1604 	u32 val;
1605 
1606 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1607 			   port->cap_usb4 + PORT_CS_19, 1);
1608 	if (ret)
1609 		return ret;
1610 
1611 	val &= ~PORT_CS_19_START_ASYM;
1612 	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1613 
1614 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1615 			    port->cap_usb4 + PORT_CS_19, 1);
1616 	if (ret)
1617 		return ret;
1618 
1619 	/*
1620 	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1621 	 * port started the symmetry transition.
1622 	 */
1623 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1624 				     PORT_CS_19_START_ASYM, 0, 1000,
1625 				     USB4_PORT_DELAY);
1626 	if (ret)
1627 		return ret;
1628 
1629 	/* Then wait for the transtion to be completed */
1630 	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1631 				      PORT_CS_18_TIP, 0, 5000, USB4_PORT_DELAY);
1632 }
1633 
1634 /**
1635  * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1636  * @port: USB4 port
1637  * @target: Sideband target
1638  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1639  * @caps: Array with at least two elements to hold the results
1640  * @ncaps: Number of elements in the caps array
1641  *
1642  * Reads the USB4 port lane margining capabilities into @caps.
1643  */
usb4_port_margining_caps(struct tb_port * port,enum usb4_sb_target target,u8 index,u32 * caps,size_t ncaps)1644 int usb4_port_margining_caps(struct tb_port *port, enum usb4_sb_target target,
1645 			     u8 index, u32 *caps, size_t ncaps)
1646 {
1647 	int ret;
1648 
1649 	ret = usb4_port_sb_op(port, target, index,
1650 			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1651 	if (ret)
1652 		return ret;
1653 
1654 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, caps,
1655 				 sizeof(*caps) * ncaps);
1656 }
1657 
1658 /**
1659  * usb4_port_hw_margin() - Run hardware lane margining on port
1660  * @port: USB4 port
1661  * @target: Sideband target
1662  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1663  * @params: Parameters for USB4 hardware margining
1664  * @results: Array to hold the results
1665  * @nresults: Number of elements in the results array
1666  *
1667  * Runs hardware lane margining on USB4 port and returns the result in
1668  * @results.
1669  */
usb4_port_hw_margin(struct tb_port * port,enum usb4_sb_target target,u8 index,const struct usb4_port_margining_params * params,u32 * results,size_t nresults)1670 int usb4_port_hw_margin(struct tb_port *port, enum usb4_sb_target target,
1671 			u8 index, const struct usb4_port_margining_params *params,
1672 			u32 *results, size_t nresults)
1673 {
1674 	u32 val;
1675 	int ret;
1676 
1677 	if (WARN_ON_ONCE(!params))
1678 		return -EINVAL;
1679 
1680 	val = params->lanes;
1681 	if (params->time)
1682 		val |= USB4_MARGIN_HW_TIME;
1683 	if (params->right_high || params->upper_eye)
1684 		val |= USB4_MARGIN_HW_RHU;
1685 	if (params->ber_level)
1686 		val |= FIELD_PREP(USB4_MARGIN_HW_BER_MASK, params->ber_level);
1687 	if (params->optional_voltage_offset_range)
1688 		val |= USB4_MARGIN_HW_OPT_VOLTAGE;
1689 
1690 	ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1691 				 sizeof(val));
1692 	if (ret)
1693 		return ret;
1694 
1695 	ret = usb4_port_sb_op(port, target, index,
1696 			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1697 	if (ret)
1698 		return ret;
1699 
1700 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1701 				 sizeof(*results) * nresults);
1702 }
1703 
1704 /**
1705  * usb4_port_sw_margin() - Run software lane margining on port
1706  * @port: USB4 port
1707  * @target: Sideband target
1708  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1709  * @params: Parameters for USB4 software margining
1710  * @results: Data word for the operation completion data
1711  *
1712  * Runs software lane margining on USB4 port. Read back the error
1713  * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1714  * success and negative errno otherwise.
1715  */
usb4_port_sw_margin(struct tb_port * port,enum usb4_sb_target target,u8 index,const struct usb4_port_margining_params * params,u32 * results)1716 int usb4_port_sw_margin(struct tb_port *port, enum usb4_sb_target target,
1717 			u8 index, const struct usb4_port_margining_params *params,
1718 			u32 *results)
1719 {
1720 	u32 val;
1721 	int ret;
1722 
1723 	if (WARN_ON_ONCE(!params))
1724 		return -EINVAL;
1725 
1726 	val = params->lanes;
1727 	if (params->time)
1728 		val |= USB4_MARGIN_SW_TIME;
1729 	if (params->optional_voltage_offset_range)
1730 		val |= USB4_MARGIN_SW_OPT_VOLTAGE;
1731 	if (params->right_high)
1732 		val |= USB4_MARGIN_SW_RH;
1733 	if (params->upper_eye)
1734 		val |= USB4_MARGIN_SW_UPPER_EYE;
1735 	val |= FIELD_PREP(USB4_MARGIN_SW_COUNTER_MASK, params->error_counter);
1736 	val |= FIELD_PREP(USB4_MARGIN_SW_VT_MASK, params->voltage_time_offset);
1737 
1738 	ret = usb4_port_sb_write(port, target, index, USB4_SB_METADATA, &val,
1739 				 sizeof(val));
1740 	if (ret)
1741 		return ret;
1742 
1743 	ret = usb4_port_sb_op(port, target, index,
1744 			      USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1745 	if (ret)
1746 		return ret;
1747 
1748 	return usb4_port_sb_read(port, target, index, USB4_SB_DATA, results,
1749 				 sizeof(*results));
1750 
1751 }
1752 
1753 /**
1754  * usb4_port_sw_margin_errors() - Read the software margining error counters
1755  * @port: USB4 port
1756  * @target: Sideband target
1757  * @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
1758  * @errors: Error metadata is copied here.
1759  *
1760  * This reads back the software margining error counters from the port.
1761  * Returns %0 in success and negative errno otherwise.
1762  */
usb4_port_sw_margin_errors(struct tb_port * port,enum usb4_sb_target target,u8 index,u32 * errors)1763 int usb4_port_sw_margin_errors(struct tb_port *port, enum usb4_sb_target target,
1764 			       u8 index, u32 *errors)
1765 {
1766 	int ret;
1767 
1768 	ret = usb4_port_sb_op(port, target, index,
1769 			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1770 	if (ret)
1771 		return ret;
1772 
1773 	return usb4_port_sb_read(port, target, index, USB4_SB_METADATA, errors,
1774 				 sizeof(*errors));
1775 }
1776 
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1777 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1778 				       enum usb4_sb_opcode opcode,
1779 				       int timeout_msec)
1780 {
1781 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1782 			       timeout_msec);
1783 }
1784 
1785 /**
1786  * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1787  * @port: USB4 port
1788  * @index: Retimer index
1789  *
1790  * Enables sideband channel transations on SBTX. Can be used when USB4
1791  * link does not go up, for example if there is no device connected.
1792  */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1793 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1794 {
1795 	int ret;
1796 
1797 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1798 				   500);
1799 
1800 	if (ret != -ENODEV)
1801 		return ret;
1802 
1803 	/*
1804 	 * Per the USB4 retimer spec, the retimer is not required to
1805 	 * send an RT (Retimer Transaction) response for the first
1806 	 * SET_INBOUND_SBTX command
1807 	 */
1808 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1809 				    500);
1810 }
1811 
1812 /**
1813  * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1814  * @port: USB4 port
1815  * @index: Retimer index
1816  *
1817  * Disables sideband channel transations on SBTX. The reverse of
1818  * usb4_port_retimer_set_inbound_sbtx().
1819  */
usb4_port_retimer_unset_inbound_sbtx(struct tb_port * port,u8 index)1820 int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1821 {
1822 	return usb4_port_retimer_op(port, index,
1823 				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1824 }
1825 
1826 /**
1827  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1828  * @port: USB4 port
1829  * @index: Retimer index
1830  *
1831  * If the retimer at @index is last one (connected directly to the
1832  * Type-C port) this function returns %1. If it is not returns %0. If
1833  * the retimer is not present returns %-ENODEV. Otherwise returns
1834  * negative errno.
1835  */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1836 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1837 {
1838 	u32 metadata;
1839 	int ret;
1840 
1841 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1842 				   500);
1843 	if (ret)
1844 		return ret;
1845 
1846 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1847 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1848 	return ret ? ret : metadata & 1;
1849 }
1850 
1851 /**
1852  * usb4_port_retimer_is_cable() - Is the retimer cable retimer
1853  * @port: USB4 port
1854  * @index: Retimer index
1855  *
1856  * If the retimer at @index is last cable retimer this function returns
1857  * %1 and %0 if it is on-board retimer. In case a retimer is not present
1858  * at @index returns %-ENODEV. Otherwise returns negative errno.
1859  */
usb4_port_retimer_is_cable(struct tb_port * port,u8 index)1860 int usb4_port_retimer_is_cable(struct tb_port *port, u8 index)
1861 {
1862 	u32 metadata;
1863 	int ret;
1864 
1865 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_CABLE_RETIMER,
1866 				   500);
1867 	if (ret)
1868 		return ret;
1869 
1870 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1871 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1872 	return ret ? ret : metadata & 1;
1873 }
1874 
1875 /**
1876  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1877  * @port: USB4 port
1878  * @index: Retimer index
1879  *
1880  * Reads NVM sector size (in bytes) of a retimer at @index. This
1881  * operation can be used to determine whether the retimer supports NVM
1882  * upgrade for example. Returns sector size in bytes or negative errno
1883  * in case of error. Specifically returns %-ENODEV if there is no
1884  * retimer at @index.
1885  */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1886 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1887 {
1888 	u32 metadata;
1889 	int ret;
1890 
1891 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1892 				   500);
1893 	if (ret)
1894 		return ret;
1895 
1896 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
1897 				USB4_SB_METADATA, &metadata, sizeof(metadata));
1898 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1899 }
1900 
1901 /**
1902  * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1903  * @port: USB4 port
1904  * @index: Retimer index
1905  * @address: Start offset
1906  *
1907  * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1908  * done automatically by usb4_port_retimer_nvm_write().
1909  *
1910  * Returns %0 in success and negative errno if there was a failure.
1911  */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1912 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1913 				     unsigned int address)
1914 {
1915 	u32 metadata, dwaddress;
1916 	int ret;
1917 
1918 	dwaddress = address / 4;
1919 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1920 		  USB4_NVM_SET_OFFSET_MASK;
1921 
1922 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1923 				 USB4_SB_METADATA, &metadata, sizeof(metadata));
1924 	if (ret)
1925 		return ret;
1926 
1927 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1928 				    500);
1929 }
1930 
1931 struct retimer_info {
1932 	struct tb_port *port;
1933 	u8 index;
1934 };
1935 
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1936 static int usb4_port_retimer_nvm_write_next_block(void *data,
1937 	unsigned int dwaddress, const void *buf, size_t dwords)
1938 
1939 {
1940 	const struct retimer_info *info = data;
1941 	struct tb_port *port = info->port;
1942 	u8 index = info->index;
1943 	int ret;
1944 
1945 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1946 				 USB4_SB_DATA, buf, dwords * 4);
1947 	if (ret)
1948 		return ret;
1949 
1950 	return usb4_port_retimer_op(port, index,
1951 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1952 }
1953 
1954 /**
1955  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1956  * @port: USB4 port
1957  * @index: Retimer index
1958  * @address: Byte address where to start the write
1959  * @buf: Data to write
1960  * @size: Size in bytes how much to write
1961  *
1962  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1963  * upgrade. Returns %0 if the data was written successfully and negative
1964  * errno in case of failure. Specifically returns %-ENODEV if there is
1965  * no retimer at @index.
1966  */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1967 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1968 				const void *buf, size_t size)
1969 {
1970 	struct retimer_info info = { .port = port, .index = index };
1971 	int ret;
1972 
1973 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1974 	if (ret)
1975 		return ret;
1976 
1977 	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1978 				 usb4_port_retimer_nvm_write_next_block, &info);
1979 }
1980 
1981 /**
1982  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1983  * @port: USB4 port
1984  * @index: Retimer index
1985  *
1986  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1987  * this function can be used to trigger the NVM upgrade process. If
1988  * successful the retimer restarts with the new NVM and may not have the
1989  * index set so one needs to call usb4_port_enumerate_retimers() to
1990  * force index to be assigned.
1991  */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1992 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1993 {
1994 	u32 val;
1995 
1996 	/*
1997 	 * We need to use the raw operation here because once the
1998 	 * authentication completes the retimer index is not set anymore
1999 	 * so we do not get back the status now.
2000 	 */
2001 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
2002 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
2003 				  USB4_SB_OPCODE, &val, sizeof(val));
2004 }
2005 
2006 /**
2007  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
2008  * @port: USB4 port
2009  * @index: Retimer index
2010  * @status: Raw status code read from metadata
2011  *
2012  * This can be called after usb4_port_retimer_nvm_authenticate() and
2013  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
2014  *
2015  * Returns %0 if the authentication status was successfully read. The
2016  * completion metadata (the result) is then stored into @status. If
2017  * reading the status fails, returns negative errno.
2018  */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)2019 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
2020 					      u32 *status)
2021 {
2022 	u32 metadata, val;
2023 	int ret;
2024 
2025 	ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2026 				USB4_SB_OPCODE, &val, sizeof(val));
2027 	if (ret)
2028 		return ret;
2029 
2030 	ret = usb4_port_sb_opcode_err_to_errno(val);
2031 	switch (ret) {
2032 	case 0:
2033 		*status = 0;
2034 		return 0;
2035 
2036 	case -EAGAIN:
2037 		ret = usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2038 					USB4_SB_METADATA, &metadata,
2039 					sizeof(metadata));
2040 		if (ret)
2041 			return ret;
2042 
2043 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
2044 		return 0;
2045 
2046 	default:
2047 		return ret;
2048 	}
2049 }
2050 
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)2051 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
2052 					    void *buf, size_t dwords)
2053 {
2054 	const struct retimer_info *info = data;
2055 	struct tb_port *port = info->port;
2056 	u8 index = info->index;
2057 	u32 metadata;
2058 	int ret;
2059 
2060 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
2061 	if (dwords < USB4_DATA_DWORDS)
2062 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
2063 
2064 	ret = usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
2065 				 USB4_SB_METADATA, &metadata, sizeof(metadata));
2066 	if (ret)
2067 		return ret;
2068 
2069 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
2070 	if (ret)
2071 		return ret;
2072 
2073 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index,
2074 				 USB4_SB_DATA, buf, dwords * 4);
2075 }
2076 
2077 /**
2078  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2079  * @port: USB4 port
2080  * @index: Retimer index
2081  * @address: NVM address (in bytes) to start reading
2082  * @buf: Data read from NVM is stored here
2083  * @size: Number of bytes to read
2084  *
2085  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2086  * read was successful and negative errno in case of failure.
2087  * Specifically returns %-ENODEV if there is no retimer at @index.
2088  */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)2089 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2090 			       unsigned int address, void *buf, size_t size)
2091 {
2092 	struct retimer_info info = { .port = port, .index = index };
2093 
2094 	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2095 				usb4_port_retimer_nvm_read_block, &info);
2096 }
2097 
2098 static inline unsigned int
usb4_usb3_port_max_bandwidth(const struct tb_port * port,unsigned int bw)2099 usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2100 {
2101 	/* Take the possible bandwidth limitation into account */
2102 	if (port->max_bw)
2103 		return min(bw, port->max_bw);
2104 	return bw;
2105 }
2106 
2107 /**
2108  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2109  * @port: USB3 adapter port
2110  *
2111  * Return maximum supported link rate of a USB3 adapter in Mb/s.
2112  * Negative errno in case of error.
2113  */
usb4_usb3_port_max_link_rate(struct tb_port * port)2114 int usb4_usb3_port_max_link_rate(struct tb_port *port)
2115 {
2116 	int ret, lr;
2117 	u32 val;
2118 
2119 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2120 		return -EINVAL;
2121 
2122 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2123 			   port->cap_adap + ADP_USB3_CS_4, 1);
2124 	if (ret)
2125 		return ret;
2126 
2127 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2128 	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2129 
2130 	return usb4_usb3_port_max_bandwidth(port, ret);
2131 }
2132 
usb4_usb3_port_cm_request(struct tb_port * port,bool request)2133 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2134 {
2135 	int ret;
2136 	u32 val;
2137 
2138 	if (!tb_port_is_usb3_down(port))
2139 		return -EINVAL;
2140 	if (tb_route(port->sw))
2141 		return -EINVAL;
2142 
2143 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2144 			   port->cap_adap + ADP_USB3_CS_2, 1);
2145 	if (ret)
2146 		return ret;
2147 
2148 	if (request)
2149 		val |= ADP_USB3_CS_2_CMR;
2150 	else
2151 		val &= ~ADP_USB3_CS_2_CMR;
2152 
2153 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2154 			    port->cap_adap + ADP_USB3_CS_2, 1);
2155 	if (ret)
2156 		return ret;
2157 
2158 	/*
2159 	 * We can use val here directly as the CMR bit is in the same place
2160 	 * as HCA. Just mask out others.
2161 	 */
2162 	val &= ADP_USB3_CS_2_CMR;
2163 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2164 				      ADP_USB3_CS_1_HCA, val, 1500,
2165 				      USB4_PORT_DELAY);
2166 }
2167 
usb4_usb3_port_set_cm_request(struct tb_port * port)2168 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2169 {
2170 	return usb4_usb3_port_cm_request(port, true);
2171 }
2172 
usb4_usb3_port_clear_cm_request(struct tb_port * port)2173 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2174 {
2175 	return usb4_usb3_port_cm_request(port, false);
2176 }
2177 
usb3_bw_to_mbps(u32 bw,u8 scale)2178 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2179 {
2180 	unsigned long uframes;
2181 
2182 	uframes = bw * 512UL << scale;
2183 	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2184 }
2185 
mbps_to_usb3_bw(unsigned int mbps,u8 scale)2186 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2187 {
2188 	unsigned long uframes;
2189 
2190 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2191 	uframes = ((unsigned long)mbps * MEGA) / 8000;
2192 	return DIV_ROUND_UP(uframes, 512UL << scale);
2193 }
2194 
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2195 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2196 						   int *upstream_bw,
2197 						   int *downstream_bw)
2198 {
2199 	u32 val, bw, scale;
2200 	int ret;
2201 
2202 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2203 			   port->cap_adap + ADP_USB3_CS_2, 1);
2204 	if (ret)
2205 		return ret;
2206 
2207 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2208 			   port->cap_adap + ADP_USB3_CS_3, 1);
2209 	if (ret)
2210 		return ret;
2211 
2212 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2213 
2214 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2215 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2216 
2217 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2218 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2219 
2220 	return 0;
2221 }
2222 
2223 /**
2224  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2225  * @port: USB3 adapter port
2226  * @upstream_bw: Allocated upstream bandwidth is stored here
2227  * @downstream_bw: Allocated downstream bandwidth is stored here
2228  *
2229  * Stores currently allocated USB3 bandwidth into @upstream_bw and
2230  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2231  * errno in failure.
2232  */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2233 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2234 				       int *downstream_bw)
2235 {
2236 	int ret;
2237 
2238 	ret = usb4_usb3_port_set_cm_request(port);
2239 	if (ret)
2240 		return ret;
2241 
2242 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2243 						      downstream_bw);
2244 	usb4_usb3_port_clear_cm_request(port);
2245 
2246 	return ret;
2247 }
2248 
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2249 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2250 						  int *upstream_bw,
2251 						  int *downstream_bw)
2252 {
2253 	u32 val, bw, scale;
2254 	int ret;
2255 
2256 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2257 			   port->cap_adap + ADP_USB3_CS_1, 1);
2258 	if (ret)
2259 		return ret;
2260 
2261 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2262 			   port->cap_adap + ADP_USB3_CS_3, 1);
2263 	if (ret)
2264 		return ret;
2265 
2266 	scale &= ADP_USB3_CS_3_SCALE_MASK;
2267 
2268 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2269 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2270 
2271 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2272 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2273 
2274 	return 0;
2275 }
2276 
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)2277 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2278 						    int upstream_bw,
2279 						    int downstream_bw)
2280 {
2281 	u32 val, ubw, dbw, scale;
2282 	int ret, max_bw;
2283 
2284 	/* Figure out suitable scale */
2285 	scale = 0;
2286 	max_bw = max(upstream_bw, downstream_bw);
2287 	while (scale < 64) {
2288 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2289 			break;
2290 		scale++;
2291 	}
2292 
2293 	if (WARN_ON(scale >= 64))
2294 		return -EINVAL;
2295 
2296 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2297 			    port->cap_adap + ADP_USB3_CS_3, 1);
2298 	if (ret)
2299 		return ret;
2300 
2301 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2302 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2303 
2304 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2305 
2306 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2307 			   port->cap_adap + ADP_USB3_CS_2, 1);
2308 	if (ret)
2309 		return ret;
2310 
2311 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2312 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2313 	val |= ubw;
2314 
2315 	return tb_port_write(port, &val, TB_CFG_PORT,
2316 			     port->cap_adap + ADP_USB3_CS_2, 1);
2317 }
2318 
2319 /**
2320  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2321  * @port: USB3 adapter port
2322  * @upstream_bw: New upstream bandwidth
2323  * @downstream_bw: New downstream bandwidth
2324  *
2325  * This can be used to set how much bandwidth is allocated for the USB3
2326  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2327  * new values programmed to the USB3 adapter allocation registers. If
2328  * the values are lower than what is currently consumed the allocation
2329  * is set to what is currently consumed instead (consumed bandwidth
2330  * cannot be taken away by CM). The actual new values are returned in
2331  * @upstream_bw and @downstream_bw.
2332  *
2333  * Returns %0 in case of success and negative errno if there was a
2334  * failure.
2335  */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2336 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2337 				      int *downstream_bw)
2338 {
2339 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2340 
2341 	ret = usb4_usb3_port_set_cm_request(port);
2342 	if (ret)
2343 		return ret;
2344 
2345 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2346 						     &consumed_down);
2347 	if (ret)
2348 		goto err_request;
2349 
2350 	/* Don't allow it go lower than what is consumed */
2351 	allocate_up = max(*upstream_bw, consumed_up);
2352 	allocate_down = max(*downstream_bw, consumed_down);
2353 
2354 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2355 						       allocate_down);
2356 	if (ret)
2357 		goto err_request;
2358 
2359 	*upstream_bw = allocate_up;
2360 	*downstream_bw = allocate_down;
2361 
2362 err_request:
2363 	usb4_usb3_port_clear_cm_request(port);
2364 	return ret;
2365 }
2366 
2367 /**
2368  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2369  * @port: USB3 adapter port
2370  * @upstream_bw: New allocated upstream bandwidth
2371  * @downstream_bw: New allocated downstream bandwidth
2372  *
2373  * Releases USB3 allocated bandwidth down to what is actually consumed.
2374  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2375  *
2376  * Returns 0% in success and negative errno in case of failure.
2377  */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)2378 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2379 				     int *downstream_bw)
2380 {
2381 	int ret, consumed_up, consumed_down;
2382 
2383 	ret = usb4_usb3_port_set_cm_request(port);
2384 	if (ret)
2385 		return ret;
2386 
2387 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2388 						     &consumed_down);
2389 	if (ret)
2390 		goto err_request;
2391 
2392 	/*
2393 	 * Always keep 900 Mb/s to make sure xHCI has at least some
2394 	 * bandwidth available for isochronous traffic.
2395 	 */
2396 	if (consumed_up < 900)
2397 		consumed_up = 900;
2398 	if (consumed_down < 900)
2399 		consumed_down = 900;
2400 
2401 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2402 						       consumed_down);
2403 	if (ret)
2404 		goto err_request;
2405 
2406 	*upstream_bw = consumed_up;
2407 	*downstream_bw = consumed_down;
2408 
2409 err_request:
2410 	usb4_usb3_port_clear_cm_request(port);
2411 	return ret;
2412 }
2413 
is_usb4_dpin(const struct tb_port * port)2414 static bool is_usb4_dpin(const struct tb_port *port)
2415 {
2416 	if (!tb_port_is_dpin(port))
2417 		return false;
2418 	if (!tb_switch_is_usb4(port->sw))
2419 		return false;
2420 	return true;
2421 }
2422 
2423 /**
2424  * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2425  * @port: DP IN adapter
2426  * @cm_id: CM ID to assign
2427  *
2428  * Sets CM ID for the @port. Returns %0 on success and negative errno
2429  * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2430  * support this.
2431  */
usb4_dp_port_set_cm_id(struct tb_port * port,int cm_id)2432 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2433 {
2434 	u32 val;
2435 	int ret;
2436 
2437 	if (!is_usb4_dpin(port))
2438 		return -EOPNOTSUPP;
2439 
2440 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2441 			   port->cap_adap + ADP_DP_CS_2, 1);
2442 	if (ret)
2443 		return ret;
2444 
2445 	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2446 	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2447 
2448 	return tb_port_write(port, &val, TB_CFG_PORT,
2449 			     port->cap_adap + ADP_DP_CS_2, 1);
2450 }
2451 
2452 /**
2453  * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2454  *					     supported
2455  * @port: DP IN adapter to check
2456  *
2457  * Can be called to any DP IN adapter. Returns true if the adapter
2458  * supports USB4 bandwidth allocation mode, false otherwise.
2459  */
usb4_dp_port_bandwidth_mode_supported(struct tb_port * port)2460 bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2461 {
2462 	int ret;
2463 	u32 val;
2464 
2465 	if (!is_usb4_dpin(port))
2466 		return false;
2467 
2468 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2469 			   port->cap_adap + DP_LOCAL_CAP, 1);
2470 	if (ret)
2471 		return false;
2472 
2473 	return !!(val & DP_COMMON_CAP_BW_MODE);
2474 }
2475 
2476 /**
2477  * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2478  *					   enabled
2479  * @port: DP IN adapter to check
2480  *
2481  * Can be called to any DP IN adapter. Returns true if the bandwidth
2482  * allocation mode has been enabled, false otherwise.
2483  */
usb4_dp_port_bandwidth_mode_enabled(struct tb_port * port)2484 bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2485 {
2486 	int ret;
2487 	u32 val;
2488 
2489 	if (!is_usb4_dpin(port))
2490 		return false;
2491 
2492 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2493 			   port->cap_adap + ADP_DP_CS_8, 1);
2494 	if (ret)
2495 		return false;
2496 
2497 	return !!(val & ADP_DP_CS_8_DPME);
2498 }
2499 
2500 /**
2501  * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2502  *						    bandwidth allocation mode
2503  * @port: DP IN adapter
2504  * @supported: Does the CM support bandwidth allocation mode
2505  *
2506  * Can be called to any DP IN adapter. Sets or clears the CM support bit
2507  * of the DP IN adapter. Returns %0 in success and negative errno
2508  * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2509  * does not support this.
2510  */
usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port * port,bool supported)2511 int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2512 						 bool supported)
2513 {
2514 	u32 val;
2515 	int ret;
2516 
2517 	if (!is_usb4_dpin(port))
2518 		return -EOPNOTSUPP;
2519 
2520 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2521 			   port->cap_adap + ADP_DP_CS_2, 1);
2522 	if (ret)
2523 		return ret;
2524 
2525 	if (supported)
2526 		val |= ADP_DP_CS_2_CMMS;
2527 	else
2528 		val &= ~ADP_DP_CS_2_CMMS;
2529 
2530 	return tb_port_write(port, &val, TB_CFG_PORT,
2531 			     port->cap_adap + ADP_DP_CS_2, 1);
2532 }
2533 
2534 /**
2535  * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2536  * @port: DP IN adapter
2537  *
2538  * Reads bandwidth allocation Group ID from the DP IN adapter and
2539  * returns it. If the adapter does not support setting Group_ID
2540  * %-EOPNOTSUPP is returned.
2541  */
usb4_dp_port_group_id(struct tb_port * port)2542 int usb4_dp_port_group_id(struct tb_port *port)
2543 {
2544 	u32 val;
2545 	int ret;
2546 
2547 	if (!is_usb4_dpin(port))
2548 		return -EOPNOTSUPP;
2549 
2550 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2551 			   port->cap_adap + ADP_DP_CS_2, 1);
2552 	if (ret)
2553 		return ret;
2554 
2555 	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2556 }
2557 
2558 /**
2559  * usb4_dp_port_set_group_id() - Set adapter Group ID
2560  * @port: DP IN adapter
2561  * @group_id: Group ID for the adapter
2562  *
2563  * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2564  * Returns %0 in case of success and negative errno otherwise.
2565  * Specifically returns %-EOPNOTSUPP if the adapter does not support
2566  * this.
2567  */
usb4_dp_port_set_group_id(struct tb_port * port,int group_id)2568 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2569 {
2570 	u32 val;
2571 	int ret;
2572 
2573 	if (!is_usb4_dpin(port))
2574 		return -EOPNOTSUPP;
2575 
2576 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2577 			   port->cap_adap + ADP_DP_CS_2, 1);
2578 	if (ret)
2579 		return ret;
2580 
2581 	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2582 	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2583 
2584 	return tb_port_write(port, &val, TB_CFG_PORT,
2585 			     port->cap_adap + ADP_DP_CS_2, 1);
2586 }
2587 
2588 /**
2589  * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2590  * @port: DP IN adapter
2591  * @rate: Non-reduced rate in Mb/s is placed here
2592  * @lanes: Non-reduced lanes are placed here
2593  *
2594  * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2595  * %0 in success and negative errno otherwise. Specifically returns
2596  * %-EOPNOTSUPP if the adapter does not support this.
2597  */
usb4_dp_port_nrd(struct tb_port * port,int * rate,int * lanes)2598 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2599 {
2600 	u32 val, tmp;
2601 	int ret;
2602 
2603 	if (!is_usb4_dpin(port))
2604 		return -EOPNOTSUPP;
2605 
2606 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2607 			   port->cap_adap + ADP_DP_CS_2, 1);
2608 	if (ret)
2609 		return ret;
2610 
2611 	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2612 	switch (tmp) {
2613 	case DP_COMMON_CAP_RATE_RBR:
2614 		*rate = 1620;
2615 		break;
2616 	case DP_COMMON_CAP_RATE_HBR:
2617 		*rate = 2700;
2618 		break;
2619 	case DP_COMMON_CAP_RATE_HBR2:
2620 		*rate = 5400;
2621 		break;
2622 	case DP_COMMON_CAP_RATE_HBR3:
2623 		*rate = 8100;
2624 		break;
2625 	}
2626 
2627 	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2628 	switch (tmp) {
2629 	case DP_COMMON_CAP_1_LANE:
2630 		*lanes = 1;
2631 		break;
2632 	case DP_COMMON_CAP_2_LANES:
2633 		*lanes = 2;
2634 		break;
2635 	case DP_COMMON_CAP_4_LANES:
2636 		*lanes = 4;
2637 		break;
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 /**
2644  * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2645  * @port: DP IN adapter
2646  * @rate: Non-reduced rate in Mb/s
2647  * @lanes: Non-reduced lanes
2648  *
2649  * Before the capabilities reduction this function can be used to set
2650  * the non-reduced values for the DP IN adapter. Returns %0 in success
2651  * and negative errno otherwise. If the adapter does not support this
2652  * %-EOPNOTSUPP is returned.
2653  */
usb4_dp_port_set_nrd(struct tb_port * port,int rate,int lanes)2654 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2655 {
2656 	u32 val;
2657 	int ret;
2658 
2659 	if (!is_usb4_dpin(port))
2660 		return -EOPNOTSUPP;
2661 
2662 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2663 			   port->cap_adap + ADP_DP_CS_2, 1);
2664 	if (ret)
2665 		return ret;
2666 
2667 	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2668 
2669 	switch (rate) {
2670 	case 1620:
2671 		break;
2672 	case 2700:
2673 		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2674 			& ADP_DP_CS_2_NRD_MLR_MASK;
2675 		break;
2676 	case 5400:
2677 		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2678 			& ADP_DP_CS_2_NRD_MLR_MASK;
2679 		break;
2680 	case 8100:
2681 		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2682 			& ADP_DP_CS_2_NRD_MLR_MASK;
2683 		break;
2684 	default:
2685 		return -EINVAL;
2686 	}
2687 
2688 	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2689 
2690 	switch (lanes) {
2691 	case 1:
2692 		break;
2693 	case 2:
2694 		val |= DP_COMMON_CAP_2_LANES;
2695 		break;
2696 	case 4:
2697 		val |= DP_COMMON_CAP_4_LANES;
2698 		break;
2699 	default:
2700 		return -EINVAL;
2701 	}
2702 
2703 	return tb_port_write(port, &val, TB_CFG_PORT,
2704 			     port->cap_adap + ADP_DP_CS_2, 1);
2705 }
2706 
2707 /**
2708  * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2709  * @port: DP IN adapter
2710  *
2711  * Reads the programmed granularity from @port. If the DP IN adapter does
2712  * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2713  * errno in other error cases.
2714  */
usb4_dp_port_granularity(struct tb_port * port)2715 int usb4_dp_port_granularity(struct tb_port *port)
2716 {
2717 	u32 val;
2718 	int ret;
2719 
2720 	if (!is_usb4_dpin(port))
2721 		return -EOPNOTSUPP;
2722 
2723 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2724 			   port->cap_adap + ADP_DP_CS_2, 1);
2725 	if (ret)
2726 		return ret;
2727 
2728 	val &= ADP_DP_CS_2_GR_MASK;
2729 	val >>= ADP_DP_CS_2_GR_SHIFT;
2730 
2731 	switch (val) {
2732 	case ADP_DP_CS_2_GR_0_25G:
2733 		return 250;
2734 	case ADP_DP_CS_2_GR_0_5G:
2735 		return 500;
2736 	case ADP_DP_CS_2_GR_1G:
2737 		return 1000;
2738 	}
2739 
2740 	return -EINVAL;
2741 }
2742 
2743 /**
2744  * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2745  * @port: DP IN adapter
2746  * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2747  *
2748  * Sets the granularity used with the estimated, allocated and requested
2749  * bandwidth. Returns %0 in success and negative errno otherwise. If the
2750  * adapter does not support this %-EOPNOTSUPP is returned.
2751  */
usb4_dp_port_set_granularity(struct tb_port * port,int granularity)2752 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2753 {
2754 	u32 val;
2755 	int ret;
2756 
2757 	if (!is_usb4_dpin(port))
2758 		return -EOPNOTSUPP;
2759 
2760 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2761 			   port->cap_adap + ADP_DP_CS_2, 1);
2762 	if (ret)
2763 		return ret;
2764 
2765 	val &= ~ADP_DP_CS_2_GR_MASK;
2766 
2767 	switch (granularity) {
2768 	case 250:
2769 		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2770 		break;
2771 	case 500:
2772 		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2773 		break;
2774 	case 1000:
2775 		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2776 		break;
2777 	default:
2778 		return -EINVAL;
2779 	}
2780 
2781 	return tb_port_write(port, &val, TB_CFG_PORT,
2782 			     port->cap_adap + ADP_DP_CS_2, 1);
2783 }
2784 
2785 /**
2786  * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2787  * @port: DP IN adapter
2788  * @bw: Estimated bandwidth in Mb/s.
2789  *
2790  * Sets the estimated bandwidth to @bw. Set the granularity by calling
2791  * usb4_dp_port_set_granularity() before calling this. The @bw is round
2792  * down to the closest granularity multiplier. Returns %0 in success
2793  * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2794  * the adapter does not support this.
2795  */
usb4_dp_port_set_estimated_bandwidth(struct tb_port * port,int bw)2796 int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2797 {
2798 	u32 val, granularity;
2799 	int ret;
2800 
2801 	if (!is_usb4_dpin(port))
2802 		return -EOPNOTSUPP;
2803 
2804 	ret = usb4_dp_port_granularity(port);
2805 	if (ret < 0)
2806 		return ret;
2807 	granularity = ret;
2808 
2809 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2810 			   port->cap_adap + ADP_DP_CS_2, 1);
2811 	if (ret)
2812 		return ret;
2813 
2814 	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2815 	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2816 
2817 	return tb_port_write(port, &val, TB_CFG_PORT,
2818 			     port->cap_adap + ADP_DP_CS_2, 1);
2819 }
2820 
2821 /**
2822  * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2823  * @port: DP IN adapter
2824  *
2825  * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2826  * account the programmed granularity). Returns negative errno in case
2827  * of error.
2828  */
usb4_dp_port_allocated_bandwidth(struct tb_port * port)2829 int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2830 {
2831 	u32 val, granularity;
2832 	int ret;
2833 
2834 	if (!is_usb4_dpin(port))
2835 		return -EOPNOTSUPP;
2836 
2837 	ret = usb4_dp_port_granularity(port);
2838 	if (ret < 0)
2839 		return ret;
2840 	granularity = ret;
2841 
2842 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2843 			   port->cap_adap + DP_STATUS, 1);
2844 	if (ret)
2845 		return ret;
2846 
2847 	val &= DP_STATUS_ALLOCATED_BW_MASK;
2848 	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2849 
2850 	return val * granularity;
2851 }
2852 
__usb4_dp_port_set_cm_ack(struct tb_port * port,bool ack)2853 static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2854 {
2855 	u32 val;
2856 	int ret;
2857 
2858 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2859 			   port->cap_adap + ADP_DP_CS_2, 1);
2860 	if (ret)
2861 		return ret;
2862 
2863 	if (ack)
2864 		val |= ADP_DP_CS_2_CA;
2865 	else
2866 		val &= ~ADP_DP_CS_2_CA;
2867 
2868 	return tb_port_write(port, &val, TB_CFG_PORT,
2869 			     port->cap_adap + ADP_DP_CS_2, 1);
2870 }
2871 
usb4_dp_port_set_cm_ack(struct tb_port * port)2872 static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2873 {
2874 	return __usb4_dp_port_set_cm_ack(port, true);
2875 }
2876 
usb4_dp_port_wait_and_clear_cm_ack(struct tb_port * port,int timeout_msec)2877 static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2878 					      int timeout_msec)
2879 {
2880 	ktime_t end;
2881 	u32 val;
2882 	int ret;
2883 
2884 	ret = __usb4_dp_port_set_cm_ack(port, false);
2885 	if (ret)
2886 		return ret;
2887 
2888 	end = ktime_add_ms(ktime_get(), timeout_msec);
2889 	do {
2890 		ret = tb_port_read(port, &val, TB_CFG_PORT,
2891 				   port->cap_adap + ADP_DP_CS_8, 1);
2892 		if (ret)
2893 			return ret;
2894 
2895 		if (!(val & ADP_DP_CS_8_DR))
2896 			break;
2897 
2898 		usleep_range(50, 100);
2899 	} while (ktime_before(ktime_get(), end));
2900 
2901 	if (val & ADP_DP_CS_8_DR) {
2902 		tb_port_warn(port, "timeout waiting for DPTX request to clear\n");
2903 		return -ETIMEDOUT;
2904 	}
2905 
2906 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2907 			   port->cap_adap + ADP_DP_CS_2, 1);
2908 	if (ret)
2909 		return ret;
2910 
2911 	val &= ~ADP_DP_CS_2_CA;
2912 	return tb_port_write(port, &val, TB_CFG_PORT,
2913 			     port->cap_adap + ADP_DP_CS_2, 1);
2914 }
2915 
2916 /**
2917  * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2918  * @port: DP IN adapter
2919  * @bw: New allocated bandwidth in Mb/s
2920  *
2921  * Communicates the new allocated bandwidth with the DPCD (graphics
2922  * driver). Takes into account the programmed granularity. Returns %0 in
2923  * success and negative errno in case of error.
2924  */
usb4_dp_port_allocate_bandwidth(struct tb_port * port,int bw)2925 int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2926 {
2927 	u32 val, granularity;
2928 	int ret;
2929 
2930 	if (!is_usb4_dpin(port))
2931 		return -EOPNOTSUPP;
2932 
2933 	ret = usb4_dp_port_granularity(port);
2934 	if (ret < 0)
2935 		return ret;
2936 	granularity = ret;
2937 
2938 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2939 			   port->cap_adap + DP_STATUS, 1);
2940 	if (ret)
2941 		return ret;
2942 
2943 	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2944 	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2945 
2946 	ret = tb_port_write(port, &val, TB_CFG_PORT,
2947 			    port->cap_adap + DP_STATUS, 1);
2948 	if (ret)
2949 		return ret;
2950 
2951 	ret = usb4_dp_port_set_cm_ack(port);
2952 	if (ret)
2953 		return ret;
2954 
2955 	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2956 }
2957 
2958 /**
2959  * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2960  * @port: DP IN adapter
2961  *
2962  * Reads the DPCD (graphics driver) requested bandwidth and returns it
2963  * in Mb/s. Takes the programmed granularity into account. In case of
2964  * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2965  * the adapter does not support bandwidth allocation mode, and %ENODATA
2966  * if there is no active bandwidth request from the graphics driver.
2967  */
usb4_dp_port_requested_bandwidth(struct tb_port * port)2968 int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2969 {
2970 	u32 val, granularity;
2971 	int ret;
2972 
2973 	if (!is_usb4_dpin(port))
2974 		return -EOPNOTSUPP;
2975 
2976 	ret = usb4_dp_port_granularity(port);
2977 	if (ret < 0)
2978 		return ret;
2979 	granularity = ret;
2980 
2981 	ret = tb_port_read(port, &val, TB_CFG_PORT,
2982 			   port->cap_adap + ADP_DP_CS_8, 1);
2983 	if (ret)
2984 		return ret;
2985 
2986 	if (!(val & ADP_DP_CS_8_DR))
2987 		return -ENODATA;
2988 
2989 	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2990 }
2991 
2992 /**
2993  * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2994  * @port: PCIe adapter
2995  * @enable: Enable/disable extended encapsulation
2996  *
2997  * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2998  * needs to make sure both adapters support this before enabling. Returns %0 on
2999  * success and negative errno otherwise.
3000  */
usb4_pci_port_set_ext_encapsulation(struct tb_port * port,bool enable)3001 int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
3002 {
3003 	u32 val;
3004 	int ret;
3005 
3006 	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
3007 		return -EINVAL;
3008 
3009 	ret = tb_port_read(port, &val, TB_CFG_PORT,
3010 			   port->cap_adap + ADP_PCIE_CS_1, 1);
3011 	if (ret)
3012 		return ret;
3013 
3014 	if (enable)
3015 		val |= ADP_PCIE_CS_1_EE;
3016 	else
3017 		val &= ~ADP_PCIE_CS_1_EE;
3018 
3019 	return tb_port_write(port, &val, TB_CFG_PORT,
3020 			     port->cap_adap + ADP_PCIE_CS_1, 1);
3021 }
3022