xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision cce278510a820785d883e2c9b19a95c176427880)
1 
2 /*-
3  * Copyright (c) 2005, 2006
4  *	Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Copyright (c) 2006, 2008
7  *	Hans Petter Selasky <hselasky@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2500USB chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include "opt_wlan.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 #endif
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_regdomain.h>
63 #include <net80211/ieee80211_radiotap.h>
64 #include <net80211/ieee80211_ratectl.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include "usbdevs.h"
69 
70 #define	USB_DEBUG_VAR ural_debug
71 #include <dev/usb/usb_debug.h>
72 
73 #include <dev/usb/wlan/if_uralreg.h>
74 #include <dev/usb/wlan/if_uralvar.h>
75 
76 #ifdef USB_DEBUG
77 static int ural_debug = 0;
78 
79 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
80     "USB ural");
81 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
82     "Debug level");
83 #endif
84 
85 #define URAL_RSSI(rssi)					\
86 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
87 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
88 
89 /* various supported device vendors/products */
90 static const STRUCT_USB_HOST_ID ural_devs[] = {
91 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
92 	URAL_DEV(ASUS, WL167G),
93 	URAL_DEV(ASUS, RT2570),
94 	URAL_DEV(BELKIN, F5D7050),
95 	URAL_DEV(BELKIN, F5D7051),
96 	URAL_DEV(CISCOLINKSYS, HU200TS),
97 	URAL_DEV(CISCOLINKSYS, WUSB54G),
98 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
99 	URAL_DEV(CONCEPTRONIC2, C54RU),
100 	URAL_DEV(DLINK, DWLG122),
101 	URAL_DEV(GIGABYTE, GN54G),
102 	URAL_DEV(GIGABYTE, GNWBKG),
103 	URAL_DEV(GUILLEMOT, HWGUSB254),
104 	URAL_DEV(MELCO, KG54),
105 	URAL_DEV(MELCO, KG54AI),
106 	URAL_DEV(MELCO, KG54YB),
107 	URAL_DEV(MELCO, NINWIFI),
108 	URAL_DEV(MSI, RT2570),
109 	URAL_DEV(MSI, RT2570_2),
110 	URAL_DEV(MSI, RT2570_3),
111 	URAL_DEV(NOVATECH, NV902),
112 	URAL_DEV(RALINK, RT2570),
113 	URAL_DEV(RALINK, RT2570_2),
114 	URAL_DEV(RALINK, RT2570_3),
115 	URAL_DEV(SIEMENS2, WL54G),
116 	URAL_DEV(SMC, 2862WG),
117 	URAL_DEV(SPHAIRON, UB801R),
118 	URAL_DEV(SURECOM, RT2570),
119 	URAL_DEV(VTECH, RT2570),
120 	URAL_DEV(ZINWELL, RT2570),
121 #undef URAL_DEV
122 };
123 
124 static usb_callback_t ural_bulk_read_callback;
125 static usb_callback_t ural_bulk_write_callback;
126 
127 static usb_error_t	ural_do_request(struct ural_softc *sc,
128 			    struct usb_device_request *req, void *data);
129 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
130 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
131 			    int, const uint8_t [IEEE80211_ADDR_LEN],
132 			    const uint8_t [IEEE80211_ADDR_LEN]);
133 static void		ural_vap_delete(struct ieee80211vap *);
134 static void		ural_tx_free(struct ural_tx_data *, int);
135 static void		ural_setup_tx_list(struct ural_softc *);
136 static void		ural_unsetup_tx_list(struct ural_softc *);
137 static int		ural_newstate(struct ieee80211vap *,
138 			    enum ieee80211_state, int);
139 static void		ural_setup_tx_desc(struct ural_softc *,
140 			    struct ural_tx_desc *, uint32_t, int, int);
141 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
142 			    struct ieee80211_node *);
143 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
144 			    struct ieee80211_node *);
145 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
146 			    struct ieee80211_node *);
147 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
148 static void		ural_start(struct ural_softc *);
149 static void		ural_parent(struct ieee80211com *);
150 static void		ural_set_testmode(struct ural_softc *);
151 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
152 			    int);
153 static uint16_t		ural_read(struct ural_softc *, uint16_t);
154 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
155 			    int);
156 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
157 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
158 			    int) __unused;
159 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
160 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
161 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
162 static void		ural_scan_start(struct ieee80211com *);
163 static void		ural_scan_end(struct ieee80211com *);
164 static void		ural_getradiocaps(struct ieee80211com *, int, int *,
165 			    struct ieee80211_channel[]);
166 static void		ural_set_channel(struct ieee80211com *);
167 static void		ural_set_chan(struct ural_softc *,
168 			    struct ieee80211_channel *);
169 static void		ural_disable_rf_tune(struct ural_softc *);
170 static void		ural_enable_tsf_sync(struct ural_softc *);
171 static void 		ural_enable_tsf(struct ural_softc *);
172 static void		ural_update_slot(struct ural_softc *);
173 static void		ural_set_txpreamble(struct ural_softc *);
174 static void		ural_set_basicrates(struct ural_softc *,
175 			    const struct ieee80211_channel *);
176 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
177 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
178 static void		ural_update_promisc(struct ieee80211com *);
179 static void		ural_setpromisc(struct ural_softc *);
180 static const char	*ural_get_rf(int);
181 static void		ural_read_eeprom(struct ural_softc *);
182 static int		ural_bbp_init(struct ural_softc *);
183 static void		ural_set_txantenna(struct ural_softc *, int);
184 static void		ural_set_rxantenna(struct ural_softc *, int);
185 static void		ural_init(struct ural_softc *);
186 static void		ural_stop(struct ural_softc *);
187 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
188 			    const struct ieee80211_bpf_params *);
189 static void		ural_ratectl_start(struct ural_softc *,
190 			    struct ieee80211_node *);
191 static void		ural_ratectl_timeout(void *);
192 static void		ural_ratectl_task(void *, int);
193 static int		ural_pause(struct ural_softc *sc, int timeout);
194 
195 /*
196  * Default values for MAC registers; values taken from the reference driver.
197  */
198 static const struct {
199 	uint16_t	reg;
200 	uint16_t	val;
201 } ural_def_mac[] = {
202 	{ RAL_TXRX_CSR5,  0x8c8d },
203 	{ RAL_TXRX_CSR6,  0x8b8a },
204 	{ RAL_TXRX_CSR7,  0x8687 },
205 	{ RAL_TXRX_CSR8,  0x0085 },
206 	{ RAL_MAC_CSR13,  0x1111 },
207 	{ RAL_MAC_CSR14,  0x1e11 },
208 	{ RAL_TXRX_CSR21, 0xe78f },
209 	{ RAL_MAC_CSR9,   0xff1d },
210 	{ RAL_MAC_CSR11,  0x0002 },
211 	{ RAL_MAC_CSR22,  0x0053 },
212 	{ RAL_MAC_CSR15,  0x0000 },
213 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
214 	{ RAL_TXRX_CSR19, 0x0000 },
215 	{ RAL_TXRX_CSR18, 0x005a },
216 	{ RAL_PHY_CSR2,   0x0000 },
217 	{ RAL_TXRX_CSR0,  0x1ec0 },
218 	{ RAL_PHY_CSR4,   0x000f }
219 };
220 
221 /*
222  * Default values for BBP registers; values taken from the reference driver.
223  */
224 static const struct {
225 	uint8_t	reg;
226 	uint8_t	val;
227 } ural_def_bbp[] = {
228 	{  3, 0x02 },
229 	{  4, 0x19 },
230 	{ 14, 0x1c },
231 	{ 15, 0x30 },
232 	{ 16, 0xac },
233 	{ 17, 0x48 },
234 	{ 18, 0x18 },
235 	{ 19, 0xff },
236 	{ 20, 0x1e },
237 	{ 21, 0x08 },
238 	{ 22, 0x08 },
239 	{ 23, 0x08 },
240 	{ 24, 0x80 },
241 	{ 25, 0x50 },
242 	{ 26, 0x08 },
243 	{ 27, 0x23 },
244 	{ 30, 0x10 },
245 	{ 31, 0x2b },
246 	{ 32, 0xb9 },
247 	{ 34, 0x12 },
248 	{ 35, 0x50 },
249 	{ 39, 0xc4 },
250 	{ 40, 0x02 },
251 	{ 41, 0x60 },
252 	{ 53, 0x10 },
253 	{ 54, 0x18 },
254 	{ 56, 0x08 },
255 	{ 57, 0x10 },
256 	{ 58, 0x08 },
257 	{ 61, 0x60 },
258 	{ 62, 0x10 },
259 	{ 75, 0xff }
260 };
261 
262 /*
263  * Default values for RF register R2 indexed by channel numbers.
264  */
265 static const uint32_t ural_rf2522_r2[] = {
266 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
267 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
268 };
269 
270 static const uint32_t ural_rf2523_r2[] = {
271 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
272 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
273 };
274 
275 static const uint32_t ural_rf2524_r2[] = {
276 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
277 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
278 };
279 
280 static const uint32_t ural_rf2525_r2[] = {
281 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
282 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
283 };
284 
285 static const uint32_t ural_rf2525_hi_r2[] = {
286 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
287 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
288 };
289 
290 static const uint32_t ural_rf2525e_r2[] = {
291 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
292 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
293 };
294 
295 static const uint32_t ural_rf2526_hi_r2[] = {
296 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
297 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
298 };
299 
300 static const uint32_t ural_rf2526_r2[] = {
301 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
302 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
303 };
304 
305 /*
306  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
307  * values taken from the reference driver.
308  */
309 static const struct {
310 	uint8_t		chan;
311 	uint32_t	r1;
312 	uint32_t	r2;
313 	uint32_t	r4;
314 } ural_rf5222[] = {
315 	{   1, 0x08808, 0x0044d, 0x00282 },
316 	{   2, 0x08808, 0x0044e, 0x00282 },
317 	{   3, 0x08808, 0x0044f, 0x00282 },
318 	{   4, 0x08808, 0x00460, 0x00282 },
319 	{   5, 0x08808, 0x00461, 0x00282 },
320 	{   6, 0x08808, 0x00462, 0x00282 },
321 	{   7, 0x08808, 0x00463, 0x00282 },
322 	{   8, 0x08808, 0x00464, 0x00282 },
323 	{   9, 0x08808, 0x00465, 0x00282 },
324 	{  10, 0x08808, 0x00466, 0x00282 },
325 	{  11, 0x08808, 0x00467, 0x00282 },
326 	{  12, 0x08808, 0x00468, 0x00282 },
327 	{  13, 0x08808, 0x00469, 0x00282 },
328 	{  14, 0x08808, 0x0046b, 0x00286 },
329 
330 	{  36, 0x08804, 0x06225, 0x00287 },
331 	{  40, 0x08804, 0x06226, 0x00287 },
332 	{  44, 0x08804, 0x06227, 0x00287 },
333 	{  48, 0x08804, 0x06228, 0x00287 },
334 	{  52, 0x08804, 0x06229, 0x00287 },
335 	{  56, 0x08804, 0x0622a, 0x00287 },
336 	{  60, 0x08804, 0x0622b, 0x00287 },
337 	{  64, 0x08804, 0x0622c, 0x00287 },
338 
339 	{ 100, 0x08804, 0x02200, 0x00283 },
340 	{ 104, 0x08804, 0x02201, 0x00283 },
341 	{ 108, 0x08804, 0x02202, 0x00283 },
342 	{ 112, 0x08804, 0x02203, 0x00283 },
343 	{ 116, 0x08804, 0x02204, 0x00283 },
344 	{ 120, 0x08804, 0x02205, 0x00283 },
345 	{ 124, 0x08804, 0x02206, 0x00283 },
346 	{ 128, 0x08804, 0x02207, 0x00283 },
347 	{ 132, 0x08804, 0x02208, 0x00283 },
348 	{ 136, 0x08804, 0x02209, 0x00283 },
349 	{ 140, 0x08804, 0x0220a, 0x00283 },
350 
351 	{ 149, 0x08808, 0x02429, 0x00281 },
352 	{ 153, 0x08808, 0x0242b, 0x00281 },
353 	{ 157, 0x08808, 0x0242d, 0x00281 },
354 	{ 161, 0x08808, 0x0242f, 0x00281 }
355 };
356 
357 static const uint8_t ural_chan_5ghz[] =
358 	{ 36, 40, 44, 48, 52, 56, 60, 64,
359 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
360 	  149, 153, 157, 161 };
361 
362 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
363 	[URAL_BULK_WR] = {
364 		.type = UE_BULK,
365 		.endpoint = UE_ADDR_ANY,
366 		.direction = UE_DIR_OUT,
367 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
368 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
369 		.callback = ural_bulk_write_callback,
370 		.timeout = 5000,	/* ms */
371 	},
372 	[URAL_BULK_RD] = {
373 		.type = UE_BULK,
374 		.endpoint = UE_ADDR_ANY,
375 		.direction = UE_DIR_IN,
376 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
377 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
378 		.callback = ural_bulk_read_callback,
379 	},
380 };
381 
382 static device_probe_t ural_match;
383 static device_attach_t ural_attach;
384 static device_detach_t ural_detach;
385 
386 static device_method_t ural_methods[] = {
387 	/* Device interface */
388 	DEVMETHOD(device_probe,		ural_match),
389 	DEVMETHOD(device_attach,	ural_attach),
390 	DEVMETHOD(device_detach,	ural_detach),
391 	DEVMETHOD_END
392 };
393 
394 static driver_t ural_driver = {
395 	.name = "ural",
396 	.methods = ural_methods,
397 	.size = sizeof(struct ural_softc),
398 };
399 
400 DRIVER_MODULE(ural, uhub, ural_driver, NULL, NULL);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 MODULE_VERSION(ural, 1);
404 USB_PNP_HOST_INFO(ural_devs);
405 
406 static int
ural_match(device_t self)407 ural_match(device_t self)
408 {
409 	struct usb_attach_arg *uaa = device_get_ivars(self);
410 
411 	if (uaa->usb_mode != USB_MODE_HOST)
412 		return (ENXIO);
413 	if (uaa->info.bConfigIndex != 0)
414 		return (ENXIO);
415 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
416 		return (ENXIO);
417 
418 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
419 }
420 
421 static int
ural_attach(device_t self)422 ural_attach(device_t self)
423 {
424 	struct usb_attach_arg *uaa = device_get_ivars(self);
425 	struct ural_softc *sc = device_get_softc(self);
426 	struct ieee80211com *ic = &sc->sc_ic;
427 	uint8_t iface_index;
428 	int error;
429 
430 	device_set_usb_desc(self);
431 	sc->sc_udev = uaa->device;
432 	sc->sc_dev = self;
433 
434 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435 	    MTX_NETWORK_LOCK, MTX_DEF);
436 	mbufq_init(&sc->sc_snd, ifqmaxlen);
437 
438 	iface_index = RAL_IFACE_INDEX;
439 	error = usbd_transfer_setup(uaa->device,
440 	    &iface_index, sc->sc_xfer, ural_config,
441 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
442 	if (error) {
443 		device_printf(self, "could not allocate USB transfers, "
444 		    "err=%s\n", usbd_errstr(error));
445 		goto detach;
446 	}
447 
448 	RAL_LOCK(sc);
449 	/* retrieve RT2570 rev. no */
450 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
451 
452 	/* retrieve MAC address and various other things from EEPROM */
453 	ural_read_eeprom(sc);
454 	RAL_UNLOCK(sc);
455 
456 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
457 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
458 
459 	ic->ic_softc = sc;
460 	ic->ic_name = device_get_nameunit(self);
461 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
462 
463 	/* set device capabilities */
464 	ic->ic_caps =
465 	      IEEE80211_C_STA		/* station mode supported */
466 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
467 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
468 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
469 	    | IEEE80211_C_TXPMGT	/* tx power management */
470 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
471 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
472 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
473 	    | IEEE80211_C_WPA		/* 802.11i */
474 	    ;
475 
476 	ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD;
477 
478 	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
479 	    ic->ic_channels);
480 
481 	ieee80211_ifattach(ic);
482 	ic->ic_update_promisc = ural_update_promisc;
483 	ic->ic_raw_xmit = ural_raw_xmit;
484 	ic->ic_scan_start = ural_scan_start;
485 	ic->ic_scan_end = ural_scan_end;
486 	ic->ic_getradiocaps = ural_getradiocaps;
487 	ic->ic_set_channel = ural_set_channel;
488 	ic->ic_parent = ural_parent;
489 	ic->ic_transmit = ural_transmit;
490 	ic->ic_vap_create = ural_vap_create;
491 	ic->ic_vap_delete = ural_vap_delete;
492 
493 	ieee80211_radiotap_attach(ic,
494 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
495 		RAL_TX_RADIOTAP_PRESENT,
496 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
497 		RAL_RX_RADIOTAP_PRESENT);
498 
499 	if (bootverbose)
500 		ieee80211_announce(ic);
501 
502 	return (0);
503 
504 detach:
505 	ural_detach(self);
506 	return (ENXIO);			/* failure */
507 }
508 
509 static int
ural_detach(device_t self)510 ural_detach(device_t self)
511 {
512 	struct ural_softc *sc = device_get_softc(self);
513 	struct ieee80211com *ic = &sc->sc_ic;
514 
515 	/* prevent further ioctls */
516 	RAL_LOCK(sc);
517 	sc->sc_detached = 1;
518 	RAL_UNLOCK(sc);
519 
520 	/* stop all USB transfers */
521 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
522 
523 	/* free TX list, if any */
524 	RAL_LOCK(sc);
525 	ural_unsetup_tx_list(sc);
526 	RAL_UNLOCK(sc);
527 
528 	if (ic->ic_softc == sc)
529 		ieee80211_ifdetach(ic);
530 	mbufq_drain(&sc->sc_snd);
531 	mtx_destroy(&sc->sc_mtx);
532 
533 	return (0);
534 }
535 
536 static usb_error_t
ural_do_request(struct ural_softc * sc,struct usb_device_request * req,void * data)537 ural_do_request(struct ural_softc *sc,
538     struct usb_device_request *req, void *data)
539 {
540 	usb_error_t err;
541 	int ntries = 10;
542 
543 	while (ntries--) {
544 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
545 		    req, data, 0, NULL, 250 /* ms */);
546 		if (err == 0)
547 			break;
548 
549 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
550 		    usbd_errstr(err));
551 		if (ural_pause(sc, hz / 100))
552 			break;
553 	}
554 	return (err);
555 }
556 
557 static struct ieee80211vap *
ural_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])558 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
559     enum ieee80211_opmode opmode, int flags,
560     const uint8_t bssid[IEEE80211_ADDR_LEN],
561     const uint8_t mac[IEEE80211_ADDR_LEN])
562 {
563 	struct ural_softc *sc = ic->ic_softc;
564 	struct ural_vap *uvp;
565 	struct ieee80211vap *vap;
566 
567 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
568 		return NULL;
569 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
570 	vap = &uvp->vap;
571 	/* enable s/w bmiss handling for sta mode */
572 
573 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
574 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
575 		/* out of memory */
576 		free(uvp, M_80211_VAP);
577 		return (NULL);
578 	}
579 
580 	/* override state transition machine */
581 	uvp->newstate = vap->iv_newstate;
582 	vap->iv_newstate = ural_newstate;
583 
584 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
585 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
586 	ieee80211_ratectl_init(vap);
587 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
588 
589 	/* complete setup */
590 	ieee80211_vap_attach(vap, ieee80211_media_change,
591 	    ieee80211_media_status, mac);
592 	ic->ic_opmode = opmode;
593 	return vap;
594 }
595 
596 static void
ural_vap_delete(struct ieee80211vap * vap)597 ural_vap_delete(struct ieee80211vap *vap)
598 {
599 	struct ural_vap *uvp = URAL_VAP(vap);
600 	struct ieee80211com *ic = vap->iv_ic;
601 
602 	usb_callout_drain(&uvp->ratectl_ch);
603 	ieee80211_draintask(ic, &uvp->ratectl_task);
604 	ieee80211_ratectl_deinit(vap);
605 	ieee80211_vap_detach(vap);
606 	free(uvp, M_80211_VAP);
607 }
608 
609 static void
ural_tx_free(struct ural_tx_data * data,int txerr)610 ural_tx_free(struct ural_tx_data *data, int txerr)
611 {
612 	struct ural_softc *sc = data->sc;
613 
614 	if (data->m != NULL) {
615 		ieee80211_tx_complete(data->ni, data->m, txerr);
616 		data->m = NULL;
617 		data->ni = NULL;
618 	}
619 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
620 	sc->tx_nfree++;
621 }
622 
623 static void
ural_setup_tx_list(struct ural_softc * sc)624 ural_setup_tx_list(struct ural_softc *sc)
625 {
626 	struct ural_tx_data *data;
627 	int i;
628 
629 	sc->tx_nfree = 0;
630 	STAILQ_INIT(&sc->tx_q);
631 	STAILQ_INIT(&sc->tx_free);
632 
633 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
634 		data = &sc->tx_data[i];
635 
636 		data->sc = sc;
637 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
638 		sc->tx_nfree++;
639 	}
640 }
641 
642 static void
ural_unsetup_tx_list(struct ural_softc * sc)643 ural_unsetup_tx_list(struct ural_softc *sc)
644 {
645 	struct ural_tx_data *data;
646 	int i;
647 
648 	/* make sure any subsequent use of the queues will fail */
649 	sc->tx_nfree = 0;
650 	STAILQ_INIT(&sc->tx_q);
651 	STAILQ_INIT(&sc->tx_free);
652 
653 	/* free up all node references and mbufs */
654 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
655 		data = &sc->tx_data[i];
656 
657 		if (data->m != NULL) {
658 			m_freem(data->m);
659 			data->m = NULL;
660 		}
661 		if (data->ni != NULL) {
662 			ieee80211_free_node(data->ni);
663 			data->ni = NULL;
664 		}
665 	}
666 }
667 
668 static int
ural_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)669 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
670 {
671 	struct ural_vap *uvp = URAL_VAP(vap);
672 	struct ieee80211com *ic = vap->iv_ic;
673 	struct ural_softc *sc = ic->ic_softc;
674 	const struct ieee80211_txparam *tp;
675 	struct ieee80211_node *ni;
676 	struct mbuf *m;
677 
678 	DPRINTF("%s -> %s\n",
679 		ieee80211_state_name[vap->iv_state],
680 		ieee80211_state_name[nstate]);
681 
682 	IEEE80211_UNLOCK(ic);
683 	RAL_LOCK(sc);
684 	usb_callout_stop(&uvp->ratectl_ch);
685 
686 	switch (nstate) {
687 	case IEEE80211_S_INIT:
688 		if (vap->iv_state == IEEE80211_S_RUN) {
689 			/* abort TSF synchronization */
690 			ural_write(sc, RAL_TXRX_CSR19, 0);
691 
692 			/* force tx led to stop blinking */
693 			ural_write(sc, RAL_MAC_CSR20, 0);
694 		}
695 		break;
696 
697 	case IEEE80211_S_RUN:
698 		ni = ieee80211_ref_node(vap->iv_bss);
699 
700 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
701 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
702 				goto fail;
703 
704 			ural_update_slot(sc);
705 			ural_set_txpreamble(sc);
706 			ural_set_basicrates(sc, ic->ic_bsschan);
707 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
708 			ural_set_bssid(sc, sc->sc_bssid);
709 		}
710 
711 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
712 		    vap->iv_opmode == IEEE80211_M_IBSS) {
713 			m = ieee80211_beacon_alloc(ni);
714 			if (m == NULL) {
715 				device_printf(sc->sc_dev,
716 				    "could not allocate beacon\n");
717 				goto fail;
718 			}
719 			ieee80211_ref_node(ni);
720 			if (ural_tx_bcn(sc, m, ni) != 0) {
721 				device_printf(sc->sc_dev,
722 				    "could not send beacon\n");
723 				goto fail;
724 			}
725 		}
726 
727 		/* make tx led blink on tx (controlled by ASIC) */
728 		ural_write(sc, RAL_MAC_CSR20, 1);
729 
730 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
731 			ural_enable_tsf_sync(sc);
732 		else
733 			ural_enable_tsf(sc);
734 
735 		/* enable automatic rate adaptation */
736 		/* XXX should use ic_bsschan but not valid until after newstate call below */
737 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
738 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
739 			ural_ratectl_start(sc, ni);
740 		ieee80211_free_node(ni);
741 		break;
742 
743 	default:
744 		break;
745 	}
746 	RAL_UNLOCK(sc);
747 	IEEE80211_LOCK(ic);
748 	return (uvp->newstate(vap, nstate, arg));
749 
750 fail:
751 	RAL_UNLOCK(sc);
752 	IEEE80211_LOCK(ic);
753 	ieee80211_free_node(ni);
754 	return (-1);
755 }
756 
757 static void
ural_bulk_write_callback(struct usb_xfer * xfer,usb_error_t error)758 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
759 {
760 	struct ural_softc *sc = usbd_xfer_softc(xfer);
761 	struct ieee80211vap *vap;
762 	struct ural_tx_data *data;
763 	struct mbuf *m;
764 	struct usb_page_cache *pc;
765 	int len;
766 
767 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
768 
769 	switch (USB_GET_STATE(xfer)) {
770 	case USB_ST_TRANSFERRED:
771 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
772 
773 		/* free resources */
774 		data = usbd_xfer_get_priv(xfer);
775 		ural_tx_free(data, 0);
776 		usbd_xfer_set_priv(xfer, NULL);
777 
778 		/* FALLTHROUGH */
779 	case USB_ST_SETUP:
780 tr_setup:
781 		data = STAILQ_FIRST(&sc->tx_q);
782 		if (data) {
783 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
784 			m = data->m;
785 
786 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
787 				DPRINTFN(0, "data overflow, %u bytes\n",
788 				    m->m_pkthdr.len);
789 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
790 			}
791 			pc = usbd_xfer_get_frame(xfer, 0);
792 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
793 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
794 			    m->m_pkthdr.len);
795 
796 			vap = data->ni->ni_vap;
797 			if (ieee80211_radiotap_active_vap(vap)) {
798 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
799 
800 				tap->wt_flags = 0;
801 				tap->wt_rate = data->rate;
802 				tap->wt_antenna = sc->tx_ant;
803 
804 				ieee80211_radiotap_tx(vap, m);
805 			}
806 
807 			/* xfer length needs to be a multiple of two! */
808 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
809 			if ((len % 64) == 0)
810 				len += 2;
811 
812 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
813 			    m->m_pkthdr.len, len);
814 
815 			usbd_xfer_set_frame_len(xfer, 0, len);
816 			usbd_xfer_set_priv(xfer, data);
817 
818 			usbd_transfer_submit(xfer);
819 		}
820 		ural_start(sc);
821 		break;
822 
823 	default:			/* Error */
824 		DPRINTFN(11, "transfer error, %s\n",
825 		    usbd_errstr(error));
826 
827 		data = usbd_xfer_get_priv(xfer);
828 		if (data != NULL) {
829 			ural_tx_free(data, error);
830 			usbd_xfer_set_priv(xfer, NULL);
831 		}
832 
833 		if (error == USB_ERR_STALLED) {
834 			/* try to clear stall first */
835 			usbd_xfer_set_stall(xfer);
836 			goto tr_setup;
837 		}
838 		if (error == USB_ERR_TIMEOUT)
839 			device_printf(sc->sc_dev, "device timeout\n");
840 		break;
841 	}
842 }
843 
844 static void
ural_bulk_read_callback(struct usb_xfer * xfer,usb_error_t error)845 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
846 {
847 	struct ural_softc *sc = usbd_xfer_softc(xfer);
848 	struct ieee80211com *ic = &sc->sc_ic;
849 	struct ieee80211_node *ni;
850 	struct mbuf *m = NULL;
851 	struct usb_page_cache *pc;
852 	uint32_t flags;
853 	int8_t rssi = 0, nf = 0;
854 	int len;
855 
856 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
857 
858 	switch (USB_GET_STATE(xfer)) {
859 	case USB_ST_TRANSFERRED:
860 
861 		DPRINTFN(15, "rx done, actlen=%d\n", len);
862 
863 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
864 			DPRINTF("%s: xfer too short %d\n",
865 			    device_get_nameunit(sc->sc_dev), len);
866 			counter_u64_add(ic->ic_ierrors, 1);
867 			goto tr_setup;
868 		}
869 
870 		len -= RAL_RX_DESC_SIZE;
871 		/* rx descriptor is located at the end */
872 		pc = usbd_xfer_get_frame(xfer, 0);
873 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
874 
875 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
876 		nf = RAL_NOISE_FLOOR;
877 		flags = le32toh(sc->sc_rx_desc.flags);
878 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
879 			/*
880 		         * This should not happen since we did not
881 		         * request to receive those frames when we
882 		         * filled RAL_TXRX_CSR2:
883 		         */
884 			DPRINTFN(5, "PHY or CRC error\n");
885 			counter_u64_add(ic->ic_ierrors, 1);
886 			goto tr_setup;
887 		}
888 
889 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
890 		if (m == NULL) {
891 			DPRINTF("could not allocate mbuf\n");
892 			counter_u64_add(ic->ic_ierrors, 1);
893 			goto tr_setup;
894 		}
895 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
896 
897 		/* finalize mbuf */
898 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
899 
900 		if (ieee80211_radiotap_active(ic)) {
901 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
902 
903 			/* XXX set once */
904 			tap->wr_flags = 0;
905 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
906 			    (flags & RAL_RX_OFDM) ?
907 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
908 			tap->wr_antenna = sc->rx_ant;
909 			tap->wr_antsignal = nf + rssi;
910 			tap->wr_antnoise = nf;
911 		}
912 		/* Strip trailing 802.11 MAC FCS. */
913 		m_adj(m, -IEEE80211_CRC_LEN);
914 
915 		/* FALLTHROUGH */
916 	case USB_ST_SETUP:
917 tr_setup:
918 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
919 		usbd_transfer_submit(xfer);
920 
921 		/*
922 		 * At the end of a USB callback it is always safe to unlock
923 		 * the private mutex of a device! That is why we do the
924 		 * "ieee80211_input" here, and not some lines up!
925 		 */
926 		RAL_UNLOCK(sc);
927 		if (m) {
928 			ni = ieee80211_find_rxnode(ic,
929 			    mtod(m, struct ieee80211_frame_min *));
930 			if (ni != NULL) {
931 				(void) ieee80211_input(ni, m, rssi, nf);
932 				ieee80211_free_node(ni);
933 			} else
934 				(void) ieee80211_input_all(ic, m, rssi, nf);
935 		}
936 		RAL_LOCK(sc);
937 		ural_start(sc);
938 		return;
939 
940 	default:			/* Error */
941 		if (error != USB_ERR_CANCELLED) {
942 			/* try to clear stall first */
943 			usbd_xfer_set_stall(xfer);
944 			goto tr_setup;
945 		}
946 		return;
947 	}
948 }
949 
950 static uint8_t
ural_plcp_signal(int rate)951 ural_plcp_signal(int rate)
952 {
953 	switch (rate) {
954 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
955 	case 12:	return 0xb;
956 	case 18:	return 0xf;
957 	case 24:	return 0xa;
958 	case 36:	return 0xe;
959 	case 48:	return 0x9;
960 	case 72:	return 0xd;
961 	case 96:	return 0x8;
962 	case 108:	return 0xc;
963 
964 	/* CCK rates (NB: not IEEE std, device-specific) */
965 	case 2:		return 0x0;
966 	case 4:		return 0x1;
967 	case 11:	return 0x2;
968 	case 22:	return 0x3;
969 	}
970 	return 0xff;		/* XXX unsupported/unknown rate */
971 }
972 
973 static void
ural_setup_tx_desc(struct ural_softc * sc,struct ural_tx_desc * desc,uint32_t flags,int len,int rate)974 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
975     uint32_t flags, int len, int rate)
976 {
977 	struct ieee80211com *ic = &sc->sc_ic;
978 	uint16_t plcp_length;
979 	int remainder;
980 
981 	desc->flags = htole32(flags);
982 	desc->flags |= htole32(RAL_TX_NEWSEQ);
983 	desc->flags |= htole32(len << 16);
984 
985 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
986 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
987 
988 	/* setup PLCP fields */
989 	desc->plcp_signal  = ural_plcp_signal(rate);
990 	desc->plcp_service = 4;
991 
992 	len += IEEE80211_CRC_LEN;
993 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
994 		desc->flags |= htole32(RAL_TX_OFDM);
995 
996 		plcp_length = len & 0xfff;
997 		desc->plcp_length_hi = plcp_length >> 6;
998 		desc->plcp_length_lo = plcp_length & 0x3f;
999 	} else {
1000 		if (rate == 0)
1001 			rate = 2;	/* avoid division by zero */
1002 		plcp_length = howmany(16 * len, rate);
1003 		if (rate == 22) {
1004 			remainder = (16 * len) % 22;
1005 			if (remainder != 0 && remainder < 7)
1006 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1007 		}
1008 		desc->plcp_length_hi = plcp_length >> 8;
1009 		desc->plcp_length_lo = plcp_length & 0xff;
1010 
1011 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1012 			desc->plcp_signal |= 0x08;
1013 	}
1014 
1015 	desc->iv = 0;
1016 	desc->eiv = 0;
1017 }
1018 
1019 #define RAL_TX_TIMEOUT	5000
1020 
1021 static int
ural_tx_bcn(struct ural_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1022 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1023 {
1024 	struct ieee80211vap *vap = ni->ni_vap;
1025 	struct ieee80211com *ic = ni->ni_ic;
1026 	const struct ieee80211_txparam *tp;
1027 	struct ural_tx_data *data;
1028 
1029 	if (sc->tx_nfree == 0) {
1030 		m_freem(m0);
1031 		ieee80211_free_node(ni);
1032 		return (EIO);
1033 	}
1034 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1035 		m_freem(m0);
1036 		ieee80211_free_node(ni);
1037 		return (ENXIO);
1038 	}
1039 	data = STAILQ_FIRST(&sc->tx_free);
1040 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1041 	sc->tx_nfree--;
1042 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1043 
1044 	data->m = m0;
1045 	data->ni = ni;
1046 	data->rate = tp->mgmtrate;
1047 
1048 	ural_setup_tx_desc(sc, &data->desc,
1049 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1050 	    tp->mgmtrate);
1051 
1052 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1053 	    m0->m_pkthdr.len, tp->mgmtrate);
1054 
1055 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1056 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1057 
1058 	return (0);
1059 }
1060 
1061 static int
ural_tx_mgt(struct ural_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1062 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1063 {
1064 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1065 	struct ieee80211com *ic = ni->ni_ic;
1066 	struct ural_tx_data *data;
1067 	struct ieee80211_frame *wh;
1068 	struct ieee80211_key *k;
1069 	uint32_t flags;
1070 	uint16_t dur;
1071 
1072 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1073 
1074 	data = STAILQ_FIRST(&sc->tx_free);
1075 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1076 	sc->tx_nfree--;
1077 
1078 	ieee80211_output_seqno_assign(ni, -1, m0);
1079 
1080 	wh = mtod(m0, struct ieee80211_frame *);
1081 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1082 		k = ieee80211_crypto_encap(ni, m0);
1083 		if (k == NULL) {
1084 			m_freem(m0);
1085 			return ENOBUFS;
1086 		}
1087 		wh = mtod(m0, struct ieee80211_frame *);
1088 	}
1089 
1090 	data->m = m0;
1091 	data->ni = ni;
1092 	data->rate = tp->mgmtrate;
1093 
1094 	flags = 0;
1095 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1096 		flags |= RAL_TX_ACK;
1097 
1098 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1099 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1100 		USETW(wh->i_dur, dur);
1101 
1102 		/* tell hardware to add timestamp for probe responses */
1103 		if (IEEE80211_IS_MGMT_PROBE_RESP(wh))
1104 			flags |= RAL_TX_TIMESTAMP;
1105 	}
1106 
1107 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1108 
1109 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1110 	    m0->m_pkthdr.len, tp->mgmtrate);
1111 
1112 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1113 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1114 
1115 	return 0;
1116 }
1117 
1118 static int
ural_sendprot(struct ural_softc * sc,const struct mbuf * m,struct ieee80211_node * ni,int prot,int rate)1119 ural_sendprot(struct ural_softc *sc,
1120     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1121 {
1122 	struct ieee80211com *ic = ni->ni_ic;
1123 	struct ural_tx_data *data;
1124 	struct mbuf *mprot;
1125 	int protrate, flags;
1126 
1127 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1128 	if (mprot == NULL) {
1129 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1130 		device_printf(sc->sc_dev,
1131 		    "could not allocate mbuf for protection mode %d\n", prot);
1132 		return ENOBUFS;
1133 	}
1134 
1135 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1136 	flags = RAL_TX_RETRY(7);
1137 	if (prot == IEEE80211_PROT_RTSCTS)
1138 		flags |= RAL_TX_ACK;
1139 
1140 	data = STAILQ_FIRST(&sc->tx_free);
1141 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1142 	sc->tx_nfree--;
1143 
1144 	data->m = mprot;
1145 	data->ni = ieee80211_ref_node(ni);
1146 	data->rate = protrate;
1147 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1148 
1149 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1150 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1151 
1152 	return 0;
1153 }
1154 
1155 static int
ural_tx_raw(struct ural_softc * sc,struct mbuf * m0,struct ieee80211_node * ni,const struct ieee80211_bpf_params * params)1156 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1157     const struct ieee80211_bpf_params *params)
1158 {
1159 	struct ieee80211com *ic = ni->ni_ic;
1160 	struct ural_tx_data *data;
1161 	uint32_t flags;
1162 	int error;
1163 	int rate;
1164 
1165 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1166 	KASSERT(params != NULL, ("no raw xmit params"));
1167 
1168 	rate = params->ibp_rate0;
1169 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1170 		m_freem(m0);
1171 		return EINVAL;
1172 	}
1173 	flags = 0;
1174 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1175 		flags |= RAL_TX_ACK;
1176 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1177 		error = ural_sendprot(sc, m0, ni,
1178 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1179 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1180 		    rate);
1181 		if (error || sc->tx_nfree == 0) {
1182 			m_freem(m0);
1183 			return ENOBUFS;
1184 		}
1185 		flags |= RAL_TX_IFS_SIFS;
1186 	}
1187 
1188 	data = STAILQ_FIRST(&sc->tx_free);
1189 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1190 	sc->tx_nfree--;
1191 
1192 	data->m = m0;
1193 	data->ni = ni;
1194 	data->rate = rate;
1195 
1196 	/* XXX need to setup descriptor ourself */
1197 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1198 
1199 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1200 	    m0->m_pkthdr.len, rate);
1201 
1202 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1203 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1204 
1205 	return 0;
1206 }
1207 
1208 static int
ural_tx_data(struct ural_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1209 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1210 {
1211 	struct ieee80211vap *vap = ni->ni_vap;
1212 	struct ieee80211com *ic = ni->ni_ic;
1213 	struct ural_tx_data *data;
1214 	struct ieee80211_frame *wh;
1215 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1216 	struct ieee80211_key *k;
1217 	uint32_t flags = 0;
1218 	uint16_t dur;
1219 	int error, rate;
1220 
1221 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1222 
1223 	wh = mtod(m0, struct ieee80211_frame *);
1224 
1225 	if (m0->m_flags & M_EAPOL)
1226 		rate = tp->mgmtrate;
1227 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1228 		rate = tp->mcastrate;
1229 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1230 		rate = tp->ucastrate;
1231 	else {
1232 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1233 		rate = ieee80211_node_get_txrate_dot11rate(ni);
1234 	}
1235 
1236 	ieee80211_output_seqno_assign(ni, -1, m0);
1237 
1238 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1239 		k = ieee80211_crypto_encap(ni, m0);
1240 		if (k == NULL) {
1241 			m_freem(m0);
1242 			return ENOBUFS;
1243 		}
1244 		/* packet header may have moved, reset our local pointer */
1245 		wh = mtod(m0, struct ieee80211_frame *);
1246 	}
1247 
1248 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1249 		int prot = IEEE80211_PROT_NONE;
1250 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1251 			prot = IEEE80211_PROT_RTSCTS;
1252 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1253 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1254 			prot = ic->ic_protmode;
1255 		if (prot != IEEE80211_PROT_NONE) {
1256 			error = ural_sendprot(sc, m0, ni, prot, rate);
1257 			if (error || sc->tx_nfree == 0) {
1258 				m_freem(m0);
1259 				return ENOBUFS;
1260 			}
1261 			flags |= RAL_TX_IFS_SIFS;
1262 		}
1263 	}
1264 
1265 	data = STAILQ_FIRST(&sc->tx_free);
1266 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1267 	sc->tx_nfree--;
1268 
1269 	data->m = m0;
1270 	data->ni = ni;
1271 	data->rate = rate;
1272 
1273 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1274 		flags |= RAL_TX_ACK;
1275 		flags |= RAL_TX_RETRY(7);
1276 
1277 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1278 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1279 		USETW(wh->i_dur, dur);
1280 	}
1281 
1282 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1283 
1284 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1285 	    m0->m_pkthdr.len, rate);
1286 
1287 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1288 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1289 
1290 	return 0;
1291 }
1292 
1293 static int
ural_transmit(struct ieee80211com * ic,struct mbuf * m)1294 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1295 {
1296 	struct ural_softc *sc = ic->ic_softc;
1297 	int error;
1298 
1299 	RAL_LOCK(sc);
1300 	if (!sc->sc_running) {
1301 		RAL_UNLOCK(sc);
1302 		return (ENXIO);
1303 	}
1304 	error = mbufq_enqueue(&sc->sc_snd, m);
1305 	if (error) {
1306 		RAL_UNLOCK(sc);
1307 		return (error);
1308 	}
1309 	ural_start(sc);
1310 	RAL_UNLOCK(sc);
1311 
1312 	return (0);
1313 }
1314 
1315 static void
ural_start(struct ural_softc * sc)1316 ural_start(struct ural_softc *sc)
1317 {
1318 	struct ieee80211_node *ni;
1319 	struct mbuf *m;
1320 
1321 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1322 
1323 	if (sc->sc_running == 0)
1324 		return;
1325 
1326 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1327 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1328 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1329 		if (ural_tx_data(sc, m, ni) != 0) {
1330 			if_inc_counter(ni->ni_vap->iv_ifp,
1331 			     IFCOUNTER_OERRORS, 1);
1332 			ieee80211_free_node(ni);
1333 			break;
1334 		}
1335 	}
1336 }
1337 
1338 static void
ural_parent(struct ieee80211com * ic)1339 ural_parent(struct ieee80211com *ic)
1340 {
1341 	struct ural_softc *sc = ic->ic_softc;
1342 	int startall = 0;
1343 
1344 	RAL_LOCK(sc);
1345 	if (sc->sc_detached) {
1346 		RAL_UNLOCK(sc);
1347 		return;
1348 	}
1349 	if (ic->ic_nrunning > 0) {
1350 		if (sc->sc_running == 0) {
1351 			ural_init(sc);
1352 			startall = 1;
1353 		} else
1354 			ural_setpromisc(sc);
1355 	} else if (sc->sc_running)
1356 		ural_stop(sc);
1357 	RAL_UNLOCK(sc);
1358 	if (startall)
1359 		ieee80211_start_all(ic);
1360 }
1361 
1362 static void
ural_set_testmode(struct ural_softc * sc)1363 ural_set_testmode(struct ural_softc *sc)
1364 {
1365 	struct usb_device_request req;
1366 	usb_error_t error;
1367 
1368 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1369 	req.bRequest = RAL_VENDOR_REQUEST;
1370 	USETW(req.wValue, 4);
1371 	USETW(req.wIndex, 1);
1372 	USETW(req.wLength, 0);
1373 
1374 	error = ural_do_request(sc, &req, NULL);
1375 	if (error != 0) {
1376 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1377 		    usbd_errstr(error));
1378 	}
1379 }
1380 
1381 static void
ural_eeprom_read(struct ural_softc * sc,uint16_t addr,void * buf,int len)1382 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1383 {
1384 	struct usb_device_request req;
1385 	usb_error_t error;
1386 
1387 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1388 	req.bRequest = RAL_READ_EEPROM;
1389 	USETW(req.wValue, 0);
1390 	USETW(req.wIndex, addr);
1391 	USETW(req.wLength, len);
1392 
1393 	error = ural_do_request(sc, &req, buf);
1394 	if (error != 0) {
1395 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1396 		    usbd_errstr(error));
1397 	}
1398 }
1399 
1400 static uint16_t
ural_read(struct ural_softc * sc,uint16_t reg)1401 ural_read(struct ural_softc *sc, uint16_t reg)
1402 {
1403 	struct usb_device_request req;
1404 	usb_error_t error;
1405 	uint16_t val;
1406 
1407 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1408 	req.bRequest = RAL_READ_MAC;
1409 	USETW(req.wValue, 0);
1410 	USETW(req.wIndex, reg);
1411 	USETW(req.wLength, sizeof (uint16_t));
1412 
1413 	error = ural_do_request(sc, &req, &val);
1414 	if (error != 0) {
1415 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1416 		    usbd_errstr(error));
1417 		return 0;
1418 	}
1419 
1420 	return le16toh(val);
1421 }
1422 
1423 static void
ural_read_multi(struct ural_softc * sc,uint16_t reg,void * buf,int len)1424 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1425 {
1426 	struct usb_device_request req;
1427 	usb_error_t error;
1428 
1429 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1430 	req.bRequest = RAL_READ_MULTI_MAC;
1431 	USETW(req.wValue, 0);
1432 	USETW(req.wIndex, reg);
1433 	USETW(req.wLength, len);
1434 
1435 	error = ural_do_request(sc, &req, buf);
1436 	if (error != 0) {
1437 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1438 		    usbd_errstr(error));
1439 	}
1440 }
1441 
1442 static void
ural_write(struct ural_softc * sc,uint16_t reg,uint16_t val)1443 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1444 {
1445 	struct usb_device_request req;
1446 	usb_error_t error;
1447 
1448 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1449 	req.bRequest = RAL_WRITE_MAC;
1450 	USETW(req.wValue, val);
1451 	USETW(req.wIndex, reg);
1452 	USETW(req.wLength, 0);
1453 
1454 	error = ural_do_request(sc, &req, NULL);
1455 	if (error != 0) {
1456 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1457 		    usbd_errstr(error));
1458 	}
1459 }
1460 
1461 static void
ural_write_multi(struct ural_softc * sc,uint16_t reg,void * buf,int len)1462 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1463 {
1464 	struct usb_device_request req;
1465 	usb_error_t error;
1466 
1467 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1468 	req.bRequest = RAL_WRITE_MULTI_MAC;
1469 	USETW(req.wValue, 0);
1470 	USETW(req.wIndex, reg);
1471 	USETW(req.wLength, len);
1472 
1473 	error = ural_do_request(sc, &req, buf);
1474 	if (error != 0) {
1475 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1476 		    usbd_errstr(error));
1477 	}
1478 }
1479 
1480 static void
ural_bbp_write(struct ural_softc * sc,uint8_t reg,uint8_t val)1481 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1482 {
1483 	uint16_t tmp;
1484 	int ntries;
1485 
1486 	for (ntries = 0; ntries < 100; ntries++) {
1487 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1488 			break;
1489 		if (ural_pause(sc, hz / 100))
1490 			break;
1491 	}
1492 	if (ntries == 100) {
1493 		device_printf(sc->sc_dev, "could not write to BBP\n");
1494 		return;
1495 	}
1496 
1497 	tmp = reg << 8 | val;
1498 	ural_write(sc, RAL_PHY_CSR7, tmp);
1499 }
1500 
1501 static uint8_t
ural_bbp_read(struct ural_softc * sc,uint8_t reg)1502 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1503 {
1504 	uint16_t val;
1505 	int ntries;
1506 
1507 	val = RAL_BBP_WRITE | reg << 8;
1508 	ural_write(sc, RAL_PHY_CSR7, val);
1509 
1510 	for (ntries = 0; ntries < 100; ntries++) {
1511 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1512 			break;
1513 		if (ural_pause(sc, hz / 100))
1514 			break;
1515 	}
1516 	if (ntries == 100) {
1517 		device_printf(sc->sc_dev, "could not read BBP\n");
1518 		return 0;
1519 	}
1520 
1521 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1522 }
1523 
1524 static void
ural_rf_write(struct ural_softc * sc,uint8_t reg,uint32_t val)1525 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1526 {
1527 	uint32_t tmp;
1528 	int ntries;
1529 
1530 	for (ntries = 0; ntries < 100; ntries++) {
1531 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1532 			break;
1533 		if (ural_pause(sc, hz / 100))
1534 			break;
1535 	}
1536 	if (ntries == 100) {
1537 		device_printf(sc->sc_dev, "could not write to RF\n");
1538 		return;
1539 	}
1540 
1541 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1542 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1543 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1544 
1545 	/* remember last written value in sc */
1546 	sc->rf_regs[reg] = val;
1547 
1548 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1549 }
1550 
1551 static void
ural_scan_start(struct ieee80211com * ic)1552 ural_scan_start(struct ieee80211com *ic)
1553 {
1554 	struct ural_softc *sc = ic->ic_softc;
1555 
1556 	RAL_LOCK(sc);
1557 	ural_write(sc, RAL_TXRX_CSR19, 0);
1558 	ural_set_bssid(sc, ieee80211broadcastaddr);
1559 	RAL_UNLOCK(sc);
1560 }
1561 
1562 static void
ural_scan_end(struct ieee80211com * ic)1563 ural_scan_end(struct ieee80211com *ic)
1564 {
1565 	struct ural_softc *sc = ic->ic_softc;
1566 
1567 	RAL_LOCK(sc);
1568 	ural_enable_tsf_sync(sc);
1569 	ural_set_bssid(sc, sc->sc_bssid);
1570 	RAL_UNLOCK(sc);
1571 
1572 }
1573 
1574 static void
ural_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])1575 ural_getradiocaps(struct ieee80211com *ic,
1576     int maxchans, int *nchans, struct ieee80211_channel chans[])
1577 {
1578 	struct ural_softc *sc = ic->ic_softc;
1579 	uint8_t bands[IEEE80211_MODE_BYTES];
1580 
1581 	memset(bands, 0, sizeof(bands));
1582 	setbit(bands, IEEE80211_MODE_11B);
1583 	setbit(bands, IEEE80211_MODE_11G);
1584 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1585 
1586 	if (sc->rf_rev == RAL_RF_5222) {
1587 		setbit(bands, IEEE80211_MODE_11A);
1588 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1589 		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1590 	}
1591 }
1592 
1593 static void
ural_set_channel(struct ieee80211com * ic)1594 ural_set_channel(struct ieee80211com *ic)
1595 {
1596 	struct ural_softc *sc = ic->ic_softc;
1597 
1598 	RAL_LOCK(sc);
1599 	ural_set_chan(sc, ic->ic_curchan);
1600 	RAL_UNLOCK(sc);
1601 }
1602 
1603 static void
ural_set_chan(struct ural_softc * sc,struct ieee80211_channel * c)1604 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1605 {
1606 	struct ieee80211com *ic = &sc->sc_ic;
1607 	uint8_t power, tmp;
1608 	int i, chan;
1609 
1610 	chan = ieee80211_chan2ieee(ic, c);
1611 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1612 		return;
1613 
1614 	if (IEEE80211_IS_CHAN_2GHZ(c))
1615 		power = min(sc->txpow[chan - 1], 31);
1616 	else
1617 		power = 31;
1618 
1619 	/* adjust txpower using ifconfig settings */
1620 	power -= (100 - ic->ic_txpowlimit) / 8;
1621 
1622 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1623 
1624 	switch (sc->rf_rev) {
1625 	case RAL_RF_2522:
1626 		ural_rf_write(sc, RAL_RF1, 0x00814);
1627 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1628 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1629 		break;
1630 
1631 	case RAL_RF_2523:
1632 		ural_rf_write(sc, RAL_RF1, 0x08804);
1633 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1634 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1635 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1636 		break;
1637 
1638 	case RAL_RF_2524:
1639 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1640 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1641 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1642 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1643 		break;
1644 
1645 	case RAL_RF_2525:
1646 		ural_rf_write(sc, RAL_RF1, 0x08808);
1647 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1648 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1649 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1650 
1651 		ural_rf_write(sc, RAL_RF1, 0x08808);
1652 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1653 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1654 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1655 		break;
1656 
1657 	case RAL_RF_2525E:
1658 		ural_rf_write(sc, RAL_RF1, 0x08808);
1659 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1660 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1661 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1662 		break;
1663 
1664 	case RAL_RF_2526:
1665 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1666 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1667 		ural_rf_write(sc, RAL_RF1, 0x08804);
1668 
1669 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1670 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1671 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1672 		break;
1673 
1674 	/* dual-band RF */
1675 	case RAL_RF_5222:
1676 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1677 
1678 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1679 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1680 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1681 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1682 		break;
1683 	}
1684 
1685 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1686 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1687 		/* set Japan filter bit for channel 14 */
1688 		tmp = ural_bbp_read(sc, 70);
1689 
1690 		tmp &= ~RAL_JAPAN_FILTER;
1691 		if (chan == 14)
1692 			tmp |= RAL_JAPAN_FILTER;
1693 
1694 		ural_bbp_write(sc, 70, tmp);
1695 
1696 		/* clear CRC errors */
1697 		ural_read(sc, RAL_STA_CSR0);
1698 
1699 		ural_pause(sc, hz / 100);
1700 		ural_disable_rf_tune(sc);
1701 	}
1702 
1703 	/* XXX doesn't belong here */
1704 	/* update basic rate set */
1705 	ural_set_basicrates(sc, c);
1706 
1707 	/* give the hardware some time to do the switchover */
1708 	ural_pause(sc, hz / 100);
1709 }
1710 
1711 /*
1712  * Disable RF auto-tuning.
1713  */
1714 static void
ural_disable_rf_tune(struct ural_softc * sc)1715 ural_disable_rf_tune(struct ural_softc *sc)
1716 {
1717 	uint32_t tmp;
1718 
1719 	if (sc->rf_rev != RAL_RF_2523) {
1720 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1721 		ural_rf_write(sc, RAL_RF1, tmp);
1722 	}
1723 
1724 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1725 	ural_rf_write(sc, RAL_RF3, tmp);
1726 
1727 	DPRINTFN(2, "disabling RF autotune\n");
1728 }
1729 
1730 /*
1731  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1732  * synchronization.
1733  */
1734 static void
ural_enable_tsf_sync(struct ural_softc * sc)1735 ural_enable_tsf_sync(struct ural_softc *sc)
1736 {
1737 	struct ieee80211com *ic = &sc->sc_ic;
1738 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1739 	uint16_t logcwmin, preload, tmp;
1740 
1741 	/* first, disable TSF synchronization */
1742 	ural_write(sc, RAL_TXRX_CSR19, 0);
1743 
1744 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1745 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1746 
1747 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1748 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1749 	tmp = logcwmin << 12 | preload;
1750 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1751 
1752 	/* finally, enable TSF synchronization */
1753 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1754 	if (ic->ic_opmode == IEEE80211_M_STA)
1755 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1756 	else
1757 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1758 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1759 
1760 	DPRINTF("enabling TSF synchronization\n");
1761 }
1762 
1763 static void
ural_enable_tsf(struct ural_softc * sc)1764 ural_enable_tsf(struct ural_softc *sc)
1765 {
1766 	/* first, disable TSF synchronization */
1767 	ural_write(sc, RAL_TXRX_CSR19, 0);
1768 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1769 }
1770 
1771 #define RAL_RXTX_TURNAROUND	5	/* us */
1772 static void
ural_update_slot(struct ural_softc * sc)1773 ural_update_slot(struct ural_softc *sc)
1774 {
1775 	struct ieee80211com *ic = &sc->sc_ic;
1776 	uint16_t slottime, sifs, eifs;
1777 
1778 	slottime = IEEE80211_GET_SLOTTIME(ic);
1779 
1780 	/*
1781 	 * These settings may sound a bit inconsistent but this is what the
1782 	 * reference driver does.
1783 	 */
1784 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1785 		sifs = 16 - RAL_RXTX_TURNAROUND;
1786 		eifs = 364;
1787 	} else {
1788 		sifs = 10 - RAL_RXTX_TURNAROUND;
1789 		eifs = 64;
1790 	}
1791 
1792 	ural_write(sc, RAL_MAC_CSR10, slottime);
1793 	ural_write(sc, RAL_MAC_CSR11, sifs);
1794 	ural_write(sc, RAL_MAC_CSR12, eifs);
1795 }
1796 
1797 static void
ural_set_txpreamble(struct ural_softc * sc)1798 ural_set_txpreamble(struct ural_softc *sc)
1799 {
1800 	struct ieee80211com *ic = &sc->sc_ic;
1801 	uint16_t tmp;
1802 
1803 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1804 
1805 	tmp &= ~RAL_SHORT_PREAMBLE;
1806 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1807 		tmp |= RAL_SHORT_PREAMBLE;
1808 
1809 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1810 }
1811 
1812 static void
ural_set_basicrates(struct ural_softc * sc,const struct ieee80211_channel * c)1813 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1814 {
1815 	/* XXX wrong, take from rate set */
1816 	/* update basic rate set */
1817 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1818 		/* 11a basic rates: 6, 12, 24Mbps */
1819 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1820 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1821 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1822 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1823 	} else {
1824 		/* 11b basic rates: 1, 2Mbps */
1825 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1826 	}
1827 }
1828 
1829 static void
ural_set_bssid(struct ural_softc * sc,const uint8_t * bssid)1830 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1831 {
1832 	uint16_t tmp;
1833 
1834 	tmp = bssid[0] | bssid[1] << 8;
1835 	ural_write(sc, RAL_MAC_CSR5, tmp);
1836 
1837 	tmp = bssid[2] | bssid[3] << 8;
1838 	ural_write(sc, RAL_MAC_CSR6, tmp);
1839 
1840 	tmp = bssid[4] | bssid[5] << 8;
1841 	ural_write(sc, RAL_MAC_CSR7, tmp);
1842 
1843 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1844 }
1845 
1846 static void
ural_set_macaddr(struct ural_softc * sc,const uint8_t * addr)1847 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1848 {
1849 	uint16_t tmp;
1850 
1851 	tmp = addr[0] | addr[1] << 8;
1852 	ural_write(sc, RAL_MAC_CSR2, tmp);
1853 
1854 	tmp = addr[2] | addr[3] << 8;
1855 	ural_write(sc, RAL_MAC_CSR3, tmp);
1856 
1857 	tmp = addr[4] | addr[5] << 8;
1858 	ural_write(sc, RAL_MAC_CSR4, tmp);
1859 
1860 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1861 }
1862 
1863 static void
ural_setpromisc(struct ural_softc * sc)1864 ural_setpromisc(struct ural_softc *sc)
1865 {
1866 	uint32_t tmp;
1867 
1868 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1869 
1870 	tmp &= ~RAL_DROP_NOT_TO_ME;
1871 	if (sc->sc_ic.ic_promisc == 0)
1872 		tmp |= RAL_DROP_NOT_TO_ME;
1873 
1874 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1875 
1876 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1877 	    "entering" : "leaving");
1878 }
1879 
1880 static void
ural_update_promisc(struct ieee80211com * ic)1881 ural_update_promisc(struct ieee80211com *ic)
1882 {
1883 	struct ural_softc *sc = ic->ic_softc;
1884 
1885 	RAL_LOCK(sc);
1886 	if (sc->sc_running)
1887 		ural_setpromisc(sc);
1888 	RAL_UNLOCK(sc);
1889 }
1890 
1891 static const char *
ural_get_rf(int rev)1892 ural_get_rf(int rev)
1893 {
1894 	switch (rev) {
1895 	case RAL_RF_2522:	return "RT2522";
1896 	case RAL_RF_2523:	return "RT2523";
1897 	case RAL_RF_2524:	return "RT2524";
1898 	case RAL_RF_2525:	return "RT2525";
1899 	case RAL_RF_2525E:	return "RT2525e";
1900 	case RAL_RF_2526:	return "RT2526";
1901 	case RAL_RF_5222:	return "RT5222";
1902 	default:		return "unknown";
1903 	}
1904 }
1905 
1906 static void
ural_read_eeprom(struct ural_softc * sc)1907 ural_read_eeprom(struct ural_softc *sc)
1908 {
1909 	struct ieee80211com *ic = &sc->sc_ic;
1910 	uint16_t val;
1911 
1912 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1913 	val = le16toh(val);
1914 	sc->rf_rev =   (val >> 11) & 0x7;
1915 	sc->hw_radio = (val >> 10) & 0x1;
1916 	sc->led_mode = (val >> 6)  & 0x7;
1917 	sc->rx_ant =   (val >> 4)  & 0x3;
1918 	sc->tx_ant =   (val >> 2)  & 0x3;
1919 	sc->nb_ant =   val & 0x3;
1920 
1921 	/* read MAC address */
1922 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1923 
1924 	/* read default values for BBP registers */
1925 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1926 
1927 	/* read Tx power for all b/g channels */
1928 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1929 }
1930 
1931 static int
ural_bbp_init(struct ural_softc * sc)1932 ural_bbp_init(struct ural_softc *sc)
1933 {
1934 	int i, ntries;
1935 
1936 	/* wait for BBP to be ready */
1937 	for (ntries = 0; ntries < 100; ntries++) {
1938 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1939 			break;
1940 		if (ural_pause(sc, hz / 100))
1941 			break;
1942 	}
1943 	if (ntries == 100) {
1944 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1945 		return EIO;
1946 	}
1947 
1948 	/* initialize BBP registers to default values */
1949 	for (i = 0; i < nitems(ural_def_bbp); i++)
1950 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1951 
1952 #if 0
1953 	/* initialize BBP registers to values stored in EEPROM */
1954 	for (i = 0; i < 16; i++) {
1955 		if (sc->bbp_prom[i].reg == 0xff)
1956 			continue;
1957 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1958 	}
1959 #endif
1960 
1961 	return 0;
1962 }
1963 
1964 static void
ural_set_txantenna(struct ural_softc * sc,int antenna)1965 ural_set_txantenna(struct ural_softc *sc, int antenna)
1966 {
1967 	uint16_t tmp;
1968 	uint8_t tx;
1969 
1970 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1971 	if (antenna == 1)
1972 		tx |= RAL_BBP_ANTA;
1973 	else if (antenna == 2)
1974 		tx |= RAL_BBP_ANTB;
1975 	else
1976 		tx |= RAL_BBP_DIVERSITY;
1977 
1978 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1979 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1980 	    sc->rf_rev == RAL_RF_5222)
1981 		tx |= RAL_BBP_FLIPIQ;
1982 
1983 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1984 
1985 	/* update values in PHY_CSR5 and PHY_CSR6 */
1986 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1987 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1988 
1989 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1990 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1991 }
1992 
1993 static void
ural_set_rxantenna(struct ural_softc * sc,int antenna)1994 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1995 {
1996 	uint8_t rx;
1997 
1998 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1999 	if (antenna == 1)
2000 		rx |= RAL_BBP_ANTA;
2001 	else if (antenna == 2)
2002 		rx |= RAL_BBP_ANTB;
2003 	else
2004 		rx |= RAL_BBP_DIVERSITY;
2005 
2006 	/* need to force no I/Q flip for RF 2525e and 2526 */
2007 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2008 		rx &= ~RAL_BBP_FLIPIQ;
2009 
2010 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2011 }
2012 
2013 static void
ural_init(struct ural_softc * sc)2014 ural_init(struct ural_softc *sc)
2015 {
2016 	struct ieee80211com *ic = &sc->sc_ic;
2017 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2018 	uint16_t tmp;
2019 	int i, ntries;
2020 
2021 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2022 
2023 	ural_set_testmode(sc);
2024 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2025 
2026 	ural_stop(sc);
2027 
2028 	/* initialize MAC registers to default values */
2029 	for (i = 0; i < nitems(ural_def_mac); i++)
2030 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2031 
2032 	/* wait for BBP and RF to wake up (this can take a long time!) */
2033 	for (ntries = 0; ntries < 100; ntries++) {
2034 		tmp = ural_read(sc, RAL_MAC_CSR17);
2035 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2036 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2037 			break;
2038 		if (ural_pause(sc, hz / 100))
2039 			break;
2040 	}
2041 	if (ntries == 100) {
2042 		device_printf(sc->sc_dev,
2043 		    "timeout waiting for BBP/RF to wakeup\n");
2044 		goto fail;
2045 	}
2046 
2047 	/* we're ready! */
2048 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2049 
2050 	/* set basic rate set (will be updated later) */
2051 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2052 
2053 	if (ural_bbp_init(sc) != 0)
2054 		goto fail;
2055 
2056 	ural_set_chan(sc, ic->ic_curchan);
2057 
2058 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2059 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2060 
2061 	ural_set_txantenna(sc, sc->tx_ant);
2062 	ural_set_rxantenna(sc, sc->rx_ant);
2063 
2064 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2065 
2066 	/*
2067 	 * Allocate Tx and Rx xfer queues.
2068 	 */
2069 	ural_setup_tx_list(sc);
2070 
2071 	/* kick Rx */
2072 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2073 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2074 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2075 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2076 			tmp |= RAL_DROP_TODS;
2077 		if (ic->ic_promisc == 0)
2078 			tmp |= RAL_DROP_NOT_TO_ME;
2079 	}
2080 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2081 
2082 	sc->sc_running = 1;
2083 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2084 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2085 	return;
2086 
2087 fail:	ural_stop(sc);
2088 }
2089 
2090 static void
ural_stop(struct ural_softc * sc)2091 ural_stop(struct ural_softc *sc)
2092 {
2093 
2094 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2095 
2096 	sc->sc_running = 0;
2097 
2098 	/*
2099 	 * Drain all the transfers, if not already drained:
2100 	 */
2101 	RAL_UNLOCK(sc);
2102 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2103 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2104 	RAL_LOCK(sc);
2105 
2106 	ural_unsetup_tx_list(sc);
2107 
2108 	/* disable Rx */
2109 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2110 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2111 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2112 	/* wait a little */
2113 	ural_pause(sc, hz / 10);
2114 	ural_write(sc, RAL_MAC_CSR1, 0);
2115 	/* wait a little */
2116 	ural_pause(sc, hz / 10);
2117 }
2118 
2119 static int
ural_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)2120 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2121 	const struct ieee80211_bpf_params *params)
2122 {
2123 	struct ieee80211com *ic = ni->ni_ic;
2124 	struct ural_softc *sc = ic->ic_softc;
2125 
2126 	RAL_LOCK(sc);
2127 	/* prevent management frames from being sent if we're not ready */
2128 	if (!sc->sc_running) {
2129 		RAL_UNLOCK(sc);
2130 		m_freem(m);
2131 		return ENETDOWN;
2132 	}
2133 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2134 		RAL_UNLOCK(sc);
2135 		m_freem(m);
2136 		return EIO;
2137 	}
2138 
2139 	if (params == NULL) {
2140 		/*
2141 		 * Legacy path; interpret frame contents to decide
2142 		 * precisely how to send the frame.
2143 		 */
2144 		if (ural_tx_mgt(sc, m, ni) != 0)
2145 			goto bad;
2146 	} else {
2147 		/*
2148 		 * Caller supplied explicit parameters to use in
2149 		 * sending the frame.
2150 		 */
2151 		if (ural_tx_raw(sc, m, ni, params) != 0)
2152 			goto bad;
2153 	}
2154 	RAL_UNLOCK(sc);
2155 	return 0;
2156 bad:
2157 	RAL_UNLOCK(sc);
2158 	return EIO;		/* XXX */
2159 }
2160 
2161 static void
ural_ratectl_start(struct ural_softc * sc,struct ieee80211_node * ni)2162 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2163 {
2164 	struct ieee80211vap *vap = ni->ni_vap;
2165 	struct ural_vap *uvp = URAL_VAP(vap);
2166 
2167 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2168 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2169 
2170 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2171 }
2172 
2173 static void
ural_ratectl_timeout(void * arg)2174 ural_ratectl_timeout(void *arg)
2175 {
2176 	struct ural_vap *uvp = arg;
2177 	struct ieee80211vap *vap = &uvp->vap;
2178 	struct ieee80211com *ic = vap->iv_ic;
2179 
2180 	ieee80211_runtask(ic, &uvp->ratectl_task);
2181 }
2182 
2183 static void
ural_ratectl_task(void * arg,int pending)2184 ural_ratectl_task(void *arg, int pending)
2185 {
2186 	struct ural_vap *uvp = arg;
2187 	struct ieee80211vap *vap = &uvp->vap;
2188 	struct ural_softc *sc = vap->iv_ic->ic_softc;
2189 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2190 	int fail;
2191 
2192 	RAL_LOCK(sc);
2193 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2194 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2195 
2196 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2197 	txs->nsuccess = sc->sta[7] +	/* TX ok w/o retry */
2198 			sc->sta[8];	/* TX ok w/ retry */
2199 	fail = sc->sta[9];		/* TX retry-fail count */
2200 	txs->nframes = txs->nsuccess + fail;
2201 	/* XXX fail * maxretry */
2202 	txs->nretries = sc->sta[8] + fail;
2203 
2204 	ieee80211_ratectl_tx_update(vap, txs);
2205 
2206 	/* count TX retry-fail as Tx errors */
2207 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2208 
2209 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2210 	RAL_UNLOCK(sc);
2211 }
2212 
2213 static int
ural_pause(struct ural_softc * sc,int timeout)2214 ural_pause(struct ural_softc *sc, int timeout)
2215 {
2216 
2217 	usb_pause_mtx(&sc->sc_mtx, timeout);
2218 	return (0);
2219 }
2220